TS4657 Single supply stereo digital audio line driver with 2.2 Vrms capless outputs Features ■ ■ 95 dB SNR A-weighted at 48 kHz, VCC =5 V No external capacitor needed for the negative power supply generation ■ Integrated structure to suppress pop and click noise ■ Available in thin QFN20 4 mm x 4 mm package Applications ■ Digital set-top boxes ■ DVD players ■ Digital TVs ■ Notebooks ■ Portable audio equipment ■ Sound cards GNDA VREGA VCCA VOUTL SDAT 11 VOUTR 5 6 MCLK ■ 15 GNDA LRCLK BCLK Internal negative power supply to ensure ground-referenced, capless outputs 1 NC 7.4 mA current consumption at VCC = 3.0 V, full operation ■ 16 20 GNDD 10 GNDA I²S, right- or left-justified compatible digital audio interface GNDD ■ Pin connections (top view) STDBY 16- to 24-bit audio data format stereo DAC, 32 to 48 kHz sample rate FORMAT1 ■ VCCD Audio line output: 2.2 Vrms for all VCC range VREGD ■ NC Single 3.0 to 5.5 V supply for DAC and line driver FORMAT2 ■ Description The TS4657 is a stereo DAC that integrates a high-performance audio line driver capable of generating a 2.2 Vrms output level from a single 3.0 to 5.5 V supply. One single supply is sufficient for the digital and analog parts of the circuit, thus eliminating the need for external regulators. The TS4657 is a low-power consumption device. It features only 22 mW power dissipation at a 3.0 V power supply in full operation. A 16-bit multi-bit sigma delta DAC is used, operating at 256xFs with oversampling digital interpolation filters. The digital audio data can be 16-to 24-bit long and sample rates from 32 to 48 kHz are supported. The output stage signal is ground-referenced by using an internal self-generated negative power supply, and as such external bulky output coupling capacitors are not necessary. The TS4657 is packaged in a small 4 x 4 mm QFN20 package, ideal for portable applications. March 2009 Rev 1 1/26 www.st.com 26 Contents TS4657 Contents 1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1 Power characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.3 DAC and output stage performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3.1 3.4 Digital filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.4.1 3.5 4 DAC digital filter response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical measurement curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 5 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Serial audio interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1.1 Master clock and data clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1.2 Digital audio input format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Power-management unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3 Recommended power-up and power-down sequences . . . . . . . . . . . . . . 21 4.3.1 Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3.2 Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1 QFN20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2/26 TS4657 1 Block diagram and pin description Block diagram and pin description Figure 1. Block diagram VCCA VCCD VREGA VREGD Power management unit MCLK VOUTR DAC BCLK Digital Audio Interface LRCLK SDAT Digital filters VOUTL DAC Control interface FORMAT1 Table 1. FORMAT2 STDBY GNDD GNDA Pin description Pin name Pin I/O Function GNDD 1 Supply Digital ground, connected to GND NC 2 Non-connected This pin must remain non-connected. pin LRCLK 3 Digital input Channel select clock input SDAT 4 Digital input Serial audio data input BCLK 5 Digital input Bit clock input MCLK 6 Digital input Master clock input FORMAT2 7 Digital input Selection of the digital data audio format. FORMAT1 8 Digital input Selection of the digital data audio format. STDBY 9 Digital input Input for Standby pin. STDBY=VIL: the TS4657 is in shutdown mode. GNDA 10 Supply Analog ground, connect to GND. VOUTR 11 Analog output Right channel analog output VOUTL 12 Analog output Left channel analog output VCCA 13 Supply Main analog power supply, connected to VCCD VREGA 14 Supply Decoupling pin for the analog part GNDA 15 Supply Analog ground, connected to GND GNDA 16 Supply Analog ground, connect to GND GNDD 17 Supply Digital ground, connected to GND VREGD 18 Supply Decoupling pin for the digital part VCCD 19 Supply Main digital power supply. Connect to VCCA NC 20 Non-connected This pin must remain non-connected. pin 3/26 Block diagram and pin description Figure 2. TS4657 Typical application schematics VCCD VCCA C2 C3 VCCA VCCD 10uF/6V3 J5 VCC 1 3v to 5V5 1uF 1uF C1 C4 C5 1uF 1uF 14 13 19 2 20 1 18 J6 GND Digital Input SDAT LRCLK 4 J3 J2 BCLK 6 MCLK VOUTR 11 R7 820 C6 2nF2 C7 2nF2 GNDD GNDD GNDA GNDA GNDA /STDBY FORMAT2 Epad 1 17 10 15 16 9 FORMAT1 7 8 820 R5 12 TS4657 Control Interface Optional VREGA DACs 100K R1 100K R2 100K R3 100K R4 MCLK J1 VREGD Interface SDAT 5 BCLK VOUTL Audio Digital Filters and Digital R6 10K 3 J4 R8 10K LRCLK VCCA nc nc VCCD IC1 1 2 3 1 2 3 1 2 3 VCCD JP1 JP2 JP3 Format1 Format2 /Stdby User Control Figure 3. Typical test schematics VCCD VCCA C2 C3 VCCA VCCD 10uF/6V3 VCC 1 1uF 1uF C1 C4 C5 1uF 1uF 18 19 2 20 1 GND 13 J6 14 J5 Digital Input LRCLK J4 SDAT 3 4 J3 5 BCLK J2 6 LRCLK MCLK VREGA VREGD Digital Filters and VOUTL Audio Interface DACs VOUTR Digital SDAT BCLK VCCA nc nc VCCD IC1 9 /STDBY FORMAT2 7 FORMAT1 8 1 2 3 1 2 3 1 2 3 VCCD JP1 JP2 JP3 Format1 Format2 /Stdby 4/26 GNDD GNDD GNDA GNDA GNDA TS4657 Control Interface 1 17 10 15 16 100K R1 100K R2 100K R3 100K R4 MCLK J1 Epad 12 SMB J7 11 J8 SMB OUT L OUT R SMB J7 J8 SMB OUT L OUT R TS4657 Absolute maximum ratings 2 Absolute maximum ratings Table 2. Key parameters and their absolute maximum ratings Symbol Value Unit 5.5 V Digital input voltage MCLK, BCLK, LRCLK, SDAT, FORMAT1, FORMAT2, STDBY GND to VCC V Toper Operating free air temperature range -40 to + 85 °C Tstg Storage temperature -65 to +150 °C Maximum junction temperature 150 °C Rthja Thermal resistance junction to ambient 100 °C/W ESD Human body model 2 kV ESD Machine model 200 V VCC Vi Tj Parameter Supply voltage (1) Latch-up immunity Lead temperature (soldering, 10 secs) Class A 260 °C 1. All voltage values are measured with respect to ground. 5/26 Electrical characteristics TS4657 3 Electrical characteristics 3.1 Power characteristics Table 3. VCC = 3.3 V T = 25° C (unless otherwise specified) Symbol Typ. Max. Unit 5.5 V Power supply ICC Total supply current. Full operation, RL = 10 KΩ, vstdby ≥ 2.0 V VCC = 3.0 V VCC = 5.0 V 7.4 8 9.5 9.8 Standby current consumption. VCC = 3 V to VCC = 5.5 V Vstdby = 0 V Vstdby = 0.8 V 25 50 1000 2000 nA Typ. Max. Unit 3.0 mA Package thermal characteristics Table 4. Operating conditions Symbol Rthja Parameter Thermal resistance junction to ambient for 1. With heat sink surface = 125 mm2. 6/26 Min. VCC ICCstby 3.2 Parameter Min. QFN20(1) 40 °C/W TS4657 Electrical characteristics 3.3 DAC and output stage performances Table 5. VCC = 3.0 V to Vcc = 5.5 V, Rload = 10 kΩ Cload = 100 pF, T = 25° C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit Operating conditions Audio data input format 16 24 bits Fs Sampling frequency 32 48 kHz RL Load resistor 5 CL Load capacitance - 10 100 kΩ 150 pF 0.8 V Digital input characteristics VIL Low-level input voltage VIH High-level input voltage 2 V Dynamic parameters VoutRMS Table 6. Full-scale output voltage swing Vin at 0 dBFS; RL ≥ RLmin; CL=100 pF 2.1 Vrms 2.2 VCC = 3.3 V, Rload = 10 kΩ Cload = 100 pF, T = 25° C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit Dynamic range. A-weighted 16-bit data; Vin at -60 dBFS, FS = 48 kHz, Fin = 1 kHz 88 93 dB Signal-to-noise ratio, FS = 48 kHz, Fin = 1 kHz, referred to output Vin at -6 dBFS; A-weighted, 18-bit data input Vin at -6 dBFS; unweighted, 18-bit data input Vin at 0 dBFS; A-weighted, 16-bit data input 89 87 87 94.5 92.5 93 dB 74 72 82 81 dB Dynamic parameters DR SNR THD+N Total harmonic distortion and noise. Fin = 1 kHz Vin at -20 dBFS, 18-bit data input Vin at -6 dBFS, 18-bit data input Vin at 0 dBFS, 16-bit data input PSRR Power supply rejection ratio, Vripple = 200 mVpp F= 217 Hz F= 1 kHz 20 Hz < F < 20 kHz 80 71 46 dB LRiso Channel separation. 1 kHz, Vin at 0 dBFS 100 dB Voo twu Output offset voltage -20 Gain channel balance -0.2 Wake-up time 0.01 4.5 20 mV 0.2 dB ms 7/26 Electrical characteristics Table 7. TS4657 VCC = 5 V, Rload = 10 kΩ, Cload = 100 pF, T = 25° C (unless otherwise specified) Symbol Parameter Min. Typ. DR Dynamic range; A-weighted 16-bit data; measured at -60 dBFS, FS = 48 kHz, Fin = 1 kHz 88 93 dB 89 95 93 93 dB 72 82.5 81.5 dB SNR Signal-to-noise ratio, FS = 48 kHz, Fin = 1 kHz, referred to output Vin at -6 dBFS; A-weighted, 18-bit data input Vin at -6 dBFS; unweighted, 18-bit data input Vin at 0 dBFS; A-weighted, 16-bit data input Max. Unit THD+N Total harmonic distortion and noise. Fin = 1 kHz Vin at -20 dBFS Vin at -6 dBFS Vin at 0 dBFS PSRR Power supply rejection ratio, Vripple = 200 mVpp F= 217 Hz F= 1 kHz 20 Hz < F < 20 kHz 80 73 48 dB LRiso Channel separation. 1 kHz, Vin at 0 dBFS 100 dB Voo twu 74 Output offset voltage -20 Gain channel balance -0.2 3 Wake-up time(1) 20 mV 0.01 0.2 dB 4.5 6 ms 1. See timing diagram in application information. 3.3.1 Terminology SNR: signal-to-noise ratio is expressed in dB. The theoretical formula is: 2 ⎛ VH 1 ⎞ SNR dB = 10 log ⎜ ------------------2-⎟ ⎝ V noise ⎠ where Vnoise is the integrated noise from 20 Hz to 20 kHz and VH1 is the fundamental of the signal. For unweighted measurements, the SNR is given by: 2 SNR dB VH 1 = 10 log ---------------------------------------------------------------------20kHz ∫ 2 20Hz u ( f ) ( v noise ( f ) ) df where vnoise is the noise spectral density and u(f) is the unweighted filter transfer function (20 Hz, 20 kHz). For A-weighted measurements: 2 VH 1 SNR dB = 10 log ---------------------------------------------------------------------20kHz A ∫ 2 20Hz A ( f ) ( v noise ( f ) ) df where vnoise is the noise spectral density and A(f) is the A-weighted filter transfer function. 8/26 TS4657 Electrical characteristics THD+N: total harmonic distortion and noise-to signal-ratio is expressed in dB. It is given by: k ∑ VHi 2 + V noise 2 i=2 THD + N dB = 10 log -----------------------------------------------2 V outrms where VHi is the rms value of the harmonic components. SINAD: signal and noise distortion is expressed in dB. The equation is given by: 2 V outrms SINAD dB = 10 log -----------------------------------------------k ∑ VHi 2 + V noise 2 i=2 DR: dynamic range is expressed in dB, with the following equation: k ∑ VHi 2 i=1 DR dB = 10 log ---------------------2 V noise 3.4 Digital filter characteristics Table 8. Symbol VCC = 3.3 V T= 25° C (unless otherwise specified) Parameter - Passband edge (-3 dB) - Passband ripple f < 0.45 Fs - Stopband attenuation f > 0.55 Fs Min. Typ. Max. Unit +/- 0.1 dB 0.48Fs -50 dB 9/26 Electrical characteristics 3.4.1 DAC digital filter response Figure 4. DAC digital filter frequency response from 32 to 48 kHz Figure 6. DAC digital filter ripple from 32 to 48 kHz 10/26 TS4657 Figure 5. DAC digital filter transition band from 32 to 48 kHz TS4657 Electrical characteristics 3.5 Electrical measurement curves Figure 7. Crosstalk vs. frequency Figure 8. Crosstalk vs. frequency FS=48kHz FS=48kHz FS=44.1kHz FS=44.1kHz FS=32kHz FS=32kHz FS=32kHz FS=44.1kHz FS=48kHz Figure 9. FS=32kHz FS=44.1kHz FS=48kHz RL = 10kΩ VCC = 3V VIN = 0dBFS TAMB = 25°C RL = 10kΩ VCC = 5V VIN = 0dBFS TAMB = 25°C Frequency response Figure 10. Frequency response FS=48kHz FS=48kHz FS=44.1kHz RL = 10kΩ VCC = 5V VIN = 0dBFS TAMB = 25°C FS=32kHz Figure 11. Current consumption vs. power supply voltage FS=44.1kHz RL = 10kΩ VCC = 3V VIN = 0dBFS TAMB = 25°C FS=32kHz Figure 12. Current consumption vs. standby voltage FS=48kHz FS = 48kHz FIN = 1kHz VIN = 0dBFS FS=32kHz Serial Bus = ON (I2S) RL = 100kΩ FIN = 1kHz VIN = 0dBFS TAMB = 25°C RL = 100kΩ TAMB = 25°C FS = 32kHz FIN = 1kHz VIN = 0dBFS Serial Bus = OFF 11/26 Electrical characteristics TS4657 Figure 13. Output swing vs. power supply voltage Figure 14. Power dissipation vs. frequency VCC = 5V VCC = 3V3 VCC = 3V RL = 5kΩ, 10kΩ or 100kΩ FS = 32kHz, 44.1kHz or 48kHz FIN = 1kHz VIN = 0dBFS TAMB = 25°C Figure 15. Power supply rejection ratio vs. frequency RL = 10kΩ FIN = 1kHz VIN = 0dBFS TAMB = 25°C Figure 16. Power supply rejection ratio vs. frequency 0 0 -10 -10 -20 -20 -30 -40 -30 Ω Ω -40 Ω ° -50 -50 -60 -60 -70 -70 -80 -80 -90 20 100 1000 10000 20k Figure 17. Power supply rejection ratio vs. frequency -90 20 Ω Ω Ω ° 100 1000 10000 20k Figure 18. Signal to noise ratio vs. input level 0 -10 VCC = 3V RL = 5kΩ FS = 32kHz Input Data = 16bits FIN = 1kHz LPF = 20kHz TAMB = 25°C -20 -30 -40 -50 Ω Ω Ω ° -60 -70 -80 -90 -100 20 12/26 100 1000 10000 20k A-Weighted Unweighted TS4657 Electrical characteristics Figure 19. Signal to noise ratio vs. input level Figure 20. Signal to noise ratio vs. input level VCC = 3V RL = 5kΩ FS = 32kHz Input Data = 18bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted VCC = 3V RL = 5kΩ FS = 48kHz Input Data = 16bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted Figure 21. Signal to noise ratio vs. input level Figure 22. Signal to noise ratio vs. input level VCC = 3V RL = 5kΩ FS = 48kHz Input Data = 18bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted VCC = 5V RL = 5kΩ FS = 32kHz Input Data = 16bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted Figure 23. Signal to noise ratio vs. input level Figure 24. Signal to noise ratio vs. input level VCC = 5V RL = 5kΩ FS = 32kHz Input Data = 18bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted VCC = 5V RL = 5kΩ FS = 48kHz Input Data = 16bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted 13/26 Electrical characteristics TS4657 Figure 25. Signal to noise ratio vs. input level Figure 26. Signal to noise ratio vs. input level VCC = 5V RL = 5kΩ FS = 48kHz Input Data = 18bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted VCC = 3V RL = 10kΩ FS = 32kHz Input Data = 16bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted Figure 27. Signal to noise ratio vs. input level Figure 28. Signal to noise ratio vs. input level VCC = 3V RL = 10kΩ FS = 32kHz Input Data = 18bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted VCC = 3V RL = 10kΩ FS = 48kHz Input Data = 16bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted Figure 29. Signal to noise ratio vs. input level Figure 30. Signal to noise ratio vs. input level VCC = 3V RL = 10kΩ FS = 48kHz Input Data = 18bits FIN = 1kHz LPF = 20kHz TAMB = 25°C 14/26 A-Weighted Unweighted VCC = 5V RL = 10kΩ FS = 32kHz Input Data = 16bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted TS4657 Electrical characteristics Figure 31. Signal to noise ratio vs. input level Figure 32. Signal to noise ratio vs. input level VCC = 5V RL = 10kΩ FS = 32kHz Input Data = 18bits FIN = 1kHz LPF = 20kHz TAMB = 25°C VCC = 5V RL = 10kΩ FS = 48kHz Input Data = 16bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted A-Weighted Unweighted Figure 33. Signal to noise ratio vs. input level Figure 34. Total harmonic distortion and noise vs. frequency VCC = 5V RL = 10kΩ FS = 48kHz Input Data = 18bits FIN = 1kHz LPF = 20kHz TAMB = 25°C VCC = 3V RL = 10kΩ FS = 32kHz Input Data = 16bits VIN = -6dBFS Unweighted LPF = 20kHz TAMB = 25°C A-Weighted Unweighted 20 20k Figure 35. Total harmonic distortion and noise Figure 36. Total harmonic distortion and noise vs. frequency vs. frequency VCC = 3V RL = 10kΩ FS = 48kHz Input Data = 16bits VIN = -6dBFS Unweighted LPF = 20kHz TAMB = 25°C VCC = 3V RL = 10kΩ FS = 32kHz Input Data = 18bits VIN = -6dBFS Unweighted LPF = 20kHz TAMB = 25°C 20 20k 20 20k 15/26 Electrical characteristics TS4657 Figure 37. Total harmonic distortion and noise Figure 38. Total harmonic distortion and noise vs. frequency vs. frequency VCC = 5V RL = 10kΩ FS = 32kHz Input Data = 16bits VIN = -6dBFS Unweighted LPF = 20kHz TAMB = 25°C 20 20k Figure 39. Total harmonic distortion and noise Figure 40. Total harmonic distortion and noise vs. frequency vs. frequency VCC = 5V RL = 10kΩ FS = 48kHz Input Data = 16bits VIN = -6dBFS Unweighted LPF = 20kHz TAMB = 25°C VCC = 5V RL = 10kΩ FS = 32kHz Input Data = 18bits VIN = -6dBFS Unweighted LPF = 20kHz TAMB = 25°C 20 20k 20 20k Figure 41. Total harmonic distortion and noise Figure 42. Total harmonic distortion and noise vs. frequency vs. input level VCC = 3V RL = 10kΩ FS = 32kHz Input Data = 16bits FIN = 1kHz Unweighted LPF = 20kHz TAMB = 25°C VCC = 5V RL = 10kΩ FS = 48kHz Input Data = 18bits VIN = -6dBFS Unweighted LPF = 20kHz TAMB = 25°C 20 16/26 20k TS4657 Electrical characteristics Figure 43. Total harmonic distortion and noise Figure 44. Total harmonic distortion and noise vs. input level vs. input level VCC = 3V RL = 10kΩ FS = 32kHz Input Data = 18bits FIN = 1kHz Unweighted LPF = 20kHz TAMB = 25°C VCC = 3V RL = 10kΩ FS = 48kHz Input Data = 16bits FIN = 1kHz Unweighted LPF = 20kHz TAMB = 25°C Figure 45. Total harmonic distortion and noise Figure 46. Total harmonic distortion and noise vs. input level vs. input level VCC = 3V RL = 10kΩ FS = 48kHz Input Data = 18bits FIN = 1kHz Unweighted LPF = 20kHz TAMB = 25°C VCC = 5V RL = 10kΩ FS = 32kHz Input Data = 16bits FIN = 1kHz Unweighted LPF = 20kHz TAMB = 25°C Figure 47. Total harmonic distortion and noise Figure 48. Total harmonic distortion and noise vs. input level vs. input level VCC = 5V RL = 10kΩ FS = 32kHz Input Data = 18bits FIN = 1kHz Unweighted LPF = 20kHz TAMB = 25°C VCC = 5V RL = 10kΩ FS = 48kHz Input Data = 16bits FIN = 1kHz Unweighted LPF = 20kHz TAMB = 25°C 17/26 Electrical characteristics TS4657 Figure 49. Total harmonic distortion and noise vs. input level VCC = 5V RL = 10kΩ FS = 48kHz Input Data = 18bits FIN = 1kHz Unweighted LPF = 20kHz TAMB = 25°C 18/26 TS4657 Application information 4 Application information 4.1 Serial audio interface 4.1.1 Master clock and data clocks Three external clock signals are applied to the TS4657. The MCLK is the external master clock applied by the audio data processor. The LRCLK is the channel frequency, also called LEFT/RIGHT clock, at which the digital words for each channel are input to the device. The LRCLK clock is the sample rate of the audio data. The ratio MCLK/LRCLK must be an integer as shown in Table 9. The BCLK is the bit clock and represents the clock at which the audio data is serially shifted into the audio port. BCLK is linked to LRCLK. The minimum required BCLK frequency is twice the audio sample rate times the number of bits in each audio word. Refer to Table 10 for the BCLK/LRCLK ratio. MCLK, LRCLK and BCLK must be synchronous clock signals. Table 9. Audio data sampling rates MCLK (MHz) LRCLK (kHz) 256x 4.1.2 32 8.192 44.1 11.2896 48 12.288 Digital audio input format The TS4657 receives serial digital audio data through a 3-wire interface. SDAT is the serial audio data input. The data is entered MSB first and is a two’s complement. The data can be I2S, right or left justified. The data format is chosen with the control pins FORMAT1 and FORMAT2 as detailed in Table 10. Figure 50 on page 20 summarizes the implementation of the audio data format. Table 10. Digital audio data formats supported by the TS4657 BCLK/LRCLK ratio FORMAT2 FORMAT1 Data Format Min Max 0 0 Right-justified, 16-bit data Data valid on rising edge of BCLK 32 256 0 1 Right-justified, 24-bit data Data valid on rising edge of BCLK 48 256 1 0 Left-Justified, 16-bit up to 24-bit data Data valid on rising edge of BCLK 2 x number of bits of data 256 1 1 I²S, 16-bit up to 24-bit data Data valid on rising edge of BCLK 2 x number of bits of data 256 19/26 Application information TS4657 Figure 50. Audio interface formats managed by the TS4657 16-bit Right justified data format: pin FORMAT1 = VIL, FORMAT2 = VIL RIGHT LEFT LRCLK SDAT 0 14 15 1 MSB 16-bit word left data 0 1 MSB LSB 14 16-bit word right data 15 LSB BCLK 24-bit right-justified data format: pin FORMAT1 = VIH, FORMAT2 = VIL RIGHT LEFT LRCLK SDAT 0 n-2 n-1 1 MSB n-bit word left data 0 MSB LSB n-2 n-1 1 n-bit word right data LSB BCLK Up to 24-bit left-justified data format: pin FORMAT1 = VIL, FORMAT2 = VIH SDAT RIGHT LEFT LRCLK 0 n-2 n-1 1 MSB LSB n-bit word left data 0 n-2 n-1 1 MSB n-bit word right data LSB BCLK Up to 24-bit I²S data format: pin FORMAT1 = VIH, FORMAT2 = VIH SDAT RIGHT LEFT LRCLK 0 n-2 n-1 1 MSB 32-bit word left data LSB 0 1 MSB n-2 n-1 32-bit word right data LSB BCLK 4.2 Power-management unit The TS4657 utilizes a power-management unit to supply its internal structures. A self-generated negative supply enables the drivers to be powered from positive and negative supplies, therefore increasing the amplitude of the output signal. This internal negative supply switches at a higher frequency than traditional architectures, derived from the master clock MCLK. This structure uses an original design that enables one to suppress the flying or floating capacitors. Therefore, only four small ceramic X5R 10V 1-µF decoupling capacitors are necessary for VCCA/VCCD and VREGA/VREGD. Furthermore, the self-generated negative supply allows the amplifier outputs to be centered around zero, thus the bulky output coupling capacitors can be removed. 20/26 TS4657 Application information 4.3 Recommended power-up and power-down sequences 4.3.1 Power-up It is recommended to power-up the TS4657 prior to applying logical data in order to ensure correct ESD protection biasing. When the STDBY pin is in a low state (VIL,) the circuit is in standby; when the pin is in a high state (VIH), the circuit is enabled. An internal pull-down resistor will force the STDBY pin to ground if no signal is applied to this pin. The standby signal can be delayed from the power-up phase but simultaneous stimuli are possible, as shown in Figure 51. Figure 51. Standby signal delayed from power-up phase VCCA VCCD t=0µs min STDBY t=0µs min MCLK BCLK LRCLK t=0µs min SDAT 80% VOUTR VOUTL Twu The wake-up time (Twu) of the TS4657 is defined as the time between the settlement of the digital input signals STDBY, MCLK, BCLK, LRCLK, SDAT and 80% of the VOUTR/VOUTL amplitude. The Twu of the circuit is typically 4.5 ms. If all digital input signals are settled and an ON/OFF sequence is applied quickly on the STDBY pin, the internal capacitors remain charged and the Twu is around 1 ms. 4.3.2 Power-down As described in Section 4.2, the MCLK is internally used to supply some blocks. It is therefore recommended not to switch off the MCLK during normal operation. To properly power-down the device, MCLK, BCLK and LRCLK should be switched off after the STDBY signal. The power-down time is very short and can be considered as zero. 21/26 Package information 5 TS4657 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 22/26 TS4657 5.1 Package information QFN20 package information Figure 52. QFN20 package mechanical drawing Table 11. QFN20 package mechanical data Dimensions Ref. Millimeters Inches Min. Typ. Max. Min. Typ. Max. 0.80 0.90 1.00 0.031 0.035 0.040 A1 0.02 0.05 0.0008 0.002 A2 0.65 1.00 0.026 0.040 A3 0.25 A 0.010 b 0.18 0.23 0.30 0.007 0.009 0.012 D 3.85 4.00 4.15 0.152 0.157 0.163 D2 1.95 2.10 2.25 0.077 0.083 0.089 E 3.85 4.00 4.15 0.152 0.157 0.163 E2 1.95 2.10 2.25 0.077 0.083 0.089 e 0.45 0.50 0.55 0.018 0.020 0.022 L 0.35 0.55 0.75 0.014 0.022 0.030 ddd 0.08 0.003 23/26 Ordering information 6 Ordering information Table 12. 24/26 TS4657 Order codes Order code Temperature range Package Packing Marking TS4657IQT -40°C, +85°C QFN20 Tape & reel K657 TS4657 7 Revision history Revision history Table 13. Document revision history Date Revision 02-Mar-2009 1 Changes Initial release. 25/26 TS4657 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2009 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 26/26