20 xB06IPB010RC P955A40x D4 14

20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
flow IPM 1B
600 V / 10 A
Features
flow IPM 1B
● CIP-topology (converter + inverter + PFC)
● Optimized for PFC frequencies of 20kHz..100kHz
and inverter frequencies of 4kHz..20kHz
● Integrated PFC controller circuit with programmable
DC output voltage and PWM frequency
● Inverter gate drive inclusive bootstrap for high side
power supply
● Over current and short circuit protection
● Integrated DC-capacitor
● Sense output of DC-current
● Temperature sensor
● Conclusive power flow, all power connections on
Solder pins
one side, no input output X-ing
● Optional pre-applied thermal interface material
Press-fit
Schematic
Target Applications
●
●
●
●
Fans and Pumps
AirCon
Electrical Tools
Low power industrial drive
Types
● 20-1B06IPB010RC-P955A40
● 20-PB06IPB010RC-P955A40Y
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
16
21
A
130
A
80
A2s
19
29
W
Input Rectifier Diode
Repetitive peak reverse voltage
V RRM
DC forward current
I FAV
Surge forward current
I FSM
T j = T jmax
T h = 80 °C
T c = 80 °C
t p = 10 ms
50 Hz half sine wave
T j = 150 °C
T j = T jmax
T h = 80 °C
T c = 80 °C
I 2t-value
I 2t
Power dissipation
P tot
Maximum Junction Temperature
T jmax
150
°C
V CE
650
V
19
20
A
t p limited by T jmax
90
A
V CE ≤ 650 V, T j ≤ T op max
90
A
37
56
W
PFC IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
I CRM
Turn off safe operating area
T j = T jmax
T j = T jmax
T h = 80 °C
T c = 80 °C
T h = 80 °C
T c = 80 °C
Power dissipation
P tot
Gate-emitter peak voltage
V GE
±20
V
T jmax
175
°C
Maximum Junction Temperature
copyright Vincotech
1
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
650
V
6
8
A
12
A
12
19
W
PFC Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
V RRM
IF
T j = T jmax
T h = 80 °C
T c = 80 °C
Repetitive peak forward current
I FRM
t p limited by T jmax
Power dissipation
P tot
T j = T jmax
Maximum Junction Temperature
T jmax
175
°C
V RRM
650
V
13
16
A
180
A
130
A
60
A
25
37
W
T h = 80 °C
T c = 80 °C
PFC Diode
Peak Repetitive Reverse Voltage
DC forward current
Surge forward current
2
I t-value
IF
I FSM
I 2t
T j = T jmax
T h = 80 °C
T c = 80 °C
t p = 8,3 ms
60 Hz half sine wave
Repetitive peak forward current
I FRM
t p limited by T jmax
Power dissipation
P tot
T j = T jmax
Maximum Junction Temperature
T jmax
175
°C
V CE
600
V
9
12
A
t p limited by T jmax
30
A
V CE ≤ 600 V, T j ≤ 150 °C
20
A
20
31
W
±20
V
5
400
µs
V
175
°C
600
V
T h = 80 °C
T c = 80 °C
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
I CRM
Turn off safe operating area
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
T j = T jmax
T j = T jmax
T h = 80 °C
T c = 80 °C
T h = 80 °C
T c = 80 °C
T j ≤ 150 °C
V GE = 15 V
T jmax
Inverter Diode
Peak Repetitive Reverse Voltage
V RRM
IF
T j = T jmax
Power dissipation
P tot
T j = T jmax
Maximum Junction Temperature
T jmax
DC forward current
copyright Vincotech
T h = 80 °C
T c = 80 °C
T h = 80 °C
T c = 80 °C
8
11
17
25
175
2
A
W
°C
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
PFC Shunt
DC forward current
Power dissipation
IF
T c = 25 °C
10
A
P tot
T c = 25 °C
9
W
26
V
PFC Controller*
VCC supply voltage
V CC
V CC common with gate driver IC
VSENSE voltage
V VSENSE
5,3
V
Vsense Current
I VSENSE
±1
mA
FREQ pin voltage
V FREQ
5,3
V
Maximum Junction Temperature
T jmax
125
°C
IF
8
A
P tot
3,2
W
500
V
* for more information see infineon's datasheet ICE3PCS02
DC - Shunt
DC forward current
Power dissipation
DC link Capacitor
Maximum DC voltage
T c = 25 °C
V MAX
Gate Driver*
Supply voltage
U CC
20
V
Input voltage (LIN, HIN, EN)
U IN
10
V
U OUT
VCC+0,5
V
Output voltage (FAULT)
* for more information see infineon's datasheet 6ED003L02-F2
Thermal Properties
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Isolation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
V is
t=2s
CTI
DC voltage
>200
3
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V]
I C [A] or
V GE [V] or or
I [A] or
V CE [V] or F
V GS [V]
I D [A]
V DS [V]
T j [°C]
Min
Typ
Unit
Max
Input Rectifier Diode
Forward voltage
VF
7
Threshold voltage (for power loss calc. only)
V to
7
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink
7
Phase-Change
Material λ = 3,4W/mK
V GE(th)
V CE = V GE
1,04
0,97
0,87
0,74
25
33
25
1200
R th(j-s)
25
125
25
125
25
125
V
V
mΩ
0,01
mA
K/W
3,66
PFC IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
V CEsat
Collector-emitter cut-off
I CES
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
15
0
30
tr
10
tf
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
R th(j-s)
3,3
4
4,7
2,12
2,44
2,22
25
t d(off)
Turn-on energy loss per pulse
Thermal resistance chip to heatsink
25
25
125
650
U CC = 15 V 400
Fall time
0,0003
0,04
25
125
25
125
25
125
25
125
25
125
25
125
27
28
5
7
122
154
2
2
0,1516
0,2417
0,0317
0,0583
V
V
mA
ns
mWs
2100
f = 1 MHz
0
25
25
pF
45
7,7
Phase-Change
Material λ = 3,4W/mK
2,56
K/W
PFC Inverse Diode
Diode forward voltage
Thermal resistance chip to heatsink
VF
R th(j-s)
10
25
125
Phase-Change
Material λ = 3,4W/mK
1,23
1,12
0,97
1,87
7,75
V
K/W
PFC Diode
Forward voltage
VF
Reverse leakage current
I rm
Peak recovery current
I RRM
Reverse recovery time
t rr
Reverse recovery charge
Q rr
Reverse recovered energy
400
U CC = 15 V 400
E rec
Peak rate of fall of recovery current
( di rf/dt )max
Thermal resistance chip to heatsink
R th(j-s)
Phase-Change
Material λ = 3,4W/mK
15
25
125
10
25
10
25
125
25
125
25
125
25
125
25
125
1,92
1,97
2,22
1,6
15
19
22
36
0,2008
0,4358
0,0150
0,0504
2033
891
V
µA
A
ns
µC
mWs
A/µs
3,87
K/W
50
mΩ
PFC Shunt
R1 value
copyright Vincotech
R
4
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V]
I C [A] or
V GE [V] or or
I [A] or
V CE [V] or F
V GS [V]
I D [A]
V DS [V]
T j [°C]
Min
Typ
Unit
Max
Inverter Transistor
Gate emitter threshold voltage
V GE(th)
Collector-emitter saturation voltage*
V CEsat
V CE = V GE
15
0,00017
25
4,4
5
5,6
10
25
125
0,8
2,20
2,32
2,62
V
V
Collector-emitter cut-off current incl. Diode
I CES
0
600
25
0,1
mA
Gate-emitter leakage current
I GES
20
0
25
120
nA
Integrated Gate resistor
R gint
Turn-on delay time **
Rise time
Turn-off delay time **
Fall time
t d(on)
tr
t d(off)
U CC = 15 V
400
U IN = 5 V
tf
Turn-on energy loss per pulse
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
none
R th(j-s)
6
25
125
25
125
25
125
25
125
25
125
25
125
Ω
582
631
20
25
837
950
16
22
0,1950
0,3241
0,1611
0,2042
ns
mWs
655
f = 1 MHz
0
25
15
480
25
37
pF
22
10
25
Phase-Change
Material λ = 3,4W/mK
64
nC
4,72
K/W
* chip data
** including gate driver
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
I RRM
Reverse recovery time
t rr
Reverse recovered charge
Q rr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink
10
U CC = 15 V
400
U IN = 5 V
( di rf/dt )max
E rec
R th(j-s)
6
25
125
25
125
25
125
25
125
25
125
25
125
Phase-Change
Material λ = 3,4W/mK
0,7
2,23
2,18
6
6
179
276
0,3566
0,6738
181
46
0,0867
0,1610
2,8
V
A
ns
µC
A/µs
mWs
5,72
K/W
25
mΩ
100
nF
DC - Shunt
R2 value
25
R
DC link Capacitor
C Value
copyright Vincotech
C
5
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V r [V]
I C [A] or
V GE [V] or or
I [A] or
V CE [V] or F
V GS [V]
I D [A]
V DS [V]
Value
T j [°C]
Min
Unit
Typ
Max
Gate Driver
Supply voltage
U CC
Quiescent Vcc supply current
I QCC
Input voltage (LIN, HIN, EN)
U IN
0
Logic "0" input voltage (LIN, HIN)
UIH
Logic "1" input voltage (LIN, HIN)
U IL
13
15
17,5
V
1,3
2
mA
1,7
2,1
2,4
0,7
0,9
1,1
U EN, TH+
1,9
2,1
2,3
U EN, TH-
1,1
1,3
1,5
9
10,3
12
380
445
510
70
100
U LIN = 0 V; U HIN=3,3 V
U CC = 15 V
5
V
Positive going threshold voltage (EN)
Negative going threshold voltage (EN)
Input clamp voltage (LIN, HIN, EN)
ITRIP positive going threshold
U IN, CLAMP I IN = 4 mA
U TR, TH+
Input bias current LIN high
I LIN+
U LIN = 3,3 V
Input bias current LIN low
I LIN-
U LIN = 0 V
Input bias current HIN high
I HIN+
U HIN = 3,3 V
Input bias current HIN low
I HIN-
U HIN = 0 V
Input bias current EN high
I EN+-
U HIN = 3,3 V
Output voltage (FAULT)
U FLT
Low on resistor of pull down trans. (FAULT)
R ON, FLT
Pulse width for ON or OFF
t IN
Turn-on propagation delay (LIN, HIN)
t ON
25
110
200
70
100
110
120
45
120
U CC
0
U FAULT = 0,5 V
45,0
100
1
t OFF
FAULT reset time
t RST
Fixed deadtime between high and low side
t DT
µA
V
Ω
µs
400
530
800
360
490
760
U LIN/HIN = 0 V or 3,3 V
Turn-off propagation delay (LIN, HIN)
mV
ns
U LIN/HIN = 0 V & 3,3 V
4
ms
150
310
ns
PFC Controller
VCC turn-on threshold
V CCon
11,5
12,0
12,9
VCC turn-off threshold
V CCUVLO
10,5
11,0
11,9
V
6,4
8,5
mA
3,5
4,7
Operating current with active GATE
I CCHG
C L = 1 nF
Operating current during standby
I CCstby
PFC switching frequency
F SWnom
Set with an internal resistor R FREQ = 220 kΩ*
DC2+
Set with an internal resistor divider**
DC link voltage
DC link treshold (OVP1) low to high
V OVP1L2H
DC link treshold (OVP1) high to low
V OVP1H2L
Blanking time for OVP1
t OVP1
20
339
25
350
361
100
%
12
µs
V OVP1_HYS
6
8
11
DC link treshold (OVP2) low to high
V OVP2_L2H
428
443
460
DC link treshold (OVP2) high to low
V OVP2_H2L relative to OVP2
t OVP2
V
%
DC link treshold (OVP1) hysteresis
Blanking time for OVP2
mA
kHz
108
relative to output voltage
OVP1 values varies with external resistor
Feedback voltage V DClink/130 can be measured at
VSENSE pin
V
%
V
92
%
12
µs
*switching frequency is setable by an external resistor between pins 32 (see figure 1 for values)
**DC link voltage is setable by an external resistor between pins 32 (see figure 2 for values)
Thermistor
Rated resistance
R
Deviation of R 100
ΔR/R
Power dissipation
P
100
Power dissipation constant
B-value
B (25/50)
B-value
B ( 25/100) Tol. ±3%
Tol. ±3%
Vincotech NTC Reference
copyright Vincotech
22000
25
R 100 = 1486 Ω
Ω
12
%
25
200
mW
25
2
mW/K
25
3950
K
25
3998
25
6
-12
K
B
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
Output Inverter
Figure 1
Typical output characteristics
I C = f(V CE)
Output inverter IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
35
IC (A)
IC (A)
35
Output inverter IGBT
30
30
25
25
20
20
15
15
10
10
5
5
0
0
0
At
tp =
Tj =
U CC from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
U CC from
250
µs
25
°C
10 V to 17 V in steps of 1 V
1
2
3
4
V CE (V)
5
250
µs
125
°C
10 V to 17 V in steps of 1 V
Figure 3
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Output inverter FWD
IF (A)
40
35
30
25
20
15
10
Tj = Tjmax-25°C
5
Tj = 25°C
0
0
At
tp =
copyright Vincotech
7
1
250
2
3
4
V F (V)
5
µs
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
Output Inverter
Figure 4
Typical switching energy losses
as a function of collector current
E = f(I C)
Output inverter IGBT
E (mWs)
0,6
Eon High T
0,5
0,4
Eon Low T
Eoff High T
0,3
Eoff Low T
0,2
0,1
0,0
0
2
4
6
8
10
I C (A)
12
With an inductive load at
Tj =
°C
25/125
V CE =
400
V
U CC =
15
V
Figure 5
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Output inverter FWD
0,20
E (mWs)
Erec
Tj = Tjmax -25°C
0,15
Tj = 25°C
Erec
0,10
0,05
0,00
0
2
4
6
8
10
I C (A)
12
With an inductive load at
Tj =
25/125
°C
V CE =
400
V
U CC =
15
V
copyright Vincotech
8
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
Output Inverter
Figure 6
Typical switching times as a
function of collector current
t = f(I C)
Output inverter IGBT
t ( µs)
10,00
tdoff
1,00
tdon
0,10
tr
tf
0,01
0,00
0
2
4
6
8
I C (A)
10
With an inductive load at
Tj =
125
°C
V CE =
400
V
U CC =
15
V
Figure 7
Typical reverse recovery time as a
function of collector current
t rr = f(I C)
Output inverter FWD
t rr( µs)
0,35
Tj = Tjmax -25°C
trr
0,30
0,25
trr
Tj = 25°C
0,20
0,15
0,10
0,05
0,00
0
At
Tj =
V CE =
U CC =
2
25/125
400
15
copyright Vincotech
4
6
8
10
I C (A)
12
°C
V
V
9
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
Output Inverter
Figure 8
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
Output inverter FWD
Qrr( µC)
1,0
Tj = Tjmax -25°C
Qrr
0,8
0,6
Tj = 25°C
Qrr
0,4
0,2
0,0
0
At
At
Tj =
V CE =
U CC =
2
25/125
400
15
4
6
8
10
I C (A)
12
°C
V
V
Figure 9
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
Output inverter FWD
6
IrrM (A)
IRRM
Tj = Tjmax -25°C
IRRM
5
Tj = 25°C
4
3
2
1
0
0
At
Tj =
V CE =
U CC =
2
25/125
400
15
copyright Vincotech
4
6
8
10
I C (A)
12
°C
V
V
10
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
Output Inverter
Figure 10
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I C)
Output inverter FWD
direc / dt (A/µ s)
600
dI0/dt
dIrec/dt
500
400
300
200
100
0
0
At
Tj =
V CE =
U CC =
2
25/125
400
15
4
6
8
10
I C (A)
12
°C
V
V
Figure 11
IGBT transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
Output inverter IGBT
Figure 12
FWD transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
101
Output inverter FWD
Zth(j-s) (K/W)
Z th(j-s) (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
At
D =
R th(j-s) =
10-4
10-3
10-2
10-1
100
t p (s)
10-2
10-5
10110
K/W
IGBT thermal model values
Phase change interface
R (K/W)
0,14
0,66
2,74
0,76
0,42
copyright Vincotech
10-4
At
D =
R th(j-s) =
tp/T
4,72
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-3
10-2
10-1
100
t p (s)
10110
tp/T
5,72
K/W
FWD thermal model values
Phase change interface
Tau (s)
2,1E+00
1,7E-01
4,0E-02
6,5E-03
1,5E-03
R (K/W)
0,11
0,37
2,69
0,84
0,98
0,73
11
Tau (s)
3,2E+00
2,6E-01
4,8E-02
1,2E-02
2,8E-03
6,0E-04
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
Output Inverter
Figure 13
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
Output inverter IGBT
Figure 14
Collector current as a
function of heatsink temperature
I C = f(T s)
14
IC (A)
Ptot (W)
40
Output inverter IGBT
35
12
30
10
25
8
20
6
15
4
10
2
5
0
0
0
At
Tj =
50
175
100
150
T s ( o C)
0
200
At
Tj =
U CC =
°C
Figure 15
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
Output inverter FWD
50
175
15
100
T s ( o C)
200
°C
V
Figure 16
Forward current as a
function of heatsink temperature
I F = f(T s)
Output inverter FWD
14
IF (A)
Ptot (W)
35
150
30
12
25
10
20
8
15
6
10
4
5
2
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T s ( o C)
200
0
At
Tj =
°C
12
50
175
100
150
T s ( o C)
200
°C
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
Output Inverter
Figure 17
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
Output inverter IGBT
IC (A)
103
1ms
100µs
10ms
100ms
102
DC
101
100
10
-1
100
101
V CE (V)
102
103
At
Tj ≤
U CC =
T jmax
15
V
Figure 18
Reverse bias safe operating area
Output inverter IGBT
I C = f(V CE)
IC (A)
25
Ic CHIP
20
MODULE
15
Ic
10
VCE MAX
5
0
0
At
Tj =
100
200
T jmax-25
copyright Vincotech
300
400
500
600 V CE (V) 700
ºC
13
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
PFC
Figure 1
Typical output characteristics
I C = f(V CE)
PFC IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
120
PFC IGBT
I C (A)
I C (A)
120
100
100
80
80
60
60
40
40
20
20
0
0
0
At
tp =
Tj =
U CC from
1
2
3
4
5 V CE (V)
6
0
1
At
tp =
Tj =
U CC from
250
µs
25
°C
7 V to 17 V in steps of 1 V
2
3
4
V CE (V)
5
6
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical diode forward current as
a function of forward voltage
I F = f(V F)
PFC FWD
IF (A)
120
100
80
60
Tj = 25°C
40
Tj = Tjmax-25°C
20
0
0
At
tp =
copyright Vincotech
14
1
250
2
3
4
5
6
V F (V)
7
µs
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
PFC
Figure 4
Typical switching energy losses
as a function of collector current
E = f(I C)
PFC IGBT
0,5
E (mWs)
Eon
0,4
Eon
0,3
0,2
Eoff
0,1
Eoff
0,0
0
5
10
15
I C (A)
20
With an inductive load at
Tj =
25/125
°C
V CE =
400
V
U CC
15
V
Figure 5
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
PFC IGBT
E (mWs)
0,08
Erec
Tj = Tjmax -25°C
0,06
0,04
Tj = 25°C
Erec
0,02
0,00
0
5
10
15
I C (A)
20
With an inductive load at
Tj =
25/125
°C
V CE =
400
V
U CC =
15
V
copyright Vincotech
15
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
PFC
Figure 6
Typical switching times as a
function of collector current
t = f(I C)
PFC IGBT
t ( µs)
1,00
tdoff
0,10
tdon
tr
0,01
tf
0,00
0
5
10
15
I D (A)
20
With an inductive load at
Tj =
125
°C
V CE =
400
V
U CC =
15
V
Figure 7
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
PFC FWD
t rr( µs)
0,05
trr
0,04
0,03
trr
0,02
0,01
0,00
0
At
Tj =
V CE =
U CC =
5
25/125
400
15
copyright Vincotech
10
15
I C (A)
20
°C
V
V
16
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
PFC
Figure 8
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
PFC FWD
0,6
Qrr ( µC)
Qrr
Tj = Tjmax - 25°C
0,5
0,4
0,3
Qrr
Tj = 25°C
0,2
0,1
0,0
At
At
Tj =
V CE =
U CC =
0
5
25/125
400
15
10
15
20
I C (A)
°C
V
V
Figure 9
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
PFC FWD
20
IrrM (A)
Tj = Tjmax - 25°C
IRRM
15
Tj = 25°C
IRRM
10
5
0
0
At
Tj =
V CE =
U CC =
5
25/125
400
15
copyright Vincotech
10
15
I C (A)
20
°C
V
V
17
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
PFC
Figure 10
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
PFC FWD
direc / dt (A/ µs)
7000
dI0/dt
dIrec/dt
6000
5000
4000
3000
2000
1000
0
0
At
Tj =
V CE =
U CC =
5
25/125
400
15
10
15
I C (A)
20
°C
V
V
Figure 11
IGBT transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
PFC IGBT
Figure 12
FWD transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
101
Zth(j-s) (K/W)
Zth(j-s) (K/W)
101
PFC FWD
100
10
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-5
At
D =
R th(j-s) =
10-4
10-3
10-2
10-1
100
t p (s)
10-2
10110
10-5
At
D =
R th(j-s) =
tp/T
2,56
K/W
IGBT thermal model values
Phase change interface
R (K/W)
0,21
1,120
0,829
0,314
0,078
copyright Vincotech
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-4
10-3
10-2
10-1
100
t p (s)
10110
tp/T
3,87
K/W
FWD thermal model values
Phase change interface
Tau (s)
0,780
0,117
0,044
0,005
0,001
R (K/W)
0,11
0,56
2,29
0,62
0,28
18
Tau (s)
2,763
0,226
0,051
0,008
0,002
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
PFC
Figure 13
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
PFC IGBT
Figure 14
Collector current as a
function of heatsink temperature
I C = f(T s)
25
IC (A)
Ptot (W)
75
PFC IGBT
60
20
45
15
30
10
15
5
0
0
0
At
Tj =
50
175
100
150
T s ( o C)
200
0
At
Tj =
ºC
U CC =
Figure 15
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
PFC FWD
50
175
10
100
150
200
ºC
V
Figure 16
Forward current as a
function of heatsink temperature
I F = f(T s)
PFC FWD
20
IF (A)
Ptot (W)
50
T s ( o C)
40
15
30
10
20
5
10
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T s ( o C)
0
200
0
At
Tj =
ºC
19
50
175
100
150
T s ( o C)
200
ºC
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
PFC
Figure 17
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
2
IC (A)
10
PFC IGBT
100mS
10uS
101
DC
100uS
100
1mS
10mS
10
-1
102
101
103
V CE (V)
At
D =
Ts =
U CC =
Tj =
single pulse
80
ºC
V
15
T jmax
ºC
Figure 18
Reverse bias safe operating area
PFC IGBT
I C = f(V CE)
IC (A)
70
60
Ic
40
Ic CHIP
MODULE
50
30
20
VCE MAX
10
0
0
At
Tj =
100
200
T jmax-25
copyright Vincotech
300
400
500
600 V CE (V) 700
ºC
20
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
Input Rectifier Bridge
Figure 2
Diode transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
10
20
Rectifier Diode
1
25
Zth(j-s) (K/W)
Rectifier Diode
IF (A)
Figure 1
Typical diode forward current as
a function of forward voltage
I F= f(V F)
100
15
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
10
-1
5
Tj = 25°C
Tj = Tjmax-25°C
0
0,0
At
tp =
0,5
250
1,0
1,5
V F (V)
10-2
2,0
10
-5
At
D =
R th(j-s) =
µs
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
Rectifier diode
10
-4
10
-3
10
-2
10
10
0
t p (s)
1
10 10
tp/T
3,66
K/W
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T s)
Rectifier diode
30
Ptot (W)
IF (A)
50
-1
25
40
20
30
15
20
10
10
5
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
T s ( o C)
150
0
At
Tj =
ºC
21
30
150
60
90
120
T s ( o C)
150
ºC
01 Mar. 2015 / Revision 4
Shunt
PFC Shunt
PLOW (W)
103
Figure 2
Pulse Power R2
DC Shunt
103
Single
Repetitive
PLOW (W)
Figure 1
Pulse Power R1
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
Single
Repetitive
102
102
1
1
10
10
100
100
10-1
100
101
102
103
104
t pulse (ms)
-1
10
dR /R 0 < 5% after 1 pulse
dR /R 0 < 5% after 10.000 cycles; duty cycle< 0,1%
0
10
1
10
2
10
3
10
4
10
t pulse (ms)
dR /R 0 < 1% after 1 pulse
dR /R 0 < 1% after 10.000 cycles; duty cycle< 0,1%
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
R T = f(T )
Thermistor
NTC-typical temperature characteristic
R (Ω)
24000
20000
16000
12000
8000
4000
0
25
45
copyright Vincotech
65
85
105
T (°C)
125
22
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
Switching Definitions Output Inverter
General conditions
Tj
= 125 °C
Figure 1
Output inverter IGBT
Turn-off Switching Waveforms & definition of t doff, tEoff
(tEoff = integrating time for Eoff)
Figure 2
Output inverter IGBT
Turn-on Switching Waveforms & definition of tdon, t Eon
(tEon = integrating time for Eon)
125
200
%
tdoff
IC
%
VCE
100
150
VCE 90%
VGE 90%
75
IC
VGE
100
VGE
50
VCE
tdon
tEoff
50
25
VGE10%
IC 1%
0
-25
-0,2
IC10%
0
VCE 3%
tEon
-50
0
0,2
0,4
● 20-1B06IPB010RC-P955A40
U IN (0%) =
0
U IN (100%) =
5
V C (100%) =
400
I C (100%) =
6
t doff =
0,95
t Eoff =
1,12
0,6
0,8
1
1,2
2,9
3,1
3,3
3,5
3,7
3,9
time(us)
time (us)
V
V
V
A
µs
µs
U IN (0%) =
U IN (100%) =
V C (100%) =
I C (100%) =
t don =
t Eon =
Figure 3
Output inverter IGBT
Turn-off Switching Waveforms & definition of t f
0
5
400
6
0,63
0,84
V
V
V
A
µs
µs
Figure 4
Output inverter IGBT
Turn-on Switching Waveforms & definition of tr
125
200
fitted
%
%
VCE
IC
175
100
150
IC 90%
75
125
VCE
IC 60%
100
50
IC90%
75
IC 40%
25
tr
50
IC10%
0
25
tf
-25
0,6
0,7
0,8
0,9
1
1,1
IC10%
Ic
0
-25
1,2
3,5
3,6
3,7
3,8
V C (100%) =
I C (100%) =
tf=
copyright Vincotech
400
6
0,02
3,9
4
time(us)
time (us)
V
A
µs
V C (100%) =
I C (100%) =
tr=
23
400
6
0,03
V
A
µs
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
Switching Definitions Output Inverter
Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of tEon
125
200
%
%
Pon
Eoff
100
150
Poff
75
Eon
100
50
50
25
IC 1%
VGE 90%
VGE 10%
VCE 3%
0
tEon
0
tEoff
-25
-0,2
-50
0
0,2
0,4
0,6
0,8
1
2,9
1,2
3,1
3,3
3,5
P off (100%) =
E off (100%) =
t Eoff =
2,39
0,20
1,12
3,7
3,9
time(us)
time (us)
kW
mJ
µs
P on (100%) =
E on (100%) =
t Eon =
2,39
0,32
0,84
kW
mJ
µs
Figure 7
Output inverter FWD
Turn-off Switching Waveforms & definition of t rr
120
Id
%
80
trr
40
fitted
Vd
0
IRRM10%
-40
-80
IRRM 90%
IRRM 100%
-120
3,5
3,6
3,7
3,8
3,9
4
time(us)
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
400
6
-6
0,28
V
A
A
µs
24
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
Switching Definitions Output Inverter
Figure 8
Output inverter FWD
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Figure 9
Output inverter FWD
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
125
150
%
%
Id
100
Qrr
Erec
100
tQrr
50
75
0
50
-50
25
-100
0
-150
tErec
Prec
-25
3,5
3,6
3,7
3,8
3,9
4
4,1
4,2
4,3
3,6
3,8
4
time(us)
I d (100%) =
Q rr (100%) =
t Qrr =
copyright Vincotech
6
0,67
0,55
A
µC
µs
P rec (100%) =
E rec (100%) =
t Erec =
25
2,39
0,16
0,55
4,2
time(us)
4,4
kW
mJ
µs
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste, solder pins
with thermal paste, solder pins
without thermal paste, press fit pins
with thermal paste, press fit solder pins
Ordering Code
in DataMatrix as
in packaging barcode as
20-1B06IPB010RC-P955A40
20-1B06IPB010RC-P955A40-/3/
20-PB06IPB010RC-P955A40Y
20-PB06IPB010RC-P955A40Y-/3/
P955A40
P955A40
P955A40Y
P955A40Y
P955A40
P955A40-/3/
P955A40Y
P955A40Y-/3/
Outline
Pin
Pin table
X
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
45
42
39
36
33
30
27
24
21
18
15
12
9
6
3
0
-0,2
4,8
9,8
14,8
19,8
22,5
25,2
30,2
35,2
40,2
45,2
Y
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
26,4
26,4
26,4
26,4
26,4
26,4
26,4
26,4
26,4
26,4
26,4
Pinout
copyright Vincotech
26
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
Application data
Static logic funtion table
V BS
RCIN
ITRIP
<V CCUV–
X
X
X
X
15V
<V BSUV–
X
0
3.3V
15V
15V
<3.2V↓
0
3.3V
0
0
0
15V
15V
X
> V IT,TH+
3.3V
0
0
0
15V
15V
> V RCIN,TH
0
3.3V
15V
15V
> V RCIN,TH
0
0
V CC
ENABLE
FAULT
LO1,2,3
HO1,2,3
0
0
0
High imp /LIN1,2,3
0
High imp /LIN1,2,3 /HIN1,2,3
High imp
0
0
● 20-1B06IPB010RC-P955A40
● 20-PB06IPB010RC-P955A40Y
copyright Vincotech
27
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
Pin Descriptions
Pin #
Pin Name
1
2
NTC2
3
4
5
6
NTC1
InvS +
InvS -
Pin Description
Temperature sensor connector 1
Temperature sensor connector 2
Inverter sense resistor high-side
Inverter sense resistor low-side
Enable I/O functionality
7
8
9
10
EN
¬Fault
¬LIN3
¬LIN2
¬LIN1
¬HIN3
11
12
13
¬HIN2
¬HIN1
VCC
Signal input for high-side V phase
Signal input for high-side U phase
Driver circuit supply voltage
GND2
Inverter ground
PFC Bulk voltage sense
PFC Switching frequency adjust
Rectifier input
14
15
16
17
18
19
20
21
22
23
24
25
26
27
copyright Vincotech
VSENSE
FREQ
AC1
AC2
DC1 + (coil)
PFC + (coil)
DC1 PFC DC2 DC2 +
W
V
U
Fault output, indicates over current or under voltage (negative logic, open-drain output)
Signal
Signal
Signal
Signal
input
input
input
input
for
for
for
for
low-side W phase
low-side V phase
low-side U phase
high-side W phase
Rectifier input
Rectifier output DC +
PFC coil connector
Rectifier output DC PFC return
Inverter input DC Inverter input DC +
Output for W phase
Output for V phase
Output for U phase
28
01 Mar. 2015 / Revision 4
20-PB06IPB010RC-P955A40Y
20-1B06IPB010RC-P955A40
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
>SPQ
100
Standard
<SPQ
Sample
Handling instruction
Handling instructions for flow 1B packages see vincotech.com website.
Package data
Package data for flow 1B packages see vincotech.com website.
UL recognition and file number
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.
Document No.:
Date:
20-xB06IPB010RC-P955A40x-D4-14
2016 Mar. 01
Modification:
Pages
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be
accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes
without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or
completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that
the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for
reader’s intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform
when properly used in accordance with instructions for use provided in la
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or
system, or to affect its safety or effectiveness.
copyright Vincotech
29
01 Mar. 2015 / Revision 4