CAT24C21 1 kb Dual Mode Serial EEPROM for VESAt “Plug-and-Play” Description The CAT24C21 is a 1 kb Serial CMOS EEPROM internally organized as 128 words of 8 bits each. The device complies with the Video Electronics Standard Association’s (VESA™), Display Data Channel (DDC™) standards for “Plug−and−Play” monitors. The “transmit−only” mode (DDC1™) is controlled by the VCLK clock input and the “bi−directional” mode (DDC2™) is controlled by the SCL clock input, with both modes sharing a common SDA input/output (I/O). The transmit−only mode is a read−only mode, while the bi−directional mode is a read and write mode following the I2C protocol. In write mode the CAT24C21 features a 16−byte page write buffer. The device is available in 8−lead DIP, SOIC, TSSOP, MSOP and TDFN packages. http://onsemi.com SOIC−8 W SUFFIX CASE 751BD PDIP−8 L SUFFIX CASE 646AA Features • • • • • • • • • • • DDC1t/DDC2t Interface Compliant for Monitor Identification 400 kHz I2C Bus Compatible 2.5 to 5.5 Volt Operation 16−byte Page Write Buffer Hardware Write Protect Low Power CMOS Technology 1,000,000 Program/Erase Cycles 100 Year Data Retention Industrial Temperature Range 8−lead DIP, SOIC, TSSOP, MSOP or TDFN Packages This Device is Pb−Free, Halogen Free/BFR Free, and RoHS Compliant NC SDA VCLK TSSOP−8 Y SUFFIX CASE 948AL 1 VCC NC VCLK NC SCL VSS SDA PDIP (L), SOIC (W), TSSOP (Y), TDFN (ZD4), MSOP (Z) PIN FUNCTION NC SCL MSOP−8 Z SUFFIX CASE 846AD PIN CONFIGURATION Pin Name VCC CAT24C21 TDFN−8 ZD4 SUFFIX CASE 511AL Function No Connect SDA Serial Data / Address SCL Serial Clock (bi−directional mode) VCLK Serial Clock (transmit−only mode) VCC Power Supply VSS Ground VSS ORDERING INFORMATION Figure 1. Functional Symbol See detailed ordering and shipping information in the package dimensions section on page 14 of this data sheet. © Semiconductor Components Industries, LLC, 2009 September, 2009 − Rev. 16 1 Publication Order Number: CAT24C21/D CAT24C21 Table 1. ABSOLUTE MAXIMUM RATINGS Parameters Ratings Units Temperature Under Bias –55 to +125 °C Storage Temperature –65 to +150 °C –2.0 to +VCC +2.0 V Voltage on Any Pin with Respect to Ground (Note 1) VCC with Respect to Ground –2.0 to +7.0 V Package Power Dissipation Capability (TA = 25°C) 1.0 W Lead Soldering Temperature (10 secs) 300 °C Output Short Circuit Current (Note 2) 100 mA Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. The minimum DC input voltage is –0.5 V. During transitions, inputs may undershoot to –2.0 V for periods of less than 20 ns. Maximum DC voltage on output pins is VCC + 0.5 V, which may overshoot to VCC + 2.0 V for periods of less than 20 ns. 2. Output shorted for no more than one second. Table 2. RELIABILITY CHARACTERISTICS Symbol Parameter Reference Test Method Min Units Endurance MIL−STD−883, Test Method 1033 1,000,000 Program/Erase Cycles TDR (Note 3) Data Retention MIL−STD−883, Test Method 1008 100 Years VZAP (Note 3) ESD Susceptibility MIL−STD−883, Test Method 3015 2000 Volts JEDEC Standard 17 100 mA NEND (Notes 3 and 4) ILTH (Notes 3 and 5) Latch−up 3. This parameter is tested initially and after a design or process change that affects the parameter. 4. Page Mode, VCC = 5 V, 25°C 5. Latch−up protection is provided for stresses up to 100 mA on address and data pins from –1 V to VCC +1 V. Table 3. D.C. OPERATING CHARACTERISTICS (VCC = 2.5 V to 5.5 V, unless otherwise specified. Industrial temperature range.) Max Units fSCL = 400 kHz 2 mA Standby Current VIN = GND or VCC 1 mA ILI Input Leakage Current VIN = GND to VCC 10 mA ILO Output Leakage Current VOUT = GND to VCC 10 mA Symbol ICC ISB (Note 6) Parameter Test Conditions Power Supply Current Min VIL Input Low Voltage −1 VCC x 0.3 V VIH Input High Voltage VCC x 0.7 VCC + 0.5 V VOL1 Output Low Voltage VCC = 3.0 V, IOL = 3 mA 0.4 V VCC ≥ 2.7 V 0.8 V VIL Input Low Voltage (VCLK) VIH Input High Voltage (VCLK) 2.0 V 6. Maximum standby current (ISB) = 10 mA for the Extended Automotive temperature range. Table 4. CAPACITANCE (TA = 25°C, f = 1.0 MHz, VCC = 5 V) Symbol Parameter Conditions Min Max Units CI/O (Note 7) Input/Output Capacitance (SDA) VI/O = 0 V 8 pF CIN (Note 7) Input Capacitance (VCLK, SCL) VIN = 0 V 6 pF 7. This parameter is tested initially and after a design or process change that affects the parameter. http://onsemi.com 2 CAT24C21 Table 5. A.C. CHARACTERISTICS (VCC = 2.5 V to 5.5 V, unless otherwise specified. Industrial temperature range.) Parameter Symbol Min Max Units 0.5 ms TRANSMIT−ONLY MODE TVAA Output valid from VCLK TVHIGH VCLK high 0.6 TVLOW VCLK low 1.3 TVHZ Mode transition TVPU Transmit−only power−up ms ms 0.5 0 ms ns READ & WRITE CYCLE LIMITS FSCL TI (Note 8) tAA tBUF (Note 8) Clock Frequency 400 kHz Noise Suppression Time Constant at SCL, SDA Inputs 100 ns 1 ms SCL Low to SDA Data Out and ACK Out Time the Bus Must be Free Before a New Transmission Can Start 1.2 ms Start Condition Hold Time 0.6 ms tLOW Clock Low Period 1.2 ms tHIGH Clock High Period 0.6 ms tSU:STA Start Condition Setup Time 0.6 ms tHD:DAT Data In Hold Time 0 ns tSU:DAT Data In Setup Time 50 ns tHD:STA tR (Note 8) SDA and SCL Rise Time 0.3 ms tF (Note 8) SDA and SCL Fall Time 300 ns tSU:STO tDH Stop Condition Setup Time 0.6 ms Data Out Hold Time 100 ns POWER−UP TIMING (Note 8 and 9) tPUR Power−up to Read Operation 1 ms tPUW Power−up to Write Operation 1 ms 5 ms WRITE CYCLE LIMITS tWR Write Cycle Time 8. This parameter is tested initially and after a design or process change that affects the parameter. 9. tPUR and tPUW are the delays required from the time VCC is stable until the specified operation can be initiated. Functional Description The write cycle time is the time from a valid stop condition of a write sequence to the end of the internal program/erase cycle. During the write cycle, the bus interface circuits are disabled, SDA is allowed to remain high, and the device does not respond to its slave address. The CAT24C21 has two modes of operation: the transmit−only mode and the bi−directional mode. There is a separate 2−wire protocol to support each mode, each having a separate clock input (VCLK and SCL respectively) and both modes sharing a common bi−directional data line (SDA). The CAT24C21 enters the transmit−only mode upon power up and begins outputting data on the SDA pin with each clock signal on the VCLK pin. The device will remain in the transmit−only mode until there is a valid HIGH to LOW transition on the SCL pin, when it will switch to the bi−directional mode (Figure 2). Once in the bi−directional mode, the only way to return to the transmit−only mode is by powering down the device. The VCLK serial clock input pin is used to clock data out of the device when in transmit−only mode. When held low, in bi−directional mode, it will inhibit write operations. Pin Description The SCL serial clock input pin is used to clock all data transfers into or out of the device when in the bi−directional mode. The SDA bi−directional serial data/address pin is used to transfer data into and out of the device. The SDA pin is an open drain output and can be wire−ORed with other open drain or open collector outputs. http://onsemi.com 3 CAT24C21 Transmit−Only Mode: (DDC1) Data is transmitted in 8 bit words with the most significant bit first, followed by a 9th ‘don’t care’ bit which will be in the high impedance state (Figure 4). The CAT24C21 will continuously sequence through the entire memory array as long as VCLK is present and no falling edges on SCL are detected. When the maximum address (7FH) is reached, addressing will wrap around to the zero location (00H) and transmitting will continue. The bi−directional mode clock (SCL) pin must be held high for the device to remain in the transmit−only mode. Upon power−up, the CAT24C21 will output valid data only after it has been initialized. During initialization, data will not be available until after the first nine clocks are sent to the device (Figure 3). The starting address for the transmit−only mode can be determined during initialization. If the SDA pin is high during the first eight clocks, the starting address will be 7FH. If the SDA pin is low during the first eight clocks, the starting address will be 00H. During the ninth clock, SDA will be in the high impedance state. Transmit−Only Mode Bi−Directional Mode SCL TVHZ SDA VCLK Figure 2. Mode Transition SCL SDA at high impedance for 9 clock cycles Bit8 SDA Bit7 Bit6 Bit5 Bit4 VCLK 1 2 3 4 5 6 7 8 9 10 TVPU 11 12 13 14 15 TVAA Figure 3. Device Initialization for Transmit−only Mode SCL must remain high for transmit−only mode SCL SDA Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 (MSB) VCLK TVHIGH TVLOW Figure 4. Transmit−Only Mode http://onsemi.com 4 Bit1 Bit8 Don’t (LSB) Care Bit7 CAT24C21 Bi−Directional Mode (DDC2) Acknowledge The following defines the features of the I2C bus protocol in bi−directional mode (Figure 5): 1. Data transfer may be initiated only when the bus is not busy. 2. During a data transfer, the data line must remain stable whenever the clock line is high. Any changes in the data line while the clock line is high will be interpreted as a START or STOP condition. When in the bi−directional mode, all inputs to the VCLK pin are ignored, except when a logic high is required to enable write capability. After a successful data transfer, each receiving device is required to generate an acknowledge (ACK). The acknowledging device pulls down the SDA line during the ninth clock cycle, signaling that it has received the 8 bits of data (Figure 8). The CAT24C21 responds with an ACK after receiving a START condition and its slave address. If the device has been selected along with a write operation, it responds with an ACK after receiving each 8−bit byte. When the CAT24C21 is in a READ mode it transmits 8 bits of data, releases the SDA line, and monitors the line for an ACK. Once it receives this ACK, the CAT24C21 will continue to transmit data. If no ACK is sent by the Master, the device terminates data transmission and waits for a STOP condition. START Condition The START condition (Figure 7) precedes all commands to the device, and is defined as a HIGH to LOW transition of SDA when SCL is HIGH. The CAT24C21 monitors the SDA and SCL lines and will not respond until this condition is met. Write Operations VCLK must be held high in order to program the device. This applies to byte write and page write operation. Once the device is in its self−timed program cycle, VCLK can go low and not affect programming. STOP Condition A LOW to HIGH transition of SDA when SCL is HIGH determines the STOP condition. All operations must end with a STOP condition. Byte Write In the Byte Write mode (Figure 10), the Master device sends the START condition and the slave address information (with the R/W bit set to zero) to the Slave device. After the Slave generates an ACK, the Master sends the byte address that is to be written into the address pointer of the CAT24C21. After receiving another ACK from the Slave, the Master device transmits the data byte to be written into the addressed memory location. The CAT24C21 acknowledges once more and the Master generates the STOP condition, at which time the device begins its internal programming cycle to nonvolatile memory (Figure 6). While this internal cycle is in progress, the device will not respond to any request from the Master device. Device Addressing The bus Master begins a transmission by sending a START condition. The Master then sends the address of the particular slave device it is requesting. The four most significant bits of the 8−bit slave address are fixed as 1010 for the CAT24C21 (see Figure 9). The next three significant bits are “don’t care”. The last bit of the slave address specifies whether a Read or Write operation is to be performed. When this bit is set to 1, a Read operation is selected, and when set to 0, a Write operation is selected. After the Master sends a START condition and the slave address byte, the CAT24C21 monitors the bus and responds with an acknowledge (on the SDA line) when its address matches the transmitted slave address. The CAT24C21 then performs a Read or Write operation depending on the state of the R/W bit. tHIGH tF tLOW tR tLOW SCL tSU:STA tHD:DAT tHD:STA tSU:DAT tSU:STO SDA IN tDH tAA SDA OUT Figure 5. Bus Timing http://onsemi.com 5 tBUF CAT24C21 SCL 8th Bit SDA ACK Byte n tWR STOP CONDITION START CONDITION ADDRESS Figure 6. Write Cycle Timing Page Write programming cycle begins. At this point all received data is written to the CAT24C21 in a single write cycle. The CAT24C21 writes up to 16 bytes of data in a single write cycle, using the Page Write operation. The Page Write operation (Figure 11) is initiated in the same manner as the Byte Write operation, however instead of terminating after the initial word is transmitted, the Master is allowed to send up to fifteen additional bytes. After each byte has been transmitted the CAT24C21 will respond with an ACK, and internally increment the low order address bits by one. The high order bits remain unchanged. If the Master transmits more than sixteen bytes prior to sending the STOP condition, the address counter ‘wraps around’, and previously transmitted data will be overwritten. Once all sixteen bytes are received and the STOP condition has been sent by the Master, the internal Acknowledge Polling The disabling of the inputs can be used to take advantage of the typical write cycle time. Once the stop condition is issued to indicate the end of the host’s write operation, the CAT24C21 initiates the internal write cycle. ACK polling can be initiated immediately. This involves issuing the start condition followed by the slave address for a write operation. If the CAT24C21 is still busy with the write operation, no ACK will be returned. If the CAT24C21 has completed the write operation, an ACK will be returned and the host can then proceed with the next read or write operation. SDA SCL START Bit STOP Bit Figure 7. Start/Stop Timing SCL FROM MASTER 1 8 9 DATA OUTPUT FROM TRANSMITTER DATA OUTPUT FROM RECEIVER START ACKNOWLEDGE Figure 8. Acknowledge Timing 1 0 1 0 X X X Figure 9. Slave Address Bits http://onsemi.com 6 R/W CAT24C21 Write Protection (Figure 13). The Master device first performs a ‘dummy’ write operation by sending the START condition, slave address and byte address of the location it wishes to read. After the CAT24C21 acknowledges the word address, the Master device resends the START condition and the slave address, this time with the R/W bit set to one. The CAT24C21 then responds with its ACK and sends the 8−bit byte requested. The master device does not send an ACK but will generate a STOP condition. When the VCLK pin is connected to GND and the CAT24C21 is in the bi−directional mode, the entire memory is protected and becomes “read only”. Read Operations The READ operation for the CAT24C21 is initiated in the same manner as the write operation with the one exception that the R/W bit is set to a one. Three different READ operations are possible: Immediate Address READ, Selective READ and Sequential READ. Sequential Read The Sequential READ operation (Figure 14) can be initiated by either the Immediate Address READ or the Selective READ operation. After the CAT24C21 sends the first 8−bit byte, the Master responds with an ACK, which tells the Slave that more data is being requested. The CAT24C21 will continue to output an 8−bit byte for each ACK sent by the Master. The entire memory content can thus be read out sequentially. If the end of memory is reached in the process, then addressing will ‘wrap−around’ to the beginning of memory. Data output will stop when the Master fails to acknowledge and sends a STOP condition. Immediate Address Read The CAT24C21’s address counter contains the address of the last byte accessed, incremented by one. In other words, if the last READ or WRITE access was to address N, the READ immediately following would access data from address N + 1 (Figure 12). If N = 127, then the counter will ‘wrap around’ to address 0 and continue to clock out data. Selective Read Selective READ operations allow the Master device to select at random any memory location for a READ operation BUS ACTIVITY: MASTER SDA LINE S T A R T SLAVE ADDRESS S * * * SDA LINE S T O P DATA P * A C K nMAX = 7FH P = 15 for CAT24WC21 * = Don−t care BUS ACTIVITY: MASTER BYTE ADDRESS A C K A C K Figure 10. Byte Write Timing S T A R T S SLAVE ADDRESS BYTE ADDRESS (n) DATA n DATA n+1 S T O P DATA n+P P * * * * A C K A C K A C K Figure 11. Page Write Timing http://onsemi.com 7 A C K A C K CAT24C21 BUS ACTIVITY: MASTER S T A R T SDA LINE S S T O P SLAVE ADDRESS P * * * A C K SCL 8 DATA N O A C K 9 8th Bit SDA DATA OUT NO ACK STOP Figure 12. Immediate Address Read Timing BUS ACTIVITY: MASTER SDA LINE S T A R T SLAVE ADDRESS S S T A R T BYTE ADDRESS (n) * * * * S T O P SLAVE ADDRESS S A C K P A C K A C K DATA n Figure 13. Selective Read Timing BUS ACTIVITY: MASTER SLAVE ADDRESS DATA n DATA n+1 DATA n+2 N O A C K S T O P DATA n+x SDA LINE P A C K A C K A C K Figure 14. Sequential Read Timing http://onsemi.com 8 A C K N O A C K CAT24C21 PACKAGE DIMENSIONS PDIP−8, 300 mils CASE 646AA−01 ISSUE A SYMBOL MIN NOM A E1 5.33 A1 0.38 A2 2.92 3.30 4.95 b 0.36 0.46 0.56 b2 1.14 1.52 1.78 c 0.20 0.25 0.36 D 9.02 9.27 10.16 E 7.62 7.87 8.25 E1 6.10 6.35 7.11 e PIN # 1 IDENTIFICATION MAX 2.54 BSC eB 7.87 L 2.92 10.92 3.30 3.80 D TOP VIEW E A2 A A1 c b2 L e eB b SIDE VIEW END VIEW Notes: (1) All dimensions are in millimeters. (2) Complies with JEDEC MS-001. http://onsemi.com 9 CAT24C21 PACKAGE DIMENSIONS SOIC 8, 150 mils CASE 751BD−01 ISSUE O E1 E SYMBOL MIN A 1.35 1.75 A1 0.10 0.25 b 0.33 0.51 c 0.19 0.25 D 4.80 5.00 E 5.80 6.20 E1 3.80 MAX 4.00 1.27 BSC e PIN # 1 IDENTIFICATION NOM h 0.25 0.50 L 0.40 1.27 θ 0º 8º TOP VIEW D h A1 θ A c e b L SIDE VIEW END VIEW Notes: (1) All dimensions are in millimeters. Angles in degrees. (2) Complies with JEDEC MS-012. http://onsemi.com 10 CAT24C21 PACKAGE DIMENSIONS TSSOP8, 4.4x3 CASE 948AL−01 ISSUE O b SYMBOL MIN NOM A E1 E MAX 1.20 A1 0.05 A2 0.80 b 0.19 0.15 0.90 1.05 0.30 c 0.09 D 2.90 3.00 3.10 E 6.30 6.40 6.50 E1 4.30 4.40 4.50 e 0.20 0.65 BSC L 1.00 REF L1 0.50 θ 0º 0.60 0.75 8º e TOP VIEW D A2 c q1 A A1 L1 SIDE VIEW L END VIEW Notes: (1) All dimensions are in millimeters. Angles in degrees. (2) Complies with JEDEC MO-153. http://onsemi.com 11 CAT24C21 PACKAGE DIMENSIONS MSOP 8, 3x3 CASE 846AD−01 ISSUE O SYMBOL MIN NOM MAX 1.10 A E A1 0.05 0.10 0.15 A2 0.75 0.85 0.95 b 0.22 0.38 0.23 c 0.13 D 2.90 3.00 3.10 E 4.80 4.90 5.00 E1 2.90 3.00 3.10 E1 0.65 BSC e L 0.60 0.40 L1 0.25 BSC L2 θ 0.80 0.95 REF 0º 6º TOP VIEW D A A2 A1 DETAIL A e b c SIDE VIEW END VIEW q L2 Notes: (1) All dimensions are in millimeters. Angles in degrees. (2) Complies with JEDEC MO-187. L L1 DETAIL A http://onsemi.com 12 CAT24C21 PACKAGE DIMENSIONS TDFN8, 3x3 CASE 511AL−01 ISSUE A D A e b L E E2 PIN#1 ID PIN#1 INDEX AREA A1 SIDE VIEW TOP VIEW SYMBOL MIN NOM MAX A 0.70 0.75 0.80 A1 0.00 0.02 0.05 A3 BOTTOM VIEW 0.20 REF b 0.23 0.30 0.37 D 2.90 3.00 3.10 D2 2.20 −−− 2.50 E 2.90 3.00 3.10 E2 1.40 −−− 1.80 e L D2 A A3 A1 0.65 TYP 0.20 0.30 0.40 Notes: (1) All dimensions are in millimeters. (2) Complies with JEDEC MO-229. http://onsemi.com 13 FRONT VIEW CAT24C21 Example of Ordering Information Prefix Device # CAT 24C21 Suffix Y I −G T3 Temperature Range Lead Finish Tape & Reel (Note 15) I = Industrial (−40°C to +85°C) E = Extended (−40°C to +125°C) (Note 14) G: NiPdAu Blank: Matte−Tin Company ID Product Number 24C21 T: Tape & Reel 3: 3,000 / Reel Package L: PDIP W: SOIC, JEDEC Y: TSSOP Z: MSOP (Note 12) ZD4: TDFN (3 x 3 mm) 10. All packages are RoHS-compliant (Lead-free, Halogen-free). 11. The device used in the above example is a CAT24C21YI−GT3 (TSSOP, Industrial Temperature, NiPdAu, Tape & Reel, 3,000/Reel). 12. For availability, please contact your nearest ON Semiconductor Sales office. 13. For additional package options, please contact your nearest ON Semiconductor Sales office. 14. Extended Temperature available upon request. 15. For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ON Semiconductor is licensed by Philips Corporation to carry the I2C Bus Protocol. All brand names and product names appearing in this document are registered trademarks or trademarks of their respective holders. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 14 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative CAT24C21/D