STMICROELECTRONICS TS4657

TS4657
Single supply stereo digital audio line driver
with 2.2 Vrms capless outputs
Features
■
■
95 dB SNR A-weighted at 48 kHz, VCC =5 V
No external capacitor needed for the negative
power supply generation
■
Integrated structure to suppress pop and click
noise
■
Available in thin QFN20 4 mm x 4 mm package
Applications
■
Digital set-top boxes
■
DVD players
■
Digital TVs
■
Notebooks
■
Portable audio equipment
■
Sound cards
GNDA
VREGA
VCCA
VOUTL
SDAT
11 VOUTR
5
6
MCLK
■
15 GNDA
LRCLK
BCLK
Internal negative power supply to ensure
ground-referenced, capless outputs
1
NC
7.4 mA current consumption at VCC = 3.0 V,
full operation
■
16
20
GNDD
10
GNDA
I²S, right- or left-justified compatible digital
audio interface
GNDD
■
Pin connections (top view)
STDBY
16- to 24-bit audio data format stereo DAC, 32
to 48 kHz sample rate
FORMAT1
■
VCCD
Audio line output: 2.2 Vrms for all VCC range
VREGD
■
NC
Single 3.0 to 5.5 V supply for DAC and line
driver
FORMAT2
■
Description
The TS4657 is a stereo DAC that integrates a
high-performance audio line driver capable of
generating a 2.2 Vrms output level from a single
3.0 to 5.5 V supply.
One single supply is sufficient for the digital and
analog parts of the circuit, thus eliminating the
need for external regulators.
The TS4657 is a low-power consumption device.
It features only 22 mW power dissipation at a
3.0 V power supply in full operation.
A 16-bit multi-bit sigma delta DAC is used,
operating at 256xFs with oversampling digital
interpolation filters. The digital audio data can be
16-to 24-bit long and sample rates from 32 to
48 kHz are supported.
The output stage signal is ground-referenced by
using an internal self-generated negative power
supply, and as such external bulky output
coupling capacitors are not necessary.
The TS4657 is packaged in a small 4 x 4 mm
QFN20 package, ideal for portable applications.
March 2009
Rev 1
1/26
www.st.com
26
Contents
TS4657
Contents
1
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1
Power characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3
DAC and output stage performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.1
3.4
Digital filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4.1
3.5
4
DAC digital filter response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical measurement curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1
5
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Serial audio interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.1
Master clock and data clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2
Digital audio input format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2
Power-management unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3
Recommended power-up and power-down sequences . . . . . . . . . . . . . . 21
4.3.1
Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.2
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1
QFN20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2/26
TS4657
1
Block diagram and pin description
Block diagram and pin description
Figure 1.
Block diagram
VCCA
VCCD
VREGA
VREGD
Power
management unit
MCLK
VOUTR
DAC
BCLK
Digital
Audio
Interface
LRCLK
SDAT
Digital
filters
VOUTL
DAC
Control
interface
FORMAT1
Table 1.
FORMAT2
STDBY
GNDD
GNDA
Pin description
Pin name
Pin
I/O
Function
GNDD
1
Supply
Digital ground, connected to GND
NC
2
Non-connected
This pin must remain non-connected.
pin
LRCLK
3
Digital input
Channel select clock input
SDAT
4
Digital input
Serial audio data input
BCLK
5
Digital input
Bit clock input
MCLK
6
Digital input
Master clock input
FORMAT2
7
Digital input
Selection of the digital data audio format.
FORMAT1
8
Digital input
Selection of the digital data audio format.
STDBY
9
Digital input
Input for Standby pin. STDBY=VIL: the TS4657 is in
shutdown mode.
GNDA
10
Supply
Analog ground, connect to GND.
VOUTR
11
Analog output
Right channel analog output
VOUTL
12
Analog output
Left channel analog output
VCCA
13
Supply
Main analog power supply, connected to VCCD
VREGA
14
Supply
Decoupling pin for the analog part
GNDA
15
Supply
Analog ground, connected to GND
GNDA
16
Supply
Analog ground, connect to GND
GNDD
17
Supply
Digital ground, connected to GND
VREGD
18
Supply
Decoupling pin for the digital part
VCCD
19
Supply
Main digital power supply. Connect to VCCA
NC
20
Non-connected
This pin must remain non-connected.
pin
3/26
Block diagram and pin description
Figure 2.
TS4657
Typical application schematics
VCCD VCCA
C2
C3
VCCA VCCD 10uF/6V3
J5
VCC
1
3v to 5V5
1uF
1uF
C1
C4
C5
1uF
1uF
14
13
19
2
20
1
18
J6
GND
Digital Input
SDAT
LRCLK
4
J3
J2
BCLK
6
MCLK
VOUTR
11
R7
820
C6
2nF2
C7
2nF2
GNDD
GNDD
GNDA
GNDA
GNDA
/STDBY
FORMAT2
Epad
1
17
10
15
16
9
FORMAT1
7
8
820
R5
12
TS4657
Control
Interface
Optional
VREGA
DACs
100K
R1
100K
R2
100K
R3
100K
R4
MCLK J1
VREGD
Interface
SDAT
5
BCLK
VOUTL
Audio
Digital
Filters
and
Digital
R6
10K
3
J4
R8
10K
LRCLK
VCCA
nc
nc
VCCD
IC1
1
2
3
1
2
3
1
2
3
VCCD
JP1
JP2
JP3
Format1 Format2
/Stdby
User Control
Figure 3.
Typical test schematics
VCCD VCCA
C2
C3
VCCA VCCD 10uF/6V3
VCC
1
1uF
1uF
C1
C4
C5
1uF
1uF
18
19
2
20
1
GND
13
J6
14
J5
Digital Input
LRCLK J4
SDAT
3
4
J3
5
BCLK J2
6
LRCLK
MCLK
VREGA
VREGD
Digital
Filters
and
VOUTL
Audio
Interface
DACs
VOUTR
Digital
SDAT
BCLK
VCCA
nc
nc
VCCD
IC1
9
/STDBY
FORMAT2
7
FORMAT1
8
1
2
3
1
2
3
1
2
3
VCCD
JP1
JP2
JP3
Format1 Format2
/Stdby
4/26
GNDD
GNDD
GNDA
GNDA
GNDA
TS4657
Control
Interface
1
17
10
15
16
100K
R1
100K
R2
100K
R3
100K
R4
MCLK J1
Epad
12
SMB
J7
11
J8
SMB
OUT L
OUT R
SMB
J7
J8
SMB
OUT L
OUT R
TS4657
Absolute maximum ratings
2
Absolute maximum ratings
Table 2.
Key parameters and their absolute maximum ratings
Symbol
Value
Unit
5.5
V
Digital input voltage
MCLK, BCLK, LRCLK, SDAT, FORMAT1, FORMAT2, STDBY
GND to VCC
V
Toper
Operating free air temperature range
-40 to + 85
°C
Tstg
Storage temperature
-65 to +150
°C
Maximum junction temperature
150
°C
Rthja
Thermal resistance junction to ambient
100
°C/W
ESD
Human body model
2
kV
ESD
Machine model
200
V
VCC
Vi
Tj
Parameter
Supply voltage (1)
Latch-up immunity
Lead temperature (soldering, 10 secs)
Class A
260
°C
1. All voltage values are measured with respect to ground.
5/26
Electrical characteristics
TS4657
3
Electrical characteristics
3.1
Power characteristics
Table 3.
VCC = 3.3 V T = 25° C (unless otherwise specified)
Symbol
Typ.
Max.
Unit
5.5
V
Power supply
ICC
Total supply current.
Full operation, RL = 10 KΩ, vstdby ≥ 2.0 V
VCC = 3.0 V
VCC = 5.0 V
7.4
8
9.5
9.8
Standby current consumption. VCC = 3 V to VCC = 5.5 V
Vstdby = 0 V
Vstdby = 0.8 V
25
50
1000
2000
nA
Typ.
Max.
Unit
3.0
mA
Package thermal characteristics
Table 4.
Operating conditions
Symbol
Rthja
Parameter
Thermal resistance junction to ambient for
1. With heat sink surface = 125 mm2.
6/26
Min.
VCC
ICCstby
3.2
Parameter
Min.
QFN20(1)
40
°C/W
TS4657
Electrical characteristics
3.3
DAC and output stage performances
Table 5.
VCC = 3.0 V to Vcc = 5.5 V, Rload = 10 kΩ Cload = 100 pF, T = 25° C
(unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
Operating conditions
Audio data input format
16
24
bits
Fs
Sampling frequency
32
48
kHz
RL
Load resistor
5
CL
Load capacitance
-
10
100
kΩ
150
pF
0.8
V
Digital input characteristics
VIL
Low-level input voltage
VIH
High-level input voltage
2
V
Dynamic parameters
VoutRMS
Table 6.
Full-scale output voltage swing
Vin at 0 dBFS; RL ≥ RLmin; CL=100 pF
2.1
Vrms
2.2
VCC = 3.3 V, Rload = 10 kΩ Cload = 100 pF, T = 25° C (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
Dynamic range. A-weighted
16-bit data; Vin at -60 dBFS, FS = 48 kHz, Fin = 1 kHz
88
93
dB
Signal-to-noise ratio, FS = 48 kHz, Fin = 1 kHz, referred to
output
Vin at -6 dBFS; A-weighted, 18-bit data input
Vin at -6 dBFS; unweighted, 18-bit data input
Vin at 0 dBFS; A-weighted, 16-bit data input
89
87
87
94.5
92.5
93
dB
74
72
82
81
dB
Dynamic parameters
DR
SNR
THD+N
Total harmonic distortion and noise. Fin = 1 kHz
Vin at -20 dBFS, 18-bit data input
Vin at -6 dBFS, 18-bit data input
Vin at 0 dBFS, 16-bit data input
PSRR
Power supply rejection ratio, Vripple = 200 mVpp
F= 217 Hz
F= 1 kHz
20 Hz < F < 20 kHz
80
71
46
dB
LRiso
Channel separation. 1 kHz, Vin at 0 dBFS
100
dB
Voo
twu
Output offset voltage
-20
Gain channel balance
-0.2
Wake-up time
0.01
4.5
20
mV
0.2
dB
ms
7/26
Electrical characteristics
Table 7.
TS4657
VCC = 5 V, Rload = 10 kΩ, Cload = 100 pF, T = 25° C (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
DR
Dynamic range; A-weighted
16-bit data; measured at -60 dBFS, FS = 48 kHz, Fin = 1 kHz
88
93
dB
89
95
93
93
dB
72
82.5
81.5
dB
SNR
Signal-to-noise ratio, FS = 48 kHz, Fin = 1 kHz, referred to
output
Vin at -6 dBFS; A-weighted, 18-bit data input
Vin at -6 dBFS; unweighted, 18-bit data input
Vin at 0 dBFS; A-weighted, 16-bit data input
Max.
Unit
THD+N
Total harmonic distortion and noise. Fin = 1 kHz
Vin at -20 dBFS
Vin at -6 dBFS
Vin at 0 dBFS
PSRR
Power supply rejection ratio, Vripple = 200 mVpp
F= 217 Hz
F= 1 kHz
20 Hz < F < 20 kHz
80
73
48
dB
LRiso
Channel separation. 1 kHz, Vin at 0 dBFS
100
dB
Voo
twu
74
Output offset voltage
-20
Gain channel balance
-0.2
3
Wake-up
time(1)
20
mV
0.01
0.2
dB
4.5
6
ms
1. See timing diagram in application information.
3.3.1
Terminology
SNR: signal-to-noise ratio is expressed in dB. The theoretical formula is:
2
⎛ VH 1 ⎞
SNR dB = 10 log ⎜ ------------------2-⎟
⎝ V noise ⎠
where Vnoise is the integrated noise from 20 Hz to 20 kHz and VH1 is the fundamental of the
signal.
For unweighted measurements, the SNR is given by:
2
SNR dB
VH 1
= 10 log ---------------------------------------------------------------------20kHz
∫
2
20Hz
u ( f ) ( v noise ( f ) ) df
where vnoise is the noise spectral density and u(f) is the unweighted filter transfer function
(20 Hz, 20 kHz).
For A-weighted measurements:
2
VH 1
SNR dB = 10 log ---------------------------------------------------------------------20kHz
A
∫
2
20Hz
A ( f ) ( v noise ( f ) ) df
where vnoise is the noise spectral density and A(f) is the A-weighted filter transfer function.
8/26
TS4657
Electrical characteristics
THD+N: total harmonic distortion and noise-to signal-ratio is expressed in dB. It is given by:
k
∑ VHi
2
+ V noise
2
i=2
THD + N dB = 10 log -----------------------------------------------2
V outrms
where VHi is the rms value of the harmonic components.
SINAD: signal and noise distortion is expressed in dB. The equation is given by:
2
V outrms
SINAD dB = 10 log -----------------------------------------------k
∑ VHi
2
+ V noise
2
i=2
DR: dynamic range is expressed in dB, with the following equation:
k
∑ VHi
2
i=1
DR dB = 10 log ---------------------2
V noise
3.4
Digital filter characteristics
Table 8.
Symbol
VCC = 3.3 V T= 25° C (unless otherwise specified)
Parameter
-
Passband edge (-3 dB)
-
Passband ripple f < 0.45 Fs
-
Stopband attenuation f > 0.55 Fs
Min.
Typ.
Max.
Unit
+/- 0.1
dB
0.48Fs
-50
dB
9/26
Electrical characteristics
3.4.1
DAC digital filter response
Figure 4.
DAC digital filter frequency
response from 32 to 48 kHz
Figure 6.
DAC digital filter ripple from 32 to
48 kHz
10/26
TS4657
Figure 5.
DAC digital filter transition band
from 32 to 48 kHz
TS4657
Electrical characteristics
3.5
Electrical measurement curves
Figure 7.
Crosstalk vs. frequency
Figure 8.
Crosstalk vs. frequency
FS=48kHz
FS=48kHz
FS=44.1kHz
FS=44.1kHz
FS=32kHz
FS=32kHz
FS=32kHz
FS=44.1kHz
FS=48kHz
Figure 9.
FS=32kHz
FS=44.1kHz
FS=48kHz
RL = 10kΩ
VCC = 3V
VIN = 0dBFS
TAMB = 25°C
RL = 10kΩ
VCC = 5V
VIN = 0dBFS
TAMB = 25°C
Frequency response
Figure 10. Frequency response
FS=48kHz
FS=48kHz
FS=44.1kHz
RL = 10kΩ
VCC = 5V
VIN = 0dBFS
TAMB = 25°C
FS=32kHz
Figure 11. Current consumption vs. power
supply voltage
FS=44.1kHz
RL = 10kΩ
VCC = 3V
VIN = 0dBFS
TAMB = 25°C
FS=32kHz
Figure 12. Current consumption vs. standby
voltage
FS=48kHz
FS = 48kHz
FIN = 1kHz
VIN = 0dBFS
FS=32kHz
Serial Bus = ON (I2S)
RL = 100kΩ
FIN = 1kHz
VIN = 0dBFS
TAMB = 25°C
RL = 100kΩ
TAMB = 25°C
FS = 32kHz
FIN = 1kHz
VIN = 0dBFS
Serial Bus = OFF
11/26
Electrical characteristics
TS4657
Figure 13. Output swing vs. power supply
voltage
Figure 14. Power dissipation vs. frequency
VCC = 5V
VCC = 3V3
VCC = 3V
RL = 5kΩ, 10kΩ or 100kΩ
FS = 32kHz, 44.1kHz or 48kHz
FIN = 1kHz
VIN = 0dBFS
TAMB = 25°C
Figure 15. Power supply rejection ratio vs.
frequency
RL = 10kΩ
FIN = 1kHz
VIN = 0dBFS
TAMB = 25°C
Figure 16. Power supply rejection ratio vs.
frequency
0
0
-10
-10
-20
-20
-30
-40
-30
Ω
Ω
-40
Ω
°
-50
-50
-60
-60
-70
-70
-80
-80
-90
20
100
1000
10000 20k
Figure 17. Power supply rejection ratio vs.
frequency
-90
20
Ω
Ω
Ω
°
100
1000
10000 20k
Figure 18. Signal to noise ratio vs. input level
0
-10
VCC = 3V
RL = 5kΩ
FS = 32kHz
Input Data = 16bits
FIN = 1kHz
LPF = 20kHz
TAMB = 25°C
-20
-30
-40
-50
Ω
Ω
Ω
°
-60
-70
-80
-90
-100
20
12/26
100
1000
10000 20k
A-Weighted
Unweighted
TS4657
Electrical characteristics
Figure 19. Signal to noise ratio vs. input level Figure 20. Signal to noise ratio vs. input level
VCC = 3V
RL = 5kΩ
FS = 32kHz
Input Data = 18bits
FIN = 1kHz
LPF = 20kHz
TAMB = 25°C
A-Weighted
Unweighted
VCC = 3V
RL = 5kΩ
FS = 48kHz
Input Data = 16bits
FIN = 1kHz
LPF = 20kHz
TAMB = 25°C
A-Weighted
Unweighted
Figure 21. Signal to noise ratio vs. input level Figure 22. Signal to noise ratio vs. input level
VCC = 3V
RL = 5kΩ
FS = 48kHz
Input Data = 18bits
FIN = 1kHz
LPF = 20kHz
TAMB = 25°C
A-Weighted
Unweighted
VCC = 5V
RL = 5kΩ
FS = 32kHz
Input Data = 16bits
FIN = 1kHz
LPF = 20kHz
TAMB = 25°C
A-Weighted
Unweighted
Figure 23. Signal to noise ratio vs. input level Figure 24. Signal to noise ratio vs. input level
VCC = 5V
RL = 5kΩ
FS = 32kHz
Input Data = 18bits
FIN = 1kHz
LPF = 20kHz
TAMB = 25°C
A-Weighted
Unweighted
VCC = 5V
RL = 5kΩ
FS = 48kHz
Input Data = 16bits
FIN = 1kHz
LPF = 20kHz
TAMB = 25°C
A-Weighted
Unweighted
13/26
Electrical characteristics
TS4657
Figure 25. Signal to noise ratio vs. input level Figure 26. Signal to noise ratio vs. input level
VCC = 5V
RL = 5kΩ
FS = 48kHz
Input Data = 18bits
FIN = 1kHz
LPF = 20kHz
TAMB = 25°C
A-Weighted
Unweighted
VCC = 3V
RL = 10kΩ
FS = 32kHz
Input Data = 16bits
FIN = 1kHz
LPF = 20kHz
TAMB = 25°C
A-Weighted
Unweighted
Figure 27. Signal to noise ratio vs. input level Figure 28. Signal to noise ratio vs. input level
VCC = 3V
RL = 10kΩ
FS = 32kHz
Input Data = 18bits
FIN = 1kHz
LPF = 20kHz
TAMB = 25°C
A-Weighted
Unweighted
VCC = 3V
RL = 10kΩ
FS = 48kHz
Input Data = 16bits
FIN = 1kHz
LPF = 20kHz
TAMB = 25°C
A-Weighted
Unweighted
Figure 29. Signal to noise ratio vs. input level Figure 30. Signal to noise ratio vs. input level
VCC = 3V
RL = 10kΩ
FS = 48kHz
Input Data = 18bits
FIN = 1kHz
LPF = 20kHz
TAMB = 25°C
14/26
A-Weighted
Unweighted
VCC = 5V
RL = 10kΩ
FS = 32kHz
Input Data = 16bits
FIN = 1kHz
LPF = 20kHz
TAMB = 25°C
A-Weighted
Unweighted
TS4657
Electrical characteristics
Figure 31. Signal to noise ratio vs. input level Figure 32. Signal to noise ratio vs. input level
VCC = 5V
RL = 10kΩ
FS = 32kHz
Input Data = 18bits
FIN = 1kHz
LPF = 20kHz
TAMB = 25°C
VCC = 5V
RL = 10kΩ
FS = 48kHz
Input Data = 16bits
FIN = 1kHz
LPF = 20kHz
TAMB = 25°C
A-Weighted
Unweighted
A-Weighted
Unweighted
Figure 33. Signal to noise ratio vs. input level Figure 34. Total harmonic distortion and noise
vs. frequency
VCC = 5V
RL = 10kΩ
FS = 48kHz
Input Data = 18bits
FIN = 1kHz
LPF = 20kHz
TAMB = 25°C
VCC = 3V
RL = 10kΩ
FS = 32kHz
Input Data = 16bits
VIN = -6dBFS
Unweighted
LPF = 20kHz
TAMB = 25°C
A-Weighted
Unweighted
20
20k
Figure 35. Total harmonic distortion and noise Figure 36. Total harmonic distortion and noise
vs. frequency
vs. frequency
VCC = 3V
RL = 10kΩ
FS = 48kHz
Input Data = 16bits
VIN = -6dBFS
Unweighted
LPF = 20kHz
TAMB = 25°C
VCC = 3V
RL = 10kΩ
FS = 32kHz
Input Data = 18bits
VIN = -6dBFS
Unweighted
LPF = 20kHz
TAMB = 25°C
20
20k
20
20k
15/26
Electrical characteristics
TS4657
Figure 37. Total harmonic distortion and noise Figure 38. Total harmonic distortion and noise
vs. frequency
vs. frequency
VCC = 5V
RL = 10kΩ
FS = 32kHz
Input Data = 16bits
VIN = -6dBFS
Unweighted
LPF = 20kHz
TAMB = 25°C
20
20k
Figure 39. Total harmonic distortion and noise Figure 40. Total harmonic distortion and noise
vs. frequency
vs. frequency
VCC = 5V
RL = 10kΩ
FS = 48kHz
Input Data = 16bits
VIN = -6dBFS
Unweighted
LPF = 20kHz
TAMB = 25°C
VCC = 5V
RL = 10kΩ
FS = 32kHz
Input Data = 18bits
VIN = -6dBFS
Unweighted
LPF = 20kHz
TAMB = 25°C
20
20k
20
20k
Figure 41. Total harmonic distortion and noise Figure 42. Total harmonic distortion and noise
vs. frequency
vs. input level
VCC = 3V
RL = 10kΩ
FS = 32kHz
Input Data = 16bits
FIN = 1kHz
Unweighted
LPF = 20kHz
TAMB = 25°C
VCC = 5V
RL = 10kΩ
FS = 48kHz
Input Data = 18bits
VIN = -6dBFS
Unweighted
LPF = 20kHz
TAMB = 25°C
20
16/26
20k
TS4657
Electrical characteristics
Figure 43. Total harmonic distortion and noise Figure 44. Total harmonic distortion and noise
vs. input level
vs. input level
VCC = 3V
RL = 10kΩ
FS = 32kHz
Input Data = 18bits
FIN = 1kHz
Unweighted
LPF = 20kHz
TAMB = 25°C
VCC = 3V
RL = 10kΩ
FS = 48kHz
Input Data = 16bits
FIN = 1kHz
Unweighted
LPF = 20kHz
TAMB = 25°C
Figure 45. Total harmonic distortion and noise Figure 46. Total harmonic distortion and noise
vs. input level
vs. input level
VCC = 3V
RL = 10kΩ
FS = 48kHz
Input Data = 18bits
FIN = 1kHz
Unweighted
LPF = 20kHz
TAMB = 25°C
VCC = 5V
RL = 10kΩ
FS = 32kHz
Input Data = 16bits
FIN = 1kHz
Unweighted
LPF = 20kHz
TAMB = 25°C
Figure 47. Total harmonic distortion and noise Figure 48. Total harmonic distortion and noise
vs. input level
vs. input level
VCC = 5V
RL = 10kΩ
FS = 32kHz
Input Data = 18bits
FIN = 1kHz
Unweighted
LPF = 20kHz
TAMB = 25°C
VCC = 5V
RL = 10kΩ
FS = 48kHz
Input Data = 16bits
FIN = 1kHz
Unweighted
LPF = 20kHz
TAMB = 25°C
17/26
Electrical characteristics
TS4657
Figure 49. Total harmonic distortion and noise
vs. input level
VCC = 5V
RL = 10kΩ
FS = 48kHz
Input Data = 18bits
FIN = 1kHz
Unweighted
LPF = 20kHz
TAMB = 25°C
18/26
TS4657
Application information
4
Application information
4.1
Serial audio interface
4.1.1
Master clock and data clocks
Three external clock signals are applied to the TS4657. The MCLK is the external master
clock applied by the audio data processor. The LRCLK is the channel frequency, also called
LEFT/RIGHT clock, at which the digital words for each channel are input to the device. The
LRCLK clock is the sample rate of the audio data. The ratio MCLK/LRCLK must be an
integer as shown in Table 9.
The BCLK is the bit clock and represents the clock at which the audio data is serially shifted
into the audio port. BCLK is linked to LRCLK. The minimum required BCLK frequency is
twice the audio sample rate times the number of bits in each audio word. Refer to Table 10
for the BCLK/LRCLK ratio.
MCLK, LRCLK and BCLK must be synchronous clock signals.
Table 9.
Audio data sampling rates
MCLK (MHz)
LRCLK (kHz)
256x
4.1.2
32
8.192
44.1
11.2896
48
12.288
Digital audio input format
The TS4657 receives serial digital audio data through a 3-wire interface. SDAT is the serial
audio data input. The data is entered MSB first and is a two’s complement. The data can be
I2S, right or left justified. The data format is chosen with the control pins FORMAT1 and
FORMAT2 as detailed in Table 10.
Figure 50 on page 20 summarizes the implementation of the audio data format.
Table 10.
Digital audio data formats supported by the TS4657
BCLK/LRCLK ratio
FORMAT2
FORMAT1
Data Format
Min
Max
0
0
Right-justified, 16-bit data
Data valid on rising edge of BCLK
32
256
0
1
Right-justified, 24-bit data
Data valid on rising edge of BCLK
48
256
1
0
Left-Justified, 16-bit up to 24-bit data
Data valid on rising edge of BCLK
2 x number of bits of data
256
1
1
I²S, 16-bit up to 24-bit data
Data valid on rising edge of BCLK
2 x number of bits of data
256
19/26
Application information
TS4657
Figure 50. Audio interface formats managed by the TS4657
16-bit Right justified data format: pin FORMAT1 = VIL, FORMAT2 = VIL
RIGHT
LEFT
LRCLK
SDAT
0
14 15
1
MSB
16-bit word left data
0
1
MSB
LSB
14
16-bit word right data
15
LSB
BCLK
24-bit right-justified data format: pin FORMAT1 = VIH, FORMAT2 = VIL
RIGHT
LEFT
LRCLK
SDAT
0
n-2 n-1
1
MSB
n-bit word left data
0
MSB
LSB
n-2 n-1
1
n-bit word right data
LSB
BCLK
Up to 24-bit left-justified data format: pin FORMAT1 = VIL, FORMAT2 = VIH
SDAT
RIGHT
LEFT
LRCLK
0
n-2 n-1
1
MSB
LSB
n-bit word left data
0
n-2 n-1
1
MSB
n-bit word right data
LSB
BCLK
Up to 24-bit I²S data format: pin FORMAT1 = VIH, FORMAT2 = VIH
SDAT
RIGHT
LEFT
LRCLK
0
n-2 n-1
1
MSB
32-bit word left data
LSB
0
1
MSB
n-2 n-1
32-bit word right data
LSB
BCLK
4.2
Power-management unit
The TS4657 utilizes a power-management unit to supply its internal structures.
A self-generated negative supply enables the drivers to be powered from positive and
negative supplies, therefore increasing the amplitude of the output signal. This internal
negative supply switches at a higher frequency than traditional architectures, derived from
the master clock MCLK. This structure uses an original design that enables one to suppress
the flying or floating capacitors. Therefore, only four small ceramic X5R 10V 1-µF
decoupling capacitors are necessary for VCCA/VCCD and VREGA/VREGD.
Furthermore, the self-generated negative supply allows the amplifier outputs to be centered
around zero, thus the bulky output coupling capacitors can be removed.
20/26
TS4657
Application information
4.3
Recommended power-up and power-down sequences
4.3.1
Power-up
It is recommended to power-up the TS4657 prior to applying logical data in order to ensure
correct ESD protection biasing.
When the STDBY pin is in a low state (VIL,) the circuit is in standby; when the pin is in a high
state (VIH), the circuit is enabled. An internal pull-down resistor will force the STDBY pin to
ground if no signal is applied to this pin.
The standby signal can be delayed from the power-up phase but simultaneous stimuli are
possible, as shown in Figure 51.
Figure 51. Standby signal delayed from power-up phase
VCCA VCCD
t=0µs min
STDBY
t=0µs min
MCLK BCLK
LRCLK
t=0µs min
SDAT
80%
VOUTR VOUTL
Twu
The wake-up time (Twu) of the TS4657 is defined as the time between the settlement of the
digital input signals STDBY, MCLK, BCLK, LRCLK, SDAT and 80% of the VOUTR/VOUTL
amplitude. The Twu of the circuit is typically 4.5 ms.
If all digital input signals are settled and an ON/OFF sequence is applied quickly on the
STDBY pin, the internal capacitors remain charged and the Twu is around 1 ms.
4.3.2
Power-down
As described in Section 4.2, the MCLK is internally used to supply some blocks. It is
therefore recommended not to switch off the MCLK during normal operation.
To properly power-down the device, MCLK, BCLK and LRCLK should be switched off after
the STDBY signal.
The power-down time is very short and can be considered as zero.
21/26
Package information
5
TS4657
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
22/26
TS4657
5.1
Package information
QFN20 package information
Figure 52. QFN20 package mechanical drawing
Table 11.
QFN20 package mechanical data
Dimensions
Ref.
Millimeters
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
0.80
0.90
1.00
0.031
0.035
0.040
A1
0.02
0.05
0.0008
0.002
A2
0.65
1.00
0.026
0.040
A3
0.25
A
0.010
b
0.18
0.23
0.30
0.007
0.009
0.012
D
3.85
4.00
4.15
0.152
0.157
0.163
D2
1.95
2.10
2.25
0.077
0.083
0.089
E
3.85
4.00
4.15
0.152
0.157
0.163
E2
1.95
2.10
2.25
0.077
0.083
0.089
e
0.45
0.50
0.55
0.018
0.020
0.022
L
0.35
0.55
0.75
0.014
0.022
0.030
ddd
0.08
0.003
23/26
Ordering information
6
Ordering information
Table 12.
24/26
TS4657
Order codes
Order code
Temperature range
Package
Packing
Marking
TS4657IQT
-40°C, +85°C
QFN20
Tape & reel
K657
TS4657
7
Revision history
Revision history
Table 13.
Document revision history
Date
Revision
02-Mar-2009
1
Changes
Initial release.
25/26
TS4657
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
26/26