SiC532 Datasheet

SiC532
www.vishay.com
Vishay Siliconix
30 A VRPower® Integrated Power Stage
DESCRIPTION
FEATURES
The SiC532 is an integrated power stage solution optimized
for synchronous buck applications to offer high current, high
efficiency, and high power density performance. Packaged
in Vishay’s proprietary 4.5 mm x 3.5 mm MLP package,
SiC532 enables voltage regulator designs to deliver up to
30 A continuous current per phase.
• Thermally enhanced PowerPAK® MLP4535-22L
package
The
internal
power
MOSFETs
utilize
Vishay’s
state-of-the-art Gen IV TrenchFET technology that delivers
industry benchmark performance to significantly reduce
switching and conduction losses.
The SiC532 incorporates an advanced MOSFET gate driver
IC that features high current driving capability, adaptive
dead-time control, an integrated bootstrap Schottky diode,
and zero current detection to improve light load efficiency.
The driver is also compatible with a wide range of PWM
controllers, supports tri-state PWM, and 5 V PWM logic.
A user selectable diode emulation mode (ZCD_EN#) is
included to improve the light load performance. The device
also supports PS4 mode to reduce power consumption
when system operates in standby state.
• Vishay’s Gen IV MOSFET technology and a
low-side MOSFET with integrated Schottky
diode
• Delivers up to 30 A continuous current, 35 A at 10 ms peak
current
• High efficiency performance
• High frequency operation up to 2 MHz
• Power ON reset
• 5 V PWM logic with tri-state and hold-off
• Supports PS4 mode light load requirement for IMVP8 with
low shutdown supply current (5 V, 5 μA)
• Under voltage lockout for VCIN
• Material categorization: for definitions of compliance
please see www.vishay.com/doc?99912
APPLICATIONS
• Multi-phase VRDs for computing, graphics card and
memory
• Intel IMVP-8 VRPower delivery
-VCORE, VGRAPHICS, VSYSTEM AGENT Skylake, Kabylake platforms
-VCCGI for Apollo Lake platforms
• Up to 24 V rail input DC/DC VR modules
TYPICAL APPLICATION DIAGRAM
5V
VIN
VIN
VDRV
BOOT
PHASE
VCIN
ZCD_EN#
PWM
controller
PWM
VSWH
VOUT
Gate
driver
PGND
GL
CGND
Fig. 1 - SiC532 Typical Application Diagram
S15-2728-Rev. A, 23-Nov-15
Document Number: 74770
1
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SiC532
www.vishay.com
Vishay Siliconix
PGND
PGND
PGND
VIN
VIN
VIN
PINOUT CONFIGURATION
11
10
9
8
7
6
25
VIN
VSWH 12
26
PGND
VSWH 13
VSWH 14
23
CGND
VSWH 15
24
GL
18
19
20
21
22
GL
PGND
VDRV
PWM
PGND
17
PGND
VSWH 16
5
PHASE
4
BOOT
3
N.C.
2
VCIN
1
ZCD_EN#
Fig. 2 - SiC532 Pin Configuration
PIN DESCRIPTION
PIN NUMBER
1
NAME
FUNCTION
ZCD_EN#
The ZCD_EN# pin enables or disables Diode Emulation. When ZCD_EN# is LOW, diode
emulation is allowed. When ZCD_EN# is HIGH, continuous conduction mode is forced.
ZCD_EN# can also be put in a high impedance mode by floating the pin. If both ZCD_EN#
and PWM are floating, the device shuts down and consumes typically 3 μA (9 μA max.)
current.
2
VCIN
Supply voltage for internal logic circuitry
23
CGND
Analog ground for the driver IC
3
N.C.
No connection
4
BOOT
High-side driver bootstrap voltage
5
PHASE
Return path of high-side gate driver
6 to 8, 25
VIN
9 to 11, 17, 18, 20, 26
PGND
Power ground
12 to 16
VSWH
Switch node of the power stage
19, 24
GL
21
VDRV
Supply voltage for internal gate driver
22
PWM
PWM control input
Power stage input voltage. Drain of high-side MOSFET
Low-side gate signal
ORDERING INFORMATION
PART NUMBER
SiC532CD-T1-GE3
SiC532DB
S15-2728-Rev. A, 23-Nov-15
PACKAGE
PowerPAK® MLP4535-22L
MARKING CODE
SiC532
5 V PWM optimized
Reference board
Document Number: 74770
2
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SiC532
www.vishay.com
Vishay Siliconix
PART MARKING INFORMATION
=
pin 1 indicator
P/N =
P/N
=
Siliconix logo
=
ESD symbol
F
=
assembly factory code
Y
=
year code
WW
=
week code
LL
=
lot code
LL
FYWW
part number code
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL PARAMETER
CONDITIONS
LIMIT
VIN
-0.3 to +28
Control Logic Supply Voltage
VCIN
-0.3 to +7
Drive Supply Voltage
VDRV
Input Voltage
Switch Node (DC voltage)
-0.3 to +7
-0.3 to +28
VSWH
Switch Node (AC voltage) (1)
BOOT Voltage (DC voltage)
-8 to +35
BOOT to PHASE (DC voltage)
40
-0.3 to +7
VBOOT- PHASE
BOOT to PHASE (AC voltage) (3)
-0.3 to +8
All Logic Inputs and Outputs
(PWM and ZCD_EN#)
-0.3 to VCIN + 0.3
TJ
150
Ambient Temperature
TA
-40 to +125
Storage Temperature
Tstg
-65 to +150
Human body model, JESD22-A114
2000
Charged device model, JESD22-C101
1000
Max. Operating Junction Temperature
Electrostatic Discharge Protection
V
33
VBOOT
BOOT Voltage (AC voltage) (2)
UNIT
°C
V
Note
• Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the
specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
(1) The specification values indicated “AC” is V
SWH to PGND, -8 V (< 20 ns, 10 μJ), min. and 35 V (< 50 ns), max.
(2) The specification value indicates “AC voltage” is V
BOOT to PGND, 40 V (< 50 ns) max.
(3) The specification value indicates “AC voltage” is V
BOOT to VPHASE, 8 V (< 50 ns) max.
RECOMMENDED OPERATING RANGE
ELECTRICAL PARAMETER
Input Voltage (VIN)
MINIMUM
TYPICAL
MAXIMUM
4.5
-
24
Drive Supply Voltage (VDRV)
4.5
5
5.5
Control Logic Supply Voltage (VCIN)
4.5
5
5.5
BOOT to PHASE (VBOOT-PHASE, DC voltage)
4
4.5
5.5
Thermal Resistance from Junction to PCB
-
5
-
Thermal Resistance from Junction to Case
-
2.5
-
S15-2728-Rev. A, 23-Nov-15
UNIT
V
°C/W
Document Number: 74770
3
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SiC532
www.vishay.com
Vishay Siliconix
ELECTRICAL SPECIFICATIONS (ZCD_EN# = 5 V, VIN = 12 V, VDRV and VCIN = 5 V, TA = 25 °C)
PARAMETER
SYMBOL
TEST CONDITION
LIMITS
UNIT
MIN.
TYP.
MAX.
VPWM = FLOAT
VPWM = FLOAT, VZCD_EN# = 0 V
fS = 300 kHz, D = 0.1
fS = 300 kHz, D = 0.1
fS = 1 MHz, D = 0.1
VPWM = VZCD_EN# = FLOAT,
TA = -10 °C to +100 °C
-
80
120
300
10
20
15
-
-
3
9
μA
IF = 2 mA
-
-
0.65
V
VPWM = FLOAT
3.6
0.72
1.1
3.4
3.9
1
2.5
1.35
3.7
4.2
1.3
1.6
4
V
VHYS_TRI_R
-
325
-
VHYS_TRI_F
-
250
-
VPWM = 5 V
VPWM = 0 V
-
-
350
-350
μA
VZCD_EN# = FLOAT
3.3
1.1
1.5
2.9
3.6
1.4
2.5
1.8
3.15
3.9
1.7
2.1
3.4
V
VHYS_TRI_ZCD#_R
-
375
-
VHYS_TRI_ZCD#_F
-
450
-
-
100
-100
5
POWER SUPPLY
Control Logic Supply Current
IVCIN
Drive Supply Current
IVDRV
PS4 Mode Supply Current
BOOTSTRAP SUPPLY
Bootstrap Diode Forward Voltage
PWM CONTROL INPUT
Rising Threshold
Falling Threshold
Tri-state Voltage
Tri-state Rising Threshold
Tri-state Falling Threshold
Tri-state Rising Threshold
Hysteresis
Tri-state Falling Threshold
Hysteresis
PWM Input Current
ZCD_EN# CONTROL INPUT
Rising Threshold
Falling Threshold
Tri-state Voltage
Tri-state Rising Threshold
Tri-state Falling Threshold
Tri-state Rising Threshold
Hysteresis
Tri-state Falling Threshold
Hysteresis
IVCIN + IVDRV
VF
VTH_PWM_R
VTH_PWM_F
VTRI
VTRI_TH_R
VTRI_TH_F
IPWM
VTH_ZCD_EN#_R
VTH_ZCD_EN#_F
VTRI_ZCD_EN#
VTRI_ZCD_EN#_R
VTRI_ZCD_EN#_F
mV
IZCD_EN#
PS4 Exit Latency
TIMING SPECIFICATIONS
Tri-State to GH/GL Rising
Propagation Delay
Tri-state Hold-Off Time
GH - Turn Off Propagation Delay
GH - Turn On Propagation Delay
(Dead time rising)
GL - Turn Off Propagation Delay
GL - Turn On Propagation Delay
(Dead time falling)
PWM Minimum On-Time
PROTECTION
tPS4EXIT
-
tPD_TRI_R
-
20
-
tTSHO
tPD_OFF_GH
-
150
20
-
-
20
-
tPD_OFF_GL
-
20
-
tPD_ON_GL
-
20
-
TPWM_ON_MIN
30
-
-
2.4
-
3.4
2.9
500
3.9
-
Under Voltage Lockout Hysteresis
mA
mV
ZCD_EN# Input Current
Under Voltage Lockout
μA
tPD_ON_GH
VUVLO
VZCD_EN# = 5 V
VZCD_EN# = 0 V
No load, see fig. 4
VCIN rising, on threshold
VCIN falling, off threshold
VUVLO_HYST
μA
μs
ns
V
mV
Notes
(1) Typical limits are established by characterization and are not production tested.
(2) Guaranteed by design.
S15-2728-Rev. A, 23-Nov-15
Document Number: 74770
4
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SiC532
www.vishay.com
Vishay Siliconix
DETAILED OPERATIONAL DESCRIPTION
PWM Input with Tri-state Function
Switch Node (VSWH and PHASE)
The PWM input receives the PWM control signal from the VR
controller IC. The PWM input is designed to be compatible
with standard controllers using two state logic (H and L) and
advanced controllers that incorporate tri-state logic (H, L
and tri-state) on the PWM output. For two state logic, the
PWM input operates as follows. When PWM is driven above
VPWM_TH_R the low-side is turned OFF and the high-side is
turned ON. When PWM input is driven below VPWM_TH_F the
high-side is turned OFF and the low-side is turned ON. For
tri-state logic, the PWM input operates as previously stated
for driving the MOSFETs when PWM is logic high and logic
low. However, there is a third state that is entered as the
PWM output of tri-state compatible controller enters its high
impedance state during shut-down. The high impedance
state of the controller’s PWM output allows the SiC532 to
pull the PWM input into the tri-state region (see definition of
PWM logic and tri-state, fig. 4). If the PWM input stays in this
region for the tri-state hold-off period, tTSHO, both high-side
and low-side MOSFETs are turned OFF. The function allows
the VR phase to be disabled without negative output voltage
swing caused by inductor ringing and saves a Schottky
diode clamp. The PWM and tri-state regions are separated
by hysteresis to prevent false triggering. The SiC532
incorporates PWM voltage thresholds that are compatible
with 5 V logic.
The switch node, VSWH, is the circuit power stage output.
This is the output applied to the power inductor and output
filter to deliver the output for the buck converter. The PHASE
pin is internally connected to the switch node, VSWH. This pin
is to be used exclusively as the return pin for the BOOT
capacitor.
Diode Emulation Mode and PS4 Mode (ZCD_EN#)
The ZCD_EN# pin enables or disables diode emulation
mode. When ZCD_EN# is driven below VTH_ZCD_EN#_F, diode
emulation is allowed. When ZCD_EN# is driven above
VTH_ZCD_EN#_R, continuous conduction mode is forced.
Diode emulation mode allows for higher converter efficiency
under light load situations. With diode emulation active, the
SiC532 will detect the zero current crossing of the output
inductor and turn off the low-side MOSFET. This ensures
that discontinuous conduction mode (DCM) is achieved.
Diode emulation is asynchronous to the PWM signal,
therefore, the SiC532 will respond to the ZCD_EN# input
immediately after it changes state.
The ZCD_EN# pin can be floated resulting in a high
impedance state. High impedance on the input of ZCD_EN#
combined with a tri-stated PWM output will shut down the
SiC532, reducing current consumption to typically 5 μA.
This is an important feature in achieving the low standby
current requirements required in the PS4 state in ultrabooks
and notebooks.
Voltage Input (VIN)
This is the power input to the drain of the high-side power
MOSFET. This pin is connected to the high power
intermediate BUS rail.
S15-2728-Rev. A, 23-Nov-15
Ground Connections (CGND and PGND)
PGND (power ground) should be externally connected to
CGND (control signal ground). The layout of the printed circuit
board should be such that the inductance separating CGND
and PGND is minimized. Transient differences due to
inductance effects between these two pins should not
exceed 0.5 V.
Control and Drive Supply Voltage Input (VDRV, VCIN)
VCIN is the bias supply for the gate drive control IC. VDRV is
the bias supply for the gate drivers. It is recommended to
separate these pins through a resistor. This creates a low
pass filtering effect to avoid coupling of high frequency gate
drive noise into the IC.
Bootstrap Circuit (BOOT)
The internal bootstrap diode and an external bootstrap
capacitor form a charge pump that supplies voltage to the
BOOT pin. An integrated bootstrap diode is incorporated so
that only an external capacitor is necessary to complete the
bootstrap circuit. Connect a boot strap capacitor with one
leg tied to BOOT pin and the other tied to PHASE pin.
Shoot-Through Protection and Adaptive Dead Time
The SiC532 has an internal adaptive logic to avoid shoot
through and optimize dead time. The shoot through
protection ensures that both high-side and low-side
MOSFETs are not turned ON at the same time. The adaptive
dead time control operates as follows. The high-side and
low-side gate voltages are monitored to prevent the
MOSFET turning ON from tuning ON until the other
MOSFET’s gate voltage is sufficiently low (< 1 V). Built in
delays also ensure that one power MOSFET is completely
OFF, before the other can be turned ON. This feature helps
to adjust dead time as gate transitions change with respect
to output current and temperature.
Under Voltage Lockout (UVLO)
During the start up cycle, the UVLO disables the gate
drive, holding high-side and low-side MOSFET gates low,
until the supply voltage rail has reached a point at which
the logic circuitry can be safely activated. The SiC532 also
incorporates logic to clamp the gate drive signals to zero
when the UVLO falling edge triggers the shutdown of the
device.
Document Number: 74770
5
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SiC532
www.vishay.com
Vishay Siliconix
FUNCTIONAL BLOCK DIAGRAM
BOOT
V IN
VDRV
VCIN
UVLO
ZCD_EN#
VCIN
PWM
PWM logic
control &
state
machine
Anti-cross
conduction
control
logic
+
GL
PHASE
VSWH
+
VDRV
CGND
GL
PGND
Fig. 3 - SiC532 Functional Block Diagram
DEVICE TRUTH TABLE
ZCD_EN#
PWM
GH
Hi-Z (PS4 mode)
X
L
L
L
L
H, IL > 0 A
L, IL < 0 A
L
H
H
L
L
Hi-Z
L
L
H
L
L
H
H
H
H
L
H
Hi-Z
L
L
L
S15-2728-Rev. A, 23-Nov-15
GL
Document Number: 74770
6
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SiC532
www.vishay.com
Vishay Siliconix
PWM TIMING DIAGRAM
VTH_PWM_R
VTH_PWM_F
PWM
VTH_TRI_F
VTH_TRI_R
tPD_OFF_GL
tTSHO
GL
tPD_ON_GL
tPD_TRI_R
tPD_ON_GH
tTSHO
tPD_OFF_GH
tPD_TRI_R
GH
Fig. 4 - Definition of PWM Logic and Tri-State
ZCD_EN# - PS4 EXIT TIMING
5V
PWM
tPS4EXIT
VSWH
5V
ZCD_EN#
2.5 V
Fig. 5 - ZCD_EN# - PS4 Exit Timing
S15-2728-Rev. A, 23-Nov-15
Document Number: 74770
7
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SiC532
www.vishay.com
Vishay Siliconix
ELECTRICAL CHARACTERISTICS
Test condition: VIN = 13 V, VDRV = VCIN = 5 V, ZCD_EN# = 5 V, VOUT = 1 V, LOUT = 250 nH, (DCR = 0.32 m), TA = 25 °C
(All power loss and normalized power loss curves show SiC532 losses only unless otherwise stated)
94
40
500 kHz
35
90
30
86
Output Current, IOUT (A)
Efficiency (%)
750 kHz
1MHz
82
78
74
70
Complete converter efficiency
PIN = [(VIN x IIN) + 5 V x (IVDRV + IVCIN)]
POUT = VOUT x IOUT, measured at output capacitor
66
25
500 kHz
20
1 MHz
15
10
5
0
62
0
5
10
15
20
Output Current, IOUT (A)
25
0
30
15
30
45
60
75
90
105 120 135 150
PCB Temperature, TPCB (°C)
Fig. 9 - Safe Operating Area (VIN = 12.6 V)
Fig. 6 - Efficiency vs. Output Current (VIN = 12.6 V)
6.0
12.0
5.5
10.5
5.0
9.0
Power Loss, PL (W)
Power Loss, PL (W)
IOUT = 25 A
4.5
4.0
3.5
1 MHz
6.0
4.5
3.0
3.0
2.5
1.5
2.0
750 kHz
500 kHz
0.0
200
300
0
400 500 600 700 800 900 1000 1100
Switching Frequency, fS (kHz)
Fig. 7 - Power Loss vs. Switching Frequency (VIN = 12.6 V)
94
25
30
500 kHz
90
86
Efficiency (%)
750 kHz
82
10
15
20
Output Current, IOUT (A)
94
500 kHz
86
5
Fig. 10 - Power Loss vs. Output Current (VIN = 12.6 V)
90
Efficiency (%)
7.5
1 MHz
78
74
750 kHz
82
78
1 MHz
74
70
70
Complete converter efficiency
PIN = [(VIN x IIN) + 5 V x (IVDRV + IVCIN)]
POUT = VOUT x IOUT, measured at output capacitor
66
Complete converter efficiency
PIN = [(VIN x IIN) + 5 V x (IVDRV + IVCIN)]
POUT = VOUT x IOUT, measured at output capacitor
66
62
62
0
5
10
15
20
Output Current, IOUT (A)
25
Fig. 8 - Efficiency vs. Output Current (9 V)
S15-2728-Rev. A, 23-Nov-15
30
0
5
10
15
20
Output Current, IOUT (A)
25
30
Fig. 11 - Efficiency vs. Output Current (VIN = 19 V)
Document Number: 74770
8
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SiC532
www.vishay.com
Vishay Siliconix
ELECTRICAL CHARACTERISTICS
4.2
1.8
4.0
1.6
Normalized PS4 Exit Latency, tPS4EXIT
Control Logic Supply Voltage, VCIN (V)
Test condition: VIN = 13 V, VDRV = VCIN = 5 V, ZCD_EN# = 5 V, VOUT = 1 V, LOUT = 250 nH, (DCR = 0.32 m), TA = 25 °C
(All power loss and normalized power loss curves show SiC532 losses only unless otherwise stated)
3.8
3.6
VUVLO_RISING
3.4
3.2
VUVLO_FALLING
3.0
2.8
2.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
-60 -40 -20
0
20
40
60
80
-60 -40 -20
100 120 140
0
Temperature (°C)
60
80
100 120 140
11
0.80
10
0.75
IF = 2 mA
0.70
0.65
0.60
0.55
0.50
Driver Supply Current, IVDRV (mA)
BOOT Diode Forward Voltage, VF (V)
40
Fig. 15 - PS4 Exit Latency vs. Temperature
Fig. 12 - UVLO Threshold vs. Temperature
fPWM = 300 kHz
9
8
7
6
5
4
0.45
3
0.40
-60 -40 -20
0
20
40
60
80
100 120 140
-60 -40 -20
0
20
40
60
80
100 120 140
Temperature (°C)
Temperature (°C)
Fig. 13 - BOOT Diode Forward Voltage vs. Temperature
Fig. 16 - Driver Supply Current vs. Temperature
4.8
4.2
VTH_PWM_R
3.6
VTRI_TH_F
3.0
2.4
VTRI
1.8
VTRI_TH_R
1.2
VTH_PWM_F
0.6
ZCD_EN# Threshold Voltage, VZCD_EN# (V)
4.8
PWM Threshold Voltage, VPWM (V)
20
Temperature (°C)
4.2
VTH_ZCD_EN#_R
3.6
3.0
VTRI_ZCD_EN#_F
2.4
VTRI_ZCD_EN#_R
1.8
1.2
VTH_ZCD_EN#_F
0.6
0.0
0.0
-60 -40 -20
0
20 40 60 80
Temperature (°C)
100 120 140
Fig. 14 - PWM Threshold vs. Temperature
S15-2728-Rev. A, 23-Nov-15
-60 -40 -20
0
20
40
60
80
100 120 140
Temperature (°C)
Fig. 17 - ZCD_EN# Threshold vs. Temperature
Document Number: 74770
9
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SiC532
www.vishay.com
Vishay Siliconix
PCB LAYOUT RECOMMENDATIONS
Step 1: VIN / PGND Planes and Decoupling
Step 3: VCIN / VDRV Input Filter
Cvdrv
VIN Plane
VIN
PGND
VSWH
Cvcin
AGND
PGND
PGND Plane
1. Layout VIN and PGND planes as shown above.
2. Ceramic capacitors should be placed directly between
VIN and PGND, and close to the device for best
decoupling effect.
3. Different values / packages of ceramic capacitors should
be used to cover entire decoupling spectrum e.g. 1210,
0805, 0603, 0402.
4. Smaller capacitance values, placed closer to the device’s
VIN pin(s), results in better high frequency noise
absorbing.
1. The VCIN / VDRV input filter ceramic cap should be placed
as close as possible to the IC. It is recommended to
connect two capacitors separately.
2. VCIN capacitor should be placed between pin 2 (VCIN) and
pin 3 (AGND of driver IC) to achieve best noise filtering.
3. VDRV capacitor should be placed between pin 20
(PGND of driver IC) and pin 21 (VDRV) to provide maximum
instantaneous driver current for low side MOSFET during
switching cycle.
4. For connecting VCIN to AGND, it is recommended to use
a large plane to reduce parasitic inductance.
Step 2: VSWH Plane
Step 4: BOOT Resistor and Capacitor Placement
VSWH
Cboot
Snubber
PGND Plane
1. Connect output inductor to IC with large plane to lower
resistance.
2. VSWH plane also serves as a heat-sink for low-side
MOSFET. Make the plane wide and short to achieve the
best thermal path.
Rboot
1. The components need to be placed as close as possible
to IC, directly between PHASE (pin 5) and BOOT (pin 4).
2. To reduce parasitic inductance, chip size 0402 can be
used.
3. If a snubber network is required, place the components
as shown above, the network can be placed at bottom.
S15-2728-Rev. A, 23-Nov-15
Document Number: 74770
10
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SiC532
www.vishay.com
Vishay Siliconix
Step 5: Signal Routing
Step 7: Ground Connection
AGND
AGND
AGND
VSWH
PGND
PGND
1. Route the PWM and ZCD_EN# signal traces out of the
top left corner next to pin 1.
1. It is recommended to make a single connection between
AGND and PGND which can be made on the top layer.
2. The PWM signal is an important signal, both signal and
return traces should not cross any power nodes on any
layer.
2. It is recommended to make the entire first inner layer
(below top layer) the ground plane and separate them
into AGND and PGND planes.
3. It is best to “shield” these traces from power switching
nodes, e.g. VSWH, with a GND island to improve signal
integrity.
3. These ground planes provide shielding between noise
sources on top layer and signal traces on bottom layer.
4. GL (pin 19) has been connected with GL pad (pin 24)
internally.
Step 6: Adding Thermal Relief Vias
VSWH
AGND
PGND
VIN
PGND Plane
VIN Plane
1. Thermal relief vias can be added on the VIN and AGND
pads to utilize inner layers for high-current and thermal
dissipation.
2. To achieve better thermal performance, additional vias
can be placed on VIN plane and PGND plane.
3. VSWH pad is a noise source, it is not recommended to
place vias on this pad.
4. 8 mil vias for pads and 10 mils vias for planes are the
optimal via sizes. Vias on pad may drain solder during
assembly and cause assembly issues. Consult with the
assembly house for guidelines.
S15-2728-Rev. A, 23-Nov-15
Document Number: 74770
11
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SiC532
www.vishay.com
Vishay Siliconix
RECOMMENDED LAND PATTERN PowerPAK® MLP4535-22L
4.50
0.5 x 3 = 1.50
0.75
0.30
1.00
0.75
0.50
0.30
0.145
16
14
1.610
0.110
2.05
13
C0.114
12
0.355
0.595
5°
0.145
7
8
0.5 x 2
= 1.00
10
1.00
0.5 x 2
= 1.00
19
18
11
0.75
0.
3
0.75
9
0
0.30
6
0.1
0.30
0.140
45°
13
0.75
0.555
0.190
0.365
4
15
0.5 x 4 = 2.00
1.205
0.3
1.16
3
5
0.37
0.8
0.810
0.25
0.895
0.290
0.210
0.5 x 4 = 2.00
3.05
3.50
C0.114
2
0.75
1
0.75
0.45
0.45
17
0.31
12.00
0.75
18
0.595
19
0.145
20
2.31
21
0.735
22
0.150
0.30
0.155
22
21
20
17
1
16
2
15
3
14
4
13
5
12
6
7
8
9
10
11
All dimensions in millimeters
S15-2728-Rev. A, 23-Nov-15
Document Number: 74770
12
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SiC532
www.vishay.com
Vishay Siliconix
PACKAGE OUTLINE DRAWING MLP4535-22L
2x
0.1 C A
D
A
5 6
Pin 1 dot
by marking
A
0.08 C
K1
D1-2
D1-1
A1
22 21 20 19
A2
18 17
D2-1
K4
D2-4
17 18
19
20 21
22
2x
5
12
E
13
3
K2
4
5
12
B
6
7
8
9
11 10 9
10 11
C
DIM.
8
D2-3
MILLIMETERS
E1-2
13
2
b
4
14
E2-2
14
K3
e
15
E2-3
E1-1
15
3
E1-5
2
1
E1-3
E2-4
16
E1-4
16
E2-1
0.1 C B 1
7
D2-2
6
L
INCHES
MIN.
NOM.
MAX.
MIN.
NOM.
A (8)
0.70
0.75
0.80
0.027
0.0029
0.031
A1
0.00
-
0.05
0.000
-
0.002
0.30
0.0078
A2
b (4)
0.20 ref.
0.20
0.25
0.008 ref.
0.0098
D
4.50 BSC
0.177 BSC
e
0.50 BSC
0.019 BSC
E
L
3.50 BSC
0.35
0.40
MAX.
0.0110
0.137 BSC
0.45
0.013
0.015
N (3)
22
22
Nd (3)
6
6
Ne (3)
5
0.017
5
D1-1
0.35
0.40
0.45
0.013
0.015
0.017
D1-2
0.15
0.20
0.25
0.005
0.007
0.009
D2-1
1.02
1.07
1.12
0.040
0.042
0.044
D2-2
1.02
1.07
1.12
0.040
0.042
0.044
D2-3
1.47
1.52
1.57
0.057
0.059
0.061
D2-4
0.25
0.30
0.35
0.009
0.011
0.013
E1-1
1.095
1.145
1.195
0.043
0.045
0.047
E1-2
2.67
2.72
2.77
0.105
0.107
0.109
E1-3
0.35
0.40
0.45
0.013
0.015
0.017
E1-4
1.85
1.90
1.95
0.072
0.074
0.076
E1-5
0.095
0.145
0.195
0.0037
0.0057
0.0076
E2-1
3.05
3.10
3.15
0.120
0.122
0.124
E2-2
1.065
1.115
1.165
0.0419
0.0438
0.0458
E2-3
0.695
0.745
0.795
0.027
0.029
0.031
E2-4
0.40
0.45
0.50
0.015
0.017
0.019
K1
0.40 BSC
0.015 BSC
K2
0.07 BSC
0.002 BSC
K3
0.05 BSC
0.001 BSC
K4
0.40 BSC
0.015 BSC
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see www.vishay.com/ppg?74770
S15-2728-Rev. A, 23-Nov-15
Document Number: 74770
13
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Package Information
www.vishay.com
Vishay Siliconix
MLP 4.5 x 3.5-22L BWL Case Outline
2x
D
A
5 6
Pin 1 dot
by marking
A
0.08 C
K1
0.1 C A
D1-2
D1-1
A1
22 21 20 19
A2
18 17
D2-1
K4
D2-4
17 18
19
20 21
22
2x
12
E2-2
2
3
e
K2
4
5
B
6
7
8
9
11 10 9
10 11
C
DIM.
8
D2-3
MILLIMETERS
E1-2
13
12
K3
E2-3
E1-1
13
5
b
4
E1-5
15
14
E1-3
E2-4
14
E2-1
15
3
E
2
1
16
16
E1-4
0.1 C B 1
7
D2-2
6
L
INCHES
MIN.
NOM.
MAX.
MIN.
NOM.
A (8)
0.70
0.75
0.80
0.027
0.0029
0.031
A1
0.00
-
0.05
0.000
-
0.002
0.30
0.0078
A2
b (4)
0.20 ref.
0.20
0.25
0.008 ref.
0.0098
D
4.50 BSC
0.177 BSC
e
0.50 BSC
0.019 BSC
E
L
3.50 BSC
0.35
0.40
MAX.
0.0110
0.137 BSC
0.45
0.013
0.015
N (3)
22
22
Nd (3)
6
6
Ne (3)
5
5
0.017
D1-1
0.35
0.40
0.45
0.013
0.015
0.017
D1-2
0.15
0.20
0.25
0.005
0.007
0.009
D2-1
1.02
1.07
1.12
0.040
0.042
0.044
D2-2
1.02
1.07
1.12
0.040
0.042
0.044
D2-3
1.47
1.52
1.57
0.057
0.059
0.061
D2-4
0.25
0.30
0.35
0.009
0.011
0.013
E1-1
1.095
1.145
1.195
0.043
0.045
0.047
E1-2
2.67
2.72
2.77
0.105
0.107
0.109
E1-3
0.35
0.40
0.45
0.013
0.015
0.017
E1-4
1.85
1.90
1.95
0.072
0.074
0.076
E1-5
0.095
0.145
0.195
0.0037
0.0057
0.0076
E2-1
3.05
3.10
3.15
0.120
0.122
0.124
E2-2
1.065
1.115
1.165
0.0419
0.0438
0.0458
E2-3
0.695
0.745
0.795
0.027
0.029
0.031
E2-4
0.40
0.45
0.50
0.015
0.017
0.019
K1
0.40 BSC
0.015 BSC
K2
0.07 BSC
0.002 BSC
K3
0.05 BSC
0.001 BSC
K4
0.40 BSC
0.015 BSC
Document Number: 67234
1
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Revision: 20-Oct-14
Package Information
www.vishay.com
Vishay Siliconix
Notes
1. Use millimeters as the primary measurement
2. Dimensioning and tolerances conform to ASME Y14.5M. - 1994
3. N is the number of terminals,
Nd is the number of terminals in X-direction and
Ne is the number of terminals in Y-direction.
4. Dimension b applies to plated terminal and is measured between 0.20 mm and 0.25 mm from terminal tip
5. The pin #1 identifier must be existed on the top surface of the package by using indentation mark or other feature of package body
6. Exact shape and size of this feature is optional
7. Package warpage max. 0.08 mm
8. Applied only for terminals
T14-0626-Rev. A, 20-Oct-14
DWG: 6028
Document Number: 67234
2
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Revision: 20-Oct-14
PAD Pattern
www.vishay.com
Vishay Siliconix
Recommended Land Pattern PowerPAK® MLP4535-22L
Land pattern
0.74
0.3
0.75
1.2
2
0.29
0.25
1.16
4
0.31
0.8
0.3
16
0.14
15
14
1.61
13
2.05
0.37
3
5
12
22
10
11
21 20 19
18
16
2
15
3
14
4
13
5
12
Revision: 05-Nov-14
7
8
9
10
0.75
7
8
0.5 x 2
=1
9
1
10
0.5 x 2
=1
11
0.75
17
1
6
6
3
9
(D2-3)
1.52
0.
8
0.1
7
(D2-2)
1.07
0.37
0.3
0.3
6
(L)
0.4
0.59
0.75
12
0.4 0.3
0.3
17 0.45
0.9
13
3.5
14
0.36
18
0.75
0.75
0.3
(E2-3)
0.75
(e)
0.5
5
15
0.5
21 20 19
1
0.5 x 4 = 2
3.05
0.29
0.21
(K2)
0.07
16
(b)
0.25
(E2-1)
3.1
3.5
(D1-5)
0.14
3
4
(E1-1)
1.15
(K3)
0.05
(E1-4)
1.9
(E1-2)
2.72
(E2-2)
1.11
1
2
0.45 22
18 17
(E2-4)
0.45
21 20 19
(E1-3)
0.4
22
1
0.5 x 4 = 2
4.5
0.75 0.5 x 3 = 1.5
0.3
0.55 0.5
(D1-2)
0.2
(D1-1)
0.4
0.29
4.5
(K4)
(D2-4)
0.3
0.4
(D2-1) (K1)
1.07 0.4
0.75
Package outline top view, transparent
(not bottom view)
All dimensions in millimeters
11
Document Number: 66914
1
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.
Revision: 02-Oct-12
1
Document Number: 91000