10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet flow NPC 1 600 V / 100 A Features flow 1 housing ● Neutral-point-Clamped inverter ● Compact flow1 housing ● Low Inductance Layout 12mm height 17mm height Target Applications Schematic ● UPS ● Motor Drive ● Solar inverters Types ● 10-F106NIA100SA-M135F ● 10-P106NIA100SA-M135FY ● 10-FY06NIA100SA-M135F08 ● 10-PY06NIA100SA-M135F08Y Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 92 121 A 300 A 159 206 W Buck IGBT Collector-emitter break down voltage DC collector current V CE IC T j = T jmax Pulsed collector current I CRM t p limited by T jmax Power dissipation P tot T j = T jmax Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature T s = 80 °C T c = 80°C T s = 80 °C T c = 80°C T j ≤ 150 °C V GE = 15 V T jmax T j ≤ 150 °C V CE ≤ V CES Turn off safe operating area ±20 V 6 360 µs V 175 °C 200 A 600 V 67 88 A Buck Diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation per Diode Maximum Junction Temperature copyright Vincotech V RRM IF I FRM P tot T j = T jmax T s = 80 °C T c = 80°C t p limited by T jmax T c = 100 °C 300 A T j = T jmax T s = 80 °C T c = 80°C 74 112 W 175 °C T jmax 1 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V T s = 80 °C T c = 80°C 92 121 A 300 A T s = 80 °C T c = 80°C 159 240 W Boost IGBT Collector-emitter break down voltage DC collector current Pulsed collector current V CE IC I CRM Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature T j = T jmax t p limited by T jmax T j = T jmax T j ≤ 150 °C V GE = 15 V T jmax T j ≤ 150°C V CE ≤ V CES Turn off safe operating area ±20 V 6 360 µs V 175 °C 200 A Boost Sw. Prot. Diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation per Diode Maximum Junction Temperature V RRM IF I FRM P tot T j = T jmax 600 V T s = 80 °C T c = 80°C 80 106 A 200 A T s = 80 °C T c = 80°C 119 180 W 175 °C t p limited by T jmax T j = T jmax T jmax Boost Diode Peak Repetitive Reverse Voltage V RRM 600 V T s = 80 °C T c = 80°C 80 106 A 200 A T s = 80 °C T c = 80°C 119 180 W T jmax 175 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(T jmax - 25) °C DC forward current Repetitive peak forward current Power dissipation per Diode Maximum Junction Temperature IF I FRM P tot T j = T jmax t p limited by T jmax T j = T jmax Thermal Properties Isolation Properties Isolation voltage V is t = 2s DC voltage Creepage distance 17mm housing 4000 V min 12,7 mm min 12,7 Clearance mm 12mm housing solder pins / Press-fit pins copyright Vincotech 2 8,07 / 7,86 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Unit Min Typ Max 5 5,8 6,5 1,05 1,50 1,73 1,85 Buck IGBT Gate emitter threshold voltage V GE(th) Collector-emitter saturation voltage V CEsat Collector-emitter cut-off current incl. Diode Gate-emitter leakage current R gint t d(on) Turn-off delay time Fall time 600 20 0 t d(off) tf E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG R th(j-s) 25 150 25 150 25 150 25 150 60 1,4 none tr Turn-on energy loss Thermal resistance chip to heatsink 100 0 I GES Turn-on delay time 0,0016 15 I CES Integrated Gate resistor Rise time V CE = V GE R gon = 8 Ω R goff = 8 Ω ±15 350 100 25 150 25 150 25 150 25 150 25 150 25 150 V V µA µA Ω 160 189 26 31 270 296 100 123 1,887 2,405 2,903 3,808 ns mWs 6280 f = 1 MHz 0 25 15 480 25 400 pF 186 100 25 phase-change material λ = 3,4 W/mK 620 nC 0,60 K/W Buck Diode Diode forward voltage Peak reverse recovery current VF I RRM Reverse recovery time t rr Reverse recovered charge Q rr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink 100 R gon = 8 Ω ±15 350 ( di rf/dt )max E rec R th(j-s) phase-change material λ = 3,4 W/mK 100 25 150 25 150 25 150 25 150 25 150 25 150 1,4 1,70 1,71 86 113 127 164 5,072 9,357 3385 1871 1,154 2,238 1,01 1,9 V A ns µC A/µs mWs K/W Note: All characteristic values are related to gates of paralell IGBTs connected together copyright Vincotech 3 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Unit Min Typ Max 5 5,8 6,5 1,05 1,5 1,73 1,85 Boost IGBT Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) V CE = V GE V CEsat 0,0016 15 100 Collector-emitter cut-off incl diode I CES 0 600 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink R th(j-s) 60 1,4 R gon = 8 Ω R goff = 8 Ω V V µA µA Ω none 25 150 25 150 25 150 25 150 25 150 25 150 tr t d(off) 25 150 25 150 25 150 25 150 164 169 29 32 273 298 97 116 1,93 2,55 3,22 4,27 ns mWs 6280 f = 1 MHz 0 25 25 pF 400 186 15 480 100 25 phase-change material λ = 3,4 W/mK 620 nC 0,60 K/W Boost Sw. Prot. Diode Diode forward voltage Thermal resistance chip to heatsink VF R th(j-s) 100 25 125 1,2 phase-change material λ = 3,4 W/mK 1,69 1,65 1,9 0,80 V K/W Boost Diode Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current t rr Reverse recovered charge Q rr Reverse recovery energy Thermal resistance chip to heatsink 600 I RRM Reverse recovery time Peak rate of fall of recovery current 100 R gon = 8 Ω ±15 350 ( di rf/dt )max E rec R th(j-s) 100 25 150 25 150 25 150 25 150 25 150 25 150 25 150 1,2 1,68 1,65 1,9 60 71 90 130 287 4,4 9,3 2960 551 1,03 2,37 phase-change material λ = 3,4 W/mK V μA A ns µC A/µs mWs 0,80 K/W 22000 Ω Thermistor Rated resistance R Deviation of R 100 Δ R/R Power dissipation P 25 R 100 = 1486 Ω 100 Power dissipation constant 14 -12 200 mW 25 2 mW/K K B-value B (25/50) Tol. ±3% 25 3950 B-value B (25/100) Tol. ±3% 25 3996 Vincotech NTC Reference copyright Vincotech % 25 K B 4 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Buck Figure 1 Typical output characteristics I C = f(V CE) IGBT Figure 2 IGBT Typical output characteristics I C = f(V CE) 300 IC (A) IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = V GE from 1 2 3 V CE (V) 4 0 At tp = Tj = V GE from 250 μs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) 1 2 3 4 5 IGBT V CE (V) 5 250 μs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as FWD a function of forward voltage I F = f(V F) 250 IC (A) IF (A) 100 80 200 60 150 40 100 Tj = Tjmax-25°C 20 50 Tj = 25°C Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = V CE = 2 4 250 10 μs V copyright Vincotech 6 8 10 V GE (V) 12 0 At tp = 5 0,5 250 1 1,5 2 2,5 V F (V) 3 μs 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Buck Figure 5 IGBT Figure 6 IGBT Typical switching energy losses Typical switching energy losses as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) 10 Eon High T E (mWs) E (mWs) 8 Eoff High T Eon Low T 8 6 Eoff Low T 6 Eoff High T 4 Eoff Low T Eon High T 4 Eon Low T 2 2 0 0 0 50 100 150 I C (A) 0 200 With an inductive load at Tj = °C 25/150 V CE = 350 V V GE = ±15 V R gon = 8 Ω R goff = 8 Ω 8 16 24 32 R G ( Ω) 40 With an inductive load at Tj = °C 25/150 V CE = 350 V V GE = ±15 V IC = 100 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) 3,0 E (mWs) 3,0 FWD Erec High T 2,5 2,5 2,0 2,0 1,5 1,5 Erec High T Erec Low T 1,0 1,0 0,5 0,5 Erec Low T 0,0 0,0 0 50 100 150 I C (A) 200 0 With an inductive load at Tj = 25/150 °C V CE = 350 V V GE = ±15 V R gon = 8 Ω copyright Vincotech 8 16 24 32 R G ( Ω) 40 With an inductive load at Tj = 25/150 °C V CE = 350 V V GE = ±15 V IC = 100 A 6 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Buck Figure 9 IGBT Figure 10 IGBT Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) 1,00 t (µ s) t (µ s) 1,00 tdoff tdon tdoff tdon 0,10 tf 0,10 tf tr tr 0,01 0,01 0,00 0,00 0 50 100 150 I C (A) 0 200 With an inductive load at Tj = 150 °C V CE = 350 V V GE = ±15 V R gon = 8 Ω R goff = 8 Ω 8 16 24 32 R G ( Ω) 40 With an inductive load at Tj = 150 °C V CE = 350 V V GE = ±15 V IC = 100 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,20 FWD 0,4 trr Low T t rr(µ s) t rr(µ s) trr High T 0,3 0,15 trr Low T 0,2 0,10 trr Low T 0,1 0,05 0,0 0,00 0 At Tj = V CE = V GE = R gon = 50 25/150 350 ±15 8 copyright Vincotech 100 150 I C (A) 0 200 At Tj = VR= IF= V GE = °C V V Ω 7 8 25/150 350 100 ±15 16 24 32 R gon ( Ω) 40 °C V A V 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Buck Figure 13 FWD Figure 14 FWD Typical reverse recovery charge as a Typical reverse recovery charge as a function of collector current Q rr = f(I C) function of IGBT turn on gate resistor Q rr = f(R gon) 15 Qrr (µ C) Qrr (µ C) 12 Qrr High T Qrr High T 12 9 9 Qrr Low T 6 6 Qrr Low T 3 3 0 At 0 0 At Tj = V CE = V GE = R gon = 50 100 150 I C (A) 200 0 8 16 25/150 350 °C V At Tj = VR= 25/150 350 °C V ±15 8 V Ω IF= V GE = 100 ±15 A V Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) FWD 24 32 R gon ( Ω) Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) 40 FWD 200 150 IrrM (A) IrrM (A) IRRM High T 160 120 IRRM Low T 90 120 60 80 IRRM High T IRRM Low T 40 30 0 0 0 At Tj = V CE = V GE = R gon = 50 25/150 350 ±15 8 copyright Vincotech 100 150 I C (A) 0 200 At Tj = VR= IF= V GE = °C V V Ω 8 8 25/150 350 100 ±15 16 24 32 R gon ( Ω) 40 °C V A V 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Buck Figure 17 FWD Figure 18 FWD Typical rate of fall of forward and reverse recovery current Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 10000 dIo/dt T dIrec/dt T direc / dt (A/µ s) direc / dt (A/µ s) 5000 4000 dI0/dt T dIrec/dt T 8000 3000 6000 2000 4000 1000 2000 0 0 0 At Tj = V CE = V GE = R gon = 50 100 I C (A) 150 0 200 8 16 25/150 350 ±15 °C V V At Tj = VR= IF= 25/150 350 100 °C V A 8 Ω V GE = ±15 V Figure 19 IGBT 24 R gon (W) 40 32 Figure 20 IGBT transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) FWD FWD transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) 101 Zth(j-s) (K/W) Zth(j-s) (K/W) 100 100 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 10-2 10-2 10-5 At D = R th(j-s) = 10-4 10-3 10-2 10-1 100 t p (s) 10-5 101 At D = R th(j-s) = tp/T 0,60 K/W IGBT thermal model values R (K/W) Tau (s) 4,52E-02 4,36E+00 1,01E-01 9,48E-01 2,76E-01 2,00E-01 1,04E-01 6,20E-02 5,77E-02 1,37E-02 1,50E-02 2,79E-03 copyright Vincotech 10-4 10-3 10-2 10-1 100 t p (s) 101 tp/T 1,01 K/W FWD thermal model values R (K/W) Tau (s) 6,88E-02 2,96E+00 1,71E-01 4,07E-01 5,09E-01 9,03E-02 1,60E-01 2,01E-02 6,67E-02 4,84E-03 3,19E-02 5,60E-04 9 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Buck Figure 21 IGBT Figure 22 IGBT Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T s) function of heatsink temperature I C = f(T s) 150 Ptot (W) IC (A) 300 250 120 200 90 150 60 100 30 50 0 0 0 At Tj = 50 175 100 150 T s ( o C) 0 200 At Tj = V GE = °C Figure 23 FWD 50 175 15 100 150 T s ( o C) °C V Figure 24 Power dissipation as a function of heatsink temperature P tot = f(T s) 200 FWD Forward current as a function of heatsink temperature I F = f(T s) 120 Ptot (W) IF (A) 200 100 160 80 120 60 80 40 40 20 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T s ( o C) 0 200 At Tj = °C 10 50 175 100 150 T s ( o C) 200 °C 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Buck Figure 25 Safe operating area as a function IGBT Figure 26 Gate voltage vs Gate charge of collector-emitter voltage I C = f(V CE) V GE = f(Q g) 103 1mS 1 VGE (V) IC (A) 16 10mS 100uS 14 100mS 10 2 IGBT 120V DC 12 480V 10 101 8 100 6 4 10-1 2 0 100 At D = Ts = V GE = Tj = 101 102 V CE (V) 0 103 At IC = single pulse 80 ±15 T jmax copyright Vincotech 200 100 400 600 Q g (nC) 800 A ºC V ºC 11 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Boost Figure 1 IGBT Figure 2 Typical output characteristics I C = f(V CE) IGBT Typical output characteristics I C = f(V CE) IC (A) 300 IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = V GE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = V GE from 250 μs 25 °C 7 V to 17 V in steps of 1 V Figure 3 IGBT 1 2 3 V CE (V) 4 250 μs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Typical transfer characteristics I C = f(V GE) 5 FWD Typical diode forward current as a function of forward voltage I F = f(V F) 100 IC (A) IF (A) 300 250 80 200 60 150 40 100 20 50 Tj = 25°C Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = V CE = 2 4 250 10 μs V copyright Vincotech 6 8 10 0,0 V GE (V) 12 At tp = 12 0,5 250 1,0 1,5 2,0 2,5 V F (V) 3,0 μs 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Boost Figure 5 IGBT Figure 6 IGBT Typical switching energy losses Typical switching energy losses as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) 10 Eon High T E (mWs) E (mWs) 8 Eoff High T Eon Low T 8 6 Eoff Low T 6 Eoff High T Eon High T 4 Eoff Low T 4 Eon Low T 2 2 0 0 0 50 100 150 0 200 I C (A) With an inductive load at Tj = 25/150 °C V CE = 350 V V GE = ±15 V R gon = 8 Ω R goff = 8 Ω 8 16 24 32 40 R G( Ω ) With an inductive load at Tj = 25/150 °C V CE = 350 V V GE = ±15 V IC = 101 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 4 IGBT E (mWs) E (mWs) 3,5 Erec High T 3 3 2,5 2 2 Erec High T Erec Low T 1,5 1 1 Erec Low T 0,5 0 0 50 100 150 I C (A) 0 200 0 With an inductive load at Tj = 25/150 °C V CE = 350 V V GE = ±15 V R gon = 8 Ω copyright Vincotech 8 16 24 32 RG (Ω ) 40 With an inductive load at Tj = 25/150 °C V CE = 350 V V GE = ±15 V IC = 101 A 13 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Boost Figure 9 IGBT Figure 10 IGBT Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) t ( µs) 1 t ( µs) 1 tdon tdoff tdoff tdon 0,1 tf 0,1 tf tr tr 0,01 0,01 0,001 0,001 0 50 100 150 I C (A) 200 0 With an inductive load at Tj = 150 °C V CE = 350 V V GE = ±15 V R gon = 8 Ω R goff = 8 Ω 8 16 24 32 R G( Ω ) 40 With an inductive load at Tj = 150 °C V CE = 350 V V GE = ±15 V IC = 101 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,4 FWD 0,4 t rr(µ s) t rr(µ s) trr High T trr High T 0,3 0,3 0,2 0,2 trr Low T trr Low T 0,1 0,1 0,0 0,0 0 At Tj = V CE = V GE = R gon = 50 25/150 350 ±15 8 copyright Vincotech 100 150 I C (A) 200 0 At Tj = VR= IF= V GE = °C V V Ω 14 8 25/150 350 101 ±15 16 24 32 R gon ( Ω) 40 °C V A V 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Boost Figure 13 FWD Figure 14 FWD Typical reverse recovery charge as a Typical reverse recovery charge as a function of collector current Q rr = f(I C) function of IGBT turn on gate resistor Q rr = f(R gon) 15 Qrr (µ C) Qrr (µ C) 10 Qrr High T Qrr High T 12 8 9 6 Qrr Low T 6 4 Qrr Low T 3 2 0 0 0 At At Tj = V CE = V GE = R gon = 50 100 150 I C (A) 200 0 8 16 25/150 350 °C V At Tj = VR= 25/150 350 °C V ±15 8 V Ω IF= V GE = 101 ±15 A V Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) FWD 24 32 R gon ( Ω) Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) 40 FWD 150 IrrM (A) IrrM (A) 150 IRRM High T 120 120 IRRM Low T 90 90 60 60 IRRM High T IRRM Low T 30 30 0 0 0 At Tj = V CE = V GE = R gon = 50 25/150 350 ±15 8 copyright Vincotech 100 150 I C (A) 0 200 At Tj = VR= IF= V GE = °C V V Ω 15 8 25/150 350 101 ±15 16 24 32 R gon ( Ω) 40 °C V A V 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Boost Figure 17 FWD Figure 18 FWD Typical rate of fall of forward and reverse recovery current Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 10000 dIo/dt T direc / dt (A/µ s) direc / dt (A/µ s) 5000 dIrec/dt T 4000 dI0/dt T dIrec/dt T 8000 3000 6000 2000 4000 1000 2000 0 0 0 At Tj = V CE = V GE = R gon = 50 100 150 0 200 I C (A) 8 16 25/150 350 ±15 °C V V At Tj = VR= IF= 25/150 350 101 °C V A 8 Ω V GE = ±15 V Figure 19 IGBT 24 32 R gon ( Ω) Figure 20 IGBT transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) 40 FWD FWD transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) Zth(j-s) (K/W) 100 Zth(j-s) (K/W) 100 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-2 10-5 At D = R th(j-s) = 10-4 10-3 10-2 10-1 100 t p (s) 101 10-5 At D = R th(j-s) = tp/T 0,6 K/W 10-4 10-3 0,80 R (K/W) 4,52E-02 1,01E-01 2,64E-01 1,04E-01 R (K/W) 4,68E-02 1,19E-01 3,15E-01 1,67E-01 copyright Vincotech 100 t p (s) 101 K/W FWD thermal model values 5,77E-02 1,37E-02 1,50E-02 2,79E-03 10-1 tp/T IGBT thermal model values Tau (s) 4,36E+00 9,48E-01 2,00E-01 6,20E-02 10-2 Tau (s) 4,82E+00 8,49E-01 1,49E-01 3,91E-02 1,01E-01 9,01E-03 4,79E-02 1,14E-03 16 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Boost Figure 21 IGBT Figure 22 IGBT Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T s) function of heatsink temperature I C = f(T s) 150 Ptot (W) IC (A) 300 250 120 200 90 150 60 100 30 50 0 0 0 At Tj = 50 175 100 150 T s ( o C) 0 200 At Tj = V GE = ºC Figure 23 Power dissipation as a FWD 50 175 15 100 150 T s ( o C) ºC V Figure 24 Forward current as a function of heatsink temperature P tot = f(T s) 200 FWD function of heatsink temperature I F = f(T s) 150 Ptot (W) IF (A) 240 200 120 160 90 120 60 80 30 40 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Ts ( o C) 200 0 At Tj = ºC 17 50 175 100 150 Ts ( o C) 200 ºC 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Boost Figure 25 Boost Inverse Diode Figure 26 Boost Inverse Diode Typical diode forward current as Diode transient thermal impedance a function of forward voltage I F = f(V F) as a function of pulse width Z th(j-s) = f(t p) 100 Zth(j-s) (K/W) IF (A) 250 200 150 10-1 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 50 Tj = Tjmax-25°C Tj = 25°C 0 10-2 0 At tp = 0,5 1 250 1,5 2 2,5 V F (V) 3 10-5 10-4 At D = R th(j-s) = μs Figure 27 Boost Inverse Diode 10-3 10-2 100 t p (s) 101 tp/T 0,80 K/W Figure 28 Power dissipation as a function of heatsink temperature P tot = f(T s) 10-1 Boost Inverse Diode Forward current as a function of heatsink temperature I F = f(T s) 150 IF (A) Ptot (W) 240 200 120 160 90 120 60 80 30 40 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Ts ( o C) 0 200 At Tj = ºC 18 50 175 100 150 Ts ( o C) 200 ºC 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Thermistor Figure 1 Thermistor Figure 2 Typical NTC characteristic Thermistor Typical NTC resistance values as a function of temperature R T = f(T ) NTC-typical temperature characteristic R(T ) = R25 ⋅ e R (Ω) 25000 B25/100⋅ 1 − 1 T T25 [Ω] 20000 15000 10000 5000 0 25 copyright Vincotech 50 75 100 T (°C) 125 19 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Switching Definitions BUCK General conditions Tj R gon R goff = = = Figure 1 IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) 150 °C 8Ω 8Ω Figure 2 IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 125 250 % tdoff % VCE IC 100 200 VGE 90% VCE 90% VGE 75 150 IC VCE 50 100 tEoff VGE tdon 25 50 0 0 VGE10% IC 1% -25 -0,2 VCE IC 10% 3% tEon -50 0 0,2 0,4 0,6 time (us) 2,9 V V 3 V GE (0%) = V GE (100%) = 3,1 3,2 -15 15 V V V GE (0%) = V GE (100%) = V C (100%) = -15 15 350 V V C (100%) = 350 V I C (100%) = t doff = t E off = 100 0,30 0,55 A μs μs I C (100%) = t don = t E on = 100 0,19 0,39 A μs μs Figure 3 Turn-off Switching Waveforms & definition of t f IGBT 3,3 3,4 Figure 4 Turn-on Switching Waveforms & definition of t r 125 time(us) 3,5 IGBT 250 fitted % IC % VCE IC 200 100 IC 90% 150 75 IC 60% VCE 100 50 IC 90% IC 40% tr 50 25 IC10% 0 IC 10% 0 tf -50 -25 0,1 0,2 0,3 0,4 time (us) 3,1 0,5 3,2 3,3 V C (100%) = 350 V V C (100%) = 350 V I C (100%) = tf = 100 0,12 A μs I C (100%) = tr = 100 0,03 A μs copyright Vincotech 20 3,4 time(us) 3,5 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Switching Definitions BUCK Figure 5 Turn-off Switching Waveforms & definition of t Eoff IGBT Figure 6 Turn-on Switching Waveforms & definition of t Eon IGBT 125 125 % Poff 100 % IC 1% Eoff Eon 100 75 75 50 50 Pon 25 25 VG E90% VCE VGE 10% 3% 0 0 tEon tEoff -25 -25 -0,2 0 P off (100%) = E off (100%) = t E off = 0,2 34,85 3,81 0,55 0,4 2,9 0,6 time (us) kW mJ μs P on (100%) = E on (100%) = t E on = Figure 7 Turn-off Switching Waveforms & definition of t rr 3 3,1 34,85 2,41 0,39 3,2 3,3 3,4 3,5 time(us) kW mJ μs FWD 150 % Id 100 trr 50 Vd 0 fitted IRRM 10% -50 -100 IRRM 90% IRRM 100% -150 3,1 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 3,2 3,3 350 100 -113 0,16 3,4 time(us) 3,5 V A A μs 21 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Switching Definitions BUCK Figure 8 Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) FWD Figure 9 Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 FWD 125 % % Id Qrr 100 100 Erec tQrr 50 75 0 50 -50 25 -100 0 tErec Prec -150 -25 3,1 3,2 I d (100%) = Q rr (100%) = t Q rr = 3,3 100 9,36 0,33 3,4 3,5 3,6 3,7 time(us) 3,1 A μC μs 3,2 P rec (100%) = E rec (100%) = t E rec = 1,6 40 100 1,25 1 3,3 34,85 2,24 0,33 3,4 3,5 time(us) 3,6 kW mJ μs 40 80 3000 60 40 1,4 1 55 Measurement circuit Figure 10 BUCK stage switching measurement circuit copyright Vincotech 22 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Switching Definitions Boost General conditions Tj R gon R goff = = = Figure 1 IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) 150 °C 8Ω 8Ω Figure 2 IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 125 250 % tdoff % VCE IC 100 200 VGE 90% VCE 90% VGE 75 150 IC VCE 50 100 tEoff VGE tdon 25 50 0 0 VGE10% IC 1% -25 -0,2 VCE IC 10% 3% tEon -50 0 0,2 0,4 0,6 time (us) 2,9 V V 3 V GE (0%) = V GE (100%) = 3,1 3,2 -15 15 V V V GE (0%) = V GE (100%) = V C (100%) = -15 15 350 V V C (100%) = 350 V I C (100%) = t doff = t E off = 100 0,30 0,57 A μs μs I C (100%) = t don = t E on = 100 0,17 0,36 A μs μs Figure 3 Turn-off Switching Waveforms & definition of t f IGBT 3,3 3,4 Figure 4 Turn-on Switching Waveforms & definition of t r 125 time(us) 3,5 IGBT 250 fitted % VCE IC % IC 200 100 IC 90% 150 75 IC 60% VCE 100 50 IC 90% IC 40% tr 50 25 IC10% 0 IC 10% 0 tf -50 -25 0,1 0,2 0,3 0,4 time (us) 3 0,5 3,1 3,2 3,3 V C (100%) = 350 V V C (100%) = 350 V I C (100%) = tf = 100 0,12 A μs I C (100%) = tr = 100 0,03 A μs copyright Vincotech 23 3,4 time(us) 3,5 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Switching Definitions Boost Figure 5 Turn-off Switching Waveforms & definition of t Eoff IGBT Figure 6 Turn-on Switching Waveforms & definition of t Eon IGBT 125 125 % % 100 Eon Eoff Poff 100 Pon 75 75 50 50 25 25 VG E90% VCE VGE 10% 3% 0 0 tEon tEoff IC 1% -25 -25 -0,2 0 P off (100%) = E off (100%) = t E off = 0,2 35,15 4,27 0,57 0,4 2,9 0,6 time (us) kW mJ μs P on (100%) = E on (100%) = t E on = Figure 7 Turn-off Switching Waveforms & definition of t rr 3 3,1 35,15 2,55 0,36 3,2 3,3 3,4 3,5 time(us) kW mJ μs FWD 150 % Id 100 trr 50 Vd 0 fitted IRRM 10% -50 IRRM 90% IRRM 100% -100 -150 3,1 3,2 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 3,3 350 100 -90 0,29 3,4 3,5 3,6 time(us) 3,7 V A A μs 24 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Switching Definitions Boost Figure 8 Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) FWD Figure 9 Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 FWD 125 % % Id Erec Qrr 100 100 tQrr 50 75 0 50 -50 25 -100 0 tErec Prec -150 -25 3,1 3,2 I d (100%) = Q rr (100%) = t Q rr = 1,6 40 100 30 3,3 3,4 100 9,27 0,57 3,5 3,6 3,7 3,8 3,9 time(us) 3,1 A μC μs 3,2 P rec (100%) = E rec (100%) = t E rec = 1 3,3 3,4 35,15 2,37 0,57 3,5 3,6 3,7 3,8 time(us) 3,9 kW mJ μs 80 40 40 1,4 Measurement circuit Figure 10 BOOST stage switching measurement circuit copyright Vincotech 25 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code without thermal paste 17mm housing, solder pins 10-F106NIA100SA-M135F with thermal paste 17mm housing, solder pins 10-F106NIA100SA-M135F-/3/ without thermal paste 17mm housing, Press-fit pins 10-P106NIA100SA-M135FY without thermal paste 12mm housing, solder pins 10-FY06NIA100SA-M135F08 with thermal paste 12mm housing, solder pins 10-FY06NIA100SA-M135F08-/3/ without thermal paste 12mm housing, Press-fit pins 10-PY06NIA100SA-M135F08Y Text Name Date Code UL & VIN Lot Serial NN-NNNNNNNNNNNNNN-TTTTTTVV WWYY UL VIN LLLLL SSSS Datamatrix Type&Ver Lot number Serial Date code TTTTTTTVV LLLLL SSSS WWYY Outline Pin table [mm] Pin X Y Function 1 52,2 6,9 NTC1 2 52,2 0 NTC2 3 36,2 6,75 E37 4 33,2 7,9 G3 5 33,2 4,9 G7 6 9,2 5,75 E48 7 6,2 6,9 G4 8 6,2 3,9 G8 9 2,7 0 DC- 10 0 0 DC- 11 2,7 2,7 DC- 12 0 2,7 DC- 13 2,7 5,4 DC- 14 0 5,4 DC- 15 2,7 12,75 GND 16 0 12,75 GND 17 2,7 15,45 GND 18 0 15,45 GND 19 2,7 22,8 DC+ 20 0 22,8 DC+ 21 2,7 25,5 DC+ 22 0 25,5 DC+ 23 2,7 28,2 DC+ 24 0 28,2 DC+ 25 18,3 22,45 E15 26 21,3 21,3 G5 27 21,3 24,3 G1 28 43 22,15 E26 29 46 21 G6 30 46 24 G2 31 52,2 20,1 OUT 32 49,5 22,8 OUT 33 52,2 22,8 OUT 34 49,5 25,5 OUT 35 52,2 25,5 OUT 36 49,5 28,2 OUT 37 52,2 28,2 OUT copyright Vincotech 17mm housing 12mm housing 26 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Ordering Code and Marking - Outline - Pinout Pinout Identification ID Component Voltage Current Function T1‖T5, T4‖T8 IGBT 600 V 100 A Buck Switch D9,D10 FWD 600 V 100 A Buck Diode T2‖T6,T3‖T7 IGBT 600 V 100 A Boost Switch D1‖D5,D4‖D8 FWD 600 V 100 A Boost Diode D2‖D6,D3‖D7 FWD 600 V 100 A Boost Sw. Prot. Diode NTC NTC copyright Vincotech Comment Thermistor 27 17 May. 2016 / Revision 4 10-F106NIA100SA-M135F 10-P106NIA100SA-M135FY 10-FY06NIA100SA-M135F08 10-PY06NIA100SA-M135F08Y datasheet Packaging instruction Standard packaging quantity (SPQ) >SPQ 100 Standard <SPQ Sample Handling instruction Handling instructions for flow 1 packages see vincotech.com website. Package data Package data for flow 1 packages see vincotech.com website. UL recognition and file number This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website. Document No.: Date: Modification: Pages 10-xx06NIA100SA-M135Fxx-D4-14 17 May. 2016 New brand, new subtype added, new Rth values with PCM all DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 28 17 May. 2016 / Revision 4