M63155FP 3 PHASE BRUSHLESS MOTOR CONTROLLER REJ03F0037-0100Z Rev.1.0 Sep.16.2003 Outline The M63155FP is a three phase brushless motor controller with six external N-channel Power MOSFETs. The motor coil current is controlled by either a PWM pulse duty or a D/A signal level from an external controller. Both VCC1 and VCC2 can be supplied by either external power supply or internal 5V regulator. Also voltage monitor is available, and whichever of power supplies drops down, it generates an error signal. Either fast or slow current-decay, either coast(free-run) or dynamic brake(short-brake) can be selected. Several protection circuits are built in, thermal shut down and so on. Internal tachometer, direction control and oscillator for internal logic are also available. Features • • • • • • • • • • • • Wide voltage range: From 10V to 40V (VM) 5V regulator with the external PNP transistor Internal gate supply voltage generator (Charge pump) Voltage monitor (VM , SVCC , External FET gate & External FET drain-source) (Voltage monitor of External FET gate & External drain-source can be disabled.) Motor current control by either a PWM duty or a D/A level Selectable fast or slow current-decay Selectable coast (free-run) or dynamic brake (short-brake) FG internal tachometer (3phase mixed) Direction control Thermal Shut Down (TSD) Power loss brake Protection for invalid hall codes Application • High Power Three Phase Brushless Motor. Rev.1.0, Sep.16.2003, page 1 of 40 M63155FP Pin Configuration (TOP VIEW) 1 52 2 51 3 50 5 6 XXX XXX 4 49 48 47 7 46 8 45 9 44 10 43 11 42 12 41 13 40 14 39 15 38 16 37 17 36 18 35 19 34 20 33 21 22 23 M63 155 FP UT U UB VT V VB WT W WB RSM GND NC RSS HU HV GND HW VCC1 TCL CTL CCFB FCE FG FLT RST DS 32 31 30 24 29 25 28 26 27 52pin HSSOP (52P9Y) Rev.1.0, Sep.16.2003, page 2 of 40 VM VGT CP6 CP5 VGB CP4 CP3 VCP CP2 CP1 GND SVCC VCC2 OSC1 OSC2 GND SGND REGR REGC REGB REGE REGL BRK BRS FR PWM M63155FP Block Diagram SVCC CP1 CP2 VCP CP3 CP4 VGB CP5 CP6 VGT 41 43 46 47 48 49 50 VM 51 52 C D B 120 / 60 degree Switching Matrix / Pre-Driver charge pump for upper gate charge pump for lower gate 2 VGB Monitor VGT Monitor Hall Monitor D-S Monitor VM Monitor B 45 charge pump for lower gate 1 5V Monitor TSD Monitor A 44 VCC2 40 OSC1 39 Current Control Toff circuit Input Logic Circuit OSC2 38 SGND 36 TSD + Bandgap Reference REGC 34 REGB 33 5V Regulator REGE 32 28 27 26 25 24 23 4 VT 5 V 6 VB 7 WT 8 W 9 WB B D A 12 NC 13 RSS 22 21 20 19 BRK BRS FR PWM DS RST FLT FG FCE CCFB CTL TCL Rev.1.0, Sep.16.2003, page 3 of 40 UB A C 29 3 D C 30 U B C GND 2 10 RSM REGL 31 42, 37 UT A FG (Tacho Meter) REGR 35 - Oscillator 1 D 18 VCC1 17 15 14 HW HV HU 16 , 11 GND M63155FP Pin Description Pin No. Symbol Function Pin No. Symbol Function 1 UT 52 VM Motor Power Supply 2 U Phase-U Top-side Gate Drive Output Phase-U Motor Output 51 VGT Top-side Gate Supply Voltage Output 3 UB 50 CP6 Charge-pump Capacitor 6 4 VT Phase-U Bottom-side Gate Drive Output Phase-V Top-side Gate Drive Output 49 CP5 Charge-pump Capacitor 5 5 V Phase-V Motor Output 48 VGB 6 VB Phase-V Bottom-side Gate Drive Output 47 CP4 Bottom-side Gate Supply Voltage Output Charge-pump Capacitor 4 7 WT 46 CP3 Charge-pump Capacitor 3 8 W Phase-W Top-side Gate Drive Output Phase-W Motor Output 9 WB 10 RSM 11 12 45 VCP Charge-pump Voltage Output Phase-W Bottom-side Gate Drive Output Motor Current Sensing Input for big signal line 44 CP2 Charge-pump Capacitor 2 43 CP1 Charge-pump Capacitor 1 - NC NC 42 41 GND SVCC GND External 5V Sensing Input 13 RSS 40 VCC2 Big Signal 5V Power Supply 14 HU Motor Current Sensing Input for small signal line HU Hall Sensor Amp. Input 39 OSC1 Oscillator Output 1 15 16 HV GND HV Hall Sensor Amp. Input GND 38 37 OSC2 GND Oscillator Output 2 GND 17 18 HW VCC1 HW Hall Sensor Amp. Input Small Signal 5V Power Supply 36 35 SGND REGR Oscillator GND 5V Regulator Phase Compensation 19 20 TCL CTL Current Control Off Time Input Current Control Input 34 33 REGC REGB 5V Regulator Output 5V Regulator Current Sink 21 22 CCFB FCE Output of current comparator Voltage monitor enable input 32 31 REGE REGL 5V Regulator Current Sensing 5V Regulator Phase Compensation 23 24 FG FLT FG Output Voltage Monitor Fault Output 30 29 BRK BRS Braking Input Braking Mode Select Input 25 26 RST DS Reset Input Fast / Slow Current Decay Mode Select Input 28 27 FR PWM Forward / Reverse Select Input PWM Input Rev.1.0, Sep.16.2003, page 4 of 40 M63155FP Absolute Maximum Rating (unless otherwise noted Ta=25°C centigrade) Limits Symbol Parameter Conditions Min. Typ. Max. Unit Vm Motor Power Supply at VM 10 - 40 V Vcc Vto 5V Power Supply Top Side Gate Drive Output Voltage at VCC1, VCC2 at UT, VT, WT 4.0 - VM +10.8 6.0 - V V Vo Motor Output Voltage - - 50 V Vbo Bottom Side Gate Drive Output Voltage at U, V, W including motor coil over shoot at UB, VB, WB - 12.2 - V Vin1 Logic Input Voltage - - 6 V Vin2 Logic Input Voltage Open Drain Output Voltage Open Drain Output Current at BRK, BRS, FR, DS, RST, HU, HV, HW PWM - - 15 V at FG, FLT, TCL - - 6 V at FG, FLT, TCL 0 - 5 mA Free Air Free Air - 1.2 9.6 - W mW/°C Vdo Ido Pt Kt Power Dissipation Thermal Derating Tj Topr Junction Temperature Operating Temperature 0 - 150 75 °C °C Tstg Storage Temperature -20 - 125 °C Recommended Operating Condition (Unless otherwise noted Ta=25°C, VM=12V, VCC1=VCC2=5V) Limits Symbol Parameter Conditions Min. Typ. Max. Unit Vm Motor Power Supply at VM 10 12 40 V Vcc 5V Power Supply at VCC1, VCC2 at VCC1 on Power Fail 4.5 3.5 5.0 - 5.5 5.5 V V Fpwm PWM Input Frequency at PWM 10 20 30 kHz Rev.1.0, Sep.16.2003, page 5 of 40 M63155FP Power Dissipation Pdp (W) Thermal Derating 5.0 using T-type board 4.0 using U-type / V-type board 3.0 2.0 1.0 0 25 50 75 100 125 150 Ambient Temperature Ta (degree centigrade) This IC's package is POWER-SSOP, so improving the board on which the IC is mounted enables a large power dissipation without a heat sink. For example, using an 1 layer glass epoxy resin board, the IC's power dissipation is 2.6W at least. And it comes to 3.6W by using an improved 2 layer board. The information of the T, U, V type board is shown in next page. Rev.1.0, Sep.16.2003, page 6 of 40 M63155FP The boards for thermal derating evaluation 1st layer [TOP view] 2nd layer [BACK view] Conditions Board material ; Glass-epoxy FR-4 Size ; 70 X 70 mm2 T-type Board thickness ; 1.6 mm [2 layer] 1 and 2 layers Metal material ; copper Metal thickness ; 18 µm U-type [2 layer] V-type [1 layer] Lead Heat sink Chip Package inner structure 52P9Y-K Rev.1.0, Sep.16.2003, page 7 of 40 IC mounting on the evaluation board M63155FP Electrical characteristics (Unless otherwise noted Ta=25°C, VM=12V, VCC1=VCC2=5V) Limits Symbol Parameter Conditions POWER SUPPLY (VM, VCC1, VCC2, VCP, VGB, VGT) Motor Power Supply at VM Im Normal Control Mode Current The motor is not driven Ivcc 5V Power Supply at VCC1 Current Normal Control Mode The motor is not driven at VCC2 Normal Control Mode The motor is not driven Vcp Charge-pump Output at VCP, Voltage no gate driving Bottom-side Gate at VGB, Vgb Supply Voltage ILVGB=ILVGT=7.0mA Vgt Top-side Gate Supply at VGT, Voltage ILVGB=ILVGT=7.0mA Charge-pump (VCP) fosc=1MHz, Tcp Cp1=470nF, Ccp=4.7µF Pre-charge Time *Refer to the Fig.1. Tgb Charge-pump (VGB) fosc=1MHz, Pre-charge Time Cp2=470nF, Cgb=33µF * Refer to the Fig.1. Charge-pump (VGT) fosc=1MHz, Tgt Cp3=470nF, Cgt=4.7µF Pre-charge Time * Refer to the Fig.1. Fosc Oscillator Frequency Rosc=15kΩ Min. Typ. Max. Unit - 2.3 5.0 mA - 4 7 mA - 16 33 mA 7.0 8.5 10.0 V 8.5 11.5 - V VM +7.5 VM +9.5 - V - 4 4.8 msec - 28 33.6 msec - 4 4.8 msec 6.4 8.0 9.6 MHz 12V VM (VCC2=REGC) 50% 0V 90% 8.6V (12.2V, VM+10.8V) VCP (VGB, VGT) 0V Tcp (Tgb, Tgt) Fig.1 Charge-pump Pre-charge Time Definition Rev.1.0, Sep.16.2003, page 8 of 40 M63155FP Electrical characteristics (Unless otherwise noted Ta=25°C, VM=12V, VCC1=VCC2=5V) Limits Symbol Parameter Conditions REGULATOR (REGE, REGB, REGC, REGR) Regulator Output Io=50mA Vr Voltage *Note1 Vm=10~40V, Io=50mA Vrin Regulator Output *Note1 Voltage Stability for Input Vm Voltage Regulator Output Vrout Io=0~200mA *Note1 Voltage Stability for Load Current Vlim RS Threshold Voltage REGE terminal voltage *Note1 * Note1 : Min. Typ. Max. Unit 4.75 5.0 5.25 V - 0.0 30.0 mV - 0.0 30.0 mV 0.8 1.0 1.2 V The values of the external parts are in the “The recommended values of the external parts” table. The hFE of External PNP transistor is “100” minimum. Rev.1.0, Sep.16.2003, page 9 of 40 M63155FP Electrical characteristics (Unless otherwise noted Ta=25°C, VM=12V, VCC1=VCC2=5V) Limits Symbol Parameter Conditions VOLTAGE MONITOR (VM, SVCC, FLT) External 5V Monitor Vsvi at SVCC Input Voltage Range Isvi External 5V Monitor at SVCC SVCC=5V Input Current External 5V Monitor External 5V Drop Down Vths Threshold Voltage *Refer to the Fig.2. Vshy External 5V Monitor External 5V Rise up Hysteresis Voltage *Refer to the Fig.2. VM Monitor VM Drop Down Vthm Threshold Voltage *Refer to the Fig.2. Vmhy VM Monitor VM Rise Up Hysteresis Voltage *Refer to the Fig.2. Hi-side FETs gate Vthug monitor Threshold Voltage Vughy Hi-side FETs gate monitor Hysteresis Voltage Low-side FETs gate Vthlg monitor Threshold Voltage Vlghy Low-side FETs gate monitor Hysteresis Voltage Drain-Source monitor Vthds Threshold Voltage Vdshy Drain-Source monitor Hysteresis Voltage FLT Output Saturation at FLT, output sink Vsft Voltage current: 2mA Min. Typ. Max. Unit 0 - 5.5 V 30 50 75 µA 4.00 4.25 4.35 V 50 100 150 mV 9.0 9.5 10.0 V 400 500 600 mV - - VM+6 V - - 200 mV - 6 V - - 200 mV 0.7 1 1.3 V -200 - - mV - 0.15 0.5 V SVCC (VM, External gate voltage, External Drain-Source voltage) Vshy (Vmhy,Vughy,Vlghy,Vdshy) Vths (Vthm,Vthug,Vthlg,Vthds) 5V FLT 0V Fig.2 Supply Voltage Monitor Time Definition Rev.1.0, Sep.16.2003, page 10 of 40 M63155FP Electrical characteristics (Unless otherwise noted Ta=25°C, VM=12V, VCC1=VCC2=5V) Limits Symbol Parameter Conditions CURRENT CONTROL (RSS, REF, CTL, TCL, CCFB) Current Control Vcti at CTL Input Voltage Range Icti Current Control at CTL, Input Current CTL=RSS=0V Current Control Off Vtcl at TCL Time Threshold Voltage at TCL Vtclhy Current Control Off Time Hysteresis Voltage Off Time Input at TCL, output sink Vstl current: 2mA Saturation Voltage RSS>CTL Vcpi1 Current comparator at CCFB, Output Current RSS<CTL Current comparator at CCFB, Vcpi2 Output Current RSS>CTL Vcpv1 Current comparator at CCFB, Saturation Voltage sink current 1mA Current comparator at CCFB, Vcpv2 Saturation Voltage source current 1mA HALL SIGNAL (HU, HV, HW, FG) Hall High-State Input Vhah Voltage Vhal Hall Low-State Input Voltage Hall High-State Input Ihah Vha= 5V Current Ihal Hall Low-State Input Vha = 0V Current FG Output Saturation at FG, output sink Vsfg Voltage current : 2mA Rev.1.0, Sep.16.2003, page 11 of 40 Min. Typ. Max. Unit 0 - 3.3 V -2.0 -0.4 - µA 2.4 2.5 2.6 V 1.15 1.22 1.29 V - 0.15 0.5 V -1 - - mA - - 1 mA 0.5 - - V - - VCC1 -0.5 V 2.0 - - V - - 1.0 V - 0 1.0 µA -1.0 0 - µA - 0.15 0.5 V M63155FP Electrical characteristics (Unless otherwise noted Ta=25°C, VM=12V, VCC1=VCC2=5V) Limits Symbol Parameter Min. Typ. Max. Unit 2.0 - - V - - 1.0 V Vlg= 5V - 100 150 µA Vlg= 0V -1.0 0 - µA 3.2 - - V - - 2.8 V - 0 1 µA Ilsl Logic Low-State Vls=0V GATE DRIVE OUTPUTS (UT, VT, WT, UB, VB, WB) Top Side Gate Drive Vtoh=VGT-UT, VGT-VT, Vtoh VGT-WT High State Voltage Iload = -10 mA , Rg=0 Ω Vtol Top Side Gate Drive Vtol=UT-U, VT-V, WTLow State Voltage W Iload = 10 mA , Rg=0 Ω Bottom Side Gate Drive Vboh=VGB-UB, VGBVboh VB, VGB-WB High State Voltage Iload = -10 mA , Rg=0 Ω Vbol Bottom Side Gate Drive Vbol=UB-RS, VB-RS, Low State Voltage WB-RS Iload = 10 mA , Rg=0 Ω -1 0 - µA - 0.7 1.2 V - 0.25 0.40 V - 0.7 1.2 V - 0.25 0.40 V Ton Toff - 150 100 - nsec nsec - 200 - nsec - 80 - nsec - 200 - nsec - 80 - nsec LOGIC INPUT (DS, FR, BRS, BRK) Logic High-State Vlgh Input Voltage Vlgl Logic Low-State Input Voltage Logic High-State Ilgh Input Current Ilgl Logic Low-State LOGIC INPUT[Level shift] (PWM) Vlsh Logic High-State Input Voltage Logic Low-State Vlsl Input Voltage Ilsh Logic High-State Input Current Ttr Ttf Tbr Tbf Turn-on Delay Turn-off Delay Top Side Switching Rise Time Top Side Switching Fall Time Bottom Side Switching Rise Time Bottom Side Switching Fall Time Rev.1.0, Sep.16.2003, page 12 of 40 Conditions Vls=11.5V *Refer to the Fig.3. *Refer to the Fig.3. CL =1200pF, Rg=0 Ω *Refer to the Fig.3. CL=1200pF, Rg=0Ω *Refer to the Fig.3. M63155FP Electrical characteristics (Unless otherwise noted Ta=25°C, VM=12V, VCC1=VCC2=5V) 5V 50% 50% PWM 0V VA(*Note3) 90% Vout(*Note2) 10% 0V Ton Tr Toff Tf Fig.3 Gate Drive Output Time Characteristics Definition * Note2 : Vout is the external Nch MOS FET 's gate-source voltage. The definition is, UT-U, VT-V, WT-W, and U=V=W=VM=12V, Capacitor Load CL=1200pF. UB-RS, VB-RS, WB-RS, and RS=0V, Capacitor Load CL=1200pF. * Note3 : VA is the power supply voltage of the gate drive output. The definition is, VGT-VM=10.8V for UT-U, VTV, WT-W. VGB=12.2V for UB-RS, VB-RS, WB-RS. * Note4 : The waveform above-mentioned is one of the switching timing, because an gate drive output state is due to Hall sensor Amp. inputs. Please refer to the "Hall Signal Inputs and Motor Outputs Timing Diagram". Rev.1.0, Sep.16.2003, page 13 of 40 M63155FP Function Explanation 1. VM terminal (VM) The power supply for the M63155FP is connected between this terminal and GND. 2. VCC terminals (VCC1, VCC2) The 5V power supply for the M63155FP is connected between these terminals and GND. The VCC1 supplies small signal 5V, and the VCC2 supplies big signal 5V (for Charge Pump). *Notes: In order to ensure proper coast/braking operation even after detecting power loss, it is necessary to make the VCC1 supplies maintain externally. The state of the fault latch and the guaranteed function of other shutdown circuits is maintained by the charge held on Cvcc1. Therefore, the length of this extended operation is determined by the value of Cvcc1. The calculation method of a minimum value for Cvcc1, given a minimum hold-up time requirement (t). Coarse hold-up calculation Cvcc1(min) = t x iss / [Vcc1(nom) - Vcc1(min)] for C in farads: t = hold-up time (sec) iss = steady-state Vcc1 node current in fault mode (A) V = delta V from nominal to minimum (volts) 3. Hall Input Terminals (HU, HV, HW) These terminals are connected to the Hall effect commutation IC’s output of the brushless motor, which have opencollector outputs. 4. Output Terminals (UT, VT, WT, U, V, W, UB, VB, WB) These terminals are the gate drive outputs for the external MOS FETs. UT, VT and WT are the gate drive outputs for the top side external MOS FETs. U, V and W are connected to the motor output terminals and the source terminals of the top side external MOS FETs. UB, VB and WB are the gate drive outputs for the bottom side external MOS FETs. Rev.1.0, Sep.16.2003, page 14 of 40 M63155FP Function Explanation 5. Oscillator (OSC1, OSC2, SGND) The oscillation frequency (Fosc) of the oscillator is determined by the external capacitor and resistor which are connected to these terminals. The capacitor is connected between OSC2 and SGND, and the resistor is connected between OSC1 and OSC2. SGND is the common terminal of the oscillator circuit. So it is connected to the root of the board GND due to getting the high accurate performance. The oscillation frequency theoretical value is given by: (Fosc) 1 - 2 Rosc Cosc ln( 1 ) 2 Rosc : External resistance for oscillator Cosc : External condenser for oscillator However, the actual oscillation frequency is different by influence of response of the oscillator circuit. The characteristic of the theoretical oscillation Frequency – the actual oscillation frequency is as follows (Fig.4). Fosc [kHz] 1600 1400 theoretical value measurment value 1200 1000 800 TBD 600 400 200 0 1 1 0 Rosc [kohm] 100 Fig.4 The characteristic of oscillation frequency (Cosc=180pF) Rev.1.0, Sep.16.2003, page 15 of 40 M63155FP 6. Charge Pump (CP1, CP2, VCP / CP3, CP4, VGB / CP5, CP6, VGT ) The charge pump consists of an internal circuit and two external capacitors. One capacitor should be connected between the CP1 (CP3/CP5) terminal and the CP2 (CP4/CP6) terminal, and the other capacitor should be connected between the VCP (VGB/VGT) terminal and GND. The VGB (VGT) (the output of the charge pump circuit) is connected internally to the source of the bottom side Pchannel pre-driver transistors. (the source of the top side P-channel pre-driver transistors.) So the bottom side gate drive transistors are powered by VGB and top side by VGT. The explanation of the charge pump function is as follows (Fig.5). And the characteristic of the PWM Input Frequency – the VGB(VGT) is as follows (Fig.6). VCC2 (VCP/VGB) 1/Fosc VCP (VGB/VGT) 1/4*1/Fosc Q1 Oscillator VCC2 (CP2/VM) D1 OFF ON CP2 CP1 (CP3/CP5) (CP4/CP6) D2 1/4 Counter Ccp (Cgb, Cgt) Cp1 (Cp2/Cp3) Q2 ON OFF inverter Fig.5 Charge Pump Circuit (1) Q1=OFF, Q2=ON The voltage of the CP2 terminal (Vcp2) is given by: Vcp2 = VCC2 - VF VF is the threshold voltage of the diodesD1, D2. At this time, a capacitor connected between the CP1 terminal and the CP2 terminal is charged up. (2) Q1=ON, Q2=OFF Then the Q1 and Q2 are switched (the Q1 is turned on and the Q2 is turned off). The Vcp2 is given by: Vcp2 = (VCC2 - VF) + VCC2 And the charge-pump voltage is given by: VCP = (VCC2 - VF) + VCC2 - VF = 2VCC2-2VF In case of VCC2=5V and VF=0.7V, VCP is 10-1.4=8.6V. (3) VGB, VGT Likewise VCP mentioned above, VGB and VGT voltage is given by: VGB = (CP2 - VF) + VCP - VF = CP2+VCP-2VF VGT = (VM - VF) + VGB - VF = VM+VGB-2VF M63155FP Fpwm - VGT characteristic at VM=12V M63155FP Fpwm - VGB characteristic 15.6 15.4 VGT (V) VGB (V) 15.2 15 14.8 Cgs=470pF Cgs=1000pF Cgs=1500pF 14.6 14.4 14.2 1 1 0 Fpwm (kHz) 100 25.8 25.6 25.4 25.2 25 24.8 24.6 24.4 24.2 24 23.8 Cgs=470pF Cgs=1000pF Cgs=1500pF 1 10 Fpwm (kHz) Fig.6 PWM Input Frequency (Fpwm) – VGB(VGT) characteristic Rev.1.0, Sep.16.2003, page 16 of 40 100 M63155FP In case of VCC1=VCC2=5V, VM=12V, RST=PWM=FR=BRK=HV=5V, DS=BRS=HU=HW=0V,Cp1~3=470nF, Ccp=Cgt= 4.7µF, Cgb=33µF, Fosc=8MHz 7. 5V Regulator (REGE, REGB, REGC, REGR, REGL) The 5V regulator with the external PNP Tr. included the internal gain resistors. It has the output current limit function which needs the external current sensing resistor . The explanation of the 5V Regulator function is as follows (Fig.7). VM [V] REGC (5V) RSR REGE REGB + - REGL REGR 5V REGC 0 + Ilim [A] The limit current value is given by: + - (Limit Current) Vlim RSR Vlim : 5V Regulator Rs threshold voltage (typ; 1.0V) RSR : 5V Regulator current sensing resistor value Fig. 7 5V Regulator application circuit and characteristics Rev.1.0, Sep.16.2003, page 17 of 40 M63155FP 8. Current Control (RSS, RSM, CTL, TCL) RSS is the sensing input of the motor current. A filter resistor(Rnf) should be connected between this terminal and the RSM terminal. A sensing resistor(RS) should be connected between the RSM and motor ground. The current control circuit compares the voltage of the sensing resistor(RS) with the CTL terminal input voltage. When the motor current reaches the threshold voltage (the CTL terminal input voltage), the current control circuit shuts down the motor current with turning off the external FETs during the constant period determined by the external elements on the TCL terminal. This function acts independent of the PWM input signal. If the motor current is controlled by the only PWM input signal, this current control circuit acts as a motor current limit protection circuit. In this case, the motor current limit value could be determined by the CTL input voltage. (1) Current control function Vctl /Rs Motor Current Toff Constant (Tcl) zero 5V typ. 12V typ. VM M (Control Current) CTL Rcin Rcl Ccl ln( VCC1 Vtcl ) VCC1 The motor control current value is given by: Rcl Vctl from MCU (Off Time) Rcl : Current control Off Time Resistance Ccl : Current control Off Time Condenser Vtcl : Current control Off Time Threshold Voltage (typ; 2.5V) - M63155FP - VCC1 /VCC2 The motor current is controlled by the CTL input voltage. When the motor current reaches the threshold voltage, the motor current is shut down while the constant period. The period of the motor shutting down is given by: TCL RSM RSS Ccl Cnf Rnf RS Vctl Rs Vctl : CTL terminal input voltage (from MCU) Rs : Motor current sensing resistor value The CTL input resistor(Rcin) sets the same value of the limit sensing low pass filter resistor(Rnf) to compensate the input impedance of current comparator. (2) Current limit function The Current control circuit could be acted as the current limit protection circuit. In this case, the motor current is controlled by the PWM input duty. The value of the motor current limit is given by: PWM Input Motor Current 5V typ. (Limit Current) Vref 12V typ. - M63155FP - VCC1 /VCC2 Rcl Rct1 Vref : output voltage (ex.; VCC1=5V) Rct1, Rct2 : VCC1 into CTL dividing resistor value Rs : Motor current sensing resistor value VM M CTL Ccl Rct2 Rcin TCL RSM RSS Cnf Rct2 1 Rct1 Rct2 Rs Rnf RS When the motor current reaches the limit current value, the motor current is shut down while the constant period like as above mentioned in “(1) Current control function”. The CTL input resistor(Rcin) sets the below equation value to compensate the input impedance of current comparator. Rcin (Rct1//Rct2) Rnf Rct1, Rct2 : VCC1 into CTL dividing resistor value Rnf : Limit sensing low pass filter resistor value Fig. 8 Motor Current Control Function Rev.1.0, Sep.16.2003, page 18 of 40 M63155FP 9. Current Decay Method (DS) The current decay method is determined by the input into the DS terminal. In slow-decay mode, only the high side MOS FET is switched open during a PWM OFF (Low) cycle. The fast-decay mode switches both the high and low side MOS FETs. Table 1. gives the DS selection truth table. TABLE 1. DS Selection Truth Table DS Function Mode High Slow-Decay Low Fast-Decay The output MOS FETs are controlled by PWM signal as follows. D3 Q1 I1 Q3 Q5 D2 Q2 VM I2 Q4 Q6 Q1 I1 Q3 D2 Q5 VM Q4 Q2 Q6 I2 RS (1)Condition: Q1 is ON and Q4 is ON. (PWM ON period) The motor current I1 goes to RS through the transistors Q1 and Q4. (2)Condition: Q4 is ON and Q2, Q1 are OFF. (PWM ON -> OFF switching period) The discharge current I2 goes through the diode D2. This diode is a parasitic diode of the output power FET. (3)Condition: Q4 is ON and Q2, Q1 are OFF. (PWM OFF period) The discharge current I2 keeps going through the diode D2. Q2 keeps being OFF. (4)Condition: Q4 is ON and Q2, Q1 are OFF. (PWM OFF -> ON switching period) Likewise state (3), the discharge current I2 keeps going through the diode D2. Q2 keeps being OFF. RS (1)Condition: Q1 is ON and Q4 is ON (PWM ON period) The motor current I1 goes to RS through the transistors Q1 and Q4. (2)Condition: Q1, Q4, Q2 and Q3 are OFF. (PWM ON -> OFF switching period) The discharge current I2 goes through the diode D2 and D3. This diode is a parasitic diode of the output power FET. (3)Condition: Q1, Q4, Q2 and Q3 are OFF. (PWM OFF period) The discharge current I2 keeps going through the diode D2 and D3. (4)Condition: Q1, Q4, Q2 and Q3 are OFF. (PWM OFF -> ON switching period) Likewise state (2), the discharge current I2 goes through the diode D2 and D3. * When all the output power FETs are OFF, for example as the phase change, the discharge current goes to VM through these parasitic diodes. a) Slow-Decay Function b) Fast-Decay Function Fig. 9 Current Decay Method at the MOS FETs Control with PWM Signal Rev.1.0, Sep.16.2003, page 19 of 40 M63155FP 10. Braking Mode Enable (BRK) In the normal motor rotation, the motor is able to be braked optionally by external control signal put into the BRK terminal. The braking mode, either coast (free-run) or brake (short-brake) is selected by the BRS terminal (cf. 12. Brake Mode Selection -1)). Table 2. gives the BRK selection truth table. TABLE 2. BRK Selection Truth Table BRK Function Mode High Normal Control Mode Low Brake Mode 11. Voltage Monitor (VM, SVCC, FLT) If either the motor power supply (VM) or the 5V (SVCC) or both drops below the threshold, FLT is “Low”. At this time, the BRS state (cf. 12. Braking Mode Selection) is latched by this FLT “L” signal and keeps its state. (a detailed explanation is given under item “18. Protection circuit” on page 23.) Then, the return of the FLT is decided by conditions of the Voltage Monitor comparator output and Reset input (RST). (normal) SVcc or VM (normal) SVcc or VM (fault) H H RST H L H FLT L RST:L FLT:Low latch H H RST L H FLT (fault) FLT:latch cancel H L L RST:L RST:H and Voltage fault keeps FLT:High FLT:latch cancel Fig.10 Voltage Monitor Circuit & Timing Chart Rev.1.0, Sep.16.2003, page 20 of 40 M63155FP 12. Braking Mode Selection (BRS) 1) In the normal mode (FLT output is “H”) The braking mode whether coast (free-run) or brake (short-brake) is selected by the BRS terminal. In the coast (free-run) mode, all of the output terminals are floating. On the other side, in the brake (short-brake) mode, all of the top side MOS FETs are turned off and all of the bottom side MOS FETs are turned on. This Braking Mode provides a braking torque which depends on the motor speed. 2) In the fault mode (FLT output is “L”) In this case, the braking mode whether coast or brake is selected by the PWM signal irrelevant to the BRK signal and the Current Control (RSS, CTL, TCL) function. The BRS state is latched by the FLT “L” signal. In the BRS “L” state the coast mode is selected, while in the BRS “H” state the PWM signal determines the brake mode. And at this time, the positive power supply for the gate of the bottom side MOS FETs is provided by the chargepump external capacitor (Cgb; cf. Application circuit). If gate drive to the bottom side MOS FETs is chopped via external control of the PWM pin, the minimum value for Cgb is given in the following formula. Coarse Cgb calculation Cgb(min)= t x f x 3q(gate) / [Vcgb(initial) - Vcgb(final)] for C in farads: t = soft braking time (sec) f = a chop frequency for PWM pin (Hz) q(gate) = a electric charge stored in MOS FET gate (C) q(gate) : refer to the data sheet of selected MOS FET * In brake mode, the three bottom side MOS FETs(UB,VB,WB) turns on simultaneously. So, it is needed by 3q(gate). Vcgb = delta V from initial to final (volts) Table 3. gives the BRS selection truth table. TABLE 3. BRS Selection Truth Table normal mode (FLT;H) fault mode (FLT;L) BRS BRK; H BRK; L PWM; H PWM; L High Low Normal Normal Brake Coast Brake Coast Coast 13. Reset input (RST) This input used to enable the device. The “H” input allows the gate drive output to follow “Motor I/O truth table”. The “L” input forces all gate drive output to 0V, coast(free-run) mode, and overrides the BRK state. And this “L” input also resets the BRS state latched by the FLT “L” signal. Table 4. gives the RST selection truth table. TABLE 4. RST Selection Truth Table RST Function Mode High Enable the device Low Disable the device (Reset the BRS and FLT state) Rev.1.0, Sep.16.2003, page 21 of 40 M63155FP 14. Motor Rotation Direction (FR) With the FR input at logic "High", the circuits are allowed to follow the commutation sequence for the motor rotation in the forward direction. With the FR input at logic "Low", the internal switching matrix logic is inverted to drive the motor in the reverse rotation. Table 5. gives the FR selection truth table. TABLE 5. FR Selection Truth Table FR Function Mode High Forward Rotation Low Reverse Rotation The relationship of the Hall sensors and the rotor of the motor is as follows. Hall sensors Outer rotor U V W V W U U V REVERSE W FORWARD Fig. 11 Motor Rotation Direction 15. Motor Rotation Speed Signal (FG) The FG terminal is connected to the output of the internal tachometer which generates 3 pulse signal per electrical revolution from the Hall sensor inputs. The relationship between the motor rotation speed and FG output signal frequency is given by; (Motor speed [rpm]) fFG ×60 1 Np× 2× 3 fFG : FG output signal frequency [Hz] Np : Motor pole number 16. PWM Input (PWM) In the normal mode (FLT is “H”), the PWM signal is applied to this terminal to control the motor speed. The motor speed is due to the duty of the PWM input signal. On the other side, in the case of the FLT “L” state and the BRS “H” state, the PWM signal determines the brake mode. (cf. 11. Voltage Monitor (VM, SVCC, FLT)). Table 6. gives the PWM selection truth table. TABLE 6. PWM Selection Truth Table PWM Function Mode High Normal circulate current Low Recirculate current 17. Disable FET Voltage Monitors Input (FCE) Usually, FCE is set “L”. When fail of external FETs gate voltage or D-S voltage is detected, the FCE can be set “H” to disable the external voltage check. Detail explanation is shown in 5)D-S voltage monitor and 6)External FETs gate voltage monitor on page 23. Rev.1.0, Sep.16.2003, page 22 of 40 M63155FP 18. Protection circuit 1) VM voltage monitor (VM: Motor supply voltage) If VM drops below the Vthm, FLT is "L". Then the return of the FLT is decided by Vthm+Vmhy and RST toggled(H-L-H) . Detail drawing are in Fig.10 on page 20 and in Fig.24,25 on page 27. 2) SVCC voltage monitor (SVCC: External 5V power supply) If SVCC drops below the Vths,FLT is "L". Then,the return of the FLT is decided by Vths+Vshy and RST toggled(H-L-H). Detail drawing are in Fig.10 on page 20 and in Fig.24,25 on page 27. For relationships between protection and FLT output refer to Fig.18 on page 24. 3) TSD (Thermal shut down) This function is for thermal protection. The Thermal Shut Down (TSD) circuit has a thermal sensor for the junction temperature of the device. If the temperature goes above the TSD function start temperature, the TSD circuit shut down the high-side Motor Pre-drive circuit and sets the fault latch. Once the TSD circuit start the shut down function, it continues to the TSD function stop temperature. The Table 7. gives the TSD function start / stop temperatures. TABLE 7. Thermal Shut Down Truth Table Parameter Typical Value Units Function Start temperature 140 degrees centigrade Function Stop Temperature 110 degrees centigrade * Note5: These TSD temperature are the target temperatures for circuit design, not the guaranteed value. 4) HALL code check If all halls are "H" or "L", FLT is "L". Then,the return of the FLT is decided by RST toggled (H-L-H). Detail drawing are in Fig.10 on page 18 and in Fig.24,25 on page 27. 5) D-S voltage monitor (Drain-source voltage monitor of Top side External FETs) In case of Fig.20 on page 25, FLT is “L”. The timing to check the Drain-source voltage refer to Fig.21 on page 25. Then, the return of the FLT is decided by RST toggled (H-L-H). Detail drawing are in Fig.10 on page 20 and in Fig.24,25 on page 27. The protection circuit is disable by setting a FCE pin to “H”. Detail drawing are in Fig.22 on page 26. 6) External FETs gate voltage monitor (Voltage of the hi-side FETs gate x3, Voltage of the low-side FETs gate x3) The timing that each External FET is ON,If each gate voltage does’nt come to threshold,FLT is “L”. The timing to check each gate voltage refer to Fig.19 on page 24 . Then, the return of the FLT is decided by RST toggled (H-L-H). Detail drawing are in Fig.10 on page 20 and in Fig.24,25 on page 27. The protection circuit is disable by setting a FCE pin to “H”. Detail drawing are in Fig.23 on page 26. Rev.1.0, Sep.16.2003, page 23 of 40 M63155FP Motor supply voltage VM + Vthm External 5V power supply SVCC (or REGC; the 5V Regulator output) Drain-Source voltage monitor VDSM-U of Top side External FET. TSD + c FLT - open drain output d HALL + l m n b - Vtht Invalid HALL Cords *Note:This function is guaranteed during Absolute Maximam Rating on page 3. + Vths Voltage by temperature a - e M1 Vthds mask1 UT Voltage of the hi-side FETs gate VT WT L M N UVWT Vthug + f - M2 mask2 Voltage of the low-side FET gate + UB g Voltage of the low-side FET gate M3 mask3 + VB h Voltage of the low-side FET gate M4 mask4 + WB Vthlg i - M5 mask5 FCE Reset input RST Fig.18 relations between each protections and FLT output PWM is off. Voltage of Phase U Voltage of Phase V Voltage of Phase W Selecting switch point for Hi-side FETs gate M L L N M2 (mask signal) Monitoring timing M3 (mask signal) M4 (mask signal) M5 (mask signal) 1.54 - 2.5uS moving Fig.19 Timing chart of gate voltage monitor in Fast Decay Rev.1.0, Sep.16.2003, page 24 of 40 Braking M63155FP For example: If point-B is shorted GND, voltage(point-A) between external drain and source voltage reach to more than 1V during turn-on. So Drain-Source voltage monitor circuit senses voltage of point-A. But this circuit can’t do perfect detecting shorted winding coil to GND. VM Drain-Source voltage monitor At Point-e in Fig.22 on page 22 Off Q5 A On Q3 More than 1V l Q1 + Off To FLT Vthds m M1 > n Phase W Phase V Q4 Q6 Off Phase U Q2 Refer to Fig.21 on page 23 B Off On RS Over load current Fig.20 Drain-Source voltage monitor of external FETs PWM is off Voltage of Phase U Voltage of Phase V Voltage of Phase W Selecting switch point for Hi-side FETs gate l m n l M1 (mask signal) Monitoring timing 1.54 - 2.5uS moving Fig.21 Timing of drain-source voltage monitor Rev.1.0, Sep.16.2003, page 25 of 40 Braking M63155FP PWM is off. Voltage of Phase U Voltage of Phase V Voltage of Phase W Selecting switch point for Hi-side FETs gate M L L N M2 (mask signal) Monitoring timing M3 (mask signal) M4 (mask signal) M5 (mask signal) moving 1.54 - 2.5uS FCE(pin22) Braking Disabled Fig.22 Timing chart of gate voltage monitor in Fast Decay PWM is off Voltage of Phase U Voltage of Phase V Voltage of Phase W Selecting switch point for Hi-side FETs gate l m l n M1 (mask signal) Monitoring timing 1.54 - 2.5uS moving FCE(pin22) Braking Disabled Fig.23 Timing of drain-source voltage monitor Rev.1.0, Sep.16.2003, page 26 of 40 M63155FP Function Explanation 5V 4.35V 4.25V 4.35V 4.25V SVCC 4V 0V (normal) A* (fault) (fault) H RST L H L H L H FLT H H L L H L BRS latch timing Condition: L No latching Latching BRS=“L” BRS=“L”,PWM=“H” Ex. FETs condition Coast Active Coast Active Coast Fig.24 Timing chart in power on and off (Pattern A) 5V 4.35V 4.25V 4.35V 4.25V SVCC 4V 0V (normal) A* (fault) (fault) H RST L FLT BRS latch timing Condition: L H H L L H H H H L L H L H L L L Latching BRS=“H” No latching BRS=“H”,PWM=“H” Ex. FETs condition Coast Active Coast Fig.25 Timing chart in power on and off (Pattern B) A*: VM, TSD, HALL, VDSM-U, UT, VT, WT, UB, VB and WB in Fig. 18 on page 24 Rev.1.0, Sep.16.2003, page 27 of 40 Active Brake M63155FP 19. Power Loss Brake In Power Loss Brake, calculation of capacitor value is show by Fig.26, and Block diagram of VGB line is Show by Fig.27. When mode is Power Loss Brake, low side pre. calculation of VGB capacitor value is as follows. Condition PWM Function Time VGB voltage External FET capacity Supplying Current to pre driver. A=(122 x 2) pC (At once PWM) B=14 µA (At Constant current) D=47 µA (Max. current) Capacity of External FET C=740 pF ( External FET capacity) :50 cycles :500mS :8.5V -> 6.8V :740pF Refer to fig.1 about A, B, C and D For example calculation of PWM for 3 phases Charge value for A (3 phase), B (3 phase), D(1 ch) A x 50 x 3 + B x 500mS x 3 + D x 500mS = 36.6 nC + 21 µC + 23.5 µA = 44.54 µC Charge value for C (3 phase) (740pF x 50) x (8.5 + 6.8) x 3 / 2 = 849.3 nC C = 849.3 nC Capacity value for A,B,C (3 phase) (A + B + C + D) / (8.5V - 6.8V) = 45.39 µC / 1.7V = 26.7 µF Fig.26 Calculation of VGB current at Power Loss Brake When mode is Power Loss Brake, low side pre. driver circuit was driven by current of VGB capacitor. VM Soft braking VGT M63155FP VM UT Pre. Driver for Top side FET (Top-side-MOS) Off U Phase-U VGB D I/F 27uF B Pre. Driver for Bottom side FET A 8.5V UB RSM On C 740pF Fig.27 Block diagram of Pre Driver Rev.1.0, Sep.16.2003, page 28 of 40 One time 6.8V Off On (Bottom-side-MOS) M63155FP Motor Input/Output Truth Table No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 Input DS FR BRK BRS PWM H H H H/L H H H H H/L L H H H H/L H H H H H/L L H H H H/L H H H H H/L L H H H H/L H H H H H/L L H H H H/L H H H H H/L L H H H H/L H H H H H/L L H H H H/L H H H H H/L L H H H H/L H H H H H/L L H H L H H H H L H L H H L H H H H L H L H H L H H H H L H L H H L H H H H L H L H H L H H H H L H L H H L H H H H L H L H H L H H H H L H L H H L H H H H L H L H H L L H H H L L L H H L L H H H L L L H H L L H H H L L L H H L L H H H L L L H H L L H H H L L L H H L L H H H L L L H H L L H H H L L L H H L L H H H L L L H L H H/L H H L H H/L L H L H H/L H H L H H/L L H L H H/L H H L H H/L L H L H H/L H H L H H/L L H L H H/L H H L H H/L L H L H H/L H H L H H/L L H L H H/L H H L H H/L L H L H H/L H H L H H/L L HU HV HW UT UB VT H H H L L L H H H L L L H L H L H H H L H L H L H L L L H L H L L L H L H H L L L L H H L L L L L H L H L L L H L L L L L H H H L L L H H L L L L L H L L H L L H L L L L L L L L L L L L L L L H H H L H L H H H L H L H L H L H L H L H L H L H L L L H L H L L L H L H H L L H L H H L L H L L H L L H L L H L L H L L H H L H L L H H L H L L L H L H L L L H L H L L L L L H L L L L L H L H H H L L L H H H L L L H L H L L L H L H L L L H L L L L L H L L L L L H H L L L L H H L L L L L H L L L L L H L L L L L H H L L L L H H L L L L L H L L L L L H L L L L L L L L L L L L L L L H H H L L L H H H L L L H L H H L L H L H L L L H L L H L L H L L L L L H H L L L H H H L L L L L H L L H H L H L L H L L H H L H L L H H L H L L L H L L L L L H L L L L L L L L L L L L L L L Rev.1.0, Sep.16.2003, page 29 of 40 Output VB WT WB FG L L L H L L L H L L L L L L L L L H L H L L L H H H L L H L L L H L L H H L L H L L H L L L H L L L H H L L H H L L L L L L L L H L H H H L H H H L H L H L H L H L H H H L H H H L H L H L H L H L H H H L H H H L H L H L H L H L H H H L H H H L H L H L H L L L L H L L L H L L L L L L L L L L L H L L L H L L L L L L L L L L L H L L L H L L L L L L L L L L L H L L L H L L L L L L L L L L L H L L L H H L L L H L L L L L H H L L H H L L H L L L H L L L L H L L L H L H L L L L L L H H L H H L L H L L L L L L L L Condition Regular mode *Rotate Direction ; Forward *Current Decay MODE ; Slow Decay *non-Brake-state Regular mode *Rotate Direction ; Forward *Current Decay MODE ; Slow Decay *Short-Brake-State Regular mode *Rotate Direction ; Forward *Current Decay MODE ; Slow Decay *Free-Run-State Regular mode *Rotate Direction ; Reverse *Current Decay MODE ; Slow Decay *non-Brake-state M63155FP Motor Input/Output Truth Table No. 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 Input DS FR BRK BRS PWM H L L H H H L L H L H L L H H H L L H L H L L H H H L L H L H L L H H H L L H L H L L H H H L L H L H L L H H H L L H L H L L H H H L L H L H L L H H H L L H L H L L L H H L L L L H L L L H H L L L L H L L L H H L L L L H L L L H H L L L L H L L L H H L L L L H L L L H H L L L L H L L L H H L L L L H L L L H H L L L L L H H H/L H L H H H/L L L H H H/L H L H H H/L L L H H H/L H L H H H/L L L H H H/L H L H H H/L L L H H H/L H L H H H/L L L H H H/L H L H H H/L L L H H H/L H L H H H/L L L H H H/L H L H H H/L L L H L H H L H L H L L H L H H L H L H L L H L H H L H L H L L H L H H L H L H L L H L H H L H L H L L H L H H L H L H L L H L H H L H L H L L H L H H L H L H L HU HV HW UT UB VT H H H L H L H H H L H L H L H L H L H L H L H L H L L L H L H L L L H L H H L L H L H H L L H L L H L L H L L H L L H L L H H L H L L H H L H L L L H L H L L L H L H L L L L L H L L L L L H L H H H L L L H H H L L L H L H L L L H L H L L L H L L L L L H L L L L L H H L L L L H H L L L L L H L L L L L H L L L L L H H L L L L H H L L L L L H L L L L L H L L L L L L L L L L L L L L L H H H L L L H H H L L L H L H L H H H L H L L L H L L L H L H L L L L L H H L L L L H H L L L L L H L H L L L H L L L L L H H H L L L H H L L L L L H L L H L L H L L L L L L L L L L L L L L L H H H L H L H H H L H L H L H L H L H L H L H L H L L L H L H L L L H L H H L L H L H H L L H L L H L L H L L H L L H L L H H L H L L H H L H L L L H L H L L L H L H L L L L L H L L L L L H L Rev.1.0, Sep.16.2003, page 30 of 40 Output VB WT WB FG H L H H H L H H H L H L H L H L H L H H H L H H H L H L H L H L H L H H H L H H H L H L H L H L H L H H H L H H H L H L H L H L L L L H L L L H L L L L L L L L L L L H L L L H L L L L L L L L L L L H L L L H L L L L L L L L L L L H L L L H L L L L L L L L L L L H L L L H L L L L L L L L L H L H L L L H H H L L L L L L H L L H L L L H L L H L L L L L L L H H L L L H L L L L L L L L H L H H H L H H H L H L H L H L H L H H H L H H H L H L H L H L H L H H H L H H H L H L H L H L H L H H H L H H H L H L H L H L Condition Regular mode *Rotate Direction ; Reverse *Current Decay MODE ; Slow Decay *Short-Brake-state Regular mode *Rotate Direction ; Reverse *Current Decay MODE ; Slow Decay *Free-Run-state Regular mode *Rotate Direction ; Forward *Current Decay MODE ; Fast Decay *non-Brake-state Regular mode *Rotate Direction ; Forward *Current Decay MODE ; Fast Decay *Short-Brake-state M63155FP Motor Input/Output Truth Table No. 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 Input DS FR BRK BRS PWM L H L L H L H L L L L H L L H L H L L L L H L L H L H L L L L H L L H L H L L L L H L L H L H L L L L H L L H L H L L L L H L L H L H L L L L H L L H L H L L L L L H H/L H L L H H/L L L L H H/L H L L H H/L L L L H H/L H L L H H/L L L L H H/L H L L H H/L L L L H H/L H L L H H/L L L L H H/L H L L H H/L L L L H H/L H L L H H/L L L L H H/L H L L H H/L L L L L H H L L L H L L L L H H L L L H L L L L H H L L L H L L L L H H L L L H L L L L H H L L L H L L L L H H L L L H L L L L H H L L L H L L L L H H L L L H L L L L L H L L L L L L L L L H L L L L L L L L L H L L L L L L L L L H L L L L L L L L L H L L L L L L L L L H L L L L L L L L L H L L L L L L L L L H L L L L L Output HU HV HW UT UB VT VB WT WB FG H H H L L L L L L H H H H L L L L L L H H L H L L L L L L L H L H L L L L L L L H L L L L L L L L H H L L L L L L L L H H H L L L L L L L L H H L L L L L L L L L H L L L L L L L H L H L L L L L L L H L H H L L L L L L L L H H L L L L L L L L L H L L L L L L H L L H L L L L L L H L L L L L L L L L L L L L L L L L L L L H H H L L L L L L H H H H L L L L L L H H L H H L L H L L L H L H L L L L L L L H L L H L L L L H H H L L L L L L L L H H H L L L H L L H L H H L L L L L L L L L H L L H H L L L H L H L L L L L L L H L H H L H L L H L L L H H l L L L L L L L L H L L L H H L H L L H L L L L L L H L L L L L L L L L L L L L L L L L L L L H H H L H L H L H H H H H L H L H L H H H L H L H L H L H L H L H L H L H L H L H L L L H L H L H H H L L L H L H L H H H H L L H L H L H L H H L L H L H L H L L H L L H L H L H H L H L L H L H L H H L H H L H L H L H L L H H L H L H L H L L L H L H L H L H H L L H L H L H L H H L L L L H L H L H L L L L L H L H L H L H H H L L L L L L H H H H L L L L L L H H L H L L L L L L L H L H L L L L L L L H L L L L L L L L H H L L L L L L L L H H H L L L L L L L L H H L L L L L L L L L H L L L L L L L H L H L L L L L L L H L H H L L L L L L L L H H L L L L L L L L L H L L L L L L H L L H L L L L L L H L L L L L L L L L L L L L L L L L L L L Rev.1.0, Sep.16.2003, page 31 of 40 Condition Regular mode *Rotate Direction ; Forward *Current Decay MODE ; Fast Decay *Free-Run-state Regular mode *Rotate Direction ; Reverse *Current Decay MODE ; Fast Decay *non-Brake-state Regular mode *Rotate Direction ; Reverse *Current Decay MODE ; Fast Decay *Short-Brake-state Regular mode *Rotate Direction ; Reverse *Current Decay MODE ; Fast Decay *Free-Run-state M63155FP I/O Circuit < VM, VCC2, CP1, CP2, VCP, CP3, CP4, VGB, CP5, CP6, VGT > < UT, U, VT, V, WT, W > VM VCC2 VGT VGB VCP CP4 CP2 UT, VT, WT VM CP1 VGT CP5 CP3 CP6 U, V, W < REGC > < UB, VB, WB, RSM > < REGE > < REGR > VM VM VM VGB REGR UB, VB, WB 19K RSM < REGB > REGE 800 REGC 2K 17K < TCL > < CTL > < REGL > < RSS > VM VM VCC1 VCC1 VM VCC1 50K REGB REGL CTL 1K < OSC1 > < OSC2 > RSS 2K < SGND > VCC1 VCC1 TCL 2K 2K < BRK, BRS, DS, FR, RST, FCE > VCC1 VCC1 60K OSC1 OSC2 BRK,BRS, DS, FR,RST, FCE 30K 5K 2K 90K Rev.1.0, Sep.16.2003, page 32 of 40 SGND 48K M63155FP I/O Circuit < SVCC > < FLT, FG > < HU, HV, HW > VCC1 VCC1 VCC1 SVCC HU, HV, HW FLT, FG 2K 74.4K 25.6K <CCFB> <PWM> VGB VCC1 200K CCFB PWM 2K Rev.1.0, Sep.16.2003, page 33 of 40 M63155FP Hall Inputs and Motor Outputs Timing Chart HU Hall Input (120 deg.) HV HW PWM PWM U Motor Output Voltage V PWM PWM PWM PWM PWM PWM PWM PWM W PWM PWM PWM PWM U Motor Output Voltage (PWM Duty 100%) V W 0 180 360 540 720 Electrical Revolution angle [degree] * Note6 : These are the timing chart of the Hall commutation sensor outputs and the motor outputs, and the motor output voltage waveforms only show the High/Low/Middle state in each period. In details, these output voltage waveforms are different from the real waveforms of the actual motor outputs under rotation. Rev.1.0, Sep.16.2003, page 34 of 40 M63155FP Application Circuit 1 • Motor current is controlled by D/A signal input level VM(10~40V) 5V Cregc Cvcc1 VCC2 OSC1 VCC1 SVCC REGL REGR REGC REGB 5V Regulator TSD Monitor VGT Monitor A B Hall Monitor C D-S Monitor D VGB Monitor SGND Cvm Creg1 Creg2 5V Monitor OSC2 Oscillator Rosc + + RSR + + Cvcc2 Bandgap Reference REGE VM Monitor + Cgt VGT VM CP6 ZD4 Cp3 CP5 VGB Cgb B UT Rg1 U SD1 D charge pump for upper gate ZD1 FET1 Ro1 Rgs1 A UB + FET2 ZD5 CP4 Rg2 B CP3 Rpwm 120 / 60 degree Switching Matrix / Pre-Driver Cp2 charge pump for lower gate 2 VCP Ccp + CP2 Cp1 CP1 charge pump for lower gate 1 Rflt MCU Input Logic Circuit (latched BRS) FLT Voltage monitor error BRS reset RST PWM Duty PWM Enable Coast / Brake BRK Select Coast or Brake BRS Rotation Polarity FR Decay Mode Select DS FG output FG Rg3 V SD2 D M FET4 Rg4 B WT Rg5 W SD3 ZD3 FET5 D Rgs3 Ro3 A WB RSM RSS FET6 Rg6 Ri Rnf RS Cnf C C C FCE Hall Inputs HU HV HW Rh1 Hall IC Rh2 Hall IC Rh3 Hall IC CTL Motor current control + Rcl Toff circuit PWM off time control Current Control Ccl GND CCFB Rfb GND Rev.1.0, Sep.16.2003, page 35 of 40 FET3 Rgs2 Ro2 FG (Tacho Meter) TCL ZD2 A VB Rfg Rcin VT M63155FP Application Circuit 2 • Soft brake in power loss. 5V VM(10~40V) 0V 0V Cregc Cvcc1 VCC2 OSC1 VCC1 SVCC REGL REGR REGC REGB 5V Regulator TSD Monitor VGT Monitor A B Hall Monitor C D-S Monitor D VGB Monitor SGND Cvm Creg1 Creg2 5V Monitor OSC2 Oscillator Rosc + + RSR + + Cvcc2 Bandgap Reference REGE VM Monitor + Cgt VGT VM CP6 ZD4 Cp3 CP5 VGB Cgb B UT Rg1 U SD1 D charge pump for upper gate ZD1 FET1 Ro1 Rgs1 A UB + FET2 ZD5 CP4 Rg2 B CP3 Rpwm 120 / 60 degree Switching Matrix / Pre-Driver Cp2 charge pump for lower gate 2 VCP Ccp + CP2 MCU Cp1 CP1 charge pump for lower gate 1 MCU Input Logic Circuit (latched BRS) FLT Rflt Voltage monitor error BRS reset RST PWM Duty PWM Enable Coast / Brake BRK Select Coast or Brake BRS Rotation Polarity FR Decay Mode Select DS FG output FG Rg3 V SD2 D M FET4 Rg4 B WT Rg5 W SD3 ZD3 FET5 D Rgs3 Ro3 A WB RSM RSS FET6 Rg6 Ri Rnf RS Cnf C C C FCE Hall Inputs HU HV HW Rh1 Hall IC Rh2 Hall IC Rh3 Hall IC CTL Motor current control + Rcl Toff circuit PWM off time control Current Control Ccl GND CCFB Rfb GND Rev.1.0, Sep.16.2003, page 36 of 40 FET3 Rgs2 Ro2 FG (Tacho Meter) TCL ZD2 A VB Rfg Rcin VT M63155FP Application Circuit 3 • Motor current is controlled by PWM pulse input duty 5V VM(10~40V) Cregc Cvcc1 VCC2 OSC1 VCC1 SVCC REGL REGR REGC REGB 5V Regulator TSD Monitor VGT Monitor A B Hall Monitor C D-S Monitor D VGB Monitor SGND Cvm Creg1 Creg2 5V Monitor OSC2 Oscillator Rosc + + RSR + + Cvcc2 Bandgap Reference REGE VM Monitor + Cgt VGT VM CP6 ZD4 Cp3 CP5 VGB B Rg1 U SD1 D charge pump for upper gate ZD1 FET1 Ro1 Rgs1 A UB + Cgb UT FET2 ZD5 CP4 Rg2 B CP3 120 / 60 degree Switching Matrix / Pre-Driver Cp2 charge pump for lower gate 2 VCP Ccp + CP2 Cp1 CP1 charge pump for lower gate 1 MCU Input Logic Circuit (latched BRS) FLT Rflt Voltage monitor error BRS reset RST PWM Duty PWM Enable Coast / Brake BRK Select Coast or Brake BRS Rotation Polarity FR Decay Mode Select DS FG output FG Rg3 V SD2 D M FET4 Rg4 B WT Rg5 W SD3 ZD3 FET5 D Rgs3 Ro3 A WB RSM RSS FET6 Rg6 Ri Rnf RS Cnf C C C FCE Hall Inputs HU HV HW Rh1 Hall IC Rh2 Hall IC Rh3 Hall IC Rct1 CTL Motor current control + Rcl Rct2 Toff circuit PWM off time control Current Control Ccl GND CCFB Rfb GND Rev.1.0, Sep.16.2003, page 37 of 40 FET3 Rgs2 Ro2 FG (Tacho Meter) TCL ZD2 A VB Rfg Rcin VT M63155FP Reference Values of the External Parts Value External Parts Name Notes Symbol Min. Typ. Cvm Bypass Condenser for VM Cvm - 10 - µF FET1~FET6 Nch Power MOS FET Ciss - 1200 - pF Rg1~Rg6 Ro1~Ro3 Gate Resistances of FETs Output Resistances for Motor Coils Gate-Source Resistances of FETs Schottky Diode Rg Ro - 10 10 - Ω Ω Rgs - 100 - kΩ Rgs1~Rgs3 SD1~SD4 ZD1~ZD5 RS Rnf Cnf Rh1~Rh3 Ccp, Cgt Cgb Cp1~3 Rosc PNP RSR Creg1 Creg2 Cvcc1 Cvcc2 Cregc Rfg, Rflt Rct1 Rct2 Rcl Rcin Max. Units VF - - 0.5 V Zener Diode Motor Current Sensing Resister RS terminal Filtering Resister RS terminal Filtering Condenser Vak RS - 13 0.4 - V Ω Rnf - 430 - Ω Cnf - 180 - pF Hall Input Pull-up Resister Bypass Condenser for Charge-pump Voltage Bypass Condenser for Charge-pump Voltage (Power Loss Hold up of 500mS.) Charge-pump Condenser External Resistance for Oscillator External PNP Tr. for 5V Regulator 5V Regulator Current Sensing Resistance Phase Compensation Condenser for 5V Reg. 1 Phase Compensation Condenser for 5V Reg. 2 Bypass Condenser for VCC1 Bypass Condenser for VCC2 Bypass Condenser for REGC FG, FLT Output Pull- Up Resistances Current Control input Gain Resistances 1 Current Control input Gain Resistances 2 Current Control Off Time Resistance Current Control input Impedance Compensation Rh Ccp1 - 10 4.7 - kΩ µF Ccp2 - 33 - µF Cp - 470 - nF Rosc - 15 - kΩ hfe 100 - - - RSR - 10 - Ω Creg1 - 1 - nF Creg2 - 1 - nF Cvcc1 - 10 - µF Cvcc2 - 10 - µF 10 - µF Rev.1.0, Sep.16.2003, page 38 of 40 Cregc Rd - 100 - kΩ Rct1 - 2 - kΩ Rct2 - 0.5 - kΩ Rcl 2.5 - - kΩ Rci - 0.03 - kΩ M63155FP Value External Parts Name Notes Symbol Min. Typ. Max. Units Ccl Current Control Off Time Condenser Ccl - 440 - pF Rpwm PWM Input Pull-resistance Rpwm - 100 - kΩ *Note 10: This parameters are calculated values. Rev.1.0, Sep.16.2003, page 39 of 40 M63155FP Package Outline 52P9Y-K MMP EIAJ Package Code HSSOP52-P-450-0.65 Plastic 52pin 450mil HSSOP Weight(g) – JEDEC Code – Lead Material Cu Alloy TOP VIEW e b2 BOTTOM VIEW I2 27 E HE e1 52 F Recommended Mount Pad 1 Symbol 26 A SIDE VIEW G D A2 b x A1 M L1 y L e C A A1 A2 b c D E e HE L L1 z Z1 x y z Z1 Detail G Rev.1.0, Sep.16.2003, page 40 of 40 Detail F b2 e1 I2 Dimension in Millimeters Min Nom Max – – 2.2 0.2 0 0.1 – 2.0 – 0.22 0.27 0.32 0.23 0.25 0.3 17.3 17.5 17.7 8.2 8.4 8.6 – 0.65 – 11.63 11.93 12.23 0.3 0.5 0.7 – 1.765 – – – 0.625 0.775 – – 0.12 – – – – 0.1 0° – 10° – 0.5 – – 11.43 – 1.27 – – Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party. 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein. http://www.renesas.com RENESAS SALES OFFICES Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501 Renesas Technology Europe Limited. Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900 Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11 Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836 Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952 Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 © 2003. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon 1.0