Computation of yield gradients from statistical timing analysis.

Computation of Yield Gradients from
Statistical Timing Analysis
Vladimir Zolotov
Jinjun Xiong
University of California
Los Angeles, CA
IBM Watson Research Center
Yorktown Heights, NY
[email protected]
[email protected]
[email protected]
ABSTRACT
!#"%$&'
()"*++"%,
-. "++0/1 . 23
"4051, . - . $6" . +7!)
8:9";/4 .=<
" - >+
1#? . ,1
3 . "4@A+ . -. "++@ - 3+B6C3+D)E
. !F5+,G3AH
614)8JI . 51
"4
6! < K6
(AH3
L +M,+$6,1 L "4AN$O" . P6=1EQ"%RS5N" -1. "/
51F5K4E
"4
+&$O" . " - 6
>T6"=8UI . 35T"4HV5T%"%
+@,3AWA
"4"4X"4$YY,16Z),; . ) - AX" . GK3' ["C
"%4 .
L J,+573B+ . +B"0%,65J" - >"4\
FA -1. +1+J"=$
/1 . 2 L 2!8UI?A - - .Y-1. ++W"/4+H5+
)Y+A1")5
"X+"4 - ,CTA1 . 5
+;"4$ - . + . C!)+
5(]TA . + - +;K"
AJ51+KT!#"4$Y3AFV^" . ] . 8;I]A1 . ,
. 5)
L . 1')E_" . 5 . +5($O" . 56 . C" - K6
>T6"=#P - A)!6)`!E
A+W+
1 < " . $O+50"(@1"=1
. " - >+ . $6" . +"%)
,"%,
" - >"4a"4$]54 - . 3+ . X,3AM3J . 1" . >++ <
A,?+ L 6$O" . 3`A+U!)+
5#" - T
>3T"4H8
1.
Chandu Visweswariah
IBM Watson Research Center
Yorktown Heights, NY
INTRODUCTION
I?
1" - >3T"4
G . 35T6"=6
!#"=15,1+5 L ! - A!)
3
!)A+(
bF L . . !E L 5Mc"=d" . . 1
" . >+
17
b
. " . E_
/4+,T"%e514FTA1"5"%
"4%!)8BI]A1^" - 6>)E
"400+A . 3B
@%,
51+5 L ![5+ . TB[JT3'X" .
F . 4
18gfh0A1 -. +1B"=$ -. "++&/ . 2
"%1 < A?%"V31
@K"
6"=G
1^
AG) . -. ")+W - 8UI . 35
"=31+ . '4(5+ . [
(233'i$;" -1. "/
51+" .. +[4,
5+#K"
" - >+ . =8
Ig"^A+ - " - >6"= < ]+"4+ - @6
+5ijklOmQlOjn%oplOmQq@J -. "4E
- "4+5(
ar
s3t < L ,1@1"4@+"% - ,1+5+" .. +
!05,G"[ . 3
(" . E
. 2"41 L +
1
41" . +5H8;u . +235F+"4+ - B6
+5vjklwm_lwjn%oplwm_q
lwx1y%z{ J^,1=%++5a6*A+"4+DJ"4$^|~} 1Ib2;" . '#r€tK8
f2Mrt < ^+A1")5iJ -. " - "4+5i"\+"= - ,0A0 . 51
+ "=$
AC#"4$g+ . ,]51+2T!?A . + - ++?T"[A1C)3#52!"=$
)33AF514J"%$AJ6
0 . - A < ?A6AF -. "/=+5F" L J,E
[ . )!JA]3^Y . 3
K!8`9G"@+/4 .< AY;" . 'J51
51"=
"% - ,0A10
/
K!"%$@A10/ . 2+"4$]+ . +,J5+2!80fh$
,3A( . 35+)^ . C,+5#T"[" - >+?+ . ,
< " - F`
. +,
;51+2! L G" L 3
+5 < L ,1;/ . 2+15a+,H‚!)65
?
L , -. +51
+ L 8
f2ƒTA
- - .< @ -. " - "%7"/4+[5ƒ+[+
+0+A1")5
"4$g+"= - ,[!)+
5( . 51
+^^ - "4TE -. ")+6[T - $w .
VT
1 A L +0+"4 - T5H8g„…?"4 - ,BTAB . E
5
+"=$&†n)k2n%‡[zm_klOjmQlO‡^lOxˆq4l6zopy‰w
+6,51
0"41
5 . 3T"4F"=$
/1 . 23ŠYB
A . + - +"()33A
1+548GI]A[!)+
5… . E
5
+^‰w(+"4‹w,1+
"4(]
A#
3‚23')]" . 1[F . E
I]A1
;" . 'JC51"=1;?A6
;A
B,1A" . C3BXT . #3Hf+Œ;
+ . 3AH8
44Š;5 . +
!…g L 60/ . 6"=,1JK! - +J"%$@" - >"4a,AŽ
- . 3+ . ^!5D[6>
"%F" .G- "=W . [6>
"%F, L E
‹O+]"!65*15(
6 . +Z, . +8
fK["%, . --. "‚3A0W,?AB3[B+"=1+ - W"=$‚ . - A+,1
#r
3t < L ,J@5"F"4^,i! - . , . L 6"=*"4$]
F514
|&W‘0" . "%)/%"4
,"4H8*fK5 < W#51 . /4#+D - 6
+H
!
E
3Y+D -. +
"% $w" . 3
Y"4 - "=1+)J"=$@!
+65… . 51
+ < ]AA
'%+G"=, . -1-. "‚3A+8;’1
'%(r6tH@^51"1"=,\)!
A
E . ,J" .@-. " - ‚
"%0"4$`+
/
@A . "4,1=AA[E
1B . - A < ]AAJ6JT, . J . !C - 6
“+g"%, . +"= - ,3
"48
I]A1#" . ~3>
"%v"%$CTA . 0"4$GA - - . i$w"4
"]8
+
"%: - "4)G"4,1A1^6
6"=1G"4$ L "4A… . 351
"4H3H51E
. …K3'”15M
G2'•3 . +#"P4,5
" - 6>)
"%g8•++
"%”– . +/)+]i( . 2!7+"% - ,"4
-1. ")5, . C51+ . L +5(
PB"= - 1
"4 - - .< , - "%(]A1
3A(A
-1. " - "4+5v+A"5:
L ,1
687I]A#A1) . 0"4$TA1(51 . /"4v"4$
!
+
5N . 35
+T() L $6"4,15ĥ++
"%ƒ— < ')P,F"4$
$O" . X,K 51 . /45a
au -1- +51
Du[8\|1"4+2 -- "4 "4$
A1 !)6+
5( . 5X . 51+ . L +5#*+"4P€%8
I]A1
(6*F"41 - - - .(. -. ++)7;" . 'ƒ -1. "4 . + <
5A1++G5"+;1"=@+"4)3
, . . ,8g9"@+/= .< A
,A1" . L +
+/%?A6&@" . 'XT" L ?/1,H L ? -1. "/
51
1 =A
5#+
1 . + . A#5 . +
"%18
2. SLACK IS A POOR METRIC
I?
1v+
"4, . i
˜A -. +++a"=$ -. "++#/ . 23T"4#P
1
=AF . 8‚I . 351
"4H3%
1 . ++4[6
. ,13@H3A"%+
-1. ")&" . . T" =,1
51]A]" - [>)3
"4 < L ,&K6
C6=1EQ"%R
. +Z, . + A . ^,TEQ" . 1 . 6[#" . )Y6[~8 fK$
41EQ"4Rv
1F
^1"%(3A6+/=+5 < A" - K6
>T6"=P+"4
,
?
A#"%1"%
"%?$ . "4™KA1 41EQ"4RF[63?T"0]AA
+"%+"=$1
"4%
W1++5^
-1. "/=+)8`I?A@ . "4, L @
HAH?""4
K6
(
C+"45: -1. ")+G+" . . š< /)"423
"4 . X++
-. "++?+" . .?›(< 15/
+ /= . < 35#AC . % . +
+,
/4)8
I . 51
6"=U
1 -1. "/5+?2@"
- " . 3)]5234"4
+œ
 8&I]A1C
51K6h!"4$gAC . 3 - 3A < ]A1
A(]TAC
")"4
"4$`A"4ž L ^$w" . A L ,3')Ÿ^5, . ^" - [>)3
"48
48&I]6
233'" . F . %
8
’G$O" . ,1g3+
! < A -. ++"%$ -. "+@/1 . 23
"4 < A .
"4$^TA+…5234"4+#
#,+$O,T8”}G3A - "4)#
MA1 -. "+
- ?30AT/=;,1Z),1B . )3 - 3A < "J
. K!XTA1 . B
]"%$H . - A1 < A\"=$H?A3A(A[G"%E_>+ . " -. " L L E
K!"%$ L +0 . K8Y‘V" . 6, . "% - , .- "= < ‘~8  A"]
#EQ51
+6"=Y - [?
A -1. "++ - . 3 . J ¡^35* ]¢ <
"4?
A^+"4"4, . H"4$+Z,H -1. " L L K!8WY)
;
,H
"%
£¤
£¤
S1
S2
0.04
©
ª«
ª«
Probability density
©
0.03
Ø
0.02
0.01
Õ
0.00
-100
¥
¨§
¥p¦§
¬?­O®~¯g°±#²V³´°­Qµ+­Q¶%·¸O­Qµ¹PºV»?·…¶4°=­Oµ­w¶)·1¸@¼g·1µ+½:­O¾•¿2·À[·ÁÂ*·¸O¸
°±)®~­OºV¾Pº~»Wµ+½H±¼H°ºU¶4±ÁÁ Á¼g·1¶)±)ÃG¿2ÄHÀJ·\¸O·°=®V±°±®V­Oº~¾PºV»Wµ+½H±
¼g°=º`¶%±)ÁÁ0Á¼H·¶%±Å
?
WAgT/%JX,3AiA4A . 561
"%g3
2!8^I]A0ÆÇ
aA“4E
, . [A"?CA -. "++C+" . 1 . C]A1
AiK6
(
+"=15,1++5
a" . 5 . "\4,50" - >3T"4 < 3 ?AAM - . +,K .J- A
^$O"4,15PT" L TA1"4X . 28\uG^A"SP‘
‚8  < A
- A! L X . …"=1
!7 3
- " . "=…"4$WA -. "++
- 3+# . "%,15…Æ < " . GF! L [ . 3g^,A"4$&TA1^A1
%AE
-. " L L K! -. ")++[ - 3+a3[A"=]7v‘
‚8  L 8…IBA),
[
,1+
. $ . "4È5+ . 0
6\?A1A . " . "% 6J
E
- " . 3)?"
-1. "/= A1C
1Ag . + . 6
+?"%$HKA1
- AH8
É@CZ,6')
!0"4+]"XTA1G+"4+
,1"4A@"% . +Z, . +]+
E
A . ^,1
Eh" . . 23' " . 3K6
32'J"C4,5;" - 6>)E
"4H8J[,1
Eh" . . K'B"4 L ^" L 1+5F . ++)3
!
5:3FD - "=1+2), L . "4$&+" . . C
A1 -1. ")+ - 3
F3'4+ A -1. "++5, . -1. "4A L /%8CfK35 < 6
32'
?" . "415,6/= "
1 . +[+`" - . "%("4$HA .< 3
5+ . L +5[
\r6stK8`9G"@+/4 .< K'("CAH -1. " L # . /
X%")"5(+ . $O" . " - T
>3
"4H8
‘1" . "%&TA < T4K3'B6@H5 . L ,6"= < 15 -. ++)E
5HT!*" - [>)3
"47")"%
[2! - !a51""4['"ÊA"Ë"53
?
A#5
. L ,
"%8‘1" . "4A1 .< 3
`K' . 3A . $O" . T6"=F+"4+)BAvG51
. L ,"4\+J
2! - 3
!
- . 3[+ . >+5 L !0AC"=, . +]"4$g/ . T"4*‰w8 V8 < ]“ . E_" . 5 .
)31"=1
g$O" . Çr
s3t2Š8XÉ@FAX"4^A15 < A1
G" - +1, -F- "4
E
L 6
+&"%$~,
1 KA1
- . 3[+ . >+5"5+1"jÌ)ÍÍ4ÎzA1?h! - "4$@" - 6>)"4aKA3C@"4,1
5 L + -1. "/%
\3Ag . + . E
+ < L ,1 < "%(A1 "4A .< ?'%+?
?+/%+(" . +"= - +5
$w" . A " - >+ . T", 3
`T3'iX[+ . 6)8
É@ - "= L K!X6W"X,0]ςEh - 5/,"4$`A1BT3'F3
^+ . < )8 V8 < AÐiÑN–Ïv/3
,1["%$@AT3'U8XI]A
^Ag3 A
5/13=C"4$U+1, . 1F51+Z,g3 - . [+ . C!5(]A1+
E
[]+
"%+5 < 15 L +6F?4
C, L . Ag3 . -1. ++)]A
. -1. ")X - +8’G1$6" . T,6! < A1
X[+ . 60AH -1. " L E
+ < T""~8X‘
‚8YXA"]^h;"(T3'56 . L ,"41(Ò  15Nҏ
?A6A#AHT/% AJ(ÑC–Ï/1,8HfK\AJ "4$BÒ  < A 51
E
. L ,1
"4P -. +K!…4A\15P
-. "/=+)#‰w28 8 < "/4+
"[A . 4AŠg
L ^"4 - A+5 L !0"/)6A +) . C51
E
. L ,1
"4H8;"/
10+) . ?5 . L ,1
"402! - ![+"= . )
5 - "@ . [
GC"4$w+:33A+/4+5 L !F
1 . L ,R~ . G" .
, - EQ
>+
1i~48ŽÉ@vA#"4A . A15 < ҏ L (6 -. "/4+5
L ! . 51,J6W
/
2!" -. "++ < 28 )8 < 4A)1
1^
;51
E
. L ,1
"4H8’G$O" . ,H+
! < ςE_3 - +5233'#5"+C"4%
/4[,
A
B2! - "4$H
=A8
Ó "d;]
G+"=15 . "%T(+DU - "P51+["% . A -1. " L 6?
AF3
H23'`8JÔH"41
5 . C
,"4F
Ö
-50
Õ
0
50
Slack (ps)
×
Õ
100
Ö
150
¬?­O®V¯°±JÙV³CÚHµ·1µ­OÁµ­O¶4·1¸~Á¸O·¶=ÛºV»`µ3ÜJº¼H·µ½HÁ]Ü­Oµ½Fµ+½H±JÁ+·1Âa±
ÝÞ ÏMß ·1¸O¯H±Å
?AA0K@"^ςEQ= - 5 - 3A0K' . BE3sà(35E€3à - <=. - +E
/%+
!8PI . 35
6"=?]51"=Ç=T!)0"a
-1. "/=\A#“ . - A
6Y
2' . )A1+JE€3à - < 35iA… . !T"\
-. "/= L "%Ag8
W - 156("=A1^ -. 5:15+" .. +23
"=…"4$WTA[h;"5 . E
L ,"41 < A6@T!01"4 L G"X?
8gf2$gAC -. 5("=$gAC23')
X2 . =…35*A102@"F23')\ . ,1" .. +2+5 < A1*TA10+E
"45 - 3TA*T! L …
"4#JX,3Aa"4$JX!
+5a
. JA
“ . 8‚fK$A1+!0 . @
%A)
! +" .. +T+5 < A"@+/4 .< A1^ . 5
"4
?
51"4™
?"%,15H8
"% "4$gA1C5+ . 5#$O, . +?"=$?%")"5#52%"4
. œ
á#-1. +$6 . L 6! < 14 ), L .â
á#-1. +$6 . L 6 ! < ], L . ]
A…;“1D)+5 . 3%?,A…3&àJ"  â
0), L . AH[
+T . - . "+ +? - +
)
1
,
. T A??
L
á
á ),1 L . TA?
á
6
! . -1. +)X . 6h!aPA
â
- +
!(" .. +K
"%E3 . â 5
L G+"% - ,1+5(+
+
!8
3. CRITICALITY PROBABILITIES
Ô . )3
2! -. " L L 6h!#
G+ . ^Ag3B3T“1+BA1 . +Z, . E
+&3+5… L "/48UI?AB . 2! -1. " L L K!X"4$W0+5%?
- ![5+“1+5…@A1 -. " L L 2!["=$`F,$+, . (]A - ?AA(AC . T - A(,5]A]5%)8]Ô . 3
K! -. " L E
L 6
0@ . F“ . -. " - "%+5:”r
s3t < A"4,%Av:AH0;" . '
m_lwˆÌ)mQxzÎ3Î]†‚kKÍ4ã3n%ãlwo lOmQlOzÎ@; . [
1+" .. +
!73,+5" L X651E
- +5)05, . 1*AF+"= - ,
"%g8Mud+"4 - "% - - . 3
A1
+"%$O . ++\r
ä3tg51+ . L A"åA+ -. " L L C L +"% - ,+5+++)
!735:3++, . +!8BI?AXA1")56 L . +c!
. +/
+;+5^
[TA
+
"4[]
A . +$w . +;"‘
‚8– < 15^+"%
"4$KA1 $w"4
"]
1 - 8
ÚHµ+±¼æ² I?A[[# . - A…
,4++5…]ANaž_"4, . ++Ÿ
5çžO6'Ÿi")51 < 5v/ . ,]54++"%1+
1…A1#"4, . +
1")5G"\
-. . !0
- ,J35(AG'0")51G"#3
-. . !
"4, - ,15XT
1G"51+8`I]A1;5+2! "%$A[
- ,514
[TAi‰w)32ŠX . +5Ž .. /3@
"%$]A" .. + - "45E
1 -1. . !0 - ,1 < 5#TAC51K!0"4$gA#"=,1 - ,]+54C]A
1~3
/4G"%$gA‰w
KŠ . +Z),1 . +5* .. /3‚[C"4$HAC" . E
. + - "%51
-. . !i"4,1 - ,^" . + - "%
8#f2PA")5“+5
. - A < AG+4A"%$`A1G
"%%+ - ATG"50‰w28 )8 < 23T
"5 .. /1~G"=$gAC
1'"5Š`;Z,6 - !0A1=E
/4^"4$YAX2^")5XK'#"=$&AX5
% < ]A1
6JAX
+4A
"4$JA…A" . + - Ab‰wK8 8 < . !:["5: .. /1C
…"4$JA
'0"5Šg
]A1 . !0"5CT3'0"4$gAC51+
%g8H„ƒAGA
. - Aa,1=+
"% - ]1"4@++TT‚ -1. ++ < ;[E
- “1GA1^+D - T
"% L !(+"%)/% . a6g[ . - AC
)"
9): <;= ý ý?> @A!BCDEGF IH Edges for complement slack computation
ê
ê
ê
ê
ê
ê
ê
ê
êëëê
ëë
ëë
ëë
ëë
ëë
ëë
ëë
ëë
êë
êë
êë
êë
êë
êë
êë
êë
èé
èé
èé
èé
èé
èé
èé
èé
a
é
é
é
é
é
é
é
éèéè
êë
êë
êë
êë
êë
êë
êë
êë
ëêëê
èéèé
èé
è
è
è
è
è
è
ê
ê
ê
ê
ê
ê
ê
ê
èé
èé
èé
èé
èé
èé
èé
é
é
é
é
é
é
éèéè
êë
êë
êë
êë
êë
êë
êë
êë
ë
ë
ë
ë
ë
ë
ë
ë
ëêëê
è
è
è
è
è
è
è
éè
b
ê
ê
ê
ê
ê
ê
ê
ê
èéèé
èé
èé
èé
èé
èé
èé
èé
é
é
é
é
é
é
é
éèéè
êë
êë
êë
êë
êë
êë
êë
êë
ë
ë
ë
ë
ë
ë
ë
ë
ëêëê
è
è
è
è
è
è
è
ê
ê
ê
ê
ê
ê
ê
ê
èé
èé
èé
èé
èé
èé
èé
éè
é
é
é
é
é
é
éèéè
êë
êë
êë
êë
êë
êë
êë
êë
ë
ë
ë
ë
ë
ë
ë
ë
ëêëê
èéèé
èé
è
è
è
è
è
è
é
ê
ê
ê
ê
ê
ê
ê
ê
c
Cutset
èé
èé
èé
èé
èé
èé
èé
é
é
é
é
é
é
éèéè
êë
êë
êë
êë
êë
êë
êë
êë
ë
ë
ë
ë
ë
ë
ë
ëêëê
è
è
è
è
è
è
è
éè
ê
ê
ê
ê
ê
ê
ê
ê
ë
èéèé
èé
èé
èé
èé
èé
èé
èé
é
é
é
é
é
é
é
éèéè
êë
êë
êë
êë
êë
êë
êë
êë
ë
ë
ë
ë
ë
ë
ë
ëê
è
è
è
è
è
è
è
ê
ê
ê
ê
ê
ê
ê
ê
ë
èé
èé
èé
èé
èé
èé
èé
éè
ê êë të
ê ë
ê ë
ê ë
ê ë
ê ë
ê ëêëê
ë
è é
è é
è é
è é
è é
è é
è é
è éèéè i
é
e
]%
+E_"=, . +4+EQ
1'[5 . +T5…3+!+
G . - A8;ÔH"4 L HE
"4H%
"" - ]15 "" - U"4$ . 3 - . )g23A+; . & - ++23%
AH . +Z), . ]D)+1"4&"=$VA+ . 5+ . ;"=,1) .- . E
4" . A1Y" L ]Ag351
5[" .. ++
!8UI?A]$O"4
"]6CD - 23g3T"4
?
)$O"),H"%J23T@["5@
< L ,1;H3
"4%"=,1? . 4,1[+H
L F51 $6" . . !"5 . 6
6
2!"4 - ,1
"%=8
Úgµ±)¼ƒÙ ‘V" . 4/4+(+51=Jí "4$H
. + < 51+
$w!i3)!+,+
"%)3
1
1í,3ATAH3GA["%, . +\15'#1"5\ . X" - E
- "4 - . T"48Xui+
+CJT!"4$@5+)
$O!)\,1+ ,%4K5#
Prät28
Úgµ±)¼ Þ ÔH"4 - ,^Fzy)ˆzÎopn4jî$6" . 3A[5%@6XTA1]+,8
I?A+51%02'a"=$^3*+54X
- !…A16
3W
"414+
- ATA . "4,%AAH@5%8g‘" . 51%íC$ . "%b1"5CïH"Xð < A
51%C2'6?
- !
‰  Š
1 šGòó]. -. +)TA1\T
"%%+ - Aƒ$ . "4ùA
"=, . +^1"5["ïJ5NÑ@÷ šòø GA1^3
"4%+ - A
$ . "4çðW"[A1C
1'"58
Úgµ±)¼bú Ôg"= - ,0A1ijÍ%‡B†‚opz‡Xzx1mCzy%ˆz(Îopn4jîJ$O" . 514í8
I?A+"% - 6+)^+51=23'…^
- !…A10
WD
E
^,1Ë"%$HA +51= T3'"%$?6‚5%+?
#A +,+]D - ?í8
Úgµ±)¼Nû ÔH"4 - , A -. " L L 6
K!TAH3]A1 +54 K'"%$í
G
!#K . 4 . AH
C+"4 - +)+51%^K'g8?I?A
?TA1 . h! -. " L L K!"%$í8
I?A . "%6 L +A1
5\A1( L "/4(3
=" . A1ç
G . 4A)$w" . E
. 58`}W/% . ! - "=6)&
-1. "++& - +?AH3G@%
? . - A
GAg3 - "4 < "i3
H;^1+5T"(5"G"“5AX"= . E
6
K! -1. " L L 2!a"4$X6 - AXAH - 3^A . "=,1%AaA154
"4$B) . 8}@/4 . ! - Av"=$A(
i . - A7%")XA . "=,14A
-. +++
!"%05140"=$;A1[,+8[‘1" . A1
J+5%" L 0 . E
)3 < A1^zxÎ3z‡XãopzGopÍ%xˆzÎm†n%m_Ì@A . "%,%AX6B‰wK8 8 < &514]2'UŠ
^,1 L J2 . % . Ag373
gAJ"4A1 . +54JK'8&IBA),AJ"4E
)3
6+5FmQlOˆÌ%m_x1zÎÎg†`kKÍ4ã3n%ãlwo lOmQqW"=$~A1]3
D
X,•"4$~A
51%;23'5[+"= - +[)+51=;K3'J=/4+,1A; . 6h!
-. " L L K!"%$`A1+51=8gI?A1
;+A1
Z),1G6+V3)
!0"/% . +"=
-. +/
"4,1 -1. " L +;]
AAg35
6X"=$‚" .. +K
"4@5, . 1J . E
6
K!i3
!)
8Y9"W+/% .< A1
-1. " L L 2!
g5"+?1"4?+
,UA"aA - . [+ . 6Y!)+
5 "%$)A1YA1 - g
- ++5 L !3AH4E
0AJ5+TT!3Ag . + . "=$B\+54 "%$gA1 0 . - A
‰ L !
>
1" . L ,1R~ . < $O" . +D` - Š8
4.
YIELD GRADIENTS
')(+*-,
/
¬?­O®~¯g°± Þ ³ ´°=­wµ­O¶%·1¸Q­Qµ¹F¼H°ºVÄ·ÄH­O¸Q­Oµ¹F¶)ºVÂ*¼H¯gµ+·1µ­Oº1¾aÄ`¹Fµ+½H±
¶)¯gµ+Á±µ[Â*±µ+½Hº`ìHÅ
šGòóVôõ`ö ÑF÷ šGòø
.
'32435$687
Input cone of edge e Edge e of interestOutput cone of edge e
}W54]T3'#ñ
JH "H # !K
É@, . 4"~W
^"\“15*A0 . 5J"=$;A1 - . 3 . 0!
+
5*"=$
AA - "*3
Y+"% - "41+) "%$WA[51+2!F"4$JJ%
+54"=$
A\
* . - A8:I]A -. " L Ç L \51
/)55v6)"iKW"
- . =8ËÉ@F;F'1"eA1F3
T3'v"%$ TA3A - 3
#5 . L ,"4 < A1 - . . F!)6+
5N
3
!7+D -. +5ƒ
0
1
L MNCJ ýOPRQS
JQ T& UQV# &W
X ÿ=Yý0ÿ`ý ZA\[ ]Z
?
] T! "]M# !^
üJý=þVÿ ý
! "$# &%
¬B­Q®1¯H°±Fú~³`#
_ ±°­ ß ·1µ+­Oº~¾:ºV»B¹U­O±¸O샮V°=·ìH­O±¾‚µÁÅ
. 0"=$GTAPÔ?W‘”"=$GA\
?K'U8˜"a
$@#"=,1
5
"423TA51 - +5+1"4$WA1
&2'"4…A152T!
"4$HH
4
@+54 < @W+"4,
5X56R1 . +)23WAH . K"=XK"" L 3
A1G1++ . !!)+
5# . 51
+8
b…8(‘
~8‚—…=
/%+^,1#[+"4E
a X,X$w")+,1^"%Ž[4+54c
/4+)X L . +
"4\$6" . A1 5 . /16"=8gf2#A1 “%, . <› . - E
b 5+"4 -. CA
. ++)CA[+"= - +[+G2'F"4$&+51=d
++ L G"%$@3
- 3KA1;"%$`A1 . - AA@51"^1"4 - ;A . "4,4A
b…8ƒI?A17 .. /1B
f
e TA1F$ . "=E_"5F"%$C+54f
b . - E
. ++) A51KT!F"%$&A1X+ L 6X"%$ - A $ . "%dA"4, . +
1")5"F5%c
b8P[K . ! < TA . +Z,1 . +5˜ .. /;
c
gç"4$
A1X"4E_"5["=$@+54h
b . -1. +)CA[+‚
/%X"4$WA52T!
"4$`A++ L "=$ - 3A@$ . "=S514
bS"JA
1'X"58UI?A
- AP"4, . +iE e +E bjE gCE']AC++ L "4$? - A?"=$HA
. - APAg3 - XA . "4,4G
A b…8#I?A),1\ - A1X"4$?A
. - AAT/4+"% - ,
! L ++ - @
"X2@" L ,3'=+3
k^A1"4
A - A . "4,4l
A b 35*TA"4AHJ5"#1"48[„…0AT/=0"=E
23+5A? - W"=$`A?+51=m
bS"40KA1?3T
31K'^"%$~A
A1 - 8
Ó D) < W # . A1 K6U23'"4$HA 3A - 3?A
4A#"4$gA1 "44+ - A##‘
‚8)—
ÔHA - 23'<nUoƒñ*D`‰ ›<p
e
ô
bËÑgŠ
‰T%Š
?A . …)AN"%$ ›< e < b 35qgÈD -. +5N
N“ . EQ" . 5 .
3"%6)Y$O" . A1"]i…A1X“1=, . 8JI]A1[4" L 3
!F+" .. E
23+5 -. "++?/ . 2 L +X . . -. +T5 L ! . 15"%Ê/ . K L Æ ó p ï^ñ  p  prSrSrsp+t 5a5 - +15)
! . 315"% / . 23
"4 L !
Æ u pf
f
Æ v p
Æ w”15iÆx8 fKC
/4 . !F - " . ) "1"=AH ›
51")]"%W51 - 15"%A151+2T!0"4$`A1+51=G"%$`
. +;+6
. -. +) A11+ L 0"4$ - 3KA1 Ay%Íx1Í)m†n%ÎÎ?A . "4,4A
b…8 2 . ! < e 3f
5 g 51"0"45 - 15F"4FAJ51+2T!#"%$514
bd+XA+! . -1. ++BA1J51K!#"=$YA^
"%4+ - 3TA
FA
$1
P+"%*57$1"%,["41"4m
$ b <g. - ++
/%!)8I]A . +$O" . <
@P5RV . +)Ki‰4Š]"F" L 3
PTA1 . 51
+^"4$]A1A1 K'…K"\A[+"% - "=1+) "%)
$ b…8^I]A1 . +C6 - !ƒ6= L . =8
IH"0 . )5 L 2!("=$YTA1
- - .< A1 5R~ . )K"=F"4$
A1JD#" - . 3T" . L !#,
1…ÔH2 . s
' y G$w" . X,Tr– <  tgAH3 L ++
"/%+5["Cu -- +15
DXu[8U’G
TA1]$O" . X,23Y[A1]u -1- +5D <
!
+
5\ . 35+)X . 51 . /4+5 L +
"Ž(KW"51
R~ . )?++H . "48
4.1 Performance maximization at a given yield
I?A6,g3T"4ƒu0fÔgE_
'4FNAHWv3,1[v . +Z, . +5
!
+
5…AH L ++ - ++“5 < 35@^+'#"+"4 - ,XAXDE
X, - . $w" . +‰w+
"3'$ . Z,+! < " .< Z),
/1
! < 2'gŠ
B?A1
AFTA1JA1 - 3\=$O+
! L ^" - . +5H8@uG,1[^AHBA
z < J+"=13)8?I?AX"4%G51E
. +Z, . +5 - . [ . 6^!
+65F{
2!("4$YAX
1 . - AFF‘
‚8—
0C
HZ,H3)
2G
! o
?A6A#W3,CA^#/3
,1}|~J15P?315g . 5(5+/
E
"=…€
Ï U8;I?A1+FAX" .. + - "%51
1 - . [ . 6^
"44+ - A
5+2!^AW[+WA?!)6+
5 . +Z, . +)
z &51+"4+5 L ! |~‰Tz~Š8
I?A@
. A1&/1,W"4
$ o < KA1 L T . 8`I]A - . . W51+2T!
?A6A#[++?A1 . Z), . ++] L +D -1. 5P3
¡
|~T‰ z~ŠYU
ñ ‚ƒ T‰ zVŠOÏ  ô | ~ p
‰–=Š
¡
?A . d
‚ ƒ ‰ŠU
;AG)/4 . 0Ô]&‘*"4$@?15H . 51" . F28gI?A
Z,H
"%i - !!)JAg3 A . Z, . +5a!)+
5a L . 1E
K5\6)"… . Z), . +5F),1 L . "%$4"%#A1 "41=+ - A
5+2!F5
. L ,1
"4H8#É@, . %"~Y1" "(" L iA[ . 51
+
"43
$ |~T‰ z~Š@]
A . + - ++ " õ ~ <Uõ ó p ïJñ  p  pSrrr„p+t 15 †
õ … 8XI?A
]3
!i++"4 - A1+5 L !
- !5
R~ . +2‰–=Šg?A . +E
- ]"3A#"=$HA1+ Z,g3)
68
‡ ~| ‰Tz1Š U
‡ Ï 
¡
‡ õ ó ñ ‚ˆƒ ‰Tz~Š ‡ õ ó
I?A@2@" - " L 3
+57$ .
‰–à~Š < ‰–  Š <
ô
‡ | ~ ï@ñPà 
p p rSrSrsp+tp+‰
Š
‡ õ óp
. 25 . /16/=+H"%JA . 4AHAg35X
51C . . 51
!
"% A1 L "=D)5:+Z),H
"%[vA#u -- 151
DŽ‰—‚Š <
‰–4–4Š < ‰–=€4Š?5P‰–44Š8
4.2 Yield maximization at a given performance
Š
ñ

¢
Ï 

ï@ñPà
‘
~
 ’G”
“
p  pSrrSr„pjt3p+‰ZŠ
ò
Ï
Ñ|
Ñ@Ï
 ‡‡ | ~
õ~ó
ô
‰ò
Ñ|
~ Š ‡ ‡ Ï  ‰€=p Š
õVó–•
u
A"%,4AFTAJ$O" . ^,12 . J+4A)! < A!* . J
!(+")51+5
$w" . +
+X/1,H
"%P"=˜0"4 - ,1 . 8#f2P . ["=$? - +E
[+
"% < ]A1+a . )3
6h! -. " L L 6
K!^"4 - ,1+5i$O" . 51% < W3
3D)6^,•" - . "4X
- . $w" . 5 L +2@++
&+54B23'#350"4 - ) . !X+51=BK'U8Uu]&AH3 - "%
<
A^ L "/4?$w" . X,TC
6"v,&" +"4 - ,1]!
+
5 . 51
+&]A
. - +]"5/
51,g3`+51= 52T!8
5.
APPLICATIONS OF YIELD GRADIENTS
É@ 6[+5T# -1- 6
T6"=\"%$H!
+5\ . 5+)BB
7G$O" . 3
. " . E_>+
1[" - >"4(+"4TD)],3A*}—=˜ ™Mšœ›=M™
žŸ@r —4tK8
u - "% L B$6" . ^,123
"40"=$~A1?" - >3
"4 -. " L 6+ "/4 . A
- 3+ "=$H . 6" . ]5A1`
X?$w"%
"]48
D¡
Š Š
Š Š
- . [+ . 6]!
+5hzV‰ ò Š
- . $6" . 1+ . Z), . + ò
. p +•15"=A1 . "4 . )
Š
Š Š
Š Š
‰w—VŠ
I?A6T,6"=N
. " -1. ")+" . E_
6'=FƒAH3Wv,[v
. 4+$ . +Z),+1+!vA L +M - ++
“1+5b15MWƒ . … . !)
vK"
F3D)6[>GA1!)
5"%$`A1 - ;Ag3WB
&A1
+/%TA1
]$ . +Z,+!8
u,1GTA;A1 . 4+@$ . +Z),11+!0 . 123+;)"F . +Z,1 . +5
"44+ - A51+2T!0"%$ ò " . +=8gf2(TA1
] < "%, .]- . + . !
+q
5 za
- !7TA1 -. " L L 2!7A0A1F
"44 - I
A o
AHG/V,JAB ò " . 6+=8@I]A^!
+5\A . +$O" . zV‰ ò Š;ñ
‚<‹=‰ ò f
Ñ |~Š Œ3Ï Ž 8UI]A
H6 - @+Z),H
"%J3 L W51
R~ . +TK+5
?
A#KA1CA+ - "4$gAC$w" . ^,123]
#A -- 5
D"X" L (A
+++ . !(!)
5# . 51
+
‡ ~z ‰ ò
‡ õ~ó
É@$?"4, . < 3AH1=6ƒ0 . " . >+(]6
;2! - !aA14
A105+K!…"4$?J,1
- 05%+^"4$]A1
1F . - A˜^@
$1
a+5%+ 5,1K"\
"‚5#+R~+35a$"%,C+5%+ 51,"
+ƒ+R1+8UuG
V"=$‚A+?6
/
@ L BA6E . ,1
+5…15
1+,51+5(6* . 4A$w" . . 5# . 8
I]A1]" L ‹6+T/4]$6,11"=["=,1
5[! L ]A4+5X$ . "4 - . E
+ . X!
+5"(†~kKÍ ¢m@‰w" . !#"4A1 . )+ . [3, . ^"%$&A
51
. L ,
"%P"%$?A13A - 23'UŠB
7A(("%$X0" . +5æ15
- +5E L +5…3A - 8(" . 1(
- CAC51
R~ . ) . 34+ "4$
- +5 L . 1BX5R~ . +?"4,"4$ -. "=“18UI]A;!)
5X"=$1A
$ | ~ 5X
Ï ? L "/%G35^A+
L J3 L W+D -1. 5^
J . g"4@
A1[@+4A+5…,È"=$;TA1 -1. "4“ "=/= . 3
L J56R1 . +)T+5
"" L #A 1++ . ! . 51
+8
uå"415 - "4 L $w" . X,T
"%#
?A1"? L +
"^8
‰=Š
f2AG < @^1+5…" -. "/)5X"A^1"=1
. " - 6> .
^)33Aa . "4*A0!
+5Ž^A . Z),1 . +5 - . $O" . + ò^<
5FAJ . 5?"%$Ag3?!
+65#]6A . - ++B"…g . K" .
>++=8 IBA#$O" . X,K
"%Ž“\W+C?A
ËF . K" . EQ6/4
,1
1(+"4+D) +A1[ . 5
) "4$@A!)
5i?
A . - +
"(3051%B5TT![)3 L A6E . ,1
+5]
AAB . 5
+W"%$‚A
51% 5+K!?
A . + - +B"[A 5
/
5,` . 36" . B
5A=8
I?A23 . "% - ,1"4 < L !FAF35‹O"=6)C[TA1"5 < 3 . 35!
- . ["%$GA\ . 3" . >6*$w" . X,23
"4ƒ,+5 -1. +)
!8
¡
5+2!|~‰Tz~Š
. Z, . +5!)+
5hz
. p +•5"4A . +"=1 . 3
)
Š
‰Ts%Š
fKJA$6" . ^,123
"4 < . +Z, . +5J!
5^H - +6“5 < 5XW@++5
" -. "/)65"#A"41
) . " - 6[> . 3A… . "%…A
$+ - . $O" . +A L 3A/=+5ƒ315…A[ . 5
"4$KA - . $6" . 1+ ]TA . + - +?"
` . 3
" . ?
51TA8
}&/4\
FTA^"4+D?"4$Y5 . +J" - >
"% < !)
5\ . 5
E
+C L X,1+5…" . 1'\" . 5 .C- " . "41 "=$WA[+ . +,GAH3
"=W5…3T+
"%0
" . 5 . "J6 . GTA!
+50"%$‚A+ . E
+,G"(TA[++ . !#/1, < " . K"( . )[A - . $O" . +
( . +Z,1 . +5a!)+
58^90T/#Z,g3)
3
/40 . 5+)J]
6Y51E
. aAa4,+EQ@" . '•15Ž . !)E_+/3
,+E_,51"v
")" - AH3(
+"%["4\ - A!)
U!)A
B51, . 6023 1" .. ++"4
5# . !EQ"5 - 5151
~8
uB6A"%,%AaA…+,H@" - >3
"=Ž -- "4^5+ . L +5
\A1
?+T"4#AH/4 "4 L ++\
- +++5 < A3,A1" . B$w+
AG!
+5… . 5)?H+H L - "@ . $w,H1” T!C"4$&" - E
>
1 . ,1
?#TA1 -. ++1 "4$H/ . 2 L 6
K!)8
6. CONCLUSIONS
I?
1[6"=, . C
#KA1 -. ++1C"4$H/ . T L 6h! - ]+
"4, . . "=FA1i) . . +6/1 -1. "++F - + < ]A1
3Aæ
v˜+DE
. +6!\Ag3
%
1'U8I . 35
"4H5123=1"=6+015E
. '=\ . - 3A…15v51+ . 1
6(
6aK')… . 51+Z,J$O" . A^" - [6>
"%F'U8;I]A1
- - . 5 . L #"=/=+GA"5ƒ$w" . +"4 - , - . + . F!)65ƒ . 356)
, . 3!F150[+
+! < 15 -. " - "4;/ . "4,1C -- 6)
"%
A](3'451/4C"%$H!)+
5# . 51
+8
7. ACKNOWLEDGMENTS
I?AN,A" . (;"4,
5˜
'4…":Ag3'•3
+ L . ("%$JA1…+DE
+55fŒ]£—s˜ ™
š¥¤@¦+§?¦35G¨©-¤C$O" . ,1$O,1H5
,
"%
5#"4$w2J . , -- " . 8
8.
REFERENCES
r tC9[8UÔgAH33578`18`
- ' . 8`
K6U
!
?+"%1
5 . 1 - K`+" .. +2"4?,F4
|~}C1I?EQ
'4 . T/% . T8sª¥«€««¬ªTx1mQzkx1n4mQlOÍ%x1n)o)­UÍ)xV®zkKzxj3zXÍ%x
­UÍ)‡]s† ¯mQzk °j±]lOy%zc
y ²GzÎlwˆx <%- 4+X4  k‚=4€ < Ó "/4 L .
à4à‚–=8Ul
³"= < Ôgu8
r
3t{´8`ÔHA" -. < 8UAA < u[8` . /3T/V < C8‚Œg2%,) < 5
8U!)6/=+ . 8‚|& . . 6 !)
5#D)[6>
"%#,~
>+ L +5("4\+
+]
T6) - "@ . 35\52T!
. 51
)?+"= - ,3T"4H„
8 ª¥«€«€«¬ªTxVmQzkxn%m_lwÍ%xn)3
o ­gÍ4?
x ®zk2zx1jz
Í%\
x ­gÍ4‡B=
† ¯m_zk °j±]lOy%zc
y ²GzÎlOˆx <)- %+  à~4– k  à‚=ä <
³"4 < ÔHu08
Ó "/%+ L . 3à4à~€48`1µ

r–t0Ô]8}G8UÔH2 . '`8)I]A1 . 3+?"4$]“16G]"%$ . 51"=
/1 . T L +=8)¶~†zkKn)mQlOÍ4x1Î{·&zÎz3n%k2jÌ <- 3=+  —~€k  % <
F . 3AE_u -. M
 ¸   8
r —4tGu8`8`Ôg"% < f8‚8}&
$5+ < „•8„ 8`["%
>++ < ³ . 8 < |‚8U?8
É y6Œ . 6+ < |`8 Ó 8` . +1' < Ô?M
{
8 ¹G
@J . KA < 15PÔ]8`Œ]8
„NAHHs
8 º . 51
+E L +5#" - >
"%("4$H,1"%Ê . +,
,
1B
EQ
6$O" . X,23T"4s
8 »&kKÍV
j ¼½M¾M¾M¾c²GzÎlwˆx
±-¯mQÍ)‡^n)mQlOÍ%\
x ­gÍ4$
x ®zkTzxj3z <)- 34+?—‚€= k%—V€ ¸ < ³3,1 Z
 ¸$¸M¸ 8
Ó +ËÉ . < a u08
r€t0Œ;8U&")51
75P8}W
%A . L !8%u --. "D)
1[A
. 6h!651
+?"4$gA13/
+?6*|‚}G1I˜+2@" . ')=8
¿ n%x1n4ˆz‡^zx1m À1jlOzxjz < –  ‰%Šœ
à‚s k~%=– < ‘ L . ,H . ! M ¸ ä%€48
rˆ
t Á8 a < ³48 a < F8`ÔH+
6' < 5 a 8IX8`|‚
+4%28`&“1
1
)3‚1
/
2!$w" . T
1" - >3
"4#"4$H"4=6
+ . +,1
??A(2 . 4+E_ -. ")++X5#+/) . "%+
/1 . T
"%=s
8 ª¥«€««¬ªTxm_zkx1n4mQlOÍ%x1n43
o ­gÍ)V
x ®zkTzxj3z^Í)x
­gÍ%‡B=† ¯mQzk °+±?lwy4z3Â
y ²GzÎlwˆx <- 34[ä—4Z
— k~ä4€  < Ó "/=+ L .
à%àV€48`1l
³3"4 < Ôgu08
rst0Ô]
8 ¹@+ . 23A < ´8U?/)65 . < ´
8 ´K$K < 1=
8 ºJ8
„N3
'= .< 15P8 Ó . !~H8)‘ . EQ" . 5 . . +)3
8 »WkTÍj ¼ÃMÄ
ÄZÅ
L ")3'E L +5#
U
1F!)
s
²GzÎlOˆf
x ±-¯mQÍ)‡Xn)mQlOÍ4\
x ­gÍ%$
x ®zkKzx1jz <- 34[–4–  k~–4–% < ³3,1
à%à=—~8`1P&+4" < ÔHu08
räh
t ³%
8 Á
"41 < ¹„
8 Æ)"4"4"/ < Ô]
8 ¹@+ . 2A < 15
8 ¹Y'1+ . H8UÔ . 3
K!+"% - ,
"%#
Ó 8 »Wk2Í?
j ¼ÃMÄZÄMǵÈN±ÊÉ
- . + . >++5(3
6)`[6‚s
Ë ±Ê­ ¿ÊÌ ªœ««€«qÍYÍ%k3îÎÌ4͆aÍ)xFm_l6‡[lwxˆ[lO΍Π¯zÎClwxmQÌ)z
ÎQ†zjl ¢Hjn4mhl6Í%xn%x1yÎq4xmQÌ%zÎlwÎGÍ ®y%lwˆl6mhn4oUÎqÎ3mQz‡^iÎ Î < ‘V L . ,g . !
à%àV48`1l
³3"4 < Ôgu < , L T5#$6" .]. /)
^8
"% $ . Z,)
!Eh,5#Z,g3
"4X . 65 L +"^8
¢

‰‰ ×
Š n
í ÚÛz~‰Ñ ‰ Š
Ø C Ù


‚]‰ ‰ ×
Š n
‡
‰
‡ ‰
‰
‡ ]
‚ ‰‰
‡ ‰
Š
‰T1
Þ Šõ Þ
ƒ¢ Ý  ¢
¡¥á¢
‰OÏ Ñ ô Ï u Ñ7 Ô Õ$Ö ‰ š`p2› ŠŠ
¢

Ñ ‰
í?Ú@~
z
‰Ñ ‰ ŠYñæÑ ‰ ‰ ‰
Ø Ù


ñ
Š
…
Ü
ßàn
‰  –%Š
‰  —‚Š
‰  €%Š
Š
‰  %Š
‰ Š
 ‰ Š
ñ
‰  %
s Š
a oƒñ*3D`‰ šhph› Š8gI?A #"4$moP6?4
/% L !
Ò~
Ï ~ ÑfÒ ~
Ï ~ ÑfÒ ~
| ~ ñ ‚]‰ Ï ~ Ñ<
ß ŠTÏ ~ ôã⠝ ÑG‚]‰ ß ŠjäÒ ~ ô ß  ‰ ß Š
ñ
‚Ï=~ ô ‰  Ñ\‚]ŠTÒ$~ ô ß Š
‰  ä%Š

‘V" . - 62! < @CAg/4C,+5µM
‚ 15 " . -. +å‚]‰æ¥ç ƒsé è ç Š

5
‰ æ ç ƒsè ç Š8YI]A1
"46"=\]6
L ,1+5\?A . +/4 . A . J
é
1"F  L 4,2!8
I]A1 / . T1+ "=$m7
o ¢
¢
¢
¢
¢
Ï  ñŽ‰OÏ Ñ ô Ï ~ Š¥‚ ô ‰OÏ u ô Ò ~ Š‰  Ñê]
‚ Š ô ‰TÏ ~ ô Ò ~ ŠTß Ñ| ~ ¢ Š ‰ Z¸ Š

„a# . ^
. ++5
FA1^+1T/)6h!\"=$| ~ 35iÏ  "A`Ï óh<
Ò ó < Ï … 5ÂÒ Y… - . + . =8;Œ`+,B"4$~A1?!+ . ! L 2@++
š 5 ›(< @ ]`"4
!$w"),?"%(A 5 . /V"4#"4$1
6/)
2!
?
A . + - +]"dÏs~ < Ï ó 15êÏ … 8
A.2 Sensitivity of mean
A.2.1
APPENDIX
A.
DIFFERENTIATION OF THE STATISTICAL MAXIMUM OPERATOR
I?A6(u -- +5
DN51 . /%\$w" . ^,T\$w" . 51
R~ . +TK
"%Ž"=$XA
UD(" - . " . B
A . + - +]"
X . 4,+)8
a
A.1
+ š
‡ |~
‡ Ï ~
‡ ß
‡ Ï ~
‡ ‚
‡ Ï ~
‡
‡ ϐ~
L CKW"“ . E_" . 51 . 1"4
`$w" . ñ
š
›
ñ
Ï ~ ô\Ð
Ò ~ ôÓÐ
Ï
Ï … Æ<Ñ p
Ò …Æ u p
Ò
óÆ ó ô
ó Æ óVô
?A . Æ ó . FAF" .. +K+5:,1ECº ,12 . 151"=
"4 < Æ Ñ 15aÆ u . 0,1+" .. K+5a,1
EºJ,T
/1 . 23
"=1 < Ï ó 35lÒ ó . 0+6K6/)T+J"\+" .. 2+5
/1 . 23
"=1 < 15ÊÏ … 5Ò … . @TA@6
/
+H"B,11"
. 5"4È/1 . 23
"4 <U. + - ++/4!8I]A0/1 . K1+0"4$ š
5\A+ . +"/1 . T1+ . Ñ
Ï
Ï
ÔÕ?Ö ‰ šhp2›
u
¢
Ï
Ð
ñ
¢
Š
¢
ñ
Ð
ñ
Ð
Ò
¢
ó ô
ó ô
Ï ó Ò ó+Š
¢
Ï …p
Ò …¢ p
‰ä=Š
‰ ¸ Š
/ . 2E
. 5"4
. 5"4
.. +K+5
35 ›
‡ ‚
‡ Ï ~ φ~
ñ
‚aÑ ‡ ‡ Ï ‚ ~ ÒZ~
ô
‡ ß
‡ Ï ~ 
ô
ô
ß ‡‡ Ï  ~ Š
‰à‚Š
fK]
?3!"A"˜AH?A $w"%
"]+Z,"4?A1"=65g8
Preliminaries
35 ›
With respect to mean
„aG“ . ?5 . /= A1C+
/
K!"%$|
~;?
A . - +]"hÏ=~8
ñ
à
p
‰  Š
Ï ~ Ñ<Ò ~ Š  ñ
ß
ß
ß  p 15

Ï ~ ÑfÒ ~ ‰ Ï ~ ÑÒ ~ Š 
Ñ
ß 
ß
ß
ñ
‰
ñ
‰4%Š
Ï ~ ÑfÒ ~
ß ¢  Š
ñ˜Ñ
‰4–%Š
I]A1 . + $O" . < ;GAT/%
‡ |~
‡ Ï ~
A.2.2
‰Tφ~@ÑfÒ$~Š
ñ
ߐ
ô
‚aÑ Ï ~ ß Ñf¢ Ò ~ ß ñ"‚ Š

‰3—~Š
With respect to correlated sensitivity
Ó D) < ;…5 . 6/=iA1
/
2!ƒ"%$Ê|
+" .. KT5#+6K6/)2!T . ëÏ ó 8
‡ |~
‡ Ï ó
ñ
‡ ‚
‡ Ï óÏ ~
Ñ
‡ ‚
‡ Ï óÒ~
ô
~
]TA
‡ ß
‡ Ï ó
ô
. + - +#"7A
ß ‡‡ Ï  Š
ó
‰4€%Š
fK]
?3!"A"˜AH?A $w"%
"]+Z,"4?A1"=65g8
‰  àVŠ
‰ % Š
‰  =Š
‡ ‚
‡ Ï ó
‡
‡ ϐ ó
ñ
ñ
‡ ‰ æ ç ƒsé è ç Š
Ï ~ Ñ<Ò ~ ‡ ß 35
ñ˜Ñ
 ‡ Ï ó
 ß ¢ ‡ Ï óp
Ï ~ ÑÒ ~ ‡ ‰ æ ç ƒ=é è ç Š ñ ‰TÏ ~ ÑÒ ~ Š ¢ ‡ ß
Ñ
ß  ‡ Ï ó
Ûß ì
 ‡ Ï óŠ
‰4%Š
‰4s%Š
I?A . $w" . < W AH/4
‡ |~
‡ Ï ó
Ï ~ ÑÒ ~ ‡ ß ‰TÏ ~ Ñ<Ò ~ Š ‡ ß
‰TÏ ~ ÑÒ ~
ô ‡ Ï
ô ß
ß ì
 ß ¢ ‡ Ï¢ ó
ó 
¢
‡
‰TÏ ~ ÑfÒ ~ Š
‰TÏ ~ ÑfÒ ~ Š
ß
ñ
ô  ô ß
” Ñ
ß ¢
ß ì
•  ‡ Ï ó
‡
ß
ñ
 ‡ Ï óŠ
„iC1+5\T""= - ,ãí é < ]A
3A(6?4
/% L !
í æî
¢
‡ ß ñ ‡ ‰OÏ Ñ ô Ï u¢ Ñ7 ÔÕ?Ö ‰ šdpK› ŠŠ ¡œá¢
‡ Ï ó
‡ Ï ó
¢
¢
 ‡ ‰OÏ Ñ ô Ï u Ñv ÔÕ?Ö ‰ šhp2› ŠŠ
ñ
‡ Ï ó
ß
¢
¢
‡
‡
‡ ÔÕZÖ ‰ šhp2› Š
Ï Ñ
Ï u

ñ
ô
‡ Ï ó Ñv
‡ Ï ó
ß ” ‡ Ï ó
•

ñ
‰Ï ó ô àXÑ7CÒ ó Š
ß
ñ
Ñ

‰TÏ ó ÑÒ ó Š
ñ
Š
¢
ß Š
‡ ß
 ‡ Ï
A.3.2
ó
ñ
ñ
A.2.3
¸
Š
‰–3à~Š
With respect to uncorrelated sensitivity
~
Œ !v
2 . 1 - ,K
"% < KA1\+
/
K!P"%$ˆ|
`
- ]"A1C,1+" .. +K+5(1
/
2! . PÏ … ‡ |~
‡ Ï …
A.3
Ï … ߐ Š
ñ
]A
ñ
. +E
‰–  Š
‡ Ï 
‡ Ï ó
ñ
ñ
ñ
‡ Ï 
‡ Ï=~
‘ ‡ Ï Ñ ¢ ‡ Ï ~¢
¢
¢ ‡ ‚
¢
¢ ‡ ‚
‡ Ï ~ ô ‡ Ï ~ ’ ‚ ô ‰wÏ Ñ ô Ï ~ Š ‡ Ï ~ ÑP‰OÏ u ô Ò ~ Š ‡ Ï ~
‰Tφ~ ô $
Ò ~Š ‡ ‡ Ï ß ~ ô ‰Tφ~ ô ZÒ ~+ŠTß ‡ ‡ Ï  ~ Ñv|
~ ‡‡ Ï| ~ ~
ô ß
 ô

¢
¢
¢
¢
Ï ~ ‚ ô ‰OÏ Ñ ô Ï ~ Š  Ñv‰OÏ u ô Ò ~ Š  ô ß
ß
ß

~
~
~
~
~
ÑC‰TÏ ô Ò ŠT1
ß ‰TÏ ÑÒ Š ß  ¢ ÑP| ‚
ñ
~ Ñ | ~ œŠ ‚
%‰TÏ
~ Ñ | ~ œŠ ‚
%‰TÏ
ô
ô
Ñ¢
‰OÏ
‰OÏ
Ñ
¢
Ï ~¢
ô
ÑFÏ
¢
Ñ Ò ~ Š 
u¢ ß
¢
u Š ߐ ô ß Š

Ñ\Ï
¢
Ñ Ò ~ Š 
~¢ f
ß
Ñv‰TÏ
A.3.3
ñ

3Ï
~ Ñ | ~ ¥Š ‚
l” =‰TÏ ô
‰OÏ
Ñ¢
ÑÏ
‡ Ï 
‡ Ï …
ô
ß ì
Ï
u¢
Š
ô
ó
‡ ß Ñv|N~ ‡ | ~
‡ Ï ó
 ‡ Ï ó
¢ Ï ~ ÑfÒ ~
Ò~Š ß ¢
‡ ß
 ‡ Ï ó
¢
¢
Ï u ô Ò ~
ß
~
ÑfÒ
¢
¢ Ï ~ ÑÒ ~
Ï ~¢ Ñ Ò ~ Š
ß ¢
ô
Ï ~
ô
ß
 • Š
ô
u¢
‰OÏ
”
Ñ¢
Ñ\Ï
 â Ï ó ‚aÑf| ~ T‰ Ï ó ÑÒ ó Š ß
ô
Ò~
~ f
Ñ Ò ~
‰TÏ
ô
Š
Ï
Ï ~ Ñ<Ò ~
ß ¢
Š
ô
u¢
ÑFÏ
¢
ß
ô
Ò~
íï ñ
íæî
φ~ ô Ò$~
ô
‰TÏ ó ÑfÒ ó Š
¢
Ñ
‡ ß ‰–—‚Š
•  ‡ Ï óŠ
‡ ß
 ‡ Ï ä
ó
•
‰–=€%Š
 ä
• ß Š
With respect to uncorrelated sensitivity

ñ
Ï
ô
ô
ß

‰–44Š
u ¢ Š ߐ
~
ÑÒ
¢
‡ Ò ~¢ ‰  G
‡ Ï ó ’ Ñ ‚]Š
ÒZ~Š ‡ ‡ Ï ß
ó 
Œ !6[2 . 1 - U
, 23T"41 < @J5 . /=JAJ+6T/)2!"%$π
?
A . + - +]"[A , 1+" .. +T+5# . P
Ï … I?A . $w" . < (,1 . ! < W AH/4
‡ Ï
‡ Ï ~
Ï
” Ï ~
Ï€
ñ

ñ
~ 8 í ïCð ñ
í æç
?A . + - +]"hÏ

‡ |~
â Ï ó ‚iÑ|N~ ‡ Ï ó

π
ñ
With respect to mean
„i 5 . 6 /= A +
/
K!"4$HÏ
Ï ~ ÑfÒ ~ ‡ ß
 ß ¢ ‡ Ï
Š
ô
‰TÏs~ ô
ô
I]A1 . + $O" . < A +1
/)2!3 L "4 - ,+5P
Sensitivity of sigma
A.3.1
~¢
Ò$~Š ‡ ‡ Ï ß ô ‰Tφ~ ô ÒZ~ŠTß ‰TÏ ~
ó 
‡
~
|
¢
¢
Ï ó ‚iÑv| ~
‡ Ï ó ô ” ‰Ñ@Ï Ñ ÑÏ ~ ô
¢
¢
‰TÏ ~ ÑÒ ~ Š‰TÏ ~ ÑÒ ~ Š
ô Ï=~ ô Ò$~ ô
ß ¢
•
~
‡
|
¢
¢
Ï ó ‚iÑv| ~
‡ Ï ó ô ” ‰Ñ@Ï Ñ ÑÏ ~ ô
‡ ß
ô Ï=~ ô Ò$~ Ž ‡ Ï
 ó
‡ |~
¢
¢ Ï ~
Ï ó ‚iÑv| ~
‡ Ï ó ô ” ‰OÏ u ÑFÏ Ñ Š
ñ
‘ ‡ Ï u¢
‡ Ï ó
Ï ~¢ Š ‡ ‡ Ï ‚ ô
ó
‡ Ò~ ß
‡ Ï ó’ 
ô ‰TÏ=~ ô
ñ
ߐ
B
A . + - ++g"A@" .. +T+5
íï ð ñ
í æCî
Ï
‰=ä%Š
‰
‰TÏ ó ÑÒ ó Š
ñ

 ‡‡ ÏÏ 
ó
‘ ‡ Ï Ñ ¢ ‡ Ï ~¢
¢
‡ Ï ó ô ‡ Ï ó ’ ‚ ô ‰OÏ Ñ ô
‘ ‡ Ï ~
¢
¢ ‡ ‚
ÑC‰OÏ u ô Ò ~ Š
‡ Ï ó ô ‡ Ï ó ô
‡
‡ |
~
ô ‰TÏ ~ ô Ò ~ ŠTß ‡ Ï  Ñv| ~ ‡ Ï
ó
ó
¢
¢
¢
Ï ó i
‚ Ñv‰OÏ Ñ ô Ï ~ ÑFÏ u Ñ<Ò
ñ
I?A . $w" . < (,1 . ! < W AH/4
‡ |~
‡ Ï ó
With respect to correlated sensitivity
„aW5 . 6 /=@A1W+1
/)6h! 4
" $Ï
/
K! . ë
Ï ó 8H„i AH /4
‰–4–4Š
 â Ï … ‚*Ñ| ~ Ï … ߐ
Ï … ” Ï ~
ô
Ò~
ô
‰–%4Š
‰TÏ
~ <
Ñ Ò ~
Š
Ï
u¢
ÑÏ
ß ¢
Ñ¢
 ä
• ß Š