20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet flow IPM 1B 600 V / 10 A Features flow IPM 1B ● CIP-topology (converter + inverter + PFC) ● Optimized for PFC frequencies of 20kHz..100kHz and inverter frequencies of 4kHz..20kHz ● Integrated PFC gate drive ● PFC shunt ● Inverter gate drive inclusive bootstrap for high side power supply ● Over current and short circuit protection ● Integrated DC-capacitor ● Sense output of DC-current ● Temperature sensor ● Conclusive power flow, all power connections on one side, no input output X-ing ● Optional pre-applied thermal interface material Solder pins Press-fit Schematic Target Applications ● ● ● ● Low Power Industrial Drives Motor Integrated Fans and Pumps AirCon Electrical Tools Types ● 20-1B06IPB010RC01-P955A45 ● 20-1B06IPB010RC01-P955A45Y Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 16 21 A 130 A 80 A2s 19 29 W Input Rectifier Diode Repetitive peak reverse voltage V RRM DC forward current I FAV Surge forward current I FSM T j = T jmax T h = 80 °C T c = 80 °C t p = 10 ms I2t-value I 2t Power dissipation P tot Maximum Junction Temperature T jmax 150 °C V CE 650 V 19 20 A t p limited by T jmax 90 A V CE ≤ 650V, T j ≤ T op max 90 A 37 56 W T j = T jmax T h = 80 °C T c = 80 °C PFC IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current IC I CRM Turn off safe operating area T j = T jmax T j = T jmax T h = 80 °C T c = 80 °C T h = 80 °C T c = 80 °C Power dissipation P tot Gate-emitter peak voltage V GE ±20 V T jmax 175 °C Maximum Junction Temperature copyright Vincotech 1 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 650 V 6 8 A 12 A 12 19 W PFC Inverse Diode Peak Repetitive Reverse Voltage DC forward current V RRM IF T j = T jmax T h = 80 °C T c = 80 °C Repetitive peak forward current I FRM t p limited by T jmax Power dissipation P tot T j = T jmax Maximum Junction Temperature T jmax 175 °C V RRM 650 V 13 16 A 180 A 130 A2s 60 A 25 37 W T h = 80 °C T c = 80 °C PFC Diode Peak Repetitive Reverse Voltage DC forward current IF Surge forward current I FSM I2t-value I 2t T j = T jmax T h = 80 °C T c = 80 °C t p = 8,3 ms 60 Hz half sine wave Repetitive peak forward current I FRM t p limited by T jmax Power dissipation P tot T j = T jmax Maximum Junction Temperature T jmax 175 °C V CE 600 V 9 12 A t p limited by T jmax 30 A V CE ≤ 600 V, T j ≤ 150 °C 20 A 20 31 W ±20 V 5 400 µs V 175 °C 600 V T h = 80 °C T c = 80 °C Inverter Transistor Collector-emitter break down voltage DC collector current Repetitive peak collector current IC I CRM Turn off safe operating area Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature T j = T jmax T j = T jmax T h = 80 °C T c = 80 °C T h = 80 °C T c = 80 °C T j ≤ 150 °C V GE = 15 V T jmax Inverter Diode Peak Repetitive Reverse Voltage V RRM IF T j = T jmax Power dissipation P tot T j = T jmax Maximum Junction Temperature T jmax DC forward current copyright Vincotech T h = 80 °C T c = 80 °C T h = 80 °C T c = 80 °C 8 11 17 25 175 2 A W °C 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit IF 10 A P tot 10 W V CEO 45 V Collector current IC 500 Peak collector current I CM Base current IB 100 Peak base current I BM 200 mA T jmax 150 °C IF 8 A P tot 5 W U MAX 500 V Supply voltage U CC 20 V Input voltage (LIN, HIN, EN) U IN 10 V U OUT V CC+0,5 V Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm PFC Shunt DC forward current Power dissipation PFC Driver* Collector-emitter voltage Maximum Junction Temperature t P ≤ 10 ms 1000 mA * for more information see infineon's datasheet BC817 DC - Shunt DC forward current Power dissipation DC link Capacitor Maximum DC voltage Gate Driver Output voltage (FAULT) Thermal Properties Insulation Properties Insulation voltage Comparative tracking index copyright Vincotech V is t=2s CTI DC voltage >200 3 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] I C [A] or V GE [V] or or I [A] or V CE [V] or F V GS [V] I D [A] V DS [V] T j [°C] Min Typ Unit Max Input Rectifier Diode Forward voltage VF 7 Threshold voltage (for power loss calc. only) V to 7 Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink 7 1200 R th(j-s) Phase-Change Material λ = 3,4W/mK V GE(th) V CE = V GE 25 125 25 125 25 125 25 125 1,04 0,97 0,87 0,74 25 33 V V mΩ 0,01 mA K/W 3,66 PFC IGBT Gate emitter threshold voltage Collector-emitter saturation voltage V CEsat 0,0003 15 30 Collector-emitter cut-off I CES 0 650 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time tr t d(off) E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink 10 tf Turn-on energy loss per pulse R th(j-s) 3,3 4 4,7 2,12 2,44 2,22 0,04 120 none U CC = 15 V 400 Fall time 25 125 25 125 25 125 25 125 25 125 25 125 25 125 25 125 25 125 25 125 V V mA nA Ω 27 28 5 7 122 154 2 2 0,1516 0,2417 0,0317 0,0583 ns mWs 2100 f = 1 MHz 0 25 25 45 pF 7,7 15 520 30 25 65 Phase-Change Material λ = 3,4W/mK nC 2,56 K/W PFC Inverse Diode Diode forward voltage Thermal resistance chip to heatsink VF R th(j-s) 10 25 125 Phase-Change Material λ = 3,4W/mK 1,23 1,12 0,97 1,87 7,75 V K/W PFC Diode Forward voltage VF Reverse leakage current I rm Peak recovery current I RRM Reverse recovery time t rr Reverse recovery charge Q rr Reverse recovered energy E rec Peak rate of fall of recovery current ( di rf/dt )max Thermal resistance chip to heatsink R th(j-s) ±15 400 U CC = 15 V 400 Phase-Change Material λ = 3,4W/mK 10 10 25 125 25 125 25 125 25 125 25 125 25 125 25 125 1,92 1,97 2,22 1,6 15 19 22 36 0,2008 0,4358 0,0150 0,0504 2033 891 V µA A ns µC mWs A/µs 3,87 K/W 50 mΩ PFC Shunt R1 value copyright Vincotech R 4 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] I C [A] or V GE [V] or or I [A] or V CE [V] or F V GS [V] I D [A] V DS [V] Unit T j [°C] Min Typ Max 25 125 25 125 25 125 25 125 25 125 25 125 25 125 25 125 25 125 4,4 5 5,6 0,8 2,20 2,32 2,62 Inverter Transistor Gate emitter threshold voltage V GE(th) Collector-emitter saturation voltage * V CEsat Collector-emitter cut-off current incl. Diode I CES Turn-on delay time ** t d(on) Rise time Turn-off delay time ** Fall time 0,00017 15 10 600 0 tr t d(off) U CC = 15 V 400 U IN = 5 V tf Turn-on energy loss per pulse E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Thermal resistance chip to heatsink VCE=VGE R th(j-s) 6 0,1 582 631 20 25 837 950 16 22 0,1950 0,3241 0,1611 0,2042 V V mA ns mWs 655 f = 1 MHz 25 0 25 37 pF 22 Phase-Change Material λ = 3,4W/mK 4,72 K/W * chip data ** including gate driver Inverter Diode Diode forward voltage Peak reverse recovery current VF I RRM Reverse recovery time t rr Reverse recovered charge Q rr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink 10 U CC=15V U IN=5V ( di rf/dt )max E rec R th(j-s) 400 6 25 125 25 125 25 125 25 125 25 125 25 125 Phase-Change Material λ = 3,4W/mK 0,7 2,23 2,18 6 6 179 276 0,3566 0,6738 181 46 0,0867 0,1610 2,8 V A ns µC A/µs mWs 5,72 K/W 25 mΩ DC - Shunt R2 value copyright Vincotech 25 R 5 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Characteristic Values Parameter Conditions Symbol V r [V] I C [A] or V GE [V] or or I [A] or V CE [V] or F V GS [V] I D [A] V DS [V] Value T j [°C] Min Unit Typ Max Gate Driver Supply voltage V CC Quiescent Vcc supply current IQCC Input voltage (LIN, HIN, EN) VIN 25 0 Logic "0" input voltage (LIN, HIN) VIH 25 Logic "1" input voltage (LIN, HIN) VIL 25 U LIN = 0 V; U HIN=3,3 V 13 15 17,5 V 1,3 2 mA 1,7 2,1 2,4 25 U CC = 15 V 5 25 0,7 0,9 1,1 Positive going threshold voltage (EN) VEN, TH+ 25 1,9 2,1 2,3 Negative going threshold voltage (EN) VEN, TH- 25 1,1 1,3 1,5 25 9 10,3 12 25 380 445 510 100 V Input clamp voltage (LIN, HIN, EN) ITRIP positive going threshold VIN, CLAMP I IN = 4 mA VIT, TH+ Input bias current LIN high I LIN+ U LIN = 3,3 V 25 70 Input bias current LIN low I LIN- U LIN = 0 V 25 110 200 Input bias current HIN high I HIN+ U HIN = 3,3 V 25 70 100 Input bias current HIN low I HIN- U HIN = 0 V 25 110 120 Input bias current EN high IEN+ U HIN = 3,3 V 25 45 120 Output voltage (FAULT) V FLT Low on resistor of pull down trans. (FAULT) Pulse width for ON or OFF RON, FLT 25 U FAULT = 0,5 V 0 45 25 tIN 25 1 mV µA U CC V 100 Ω µs Turn-on propagation delay (LIN, HIN) tON 25 400 530 800 Turn-off propagation delay (LIN, HIN) tOFF 25 360 490 760 FAULT reset time tRST 25 Fixed deadtime between high and low side tDT U LIN/HIN = 0 V or 3,3 V ns U LIN/HIN = 0 V & 3,3 V 25 150 4 ms 310 ns 22000 Ω Thermistor Rated resistance 25 R Deviation of R 100 ΔR/R Power dissipation P R 100 = 1486 Ω 25 Power dissipation constant -12 12 % 25 200 mW 25 2 mW/K B-value B (25/50) Tol. ±3% 25 3950 K B-value B (25/100) Tol. ±3% 25 3998 K Vincotech NTC Reference copyright Vincotech 25 6 B 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Output Inverter Figure 1 Typical output characteristics I C = f(V CE) Output inverter IGBT Figure 2 Typical output characteristics I C = f(V CE) 35 IC (A) IC (A) 35 Output inverter IGBT 30 30 25 25 20 20 15 15 10 10 5 5 0 0 0 At tp = Tj = U CC from 1 2 3 4 V CE (V) 5 0 1 At tp = Tj = U CC from 250 µs 25 °C 10 V to 17 V in steps of 1 V 2 3 4 V CE (V) 5 250 µs 125 °C 10 V to 17 V in steps of 1 V Figure 3 Typical diode forward current as a function of forward voltage I F = f(V F) Output inverter FWD IF (A) 40 35 30 25 20 15 10 Tj = Tjmax-25°C 5 Tj = 25°C 0 0 At tp = copyright Vincotech 7 1 250 2 3 4 V F (V) 5 µs 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Output Inverter Figure 4 Typical switching energy losses as a function of collector current E = f(I C) Output inverter IGBT E (mWs) 0,6 Eon High T 0,5 0,4 Eon Low T Eoff High T 0,3 Eoff Low T 0,2 0,1 0,0 0 2 4 6 8 10 I C (A) 12 With an inductive load at Tj = °C 25/125 V CE = 400 V U CC 15 V Figure 5 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Output inverter FWD 0,20 E (mWs) Erec Tj = Tjmax -25°C 0,15 Tj = 25°C Erec 0,10 0,05 0,00 0 2 4 6 8 10 12 I C (A) With an inductive load at Tj = 25/125 °C V CE = 400 V U CC 15 V copyright Vincotech 8 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Output Inverter Figure 6 Typical switching times as a function of collector current t = f(I C) Output inverter IGBT t ( µs) 10,00 tdoff 1,00 tdon 0,10 tr tf 0,01 0,00 0 2 4 6 8 I C (A) 10 With an inductive load at Tj = 125 °C V CE = 400 V U CC 15 V Figure 7 Typical reverse recovery time as a function of collector current t rr = f(I C) Output inverter FWD t rr( µs) 0,35 Tj = Tjmax -25°C trr 0,30 0,25 trr Tj = 25°C 0,20 0,15 0,10 0,05 0,00 0 At Tj = V CE = U CC 2 25/125 400 15 copyright Vincotech 4 6 8 10 I C (A) 12 °C V V 9 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Output Inverter Figure 8 Typical reverse recovery charge as a function of collector current Q rr = f(I C) Output inverter FWD Qrr( µC) 1,0 Tj = Tjmax -25°C Qrr 0,8 0,6 Tj = 25°C Qrr 0,4 0,2 0,0 0 At At Tj = V CE = U CC 2 25/125 400 15 4 6 8 10 I C (A) 12 °C V V Figure 9 Typical reverse recovery current as a function of collector current I RRM = f(I C) Output inverter FWD 6 IrrM (A) IRRM Tj = Tjmax -25°C IRRM 5 Tj = 25°C 4 3 2 1 0 0 At Tj = V CE = U CC 2 25/125 400 15 copyright Vincotech 4 6 8 10 I C (A) 12 °C V V 10 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Output Inverter Figure 10 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I C) Output inverter FWD direc / dt (A/µ s) 600 dI0/dt dIrec/dt 500 400 300 200 100 0 0 At Tj = V CE = U CC 2 25/125 400 15 4 6 8 10 I C (A) 12 °C V V Figure 11 IGBT transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) Output inverter IGBT Figure 12 FWD transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) Zth(j-s) (K/W) 101 Zth(j-s) (K/W) 101 100 100 10 -1 10 -2 Output inverter FWD D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 At D = R th(j-s) = 10-4 10-3 10-2 10-1 100 t p (s) 10110 tp/T 4,72 K/W 10-5 10-4 At D = R th(j-s) = tp/T IGBT thermal model values R (K/W) 0,14 0,66 2,74 0,76 0,42 copyright Vincotech 5,72 10-3 10-2 10-1 100 t p (s) 10110 K/W FWD thermal model values Tau (s) 2,1E+00 1,7E-01 4,0E-02 6,5E-03 1,5E-03 R (K/W) 0,11 0,37 2,69 0,84 0,98 0,73 11 Tau (s) 3,2E+00 2,6E-01 4,8E-02 1,2E-02 2,8E-03 6,0E-04 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Output Inverter Output inverter IGBT Figure 14 Collector current as a function of heatsink temperature I C = f(T s) 40 Output inverter IGBT 14 IC (A) Ptot (W) Figure 13 Power dissipation as a function of heatsink temperature P tot = f(T s) 35 12 30 10 25 8 20 6 15 4 10 2 5 0 0 0 At Tj = 50 175 100 150 T s ( o C) 0 200 At Tj = U CC °C Figure 15 Power dissipation as a function of heatsink temperature P tot = f(T s) Output inverter FWD 50 175 15 100 T s ( o C) 200 °C V Figure 16 Forward current as a function of heatsink temperature I F = f(T s) Output inverter FWD 14 IF (A) Ptot (W) 35 150 30 12 25 10 20 8 15 6 10 4 5 2 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T s ( o C) 200 0 At Tj = °C 12 50 175 100 150 T s ( o C) 200 °C 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Output Inverter Figure 17 Safe operating area as a function of collector-emitter voltage I C = f(V CE) Output inverter IGBT IC (A) 103 1mS 100uS 10mS 100mS 10 2 DC 101 100 10 -1 100 At U CC Tj = 10 15 T jmax 1 10 V CE (V) 2 103 V ºC Figure 18 Reverse bias safe operating area Output inverter IGBT I C = f(V CE) IC (A) 25 Ic CHIP 20 Ic MODULE 15 10 VCE MAX 5 0 0 At Tj = 100 200 T jmax-25 copyright Vincotech 300 400 500 600 V CE (V) 700 ºC 13 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet PFC Figure 1 Typical output characteristics I C = f(V CE) PFC IGBT Figure 2 Typical output characteristics I C = f(V CE) PFC IGBT 120 IC (A) IC (A) 120 100 100 80 80 60 60 40 40 20 20 0 0 0 At tp = Tj = U CC from 1 2 3 4 5 V CE (V) 6 0 At tp = Tj = 250 µs 25 °C 7 V to 17 V in steps of 1 V U CC from 1 2 3 4 5 V CE (V) 6 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 3 Typical diode forward current as a function of forward voltage I F = f(V F) PFC FWD IF (A) 120 100 80 60 Tj = 25°C 40 Tj = Tjmax-25°C 20 0 0 At tp = copyright Vincotech 14 1 250 2 3 4 5 6 V F (V) 7 µs 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet PFC Figure 4 Typical switching energy losses as a function of collector current E = f(I C) PFC IGBT 0,5 E (mWs) Eon 0,4 Eon 0,3 0,2 Eoff 0,1 Eoff 0,0 0 5 10 15 20 I C (A) With an inductive load at Tj = 25/125 °C V CE = 400 V U CC = 15 V Figure 5 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) PFC IGBT E (mWs) 0,08 Erec Tj = Tjmax -25°C 0,06 0,04 Tj = 25°C Erec 0,02 0,00 0 5 10 15 I C (A) 20 With an inductive load at Tj = 25/125 °C V CE = 400 V U CC = 15 V copyright Vincotech 15 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet PFC Figure 6 Typical switching times as a function of collector current t = f(I C) PFC IGBT t ( µs) 1,00 tdoff 0,10 tdon tr 0,01 tf 0,00 0 5 10 15 I C (A) 20 With an inductive load at Tj = 125 °C V CE = 400 V U CC = 15 V Figure 7 Typical reverse recovery time as a function of collector current t rr = f(I c) PFC FWD 0,05 t rr( µs) trr 0,04 0,03 trr 0,02 0,01 0,00 0 At Tj = V CE = U CC = 5 25/125 400 15 copyright Vincotech 10 15 I C (A) 20 °C V V 16 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet PFC Figure 8 Typical reverse recovery charge as a function of collector current Q rr = f(I C) PFC FWD 0,6 Qrr ( µC) Qrr Tj = Tjmax - 25°C 0,5 0,4 0,3 Qrr Tj = 25°C 0,2 0,1 0,0 At At Tj = V CE = 0 U CC = 5 25/125 400 15 10 15 I C (A) 20 °C V V Figure 9 Typical reverse recovery current as a function of collector current I RRM = f(I C) PFC FWD IrrM (A) 20 Tj = Tjmax - 25°C IRRM 15 Tj = 25°C IRRM 10 5 0 0 At Tj = V CE = U CC = 5 25/125 400 15 copyright Vincotech 10 15 I C (A) 20 °C V V 17 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet PFC Figure 10 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) PFC FWD direc / dt (A/ µs) 7000 dI0/dt dIrec/dt 6000 5000 4000 3000 2000 1000 0 0 At Tj = V CE = U CC = 5 25/125 400 15 10 15 I C (A) 20 °C V V Figure 11 IGBT transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) PFC IGBT Figure 12 FWD transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) 101 Zth(j-s) (K/W) Zth(j-s) (K/W) 101 PFC FWD 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 10 -2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10-5 At D = R th(j-s) = 10-4 10-3 10-2 10-1 100 t p (s) 10110 10-5 At D = R th(j-s) = tp/T 2,56 K/W IGBT thermal model values R (K/W) 0,21 1,120 0,829 0,314 0,078 copyright Vincotech 10-4 10-3 10-2 10-1 100 t p (s) 10110 tp/T 3,87 K/W FWD thermal model values Tau (s) 0,780 0,117 0,044 0,005 0,001 R (K/W) 0,11 0,56 2,29 0,62 0,28 18 Tau (s) 2,763 0,226 0,051 0,008 0,002 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet PFC Figure 13 Power dissipation as a function of heatsink temperature P tot = f(T s) PFC IGBT Figure 14 Collector current as a function of heatsink temperature I C = f(T s) 25 IC (A) Ptot (W) 75 PFC IGBT 60 20 45 15 30 10 15 5 0 0 0 At Tj = 50 175 100 150 T s ( o C) 200 0 At Tj = ºC U CC = Figure 15 Power dissipation as a function of heatsink temperature P tot = f(T s) PFC FWD 50 175 15 100 150 200 ºC V Figure 16 Forward current as a function of heatsink temperature I F = f(T s) PFC FWD 20 IF (A) Ptot (W) 50 T s ( o C) 40 15 30 10 20 5 10 0 0 At Tj = 50 175 copyright Vincotech 100 150 T s ( o C) 0 200 0 At Tj = ºC 19 50 175 100 150 T s ( o C) 200 ºC 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet PFC Figure 17 Safe operating area as a function of collector-emitter voltage I C = f(V CE) PFC IGBT IC (A) 103 102 10uS 100mS 100uS 1mS 10mS 101 DC 100 10-1 102 101 103 V CE (V) At D = Ts = U CC = Tj = single pulse 80 ºC V 15 T jmax ºC Figure 18 Reverse bias safe operating area PFC IGBT I C = f(V CE) IC (A) 70 Ic CHIP 60 Ic MODULE 50 40 30 20 VCE MAX 10 0 0 At Tj= 100 200 T jmax-25 copyright Vincotech 300 400 500 600 V CE (V) 700 ºC 20 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet PFC Inverse Diode Figure 1 Typical diode forward current as a function of forward voltage I F = f(V F) PFC Inverse Diode Figure 2 Thyristor transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) 25 1 ZthJC (K/W) IF (A) 10 PFC Inverse Diode 20 100 15 10-1 10 10-2 5 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-3 Tj = Tjmax-25°C Tj = 25°C 0 10-4 0 At tp = 1 2 3 4 V F (V) 5 10 -5 10 -4 10 At 250 -3 D = 10 -2 10 -1 10 0 t p (s) 10 21 tp/T µs R th(j-s) = Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T s) PFC Inverse Diode 7,75 K/W Figure 4 Forward current as a function of heatsink temperature I F = f(T s) 10 Ptot (W) IF (A) 25 PFC Inverse Diode 20 8 15 6 10 4 5 2 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T s ( o C) 200 0 At Tj = ºC 21 50 175 100 150 T s ( o C) 200 ºC 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Input Rectifier Bridge Figure 1 Typical diode forward current as a function of forward voltage I F= f(V F) Rectifier Diode Figure 2 Diode transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) Rectifier Diode IF (A) Zth(j-s) (K/W) 25 20 15 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 5 Tj = 25°C Tj = Tjmax-25°C 0 0,0 At tp = 0,5 250 1,0 1,5 V F (V) 2,0 t p (s) At D = R th(j-s) = µs Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T s) Rectifier diode 10 tp/T 3,66 K/W Figure 4 Forward current as a function of heatsink temperature I F = f(T s) 30 Ptot (W) IF (A) 50 Rectifier diode 25 40 20 30 15 20 10 10 5 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T s ( o C) 200 0 At Tj = ºC 22 50 150 100 150 T s ( o C) 200 ºC 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Shunt PFC Shunt PLOW (W) 103 Figure 2 Pulse Power R2 DC Shunt 103 Single Repetitive PLOW (W) Figure 1 Pulse Power R1 Single Repetitive 102 102 101 101 100 0 10 -1 0 10 1 10 2 10 3 10 4 10 10 t pulse (ms) 10-1 dR /R 0 < 5% after 1 pulse dR /R 0 < 5% after 10.000 cycles; duty cycle< 0,1% 100 101 102 103 104 t pulse (ms) dR /R 0 < 1% after 1 pulse dR /R 0 < 1% after 10.000 cycles; duty cycle< 0,1% Thermistor Figure 1 Typical NTC characteristic as a function of temperature R T = f(T ) Thermistor NTC-typical temperature characteristic R (Ω) 24000 20000 16000 12000 8000 4000 0 25 45 copyright Vincotech 65 85 105 T (°C) 125 23 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Switching Definitions Output Inverter General conditions Tj = 125 °C Figure 1 Output inverter IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 Output inverter IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 200 125 % tdoff IC % VCE 100 150 VCE 90% UIN 90% 75 IC UIN 100 UIN 50 VCE tdon tEoff 50 25 UIN10% IC 1% 0 -25 -0,2 IC10% 0 VCE 3% tEon -50 0 0,2 0,4 0,6 0,8 1 1,2 2,9 3,1 3,3 3,5 3,7 U IN (0%) = U IN (100%) = V C (100%) = I C (100%) = t doff = t E off = 0 5 400 6 0,95 1,12 3,9 time(us) time (us) V V V A µs µs U IN (0%) = U IN (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Output inverter IGBT Turn-off Switching Waveforms & definition of t f 0 5 400 6 0,63 0,84 V V V A µs µs Figure 4 Output inverter IGBT Turn-on Switching Waveforms & definition of t r 125 200 fitted % % VCE IC 175 100 150 IC 90% 75 125 VCE IC 60% 100 50 IC90% 75 IC 40% 25 tr 50 IC10% 0 25 tf -25 0,6 0,7 0,8 0,9 1 1,1 IC10% Ic 0 -25 1,2 3,5 3,6 3,7 3,8 V C (100%) = I C (100%) = tf = copyright Vincotech 400 6 0,02 3,9 4 time(us) time (us) V A µs V C (100%) = I C (100%) = tr = 24 400 6 0,03 V A µs 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Switching Definitions Output Inverter Figure 5 Output inverter IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Output inverter IGBT Turn-on Switching Waveforms & definition of t Eon 125 200 % % Pon Eoff 100 150 Poff 75 Eon 100 50 50 25 IC 1% UIN 90% UIN 10% VCE 3% 0 tEon 0 tEoff -25 -0,2 -50 0 0,2 0,4 0,6 0,8 1 2,9 1,2 3,1 3,3 3,5 P off (100%) = E off (100%) = t E off = 2,39 0,20 1,12 3,7 3,9 time(us) time (us) kW mJ µs P on (100%) = E on (100%) = t E on = 2,39 0,32 0,84 kW mJ µs Figure 7 Output inverter FWD Turn-off Switching Waveforms & definition of t rr 120 Id % 80 trr 40 fitted Vd 0 IRRM10% -40 -80 IRRM 90% IRRM 100% -120 3,5 3,6 3,7 3,8 3,9 4 time(us) V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 400 6 -6 0,28 V A A µs 25 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Switching Definitions Output Inverter Figure 8 Output inverter FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 Output inverter FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 125 % % Id 100 Qrr Erec 100 tQrr 50 75 0 50 -50 25 -100 0 -150 tErec Prec -25 3,5 3,6 3,7 3,8 3,9 4 4,1 4,2 4,3 3,6 3,8 4 time(us) I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 6 0,67 0,55 A µC µs P rec (100%) = E rec (100%) = t E rec = 26 2,39 0,16 0,55 4,2 time(us) 4,4 kW mJ µs 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Switching Definitions PFC General conditions Tj = 125 °C Figure 1 PFC IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 PFC IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 125 300 tdoff % % 100 250 VGE 90% VCE 90% IC 75 200 IC VGATE 50 tEoff 150 VGATE 25 VCE IC 1% VCE 100 0 tdon 50 -25 VGATE10% -75 -0,1 -0,05 0 0,05 0,1 0,15 tEon -50 2,95 0,2 VCE3% IC10% 0 -50 3 3,05 3,1 3,15 time(us) time (us) V GATE (0%) = V GATE (100%) = V C (100%) = I C (100%) = t doff = t E off = 0 5 400 10 0,15 0,19 V V V A µs µs V GATE (0%) = V GATE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Turn-off Switching Waveforms & definition of t f PFC IGBT 0 5 400 10 0,03 0,08 V V V A µs µs Figure 4 Turn-on Switching Waveforms & definition of t r 150 PFC IGBT 300 % VCE % 125 Ic 250 fitted IC 100 Ic 90% 200 75 Ic 60% 150 50 Ic 40% 25 VCE 100 Ic10% tr tf 0 IC 90% 50 -25 -75 0,05 IC 10% 0 -50 -50 0,075 0,1 0,125 0,15 3 0,175 3,02 3,04 3,06 V C (100%) = I C (100%) = tf = copyright Vincotech 400 10 0,002 3,08 3,1 time(us) time (us) V A µs V C (100%) = I C (100%) = tr = 27 400 10 0,007 V A µs 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Switching Definitions PFC Figure 5 PFC IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 PFC IGBT Turn-on Switching Waveforms & definition of t Eon 125 250 % % Pon Eoff 100 200 Ic 1% 75 150 Poff 50 Eon 100 25 VGATE90% 50 0 tEoff VGATE10% 0 -25 -50 -0,05 0 0,05 P off (100%) = E off (100%) = t E off = 3,99 0,06 0,19 0,1 0,15 time (us) -50 2,95 0,2 kW mJ µs P on (100%) = E on (100%) = t E on = Uce 3% tEon 3 3,05 3,99 0,24 0,085 3,1 time(us) 3,15 kW mJ µs Figure 7 PFC FWD Turn-off Switching Waveforms & definition of t rr 150 % Id 100 trr 50 fitted Ud 0 IRRM10% -50 -100 -150 IRRM90% IRRM100% -200 3 3,025 3,05 3,075 3,1 time(us) V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 400 10 -19 0,04 V A A µs 28 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Switching Definitions PFC Figure 8 PFC FWD Turn-on Switching Waveforms & definition of t Qrr (t Qrr= integrating time for Q rr) Figure 9 PFC FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 % 125 Id % Qrr 100 tQint 50 Erec 100 tErec 75 0 50 -50 25 -100 0 -150 -25 Prec -200 3,02 3,04 I d (100%) = Q rr (100%) = t Qint = copyright Vincotech 3,06 10 0,44 0,07 3,08 3,1 time(us) -50 3,02 3,12 A µC µs P rec (100%) = E rec (100%) = t E rec = 29 3,04 3,06 3,99 0,05 0,07 3,08 3,1 time(us) 3,12 kW mJ µs 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste, solder pins with thermal paste, solder pins without thermal paste, press fit pins with thermal paste, press fit pins Ordering Code in DataMatrix as in packaging barcode as 20-1B06IPB004RC01-P955A45 20-1B06IPB004RC01-P955A45-/3/ 20-PB06IPB004RC01-P955A45Y 20-PB06IPB004RC01-P955A45Y-/3/ P955A45 P955A45 P955A45Y P955A45Y P955A45 P955A45 P955A45Y P955A45Y Outline Pin Pin table X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 45 42 39 36 33 30 27 24 21 18 15 12 9 6 3 0 -0,2 4,8 9,8 14,8 19,8 22,5 25,2 30,2 35,2 40,2 45,2 Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 Pinout copyright Vincotech 30 01 Mar. 2016 / Revision 3 20-PB06IPB010RC01-P955A45Y 20-1B06IPB010RC01-P955A45 datasheet Packaging instruction Standard packaging quantity (SPQ) >SPQ 100 Standard <SPQ Sample Handling instruction Handling instructions for flow 1B packages see vincotech.com website. Package data Package data for flow 1B packages see vincotech.com website. UL recognition and file number This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website. Document No.: Date: 20-xB06IPB004RC01-P955A45x-D3-14 01 Mar. 2016 Modification: Pages DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in la 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 31 01 Mar. 2016 / Revision 3