20 xB06IPB010RC01 P955A45x D3 14

20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
flow IPM 1B
600 V / 10 A
Features
flow IPM 1B
● CIP-topology (converter + inverter + PFC)
● Optimized for PFC frequencies of 20kHz..100kHz
and inverter frequencies of 4kHz..20kHz
● Integrated PFC gate drive
● PFC shunt
● Inverter gate drive inclusive bootstrap for
high side power supply
● Over current and short circuit protection
● Integrated DC-capacitor
● Sense output of DC-current
● Temperature sensor
● Conclusive power flow, all power connections
on one side, no input output X-ing
● Optional pre-applied thermal interface material
Solder pins
Press-fit
Schematic
Target Applications
●
●
●
●
Low Power Industrial Drives
Motor Integrated Fans and Pumps
AirCon
Electrical Tools
Types
● 20-1B06IPB010RC01-P955A45
● 20-1B06IPB010RC01-P955A45Y
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
16
21
A
130
A
80
A2s
19
29
W
Input Rectifier Diode
Repetitive peak reverse voltage
V RRM
DC forward current
I FAV
Surge forward current
I FSM
T j = T jmax
T h = 80 °C
T c = 80 °C
t p = 10 ms
I2t-value
I 2t
Power dissipation
P tot
Maximum Junction Temperature
T jmax
150
°C
V CE
650
V
19
20
A
t p limited by T jmax
90
A
V CE ≤ 650V, T j ≤ T op max
90
A
37
56
W
T j = T jmax
T h = 80 °C
T c = 80 °C
PFC IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
I CRM
Turn off safe operating area
T j = T jmax
T j = T jmax
T h = 80 °C
T c = 80 °C
T h = 80 °C
T c = 80 °C
Power dissipation
P tot
Gate-emitter peak voltage
V GE
±20
V
T jmax
175
°C
Maximum Junction Temperature
copyright Vincotech
1
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
650
V
6
8
A
12
A
12
19
W
PFC Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
V RRM
IF
T j = T jmax
T h = 80 °C
T c = 80 °C
Repetitive peak forward current
I FRM
t p limited by T jmax
Power dissipation
P tot
T j = T jmax
Maximum Junction Temperature
T jmax
175
°C
V RRM
650
V
13
16
A
180
A
130
A2s
60
A
25
37
W
T h = 80 °C
T c = 80 °C
PFC Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Surge forward current
I FSM
I2t-value
I 2t
T j = T jmax
T h = 80 °C
T c = 80 °C
t p = 8,3 ms
60 Hz half sine wave
Repetitive peak forward current
I FRM
t p limited by T jmax
Power dissipation
P tot
T j = T jmax
Maximum Junction Temperature
T jmax
175
°C
V CE
600
V
9
12
A
t p limited by T jmax
30
A
V CE ≤ 600 V, T j ≤ 150 °C
20
A
20
31
W
±20
V
5
400
µs
V
175
°C
600
V
T h = 80 °C
T c = 80 °C
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
I CRM
Turn off safe operating area
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
T j = T jmax
T j = T jmax
T h = 80 °C
T c = 80 °C
T h = 80 °C
T c = 80 °C
T j ≤ 150 °C
V GE = 15 V
T jmax
Inverter Diode
Peak Repetitive Reverse Voltage
V RRM
IF
T j = T jmax
Power dissipation
P tot
T j = T jmax
Maximum Junction Temperature
T jmax
DC forward current
copyright Vincotech
T h = 80 °C
T c = 80 °C
T h = 80 °C
T c = 80 °C
8
11
17
25
175
2
A
W
°C
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
IF
10
A
P tot
10
W
V CEO
45
V
Collector current
IC
500
Peak collector current
I CM
Base current
IB
100
Peak base current
I BM
200
mA
T jmax
150
°C
IF
8
A
P tot
5
W
U MAX
500
V
Supply voltage
U CC
20
V
Input voltage (LIN, HIN, EN)
U IN
10
V
U OUT
V CC+0,5
V
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
PFC Shunt
DC forward current
Power dissipation
PFC Driver*
Collector-emitter voltage
Maximum Junction Temperature
t P ≤ 10 ms
1000
mA
* for more information see infineon's datasheet BC817
DC - Shunt
DC forward current
Power dissipation
DC link Capacitor
Maximum DC voltage
Gate Driver
Output voltage (FAULT)
Thermal Properties
Insulation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
V is
t=2s
CTI
DC voltage
>200
3
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V]
I C [A] or
V GE [V] or or
I [A] or
V CE [V] or F
V GS [V]
I D [A]
V DS [V]
T j [°C]
Min
Typ
Unit
Max
Input Rectifier Diode
Forward voltage
VF
7
Threshold voltage (for power loss calc. only)
V to
7
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink
7
1200
R th(j-s)
Phase-Change
Material λ = 3,4W/mK
V GE(th)
V CE = V GE
25
125
25
125
25
125
25
125
1,04
0,97
0,87
0,74
25
33
V
V
mΩ
0,01
mA
K/W
3,66
PFC IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
V CEsat
0,0003
15
30
Collector-emitter cut-off
I CES
0
650
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
tr
t d(off)
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
10
tf
Turn-on energy loss per pulse
R th(j-s)
3,3
4
4,7
2,12
2,44
2,22
0,04
120
none
U CC = 15 V 400
Fall time
25
125
25
125
25
125
25
125
25
125
25
125
25
125
25
125
25
125
25
125
V
V
mA
nA
Ω
27
28
5
7
122
154
2
2
0,1516
0,2417
0,0317
0,0583
ns
mWs
2100
f = 1 MHz
0
25
25
45
pF
7,7
15
520
30
25
65
Phase-Change
Material λ = 3,4W/mK
nC
2,56
K/W
PFC Inverse Diode
Diode forward voltage
Thermal resistance chip to heatsink
VF
R th(j-s)
10
25
125
Phase-Change
Material λ = 3,4W/mK
1,23
1,12
0,97
1,87
7,75
V
K/W
PFC Diode
Forward voltage
VF
Reverse leakage current
I rm
Peak recovery current
I RRM
Reverse recovery time
t rr
Reverse recovery charge
Q rr
Reverse recovered energy
E rec
Peak rate of fall of recovery current
( di rf/dt )max
Thermal resistance chip to heatsink
R th(j-s)
±15
400
U CC = 15 V 400
Phase-Change
Material λ = 3,4W/mK
10
10
25
125
25
125
25
125
25
125
25
125
25
125
25
125
1,92
1,97
2,22
1,6
15
19
22
36
0,2008
0,4358
0,0150
0,0504
2033
891
V
µA
A
ns
µC
mWs
A/µs
3,87
K/W
50
mΩ
PFC Shunt
R1 value
copyright Vincotech
R
4
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V]
I C [A] or
V GE [V] or or
I [A] or
V CE [V] or F
V GS [V]
I D [A]
V DS [V]
Unit
T j [°C]
Min
Typ
Max
25
125
25
125
25
125
25
125
25
125
25
125
25
125
25
125
25
125
4,4
5
5,6
0,8
2,20
2,32
2,62
Inverter Transistor
Gate emitter threshold voltage
V GE(th)
Collector-emitter saturation voltage *
V CEsat
Collector-emitter cut-off current incl. Diode
I CES
Turn-on delay time **
t d(on)
Rise time
Turn-off delay time **
Fall time
0,00017
15
10
600
0
tr
t d(off)
U CC = 15 V
400
U IN = 5 V
tf
Turn-on energy loss per pulse
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Thermal resistance chip to heatsink
VCE=VGE
R th(j-s)
6
0,1
582
631
20
25
837
950
16
22
0,1950
0,3241
0,1611
0,2042
V
V
mA
ns
mWs
655
f = 1 MHz
25
0
25
37
pF
22
Phase-Change
Material λ = 3,4W/mK
4,72
K/W
* chip data
** including gate driver
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
I RRM
Reverse recovery time
t rr
Reverse recovered charge
Q rr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink
10
U CC=15V
U IN=5V
( di rf/dt )max
E rec
R th(j-s)
400
6
25
125
25
125
25
125
25
125
25
125
25
125
Phase-Change
Material λ = 3,4W/mK
0,7
2,23
2,18
6
6
179
276
0,3566
0,6738
181
46
0,0867
0,1610
2,8
V
A
ns
µC
A/µs
mWs
5,72
K/W
25
mΩ
DC - Shunt
R2 value
copyright Vincotech
25
R
5
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V r [V]
I C [A] or
V GE [V] or or
I [A] or
V CE [V] or F
V GS [V]
I D [A]
V DS [V]
Value
T j [°C]
Min
Unit
Typ
Max
Gate Driver
Supply voltage
V CC
Quiescent Vcc supply current
IQCC
Input voltage (LIN, HIN, EN)
VIN
25
0
Logic "0" input voltage (LIN, HIN)
VIH
25
Logic "1" input voltage (LIN, HIN)
VIL
25
U LIN = 0 V; U HIN=3,3 V
13
15
17,5
V
1,3
2
mA
1,7
2,1
2,4
25
U CC = 15 V
5
25
0,7
0,9
1,1
Positive going threshold voltage (EN)
VEN, TH+
25
1,9
2,1
2,3
Negative going threshold voltage (EN)
VEN, TH-
25
1,1
1,3
1,5
25
9
10,3
12
25
380
445
510
100
V
Input clamp voltage (LIN, HIN, EN)
ITRIP positive going threshold
VIN, CLAMP I IN = 4 mA
VIT, TH+
Input bias current LIN high
I LIN+
U LIN = 3,3 V
25
70
Input bias current LIN low
I LIN-
U LIN = 0 V
25
110
200
Input bias current HIN high
I HIN+
U HIN = 3,3 V
25
70
100
Input bias current HIN low
I HIN-
U HIN = 0 V
25
110
120
Input bias current EN high
IEN+
U HIN = 3,3 V
25
45
120
Output voltage (FAULT)
V FLT
Low on resistor of pull down trans. (FAULT)
Pulse width for ON or OFF
RON, FLT
25
U FAULT = 0,5 V
0
45
25
tIN
25
1
mV
µA
U CC
V
100
Ω
µs
Turn-on propagation delay (LIN, HIN)
tON
25
400
530
800
Turn-off propagation delay (LIN, HIN)
tOFF
25
360
490
760
FAULT reset time
tRST
25
Fixed deadtime between high and low side
tDT
U LIN/HIN = 0 V or 3,3 V
ns
U LIN/HIN = 0 V & 3,3 V
25
150
4
ms
310
ns
22000
Ω
Thermistor
Rated resistance
25
R
Deviation of R 100
ΔR/R
Power dissipation
P
R 100 = 1486 Ω
25
Power dissipation constant
-12
12
%
25
200
mW
25
2
mW/K
B-value
B (25/50)
Tol. ±3%
25
3950
K
B-value
B (25/100) Tol. ±3%
25
3998
K
Vincotech NTC Reference
copyright Vincotech
25
6
B
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Output Inverter
Figure 1
Typical output characteristics
I C = f(V CE)
Output inverter IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
35
IC (A)
IC (A)
35
Output inverter IGBT
30
30
25
25
20
20
15
15
10
10
5
5
0
0
0
At
tp =
Tj =
U CC from
1
2
3
4
V CE (V)
5
0
1
At
tp =
Tj =
U CC from
250
µs
25
°C
10 V to 17 V in steps of 1 V
2
3
4
V CE (V)
5
250
µs
125
°C
10 V to 17 V in steps of 1 V
Figure 3
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Output inverter FWD
IF (A)
40
35
30
25
20
15
10
Tj = Tjmax-25°C
5
Tj = 25°C
0
0
At
tp =
copyright Vincotech
7
1
250
2
3
4
V F (V)
5
µs
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Output Inverter
Figure 4
Typical switching energy losses
as a function of collector current
E = f(I C)
Output inverter IGBT
E (mWs)
0,6
Eon High T
0,5
0,4
Eon Low T
Eoff High T
0,3
Eoff Low T
0,2
0,1
0,0
0
2
4
6
8
10
I C (A)
12
With an inductive load at
Tj =
°C
25/125
V CE =
400
V
U CC
15
V
Figure 5
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Output inverter FWD
0,20
E (mWs)
Erec
Tj = Tjmax -25°C
0,15
Tj = 25°C
Erec
0,10
0,05
0,00
0
2
4
6
8
10
12
I C (A)
With an inductive load at
Tj =
25/125
°C
V CE =
400
V
U CC
15
V
copyright Vincotech
8
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Output Inverter
Figure 6
Typical switching times as a
function of collector current
t = f(I C)
Output inverter IGBT
t ( µs)
10,00
tdoff
1,00
tdon
0,10
tr
tf
0,01
0,00
0
2
4
6
8
I C (A)
10
With an inductive load at
Tj =
125
°C
V CE =
400
V
U CC
15
V
Figure 7
Typical reverse recovery time as a
function of collector current
t rr = f(I C)
Output inverter FWD
t rr( µs)
0,35
Tj = Tjmax -25°C
trr
0,30
0,25
trr
Tj = 25°C
0,20
0,15
0,10
0,05
0,00
0
At
Tj =
V CE =
U CC
2
25/125
400
15
copyright Vincotech
4
6
8
10
I C (A)
12
°C
V
V
9
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Output Inverter
Figure 8
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
Output inverter FWD
Qrr( µC)
1,0
Tj = Tjmax -25°C
Qrr
0,8
0,6
Tj = 25°C
Qrr
0,4
0,2
0,0
0
At
At
Tj =
V CE =
U CC
2
25/125
400
15
4
6
8
10
I C (A)
12
°C
V
V
Figure 9
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
Output inverter FWD
6
IrrM (A)
IRRM
Tj = Tjmax -25°C
IRRM
5
Tj = 25°C
4
3
2
1
0
0
At
Tj =
V CE =
U CC
2
25/125
400
15
copyright Vincotech
4
6
8
10
I C (A)
12
°C
V
V
10
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Output Inverter
Figure 10
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I C)
Output inverter FWD
direc / dt (A/µ s)
600
dI0/dt
dIrec/dt
500
400
300
200
100
0
0
At
Tj =
V CE =
U CC
2
25/125
400
15
4
6
8
10
I C (A)
12
°C
V
V
Figure 11
IGBT transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
Output inverter IGBT
Figure 12
FWD transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
Zth(j-s) (K/W)
101
Zth(j-s) (K/W)
101
100
100
10
-1
10
-2
Output inverter FWD
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
At
D =
R th(j-s) =
10-4
10-3
10-2
10-1
100
t p (s)
10110
tp/T
4,72
K/W
10-5
10-4
At
D =
R th(j-s) =
tp/T
IGBT thermal model values
R (K/W)
0,14
0,66
2,74
0,76
0,42
copyright Vincotech
5,72
10-3
10-2
10-1
100
t p (s)
10110
K/W
FWD thermal model values
Tau (s)
2,1E+00
1,7E-01
4,0E-02
6,5E-03
1,5E-03
R (K/W)
0,11
0,37
2,69
0,84
0,98
0,73
11
Tau (s)
3,2E+00
2,6E-01
4,8E-02
1,2E-02
2,8E-03
6,0E-04
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Output Inverter
Output inverter IGBT
Figure 14
Collector current as a
function of heatsink temperature
I C = f(T s)
40
Output inverter IGBT
14
IC (A)
Ptot (W)
Figure 13
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
35
12
30
10
25
8
20
6
15
4
10
2
5
0
0
0
At
Tj =
50
175
100
150
T s ( o C)
0
200
At
Tj =
U CC
°C
Figure 15
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
Output inverter FWD
50
175
15
100
T s ( o C)
200
°C
V
Figure 16
Forward current as a
function of heatsink temperature
I F = f(T s)
Output inverter FWD
14
IF (A)
Ptot (W)
35
150
30
12
25
10
20
8
15
6
10
4
5
2
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T s ( o C)
200
0
At
Tj =
°C
12
50
175
100
150
T s ( o C)
200
°C
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Output Inverter
Figure 17
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
Output inverter IGBT
IC (A)
103
1mS
100uS
10mS
100mS
10
2
DC
101
100
10
-1
100
At
U CC
Tj =
10
15
T jmax
1
10
V CE (V)
2
103
V
ºC
Figure 18
Reverse bias safe operating area
Output inverter IGBT
I C = f(V CE)
IC (A)
25
Ic CHIP
20
Ic
MODULE
15
10
VCE MAX
5
0
0
At
Tj =
100
200
T jmax-25
copyright Vincotech
300
400
500
600 V CE (V) 700
ºC
13
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
PFC
Figure 1
Typical output characteristics
I C = f(V CE)
PFC IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
PFC IGBT
120
IC (A)
IC (A)
120
100
100
80
80
60
60
40
40
20
20
0
0
0
At
tp =
Tj =
U CC from
1
2
3
4
5
V CE (V)
6
0
At
tp =
Tj =
250
µs
25
°C
7 V to 17 V in steps of 1 V
U CC from
1
2
3
4
5
V CE (V)
6
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical diode forward current as
a function of forward voltage
I F = f(V F)
PFC FWD
IF (A)
120
100
80
60
Tj = 25°C
40
Tj = Tjmax-25°C
20
0
0
At
tp =
copyright Vincotech
14
1
250
2
3
4
5
6
V F (V)
7
µs
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
PFC
Figure 4
Typical switching energy losses
as a function of collector current
E = f(I C)
PFC IGBT
0,5
E (mWs)
Eon
0,4
Eon
0,3
0,2
Eoff
0,1
Eoff
0,0
0
5
10
15
20
I C (A)
With an inductive load at
Tj =
25/125
°C
V CE =
400
V
U CC =
15
V
Figure 5
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
PFC IGBT
E (mWs)
0,08
Erec
Tj = Tjmax -25°C
0,06
0,04
Tj = 25°C
Erec
0,02
0,00
0
5
10
15
I C (A)
20
With an inductive load at
Tj =
25/125
°C
V CE =
400
V
U CC =
15
V
copyright Vincotech
15
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
PFC
Figure 6
Typical switching times as a
function of collector current
t = f(I C)
PFC IGBT
t ( µs)
1,00
tdoff
0,10
tdon
tr
0,01
tf
0,00
0
5
10
15
I C (A)
20
With an inductive load at
Tj =
125
°C
V CE =
400
V
U CC =
15
V
Figure 7
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
PFC FWD
0,05
t rr( µs)
trr
0,04
0,03
trr
0,02
0,01
0,00
0
At
Tj =
V CE =
U CC =
5
25/125
400
15
copyright Vincotech
10
15
I C (A)
20
°C
V
V
16
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
PFC
Figure 8
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
PFC FWD
0,6
Qrr ( µC)
Qrr
Tj = Tjmax - 25°C
0,5
0,4
0,3
Qrr
Tj = 25°C
0,2
0,1
0,0
At
At
Tj =
V CE =
0
U CC =
5
25/125
400
15
10
15
I C (A)
20
°C
V
V
Figure 9
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
PFC FWD
IrrM (A)
20
Tj = Tjmax - 25°C
IRRM
15
Tj = 25°C
IRRM
10
5
0
0
At
Tj =
V CE =
U CC =
5
25/125
400
15
copyright Vincotech
10
15
I C (A)
20
°C
V
V
17
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
PFC
Figure 10
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
PFC FWD
direc / dt (A/ µs)
7000
dI0/dt
dIrec/dt
6000
5000
4000
3000
2000
1000
0
0
At
Tj =
V CE =
U CC =
5
25/125
400
15
10
15
I C (A)
20
°C
V
V
Figure 11
IGBT transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
PFC IGBT
Figure 12
FWD transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
101
Zth(j-s) (K/W)
Zth(j-s) (K/W)
101
PFC FWD
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
10
-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-5
At
D =
R th(j-s) =
10-4
10-3
10-2
10-1
100
t p (s)
10110
10-5
At
D =
R th(j-s) =
tp/T
2,56
K/W
IGBT thermal model values
R (K/W)
0,21
1,120
0,829
0,314
0,078
copyright Vincotech
10-4
10-3
10-2
10-1
100
t p (s)
10110
tp/T
3,87
K/W
FWD thermal model values
Tau (s)
0,780
0,117
0,044
0,005
0,001
R (K/W)
0,11
0,56
2,29
0,62
0,28
18
Tau (s)
2,763
0,226
0,051
0,008
0,002
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
PFC
Figure 13
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
PFC IGBT
Figure 14
Collector current as a
function of heatsink temperature
I C = f(T s)
25
IC (A)
Ptot (W)
75
PFC IGBT
60
20
45
15
30
10
15
5
0
0
0
At
Tj =
50
175
100
150
T s ( o C)
200
0
At
Tj =
ºC
U CC =
Figure 15
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
PFC FWD
50
175
15
100
150
200
ºC
V
Figure 16
Forward current as a
function of heatsink temperature
I F = f(T s)
PFC FWD
20
IF (A)
Ptot (W)
50
T s ( o C)
40
15
30
10
20
5
10
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T s ( o C)
0
200
0
At
Tj =
ºC
19
50
175
100
150
T s ( o C)
200
ºC
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
PFC
Figure 17
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
PFC IGBT
IC (A)
103
102
10uS
100mS
100uS
1mS
10mS
101
DC
100
10-1
102
101
103
V CE (V)
At
D =
Ts =
U CC =
Tj =
single pulse
80
ºC
V
15
T jmax
ºC
Figure 18
Reverse bias safe operating area
PFC IGBT
I C = f(V CE)
IC (A)
70
Ic CHIP
60
Ic
MODULE
50
40
30
20
VCE MAX
10
0
0
At
Tj=
100
200
T jmax-25
copyright Vincotech
300
400
500
600 V CE (V) 700
ºC
20
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
PFC Inverse Diode
Figure 1
Typical diode forward current as
a function of forward voltage
I F = f(V F)
PFC Inverse Diode
Figure 2
Thyristor transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
25
1
ZthJC (K/W)
IF (A)
10
PFC Inverse Diode
20
100
15
10-1
10
10-2
5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-3
Tj = Tjmax-25°C
Tj = 25°C
0
10-4
0
At
tp =
1
2
3
4
V F (V)
5
10
-5
10
-4
10
At
250
-3
D =
10
-2
10
-1
10
0
t p (s)
10
21
tp/T
µs
R th(j-s) =
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
PFC Inverse Diode
7,75
K/W
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T s)
10
Ptot (W)
IF (A)
25
PFC Inverse Diode
20
8
15
6
10
4
5
2
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T s ( o C)
200
0
At
Tj =
ºC
21
50
175
100
150
T s ( o C)
200
ºC
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Input Rectifier Bridge
Figure 1
Typical diode forward current as
a function of forward voltage
I F= f(V F)
Rectifier Diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
Rectifier Diode
IF (A)
Zth(j-s) (K/W)
25
20
15
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
5
Tj = 25°C
Tj = Tjmax-25°C
0
0,0
At
tp =
0,5
250
1,0
1,5
V F (V)
2,0
t p (s)
At
D =
R th(j-s) =
µs
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
Rectifier diode
10
tp/T
3,66
K/W
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T s)
30
Ptot (W)
IF (A)
50
Rectifier diode
25
40
20
30
15
20
10
10
5
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T s ( o C)
200
0
At
Tj =
ºC
22
50
150
100
150
T s ( o C)
200
ºC
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Shunt
PFC Shunt
PLOW (W)
103
Figure 2
Pulse Power R2
DC Shunt
103
Single
Repetitive
PLOW (W)
Figure 1
Pulse Power R1
Single
Repetitive
102
102
101
101
100
0
10
-1
0
10
1
10
2
10
3
10
4
10
10
t pulse (ms)
10-1
dR /R 0 < 5% after 1 pulse
dR /R 0 < 5% after 10.000 cycles; duty cycle< 0,1%
100
101
102
103
104
t pulse (ms)
dR /R 0 < 1% after 1 pulse
dR /R 0 < 1% after 10.000 cycles; duty cycle< 0,1%
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
R T = f(T )
Thermistor
NTC-typical temperature characteristic
R (Ω)
24000
20000
16000
12000
8000
4000
0
25
45
copyright Vincotech
65
85
105
T (°C)
125
23
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Switching Definitions Output Inverter
General conditions
Tj
= 125 °C
Figure 1
Output inverter IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
Output inverter IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
200
125
%
tdoff
IC
%
VCE
100
150
VCE 90%
UIN 90%
75
IC
UIN
100
UIN
50
VCE
tdon
tEoff
50
25
UIN10%
IC 1%
0
-25
-0,2
IC10%
0
VCE 3%
tEon
-50
0
0,2
0,4
0,6
0,8
1
1,2
2,9
3,1
3,3
3,5
3,7
U IN (0%) =
U IN (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
0
5
400
6
0,95
1,12
3,9
time(us)
time (us)
V
V
V
A
µs
µs
U IN (0%) =
U IN (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Output inverter IGBT
Turn-off Switching Waveforms & definition of t f
0
5
400
6
0,63
0,84
V
V
V
A
µs
µs
Figure 4
Output inverter IGBT
Turn-on Switching Waveforms & definition of t r
125
200
fitted
%
%
VCE
IC
175
100
150
IC 90%
75
125
VCE
IC 60%
100
50
IC90%
75
IC 40%
25
tr
50
IC10%
0
25
tf
-25
0,6
0,7
0,8
0,9
1
1,1
IC10%
Ic
0
-25
1,2
3,5
3,6
3,7
3,8
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
400
6
0,02
3,9
4
time(us)
time (us)
V
A
µs
V C (100%) =
I C (100%) =
tr =
24
400
6
0,03
V
A
µs
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Switching Definitions Output Inverter
Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of t Eon
125
200
%
%
Pon
Eoff
100
150
Poff
75
Eon
100
50
50
25
IC 1%
UIN 90%
UIN 10%
VCE 3%
0
tEon
0
tEoff
-25
-0,2
-50
0
0,2
0,4
0,6
0,8
1
2,9
1,2
3,1
3,3
3,5
P off (100%) =
E off (100%) =
t E off =
2,39
0,20
1,12
3,7
3,9
time(us)
time (us)
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
2,39
0,32
0,84
kW
mJ
µs
Figure 7
Output inverter FWD
Turn-off Switching Waveforms & definition of t rr
120
Id
%
80
trr
40
fitted
Vd
0
IRRM10%
-40
-80
IRRM 90%
IRRM 100%
-120
3,5
3,6
3,7
3,8
3,9
4
time(us)
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
400
6
-6
0,28
V
A
A
µs
25
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Switching Definitions Output Inverter
Figure 8
Output inverter FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
Output inverter FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
125
%
%
Id
100
Qrr
Erec
100
tQrr
50
75
0
50
-50
25
-100
0
-150
tErec
Prec
-25
3,5
3,6
3,7
3,8
3,9
4
4,1
4,2
4,3
3,6
3,8
4
time(us)
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
6
0,67
0,55
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
26
2,39
0,16
0,55
4,2
time(us)
4,4
kW
mJ
µs
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Switching Definitions PFC
General conditions
Tj
= 125 °C
Figure 1
PFC IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
PFC IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
125
300
tdoff
%
%
100
250
VGE 90%
VCE 90%
IC
75
200
IC
VGATE
50
tEoff
150
VGATE
25
VCE
IC 1%
VCE
100
0
tdon
50
-25
VGATE10%
-75
-0,1
-0,05
0
0,05
0,1
0,15
tEon
-50
2,95
0,2
VCE3%
IC10%
0
-50
3
3,05
3,1
3,15
time(us)
time (us)
V GATE (0%) =
V GATE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
0
5
400
10
0,15
0,19
V
V
V
A
µs
µs
V GATE (0%) =
V GATE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Turn-off Switching Waveforms & definition of t f
PFC IGBT
0
5
400
10
0,03
0,08
V
V
V
A
µs
µs
Figure 4
Turn-on Switching Waveforms & definition of t r
150
PFC IGBT
300
%
VCE
%
125
Ic
250
fitted
IC
100
Ic 90%
200
75
Ic 60%
150
50
Ic 40%
25
VCE
100
Ic10%
tr
tf
0
IC 90%
50
-25
-75
0,05
IC 10%
0
-50
-50
0,075
0,1
0,125
0,15
3
0,175
3,02
3,04
3,06
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
400
10
0,002
3,08
3,1
time(us)
time (us)
V
A
µs
V C (100%) =
I C (100%) =
tr =
27
400
10
0,007
V
A
µs
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Switching Definitions PFC
Figure 5
PFC IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
PFC IGBT
Turn-on Switching Waveforms & definition of t Eon
125
250
%
%
Pon
Eoff
100
200
Ic 1%
75
150
Poff
50
Eon
100
25
VGATE90%
50
0
tEoff
VGATE10%
0
-25
-50
-0,05
0
0,05
P off (100%) =
E off (100%) =
t E off =
3,99
0,06
0,19
0,1
0,15
time (us)
-50
2,95
0,2
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
Uce 3%
tEon
3
3,05
3,99
0,24
0,085
3,1
time(us)
3,15
kW
mJ
µs
Figure 7
PFC FWD
Turn-off Switching Waveforms & definition of t rr
150
%
Id
100
trr
50
fitted
Ud
0
IRRM10%
-50
-100
-150
IRRM90%
IRRM100%
-200
3
3,025
3,05
3,075
3,1
time(us)
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
400
10
-19
0,04
V
A
A
µs
28
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Switching Definitions PFC
Figure 8
PFC FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Qrr= integrating time for Q rr)
Figure 9
PFC FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
%
125
Id
%
Qrr
100
tQint
50
Erec
100
tErec
75
0
50
-50
25
-100
0
-150
-25
Prec
-200
3,02
3,04
I d (100%) =
Q rr (100%) =
t Qint =
copyright Vincotech
3,06
10
0,44
0,07
3,08
3,1
time(us)
-50
3,02
3,12
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
29
3,04
3,06
3,99
0,05
0,07
3,08
3,1
time(us)
3,12
kW
mJ
µs
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste, solder pins
with thermal paste, solder pins
without thermal paste, press fit pins
with thermal paste, press fit pins
Ordering Code
in DataMatrix as
in packaging barcode as
20-1B06IPB004RC01-P955A45
20-1B06IPB004RC01-P955A45-/3/
20-PB06IPB004RC01-P955A45Y
20-PB06IPB004RC01-P955A45Y-/3/
P955A45
P955A45
P955A45Y
P955A45Y
P955A45
P955A45
P955A45Y
P955A45Y
Outline
Pin
Pin table
X
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
45
42
39
36
33
30
27
24
21
18
15
12
9
6
3
0
-0,2
4,8
9,8
14,8
19,8
22,5
25,2
30,2
35,2
40,2
45,2
Y
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
26,4
26,4
26,4
26,4
26,4
26,4
26,4
26,4
26,4
26,4
26,4
Pinout
copyright Vincotech
30
01 Mar. 2016 / Revision 3
20-PB06IPB010RC01-P955A45Y
20-1B06IPB010RC01-P955A45
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
>SPQ
100
Standard
<SPQ
Sample
Handling instruction
Handling instructions for flow 1B packages see vincotech.com website.
Package data
Package data for flow 1B packages see vincotech.com website.
UL recognition and file number
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.
Document No.:
Date:
20-xB06IPB004RC01-P955A45x-D3-14
01 Mar. 2016
Modification:
Pages
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be
accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes
without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or
completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that
the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for
reader’s intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform
when properly used in accordance with instructions for use provided in la
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or
system, or to affect its safety or effectiveness.
copyright Vincotech
31
01 Mar. 2016 / Revision 3