10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y application sheet NPC Application flow NPC 1 600 V / 100 A General conditions V GEon V GEoff R gon R goff BUCK = 15 V = = = -15 V 8Ω 8Ω V out= 230 VAC Figure 1. Buck IGBT V GEon BOOST = 15 V V GEoff R gon R goff = = = -15 V 8Ω 8Ω Figure 2. Typical average static loss as a function of output current I oRMS P loss=f(I out) Buck FWD Typical average static loss as a function of output current I oRMS P loss=f(I out) 70 ●UPS Ploss (W) Ploss (W) 50 φ=0º 60 φ=90º 40 50 30 40 30 20 20 φ=0º 10 10 φ=180º 0 0 0 20 40 Conditions: T j= 150 parameter: φ from 60 80 100 I (A) out 0 120 °C 0° 12 in to steps Figure 3. 180° 20 40 60 Conditions: T j= 150 parameter: φ from 100 0° 12 to steps Figure 4. Typical average static loss as a function of phase displacement φ P loss=f(φ ) I out (A) 120 °C in Buck IGBT 80 180° Buck FWD Typical average static loss as a function of phase displacement φ P loss=f(φ ) Ploss (W) 50 Ploss (W) 70 IoutRMS=Imax 60 IoutRMS=Imax 40 50 30 40 30 20 20 10 10 IoutRMS=6% Imax IoutRMS=6%Imin 0 0 0 Conditions: parameter: 50 T j= I oRMS 150 from in steps of copyright Vincotech 100 150 °C 6,67 A to 13 φ( º ) 200 0 Conditions: parameter: 100 A A 50 T j= I oRMS 100 150 from in steps of 1 150 °C 6,67 A 13 to φ( º ) 200 100 A A 17 May. 2016 / Revision 3 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y application sheet NPC Application flow NPC 1 Figure 5. Buck IGBT 600 V / 100 A Figure 6. Typical average switching loss as a function of phase displacement φ P loss=f(φ ) Buck FWD Typical average switching loss as a function of phase displacement φ P loss=f(φ ) Ploss (W) 25 Ploss (W) 60 IoutRMS=Imax IoutRMS=Imax 50 20 40 15 30 10 20 5 10 IoutRMS=6% Imax IoutRMS=6% Imax 0 0 Conditions: parameter: 50 100 T j= f sw= 150 20 °C kHz DC link= I oRMS 700 from V 150 13 Figure 7. 0 200 Conditions: 6,67 A in steps of φ( º ) to 100 A parameter: 50 100 T j= f sw= 150 20 °C kHz DC link= I oRMS 700 from V A 6,67 A in steps of Buck IGBT 13 Figure 8. Typical total loss as a function of phase displacement φ and output current I oRMS P loss=f(I oRMS;φ ) 87 P loss (W) 93 87 50-60 80 80 73 73 67 67 40-50 60 60 53 53 30-40 47 60-80 47 40 40 33 40-60 33 20-30 27 27 20 20 13 20-40 0 10-20 13 7 15 30 45 60 75 90 105 120 135 150 165 180 0 7 15 30 45 60 75 90 105 120 135 150 165 180 0-10 0-20 φ( º ) Conditions: 100 A A Buck FWD 100-120 80-100 to 200 100 IoutRMS 93 φ( º ) Typical total loss as a function of phase displacement φ and output current I oRMS P loss=f(I oRMS;φ ) 100 P loss (W) 150 IoutRMS 0 T j= 150 °C DC link= f sw= 700 20 V kHz copyright Vincotech φ( º ) Conditions: 2 T j= 150 °C DC link= f sw= 700 20 V kHz 17 May. 2016 / Revision 3 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y application sheet NPC Application flow NPC 1 Figure 9. for Buck IGBT+FWD 600 V / 100 A Figure 10. for Buck IGBT+FWD Typical available output current as a function of phase displacement φ Typical available output current as a function of switching frequency f sw I out=f(φ ) I out=f(f sw) Iout (A) 160 Iout (A) 160 Th=50°C Th=50°C 140 140 120 120 100 100 80 80 Th=100°C 60 60 Th=100°C 40 40 20 20 0 0 0 30 60 90 120 150 180 1 φ Conditions: T j= T jmax-25 °C f sw= 700 V parameter: Heatsink temp. 50 °C to T h from 100 in steps °C Figure 11. 100 fsw (kHz) 20 kHz Conditions: DC link= 10 10 °C φ= 0 ° T j= T jmax-25 °C DC link= 700 parameter:Heatsink temp. T h from 50 in 10 V °C to 100 °C steps °C for Buck IGBT+FWD Typical available 50Hz output current as a function of f sw and phase displacement φ I out=f(f sw,φ ) 180 φ 165 I out (A) 150 135 120-140 120 100-120 105 90 80-100 75 60-80 60 45 40-60 30 20-40 15 0-20 2 4 8 16 32 64 0 128 fsw (kHz) Conditions: T j= T jmax-25 °C DC link= T h= copyright Vincotech 700 80 V °C 3 17 May. 2016 / Revision 3 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y application sheet flow NPC 1 NPC Application Figure 12. Boost IGBT 600 V / 100 A Figure 13. Typical average static loss as a function of output current P loss=f(I out) Boost FWD Typical average static loss as a function of output current P loss=f(I out) 60 Ploss (W) Ploss (W) 100 φ=0º φ=180º 50 80 40 60 30 40 20 20 10 φ=180º φ=0º 0 0 0 20 40 60 80 100 120 0 Iout (A) Conditions: T j= 150 parameter: φ from in °C 0° 12 to steps Figure 14. 180º Boost IGBT 20 40 60 Conditions: T j= 150 parameter: φ from in 100 Iout (A) 120 °C 0° 12 to steps Figure 15. Typical average static loss as a function of phase displacement P loss=f(φ ) 180º Boost FWD Typical average static loss as a function of phase displacement P loss=f(φ ) FWD D1 60 Ploss (W) 100 Ploss (W) 80 IoutRMS=Imax IoutRMS=Imax 50 80 40 60 30 40 20 20 10 IoutRMS=6% Imax IoutRMS=6% Imax 0 0 0 Conditions: parameter: 50 T j= I oRMS 100 150 from in steps of copyright Vincotech 150 φ( º ) 200 0 °C 7 A to Conditions: parameter: 100 A 13 A 50 T j= I oRMS 100 150 from in steps of 4 150 φ( º ) 200 °C 7 A to 100 A 13 A 17 May. 2016 / Revision 3 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y application sheet flow NPC 1 NPC Application Figure 16. Boost IGBT 600 V / 100 A Figure 17. Typical average switching loss as a function of phase displacement P loss=f(φ ) Boost FWD Typical average switching loss as a function of phase displacement P loss=f(φ ) Ploss (W) 25 Ploss (W) 70 IoutRMS=Imax 60 IoutRMS=Imax 20 50 15 40 30 10 20 5 IoutRMS=6% Imax 10 IoutRMS=6% Imax 0 0 0 50 Conditions: 100 150 T j= 150 °C DC link= parameter: I oRMS 700 from V in steps of φ( º ) f sw= 7 A to 13 A A Figure 18. 0 200 50 100 150 20 kHz Conditions: T j= 150 °C 700 from V 100 A DC link= parameter: I oRMS in steps of Boost IGBT φ( º ) f sw= 20 kHz 7 A to 100 A 13 A A Figure 19. Boost FWD Typical total loss as a function of phase displacement and I outRMS Typical total loss as a function of phase displacement and I outRMS P loss=f(I oRMS;φ ) P loss=f(I oRMS;φ ) 87 93 IoutRMS P loss (W) P loss (W) 80 80-100 87 80 70-80 73 73 60-70 67 67 60 60 60-80 50-60 53 53 47 47 40-50 40 40-60 IoutRMS 100 100 93 200 40 33 33 30-40 27 27 20 20-40 20 20-30 13 0 0-20 13 7 15 30 45 60 75 90 105 120 135 150 165 180 10-20 0 7 15 30 45 60 75 90 105 120 135 150 165 180 0-10 φ( º ) Conditions: T j= 150 °C DC link= f sw= 700 20 V kHz copyright Vincotech φ( º ) Conditions: 5 T j= 150 °C DC link= f sw= 700 20 V kHz 17 May. 2016 / Revision 3 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y application sheet NPC Application flow NPC 1 Figure 20. Boost IGBT+FWD 600 V / 100 A Figure 21. Typical available output current as a function of of phase displacement I out=f(φ ) Boost IGBT+FWD Typical available output current as a function of switching frequency I out=f(f sw) Iout (A) 160 Iout (A) 160 Th=50°C 140 Th=50°C 140 120 120 100 100 80 80 Th=100°C Th=100°C 60 60 40 40 20 20 0 0 30 60 90 120 150 0 180 1 φ( º ) Conditions: T j= T jmax-25 °C f sw= 700 V parameter: Heatsink temp. 50 °C to T h from 20 kHz Conditions: DC link= in 10 10 100 T j= T jmax-25 °C 1000 φ = 90° DC link= 100 °C 700 V parameter: Heatsink temp. T h from 50 °C to f sw (kHz) °C steps Figure 22. in 10 °C 100 °C steps Boost IGBT+FWD Typical available 50Hz output current as a function of f sw and phase displacement I out=f(f sw,φ ) 180 I out (A) 165 φ 150 120-140 135 120 100-120 105 80-100 90 75 60-80 60 40-60 45 30 20-40 15 0-20 2 4 8 16 32 64 0 128 fsw (kHz) Conditions: T j= T jmax-25 °C DC link= T h= copyright Vincotech 700 80 V °C 6 17 May. 2016 / Revision 3 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y application sheet flow NPC 1 NPC Application Figure 23. per MODULE 600 V / 100 A Figure 24. Typical available output current as a function of heat sink temperature I out=f(T h) per MODULE Typical available output current as a function of phase displacement I out=f(φ ) 140 Iout (A) Iout (A) 140 2kHz 120 Th=50°C 120 100 100 80 80 60 60 40 40 Th=100°C 128kHz 20 20 0 0 60 70 Conditions: 80 90 T h ( o C) 0 100 T j= T jmax-25 °C DC link= φ= parameter: f sw from 700 0° Conditions: V 30 60 parameter: 128 kHz T h from in steps of factor 2 in Figure 25. per MODULE Typical available output current as a function of switching frequency I out=f(f sw) 120 150 700 20 180 V kHz Heatsink temp. 50 °C to 10 100 °C steps Figure 26. per MODULE Typical available 50Hz output current as a function of f sw and phase displacement I out=f(f sw,φ ) 140 180 Iout (A) φ T j= T jmax-25 °C DC link= f sw= Switching freq. 2 kHz to 90 Th=50°C φ 165 I out (A) 120 150 120-140 135 100 120 100-120 105 80-100 80 90 75 60-80 Th=100°C 60 60 40-60 45 40 20-40 30 15 0-20 20 2 4 8 16 32 64 0 128 0 1 10 Conditions: T j= T jmax-25 °C DC link= parameter: T h from in 50 700 V Heatsink temp. °C to 100 10 °C copyright Vincotech f sw (kHz) φ= 100 f sw (kHz) 0° Conditions: T j= T jmax-25 °C DC link= T h= 700 80 V °C steps 7 17 May. 2016 / Revision 3 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y application sheet flow NPC 1 NPC Application Figure 27. per MODULE 600 V / 100 A Figure 28. Typical efficiency as a function of output power η=f(P out) per MODULE Typical efficiency as a function of output power η=f(P out) 100 efficiency (%) efficiency (%) 100,0 2kHz 98 96 99,0 φ=0º 94 128kHz 92 98,0 φ=180º 90 88 97,0 86 84 96,0 0 5 Conditions: 10 T j= f sw= DC link= parameter: 150 20 15 20 P out (kVA) 0 25 Conditions: 700 V phase displacement T j= DC link= parameter: f sw from 0° to 180 ° Figure 29. 10 15 20 25 P out (kVA) °C kHz φ from in steps of 30 ° 5 150 700 φ= 0 ° °C V Switching freq. 2 kHz to 128 kHz in steps of factor 2 per MODULE Typical available output power as a function of heat sink temperature P out=f(T h) Pout (kW) 30 2kHz 25 20 15 10 128kHz 5 0 60 70 Conditions: 80 90 T h ( o C) 100 T j= T jmax-25 °C DC link= φ= parameter: f sw from 700 0 Switching freq. 2 kHz to V ° 128 kHz in steps of factor 2 copyright Vincotech 8 17 May. 2016 / Revision 3 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y application sheet flow NPC 1 NPC Application Figure 30. Typical loss distribution as a function of output current P out=f(T h) per MODULE 600 V / 100 A Figure 31. per MODULE Typical relativ loss distribution as a function of output current P out=f(T h) 300 1,0 Loss distribution Loss distribution Boost IGBT static 250 Boost IGBT static Buck Diode 200 switch Buck Diode switch Buck Diode 150 static Buck Diode static 0,8 0,6 0,4 Buck IGBT switch Buck IGBT 100 switch Buck IGBT static Buck IGBT 50 static 0,2 0,0 0 7 Conditions: 13 20 T j= f sw= DC link= φ= copyright Vincotech 27 33 150 20 700 0° 40 47 53 60 67 73 80 87 7 93 100 Iout (A) °C kHz V Conditions: 9 13 20 T j= f sw= DC link= φ= 27 33 150 20 700 0° 40 47 53 60 67 73 80 87 93 100 Iout (A) °C kHz V 17 May. 2016 / Revision 3