NXP Semiconductors Data sheet: Advance Information Document Number: PF3001 Rev. 2.0, 3/2016 Power management integrated circuit (PMIC) for i.MX 7 and i.MX 6 SoloLite/SoloX/UltraLite processors PF3001 The PF3001 is a SMARTMOS power management integrated circuit (PMIC) designed specifically for always ON applications with the NXP i.MX 7 and i.MX 6 SoloLite/SoloX/UltraLite application processors. With up to three buck converters, six linear regulators, RTC supply, and coin-cell charger, the PF3001 can provide power for a complete system, including applications processors, memory, and system peripherals. POWER MANAGEMENT Features: • Three adjustable high efficiency buck regulators: 2.75 A, 1.5 A, 1.25 A • Selectable modes: PWM, PFM, APS • Programmable output voltage, PWM switching frequency, current limit • Six adjustable general purpose linear regulators • • • • EP SUFFIX 98ASA00719D 48 QFN 7.0 X 7.0 Applications: • IPTV • Set top boxes • POS terminals • Industrial control • Medical monitoring • Home automation/security/energy management Input voltage range: 2.8 V to 4.5 V or 3.7 V to 5.5 V I2C control Coin cell charger and always ON RTC supply -40 °C to +125 °C Operating Junction Temperature i.MX PF3001 DDR MEMORY Switching regulators SW3 ES SUFFIX 98ASA00933D 48 QFN 7.0 X 7.0 DDR MEMORY INTERFACE 0.90 – 1.65 V, 1.5A Processor ARM Core SW1 0.70 – 3.30 V, 2.75A SW2 1.50 – 1.85 V or 2.5 -3.3 V, 1.25A Processor SOC SD-MMC/ NAND Mem. Li CELL Charger SATA HDD RESETBMCU PWRON STANDBY SD_VSEL INTB SATA - FLASH NAND - NOR Interfaces Parallel control / GPIOs I2C External AMP Microphones Speakers Audio Codec I2C Sensors Linear regulators VLDO1 1.8 – 3.3 V, VLDO2 0.8 – 1.55 V, 250mA VCC_SD 1.8 – 1.85 V or 2.85 – 3.3 V, 100mA V33 2.85 -3.3 V, 350mA VLDO3 1.8 – 3.3 V, 100mA VLDO4 1.8 -3.3 V, 350mA COINCELL Camera 100mA Main Supply 2.8 - 5.5 V WAM GPS/MIPI LVDS Display Cluster/ HUD GPS MIPI Micro PCIe HDMI USB Ethernet CAN Front USB POD Rear Seat Infotainment Figure 1. PF3001 simplified application diagram * This document contains certain information on a new product. Specifications and information herein are subject to change without notice. © 2016 NXP B.V. Camera Rear USB POD Table of Contents 1 2 3 4 Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.1 Pinout diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.2 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5 General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.1 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5.3 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6 Functional description and application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.2 Power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.3.1 Control logic and interface signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.3.2 Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.3.4 16 MHz and 32 kHz clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.3.5 Optional front-end input LDO regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.3.6 Internal core voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.3.7 Buck regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.3.8 LDO regulators description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.3.9 VSNVS LDO/switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.4 Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.5 Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.5.1 State diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.5.2 State machine flow summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.5.3 Performance characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.6 Control interface I2C block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.6.1 I2C device ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 6.6.2 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 6.6.3 Interrupt handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 6.6.4 Interrupt bit summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 6.6.5 Specific registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 6.6.6 Register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 7 Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.1 Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 8 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 9 Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 9.1 Rating data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 9.2 Estimation of junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 10 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 10.1Packaging dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 PF3001 2 NXP Semiconductors ORDERABLE PARTS 1 Orderable parts The PF3001 is available with pre-programmed OTP memory configurations. The devices are identified using the program codes from Table 1. Details of the start-up programming for each device can be found in Table 32. Table 1. Orderable part variations Part number Temperature (TA) Package Programming options MC32PF3001A1EP 1 (i.MX 7 with DDR3L) MC32PF3001A2EP 2 (i.MX 7 with LPDDR3) MC32PF3001A3EP MC32PF3001A4EP MC32PF3001A5EP -40 °C to 85 °C (For use in consumer applications) 3 (i.MX 6SX with DDR3L) 98ASA00719D, 48 QFN 7.0 mm x 7.0 mm with exposed pad 4 (i.MX 6SX with DDR3) 6 (i.MX 6UL with LPDDR2) MC32PF3001A7EP 7 (i.MX 6UL with DDR3L) PC33PF3001A7ES -40 °C to 105 °C (For use in automotive applications) 98ASA00933D, 48 QFN 7.0 mm x 7.0 mm WF-type (wettable flank) 6 (i.MX 6UL with LPDDR2) 7 (i.MX 6UL with DDR3L) MC34PF3001A1EP 1 (i.MX 7 with DDR3L) MC34PF3001A2EP 2 (i.MX 7 with LPDDR3) MC34PF3001A3EP MC34PF3001A4EP MC34PF3001A5EP -40 °C to 105 °C (For use in industrial applications) (1) 5 (i.MX 6SL with LPDDR2) MC32PF3001A6EP PC33PF3001A6ES Notes (1) 3 (i.MX 6SX with DDR3L) 98ASA00719D, 48 QFN 7.0 mm x 7.0 mm with exposed pad 4 (i.MX 6SX with DDR3) (1) 5 (i.MX 6SL with LPDDR2) MC34PF3001A6EP 6 (i.MX 6UL with LPDDR2) MC34PF3001A7EP 7 (i.MX 6UL with DDR3L) Notes 1. For Tape and Reel add an R2 suffix to the part number. PF3001 NXP Semiconductors 3 GENERAL DESCRIPTION 2 General description The PF3001 is the power management integrated circuit (PMIC) designed primarily for use with NXP’s i.MX series of multi-media application processors. It is also capable of providing full power solutions to i.MX 6SL, 6SX, 6UL, and i.MX7processors. 2.1 Features This section summarizes the PF3001 features. • Input voltage range to PMIC: 2.8 V to 4.5 V, or 3.7 V to 5.5 V (2) • Buck regulators • SW1, 2.75 A; 0.7 V to 1.425 V, 1.8 V, 3.3 V • SW2, 1.25 A; 1.50 V to 1.85 V, or 2.50 V to 3.30 V • SW3, 1.5 A; 0.90 V to 1.65 V • Dynamic voltage scaling • Modes: PWM, PFM, APS • Programmable output voltage • Programmable current limit • Programmable PWM switching frequency • LDOs • VCC_SD, 1.8 V to 1.85 V, or 2.85 V to 3.30 V, 100 mA based on SD_VSEL • V33, 2.85 V to 3.30 V, 350 mA • VLDO1, 1.8 V to 3.3 V, 100 mA • VLDO2, 0.80 V to 1.55 V, 250 mA • VLDO3, 1.8 V to 3.3 V, 100 mA • VLDO4, 1.8 V to 3.3 V, 350 mA • Always ON RTC regulator/switch VSNVS 3.0 V, 1.0 mA • Battery backed memory including coin cell charger • I2C interface Notes 2. 2.8 V to 4.5 V when VIN is used at input. 3.7 V to 5.5 V when VPWR is used as input. PF3001 4 NXP Semiconductors GENERAL DESCRIPTION 2.2 Functional block diagram PF3001 functional internal block diagram Power generation Fixed OTP configuration Voltage and PWRON configuration fixed DVS speed fixed Sequence and timing fixed Phasing and frequency fixed Switching regulators SW1 (0.7 V to 1.425 V,1.8 V, 3.3 V, 2.75 A) Linear regulators VCC_SD (1.80 V to 1.85 V, 100 mA) or (2.85 V to 3.3 V, 100 mA) V33 Bias & references Internal core voltage reference SW2 (1.50 V to 1.85 V, 1.25 A) or (2.50 V to 3.30 V, 1.25 A) ( 2.85 V to 3.30 V, 350 mA) VLDO1 (1.8 V to 3.3 V, 100 mA) SW3 Logic and control Parallel MCU interface (0.90 V to 1.65 V, 1.5 A) Regulator control I2C communication & registers VLDO2 (0.80 V to 1.55 V, 250 mA) VLDO3 (1.8 V to 3.3 V, 100 mA) VLDO4 (1.8 V to 3.3 V, 350 mA) Fault detection and protection Thermal Current limit VPWR front end LDO overvoltage indicator VSNVS (1.0 V to 3.0 V, 1.0 mA) RTC supply with coin cell charger Figure 2. PF3001 functional block diagram PF3001 NXP Semiconductors 5 INTERNAL BLOCK DIAGRAM 3 Internal Block Diagram PF3001 VLDO1 VLDO1IN 100 mA VLDO1 VLDO2 VLDO2IN 250 mA VLDO2 VLDO3 VLDO34IN 100 mA VLDO3 SW1 VLDO4 VLDO4 2.75 A Buck 350 mA O/P Drive Core Control logic 1.8 V/3.15 V 100 mA Initialization State Machine SW2 V33 2.85 V - 3.30 V 350 mA V33 SW1IN GNDREF1 VCC_SD VCC_SD SW1FB SW1LX O/P Drive SW2LX SW2IN SW2FB 1.25 A Buck GNDREF2 Supplies Control OTP VIN2 SW3FB ICTEST2 CONTROL I2C Interface VDDIO SCL SW3 1.5 A Buck SDA O/P Drive SW3IN SW3LX GNDREF2 DVS I2C Register map VCOREDIG VCOREREF Trim-In-Package Reference Generation VCORE Clocks and resets GNDREF VPWR LDOG VREF LDO Clocks 32 kHz and 16 MHz VIN Li Cell Charger LICELL Best of Supply INTB RESETBMCU SD_VSEL GND PWRON ICTEST1 VSNVS VSNVS Figure 3. PF3001 simplified internal block diagram PF3001 6 NXP Semiconductors 37 NC 38 VIN2 39 ICTEST2 40 GNDREF 41 VCORE 42 VIN 48 PWRON Transparent top view 43 VCOREDIG Pinout diagram 44 VCOREREF 4.1 45 SDA Pin connections 47 VDDIO 4 46 SCL PIN CONNECTIONS INTB 1 36 LICELL SD_VSEL 2 35 NC RESETBMCU 3 34 VSNVS GND 4 33 VCC_SD ICTEST1 5 32 V33 SW1FB 6 31 VPWR EP NC 11 26 GNDREF2 GNDREF1 12 25 NC GND 24 27 SW3FB NC 23 10 VLDO4 22 SW1IN VLDO34IN 21 28 SW3IN VLDO3 20 9 SW2FB 19 SW1LX SW2IN 18 29 SW3LX SW2LX 17 8 VLDO2IN 16 SW1LX VLDO2 15 30 LDOG VLDO1 14 7 VLDO1IN 13 SW1IN Figure 4. PF3001 pinout diagram PF3001 NXP Semiconductors 7 PIN CONNECTIONS 4.2 Pin definitions Table 2. Pin definitions Pin number Pin name Pin function Type 1 INTB O Digital Open drain interrupt signal to processor 2 SD_VSEL I/O Digital Input from i.MX processor to select VCC_SD regulator voltage • SD_VSEL=0, VCC_SD = 2.85 V to 3.3 V • SD_VSEL= 1, VCC_SD = 1.8 V to 1.85 V 3 RESETBMCU O Digital Open drain reset output to processor 4 GND I GND Ground reference. Connect to ground. 5 ICTEST1 I Digital and Analog 6 SW1FB (3) I Analog SW1 output voltage feedback pin. Route this trace separately from the high current path and terminate at the output capacitance or near the load, if possible for best regulation 7 SW1IN (3) I Analog Input to SW1 regulator. Bypass with at least a 4.7 F ceramic capacitor and a 0.1 F decoupling capacitor as close to the pin as possible 8 SW1LX (3) O Analog Switcher 1 switch node connection. Connect to SW1LX and connect to SW1 inductor 9 SW1LX (3) O Analog Switcher 1 switch node connection. Connect to SW1LX and connect to SW1 inductor 10 SW1IN (3) I Analog Input to SW1 regulator. Bypass with at least a 4.7 F ceramic capacitor and a 0.1 F decoupling capacitor as close to the pin as possible 11 NC – Reserved Definition Reserved pin. Connect to GND in application Leave floating Ground reference for SW1. Connect to GND. Keep away from high current ground return paths 12 GNDREF1 GND GND 13 VLDO1IN I Analog VLDO1 input supply. Bypass with a 1.0 F decoupling capacitor as close to the pin as possible 14 VLDO1 O Analog VLDO1 regulator output. Bypass with a 2.2 F ceramic output capacitor 15 VLDO2 O Analog VLDO2 regulator output. Bypass with a 4.7 F ceramic output capacitor 16 VLDO2IN I Analog VLDO2 input supply. Bypass with a 1.0 F decoupling capacitor as close to the pin as possible 17 SW2LX (3) O Analog Switcher 2 switch node connection. Connect to SW2 inductor 18 SW2IN (3) I Analog Input to SW2 regulator. Bypass with at least a 4.7 F ceramic capacitor and a 0.1 F decoupling capacitor as close to the pin as possible 19 SW2FB (3) I Analog SW2 output voltage feedback pin. Route this trace separately from the high current path and terminate at the output capacitor or near the load, if possible for best regulation 20 VLDO3 O Analog VLDO3 regulator output. Bypass with a 2.2 F ceramic output capacitor 21 VLDO34IN I Analog VLDO3 and VLDO4 input supply. Bypass with a 1.0 F decoupling capacitor as close to the pin as possible 22 VLDO4 O Analog VLDO4 regulator output. Bypass with a 2.2 F ceramic output capacitor 23 NC – Reserved 24 GND GND GND 25 NC – Reserved 26 GNDREF2 GND GND Reference ground for SW2 and SW3 regulators. Connect to GND. Keep away from high current ground return paths 27 SW3FB (3) I Analog SW3 output voltage feedback pin. Route this trace separately from the high current path and terminate at the output capacitor or near the load, if possible for best regulation 28 SW3IN (3) I Analog Input to SW3 regulator. Bypass with at least a 4.7 F ceramic capacitor and a 0.1 F decoupling capacitor as close to the pin as possible Leave floating Ground reference. Connect to ground. Keep away from high current ground return paths Leave floating PF3001 8 NXP Semiconductors PIN CONNECTIONS Table 2. Pin definitions (continued) Pin number Pin name Pin function Type 29 SW3LX (3) O Analog Switcher 3 switch node connection. Connect the SW3 inductor 30 LDOG O Analog Connect to gate of front-end LDO external pass P-MOSFET. Leave floating if VPWR LDO is not used 31 VPWR I Analog Input to optional front-end VPWR LDO for systems with input voltage > 4.5 V 32 V33 O Analog V33 regulator output. Bypass with a 4.7 F ceramic output capacitor 33 VCC_SD O Analog Output of VCC_SD regulator. Bypass with a 2.2 F ceramic output capacitor. 34 VSNVS O Analog VSNVS regulator/switch output. Bypass with 0.47 F capacitor to ground. 35 NC – Reserved 36 LICELL I/O Analog 37 NC – Reserved 38 VIN2 I Analog 39 ICTEST2 I Digital & Analog 40 GNDREF GND GND 41 VCORE O Analog Internal analog core supply. Bypass with 1.0 F capacitor to ground 42 VIN I Analog Main IC supply. Bypass with 1.0 F capacitor to ground. Connect to system input supply if voltage 4.5 V. Connect to drain of external PFET when VPWR LDO is used for systems with input voltage > 4.5 V 43 VCOREDIG O Analog Internal digital core supply. Bypass with 1.0 F capacitor to ground 44 VCOREREF O Analog Main band gap reference. Bypass with 220 nF capacitor to ground 45 SDA I/O Digital I2C data line (open drain). Pull up to VDDIO with a 4.7 kΩ resistor 46 SCL I Digital I2C clock. Pull up to VDDIO with a 4.7 kΩ resistor 47 VDDIO I Analog Supply for I2C bus. Bypass with 0.1 F ceramic capacitor. Connect to 1.7 V to 3.6 V supply. Ensure VDDIO is always lesser than or equal to VIN 48 PWRON I Digital Power ON/OFF input from processor - EP GND GND Expose pad. Functions as ground return for buck and boost regulators. Tie this pad to the inner and external ground planes through vias to allow effective thermal dissipation Definition Leave floating Coin cell supply input/output. Bypass with 0.1 F capacitor. Connect to optional coin cell. Leave floating Input to VCC_SD, V33 regulators. Connect to VIN rail and bypass with 10 F capacitor Reserved pin. Connect to GND in application Ground reference for IC core circuitry. Connect to ground. Keep away from high current ground return paths Notes 3. Unused switching regulators should be connected as follows: Pins SWxLX and SWxFB should be unconnected and Pin SWxIN should be connected to VIN with a 0.1 F bypass capacitor. PF3001 NXP Semiconductors 9 GENERAL PRODUCT CHARACTERISTICS 5 General product characteristics 5.1 Maximum ratings Table 3. Maximum voltage ratings All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause malfunction or permanent damage to the device. The detailed maximum voltage rating per pin can be found in the pin list section. Symbol Description Value Unit Notes (4) Electrical ratings VPWR, ICTEST1, ICTEST2, LDOG – -0.3 to 7.5 V VIN, VIN2, VLDO1IN, SW1IN, SW2IN, SW3IN, SW1LX, SW2LX, SW3LX – -0.3 to 4.8 V INTB, SD_VSEL, RESETBMCU, SW1FB, SW2FB, SW3FB, VLDO1, VLDO2IN, VLDO3, VLDO34IN, VLDO4, V33, VCC_SD, VSNVS, LICELL, VCORE, SDA, SCL, VDDIO, PWRON – -0.3 to 3.6 V VLDO2 linear regulator output -0.3 to 2.5 V VCOREDIG Digital core supply voltage output -0.3 to 1.65 V VCOREREF Bandgap reference voltage output -0.3 to 1.5 V 2000 500 V VLDO2 VESD ESD ratings • Human body model • Charge device model (5) Notes 4. 7.5 V Maximum DC voltage rated. 5. ESD testing is performed in accordance with the Human body model (HBM) (CZAP = 100 pF, RZAP = 1500 ), and the Charge device model (CDM), Robotic (CZAP = 4.0 pF). PF3001 10 NXP Semiconductors GENERAL PRODUCT CHARACTERISTICS 5.2 Thermal characteristics Table 4. Thermal ratings Symbol Description (rating) Min. Max. Unit Notes Thermal ratings TA Ambient operating temperature range • Industrial version • Consumer version -40 -40 105 85 C TJ Operating junction temperature range -40 125 C Storage temperature range -65 150 C – (8) C (7) (8) TST TPPRT Peak package reflow temperature (6) QFN48 thermal resistance and package dissipation ratingS RJA Junction to ambient, natural convection • Four layer board (2s2p) • Eight layer board (2s6p) – – 24 15 °C/W (9) (10) (11) RJB Junction to Board – 11 °C/W (12) RJCBOTTOM Junction to case bottom – 1.4 °C/W (13) JT Junction to package top • Natural convection – 1.3 °C/W (14) Notes 6. Do not operate beyond 125 °C for extended periods of time. Operation above 150 °C may cause permanent damage to the IC. See thermal protection thresholds for thermal protection features. 7. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a malfunction or permanent damage to the device. 8. NXP's package reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For peak package reflow temperature and moisture sensitivity levels (MSL), Go to www.nxp.com, search by part number [e.g. remove prefixes/suffixes and enter the core ID to view all orderable parts (i.e. MC33xxxD enter 33xxx), and review parametrics.. 9. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 10. The Board uses the JEDEC specifications for thermal testing (and simulation) JESD51-7 and JESD51-5. 11. Per JEDEC JESD51-6 with the board horizontal. 12. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. 13. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). 14. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters () are not available, the thermal characterization parameter is written as Psi-JT. PF3001 NXP Semiconductors 11 GENERAL PRODUCT CHARACTERISTICS 5.3 Current consumption The current consumption of the individual blocks is described in detail in the following table. Table 5. Current consumption summary TA= -40 °C to 105 °C, VPWR= 0 V (External pass FET is not populated), VIN = 3.6 V, VDDIO = 1.7 V to 3.6 V, LICELL = 1.8 V to 3.3 V, VSNVS = 3.0 V, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VPWR = 0 V, VDDIO = 3.3 V, LICELL = 3.0 V, VSNVS = 3.0 V and 25 °C, unless otherwise noted. Mode PF3001 conditions Coin Cell VSNVS from LICELL, All other blocks off, VIN = 0.0 V System conditions Typ. Max. Unit Notes No load on VSNVS 4.0 7.0 A (15) (16) Off VSNVS from VIN or LICELL Wake-up from PWRON active 32 kHz RC on All other blocks off VIN UVDET No load on VSNVS, PMIC able to wake-up 16 25 A (15) (16) ON VSNVS from VIN SW1 in APS SW2 in APS SW3 in APS Trimmed 16 MHz RC enabled Trimmed reference active, VLDO1-4 enabled V33 enabled VCC_SD enabled No load on any of the regulators. 1.2 mA Notes 15. At 25 °C only. 16. When VIN is below the UVDET threshold, in the range of 1.8 V VIN < 2.65 V, the quiescent current increases by 50 A, typically. PF3001 12 NXP Semiconductors GENERAL PRODUCT CHARACTERISTICS 5.4 Electrical characteristics Table 6. Electrical characteristics – front-end input LDO All parameters are specified at TA = -40 °C to 105 °C, VPWR = 5.0 V, VIN = 4.4 V, IVIN = 300 mA, typical external component values, unless otherwise noted. Typical values are characterized at VPWR = 5.0 V, VIN = 4.4 V, IVIN = 300 mA, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes 4.6 3.7 – – 5.5 4.6 V (17) Front end input LDO (VPWR LDO) VPWR Operating input voltage • In regulation • In dropout operation VIN On mode output voltage, 4.6 V < VPWR < 5.5 V, 0.0 mA < IVIN < 3000 mA 4.3 4.4 4.55 V IVIN Operating load current at VIN, 3.7 V < VPWR < 5.5 V 0.0 – 3.0 A – 5.0 10 mA ILDOGQ ON mode quiescent current, No load, Low power mode output voltage, 4.6 V < VPWR < 5.5 V 0.0 mA < IVIN < 1.0 mA 3.7 4.5 V VPWROFFMODE Off mode output voltage, (CL = 100 F) 4.6 V < VPWR < 5.5 V, 0.0 mA < IVIN < 35 A 3.2 4.8 V VPWRUV VPWR undervoltage threshold (upon undervoltage condition the external pass FET is turned off) 3.1 – 3.7 V VPWROV VPWR overvoltage threshold (upon overvoltage condition interrupt is asserted at INTB) 5.5 – 6.5 V VIN IVINUVILIMIT VPWR LDO current limit under VIN short-circuit (VIN < UVDET) – – 300 mA IVINLEAKAGE Reverse leakage current from VIN to VPWR, No external pass FET, VPWR is grounded, device is in OFF state – – 1.0 µA VPWR LDO Off mode quiescent current – – 75 A IVPWROFF (18) Notes 17. While the front end LDO can handle spikes up to 7.5 V at VPWR for as long as 200 µs, the circuit is not expected to be continuously operated when VPWR is above 5.5 V. 18. This specification gives the leakage current in the VPWR LDO block. Total OFF mode current includes the quiescent current from the other blocks as specified in Table 5. PF3001 NXP Semiconductors 13 GENERAL PRODUCT CHARACTERISTICS Table 7. Static electrical characteristics – SW1 All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW1IN = 3.6 V, VSW1 = 1.2 V, ISW1 = 100 mA, typical external component values, fSW1 = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VSW1IN = 3.6 V, VSW1 = 1.2 V, ISW1 = 100 mA, and 25 °C, unless otherwise noted. Symbol Parameter Min Typ Max Unit Notes (19) Switch mode supply SW1 VSW1IN Operating input voltage 2.8 – 4.5 V VSW1 Nominal output voltage – Table 40 – V -25 25 mV -25 25 mV 45 mV -6.0 6.0 % -6.0 6.0 % Output voltage accuracy • PWM, APS, 2.8 V < VSW1IN < 4.5 V, 0 < ISW1 < 2.75 A 0.7 V VSW1 1.2 V • PFM, APS, 2.8 V < VSW1IN < 4.5 V, 0 < ISW1 < 2.75A 1.225 V < VSW1 < 1.425 V • PFM, steady state, 2.8 V < VSW1IN < 4.5 V, 0 < ISW1 < 150 mA 1.8 V VSW1 1.425 V • PWM, APS, 2.8 V < VSW1IN < 4.5 V, 0 < ISW1 < 2.75A 1.8 V < VSW1 < 3.3 V • PFM, steady state, 2.8 V < VSW1IN < 4.5 V, 0 < ISW1 < 150 mA 1.8 V VSW1 3.3 V VSW1ACC ISW1 ISW1Q • Rated output load current, 2.8 V VSW1IN 4.5 V, 0.7 V VSW1 1.425 V, 1.8 V, 3.3 V Quiescent current • PFM mode • APS mode -45 – – – 2750 mA – – 22 300 – – µA 3.5 2.6 5.5 4.0 7.5 5.4 A ISW1LIM Current limiter peak current detection , current through inductor • SW1ILM = 0 (default) • SW1ILM = 1 VSW1 Output ripple – 5.0 – mV Discharge resistance – 600 – RSW1DIS Notes 19. The maximum operating input voltage is 4.55 V when VPWR LDO is used Table 8. Dynamic electrical characteristics - SW1 All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW1IN = 3.6 V, VSW1 = 1.2 V, ISW1 = 100 mA, typical external component values, fSW1 = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VSW1IN = 3.6 V, VSW1 = 1.2 V, ISW1 = 100 mA, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Start-up Overshoot, ISW1 = 0 mA, slew rate = 25 mV/4 s, VIN = VSW1IN = 4.5 V, VSW1 = 1.425 V – – 66 mV Turn-on time, enable to 90% of end value, ISW1 = 0 mA, slew rate = 25 mV/4 s, VIN = VSW1IN = 4.5 V, VSW1 = 1.425 V – – 500 µs Notes Switch mode supply SW1 (single phase) VSW1OSH tONSW1 PF3001 14 NXP Semiconductors GENERAL PRODUCT CHARACTERISTICS Table 9. Static electrical characteristics – SW2 All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW2IN = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, typical external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VSW2IN = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes (20), (21) Switch mode supply SW2 VSW2IN Operating Input Voltage 2.8 – 4.5 V VSW2 Nominal output voltage – Table 42 – V -3.0 -6.0 – – 3.0 6.0 % -6.0 -6.0 – – 6.0 6.0 – – 1250 ISW2Q Quiescent current • PFM mode • APS mode (low output voltage settings, CTL_SW2_HL = 0) • APS mode (high output voltage settings, CTL_SW2_HL = 1) – – – 23 145 305 – – – ISW2LIM Current limiter peak current detection, current through inductor • SW2ILM = 0 (default) • SW2ILM = 1 1.625 1.235 2.5 1.9 3.375 2.565 A VSW2 Output ripple – 5.0 – mV RONSW2P SW2 P-MOSFET RDS(on) at VIN = VSW2IN = 3.3 V – 215 245 m RONSW2N SW2 N-MOSFET RDS(on) at VSW2IN = VSW2IN = 3.3 V – 258 326 m ISW2PQ SW2 P-MOSFET leakage current, VIN = VSW2IN = 4.5 V – – 10.5 µA ISW2NQ SW2 N-MOSFET leakage current, VIN = VSW2IN = 4.5 V – – 3.0 µA RSW2DIS Discharge resistance during OFF mode – 600 – VSW2ACC ISW2 Output voltage accuracy • PWM, APS, 2.8 V VSW2IN 4.5 V, 0 ISW2 1.25 A • 1.50 V VSW2 1.85 V • 2.5 V VSW2 3.3 V • PFM, 2.8 V VSW2IN 4.5 V, 0 ISW2 50 mA • 1.50 V VSW2 1.85 V • 2.5 V VSW2 3.3 V Rated output load current, 2.8 V < VSW2IN < 4.5 V, 1.50 V < VSW2 < 1.85 V, 2.5 V < VSW2 < 3.3 V mA (22) µA Notes 20. The maximum operating input voltage is 4.55 V when VPWR LDO is used. 21. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied at the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between 1.8 V and 3.3 V. This voltage can be an output from any PF3001 regulator, or external system supply. 22. The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation: (VSW2IN - VSW2) = ISW2* (DCR of Inductor +RONSW2P + PCB trace resistance). Table 10. Dynamic electrical characteristics - SW2 All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW2IN = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, typical external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VSW2IN = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Start-up overshoot, ISW2 = 0.0 mA, slew rate = 25 mV/4 s, VIN = VSW2IN = 4.5 V – – 66 mV Turn-on time, enable to 90% of end value, ISW2 = 0.0 mA, slew rate = 25 mV/4 s, VIN = VSW2IN = 4.5 V – – 500 µs Notes Switch Mode Supply SW2 VSW2OSH tONSW2 PF3001 NXP Semiconductors 15 GENERAL PRODUCT CHARACTERISTICS Table 11. Static electrical characteristics – SW3 All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW3IN = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA, typical external component values, fSW3 = 2.0 MHz. Typical values are characterized at VIN = VSW3IN = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA, and 25 °C, unless otherwise noted. Parameter Symbol Min. Typ. Max. Unit Notes (23) Switch mode supply SW3 VSW3IN Operating input voltage 2.8 – 4.5 V VSW3 Nominal output voltage – Table 44 – V -3.0 – 3.0 -6.0 – 6.0 – – 1500 mA – – 50 150 – – µA 1.95 1.45 3.0 2.25 4.05 3.05 A VSW3ACC ISW3 ISW3Q Output voltage accuracy • PWM, APS, 2.8 V < VSW3IN < 4.5 V, 0 < ISW3 < 1.5 A, 0.9 V < VSW3 < 1.65 V • PFM, steady state (2.8 V < VSW3IN < 4.5 V, 0 < ISW3 < 50 mA), 0.9 V < VSW3 < 1.65 V Rated output load current, 2.8 V < VSW3IN < 4.5 V, 0.9 V < VSW3 < 1.65 V, PWM, APS mode Quiescent current • PFM mode • APS mode % ISW3LIM Current limiter peak current detection, current through inductor • SW3ILIM = 0 (default) • SW3ILIM = 1 VSW3 Output ripple – 5.0 – mV RONSW3P SW3 P-MOSFET RDS(on) at VIN = VSW3IN = 3.3 V – 205 235 m RONSW3N SW3 N-MOSFET RDS(on) at VIN = VSW3IN = 3.3 V – 250 315 m ISW3PQ SW3 P-MOSFET leakage current, VIN = VSW3IN = 4.5 V – – 12 µA ISW3NQ SW3 N-MOSFET leakage current, VIN = VSW3IN = 4.5 V – – 4.0 µA RSW3DIS Discharge resistance during off mode – 600 – (24) Notes 23. The maximum operating input voltage is 4.55 V when VPWR LDO is used. 24. The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation: (VSW3IN - VSW3) = ISW3* (DCR of Inductor +RONSW3P + PCB trace resistance). Table 12. Dynamic Electrical Characteristics - SW3 All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW 3IN = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA, typical external component values, fSW3 = 2.0 MHz. Typical values are characterized at VIN = VSW3IN = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA, and 25 °C, unless otherwise noted. Symbol VSW3OSH tONSW3 Parameter Min. Typ. Max. Unit Start-up overshoot, ISW3 = 0.0 mA, slew rate = 25 mV/4 s, VIN = VSW3IN = 4.5 V – – 66 mV Turn-on time, enable to 90% of end value, ISW3 = 0 mA, slew rate = 25 mV/4 s, VIN = VSW3IN = 4.5 V – – 500 µs Notes PF3001 16 NXP Semiconductors GENERAL PRODUCT CHARACTERISTICS Table 13. Static electrical characteristics - VSNVS All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 A, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 A, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes Operating input voltage • Valid coin cell range • Valid VIN 1.8 2.25 – – 3.3 4.5 V (25) ISNVS Operating load current, VINMIN < VIN < VINMAX 1.0 – 1000 A VSNVS Output voltage -5.0 • 5.0 A < ISNVS < 1000 A (OFF), 3.20 V < VIN < 4.5 V -5.0 • 5.0 A < ISNVS < 1000A (ON), 3.20 V < VIN < 4.5 V • 50A < ISNVS < 1000 A (coin cell mode), 2.84 V < VCOIN < 3.3 V VCOIN-0.10 3.0 3.0 – 7.0 5.0 VCOIN % % V – – 110 mV 1100 – 6750 A Operating input voltage, valid coin cell range 1.8 – 3.3 V Operating load current 1.0 – 1000 A – – 100 VSNVS VIN VSNVSDROP ISNVSLIM Dropout voltage, 2.85 V < VIN < 2.9 V, 1.0 A < ISNVS < 1000 A Current limit, VIN > VTH1 VSNVS DC, switch VLICELL ISNVS RDSONSNVS Internal switch RDS(on), VCOIN = 2.6 V Notes 25. The maximum operating input voltage is 4.55 V when VPWR LDO is used Table 14. Dynamic electrical characteristics - VSNVS All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 A, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 A, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes (26),(27) VSNVS VSNVSTON Turn-on time (load capacitor, 0.47 F), from VIN = VTH1 to 90% of VSNVS, VCOIN = 0.0 V, ISNVS = 5.0 A – – 24 ms VSNVSOSH Start-up overshoot, ISNVS = 5.0 A – 40 70 mV VSNVSLOTR Transient load response, 3.2 < VIN 4.5 V, ISNVS = 100 to 1000 A 2.8 – – V VTL1 VIN falling threshold (VIN powered to coin cell powered) 2.45 2.70 3.05 V VTH1 VIN rising threshold (coin cell powered to VIN powered) 2.50 2.75 3.10 V VIN threshold hysteresis for VTH1-VTL1 5.0 – – mV Output voltage during crossover, VCOIN > 2.9 V, switch to LDO: VIN > VTH1, ISNVS = 100 A, LDO to switch: VIN < VTL1, ISNVS = 100 A 2.45 – – V VHYST1 VSNVSCROSS Notes 26. The start-up of VSNVS is not monotonic. It first rises to 1.0 V and then settles to 3.0 V. 27. From coin cell insertion to VSNVS = 1.0 V, the delay time is typically 400 ms. PF3001 NXP Semiconductors 17 GENERAL PRODUCT CHARACTERISTICS Table 15. Static electrical characteristics - VLDO1 All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VLDO1IN = 3.6 V, VLDO1 = 3.3 V, ILDO1 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VLDO1IN = 3.6 V, VLDO1 = 3.3 V, ILDO1 = 10 mA, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes 2.8 VLDO1NOM +0.250 – – 4.5 4.5 V (28), (29) VLDO1 linear regulator VLDO1IN Operating input voltage • 1.8 V VLDO1NOM 2.5 V • 2.6 V VLDO1NOM 3.3 V VLDO1NOM Nominal output voltage – Table 47 – V ILDO1 Operating load current 0.0 – 100 mA VLDO1TOL Output voltage tolerance, VLDO1INMIN < VLDO1IN < 4.5 V, 0.0 mA < ILDO1 < 100 mA, VLDO1 = 1.8 V to 3.3 V -3.0 – 3.0 % ILDO1Q Quiescent current, no load, change in IVIN, when VLDO1 enabled – 13 – A 122 167 280 mA ILDO1LIM Current limit, ILDO1 when VLDO1 is forced to VLDO1NOM/2 Notes 28. The maximum operating input voltage is 4.55 V when VPWR LDO is used. 29. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied at the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between 1.8 V and 3.3 V. This voltage can be an output from any PF3001 regulator, or external system supply. Table 16. Dynamic electrical characteristics - VLDO1 All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VLDO1IN = 3.6 V, VLDO1 = 3.3 V, ILDO1 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VLDO1IN = 3.6 V, VLDO1 = 3.3 V, ILDO1 = 10 mA, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit 35 52 40 60 – – dB – – – -114 -129 -135 -102 -123 -130 Notes VLDO1 linear regulator PSRRVLDO1 PSRR, ILDO1 = 75 mA, 20 Hz to 20 kHz • VLDO1 = 1.8 V to 3.3 V, VLDO1IN = VLDO1INMIN + 100 mV • VLDO1 = 1.8 V to 3.3 V, VLDO1IN = VLDO1NOM + 1.0 V Output noise density, VLDO1IN = VLDO1INMIN, ILDO1 = 75 mA NOISEVLDO1 • 100 Hz to <1.0 kHz • 1.0 kHz to <10 kHz • 10 kHz to 1.0 MHz dBV/ Hz tONLDO1 Turn-on time, enable to 90% of end value, VLDO1IN = VLDO1INMIN to 4.5 V, ILDO1 = 0.0 mA, all output voltage settings 60 – 500 s tOFFLDO1 Turn-off time, disable to 10% of initial value, VLDO1IN = VLDO1INMIN, ILDO1 = 0.0 mA – – 10 ms LDO1OSHT Start-up overshoot, VLDO1IN = VLDO1INMIN to 4.5 V, ILDO1 = 0.0 mA – 1.0 2.0 % PF3001 18 NXP Semiconductors GENERAL PRODUCT CHARACTERISTICS Table 17. Static electrical characteristics - VLDO2 All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VLDO2IN = 3.0 V, VLDO2 = 1.55 V, ILDO2 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VLDO2IN = 3.0 V, VLDO2 = 1.55 V, ILDO2 = 10 mA and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes VLDO2 linear regulator VLDO2IN Operating input voltage 1.75 – 3.40 V VLDO2NOM Nominal output voltage – Table 47 – V ILDO2 Operating load current 0.0 – 250 mA VLDO2TOL Output voltage tolerance, 1.75 V < VLDOIN1 < 3.40 V, 0.0 mA < ILDO2 < 250 mA, VLDO2 = 0.8 V to 1.55 V -3.0 – 3.0 % ILDO2Q Quiescent current, no load, change in IVIN and IVLDO2IN, When VLDO2 enabled – 16 – A 333 417 612 mA ILDO2LIM Current limit, ILDO2 when VLDO2 is forced to VLDO2NOM/2 Table 18. Dynamic electrical characteristics - VLDO2 All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VLDO2IN = 3.0 V, VLDO2 = 1.55 V, ILDO2 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VLDO2IN = 3.0 V, VLDO2 = 1.55 V, ILDO2 = 10 mA and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit 50 37 60 45 – – dB – – – -108 -118 -124 -100 -108 -112 60 – 500 s Turn-off time, disable to 10% of initial value, VLDO2IN = 1.75 V, ILDO2 = 0.0 mA – – 10 ms Start-up overshoot, VLDO2IN = 1.75 V to 3.4 V, ILDO2 = 0.0 mA – 1.0 2.0 % Notes VLDO2 linear regulator PSRR, ILDO2 = 187.5 mA, 20 Hz to 20 kHz PSRRVLDO2 NOISEVLDO2 tONLDO2 tOFFLDO2 LDO2OSHT • VLDO2 = 0.8 V to 1.55 V • VLDO2 = 1.1 V to 1.55 V Output noise density, VLDO2IN = 1.75 V, ILDO2 = 187.5 mA • 100 Hz to <1.0 kHz • 1.0 kHz to <10 kHz • 10 kHz to 1.0 MHz Turn-on time, enable to 90% of end value, VLDO2IN = 1.75 V to 3.4 V, ILDO2 = 0.0 mA dBV/Hz PF3001 NXP Semiconductors 19 GENERAL PRODUCT CHARACTERISTICS Table 19. Static electrical characteristics – VCC_SD All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VCC_SD = 1.85 V, IVCC_SD = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VCC_SD = 1.85 V, IVCC_SD = 10 mA, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes (30), (31), (32) VCC_SD linear regulator VIN Operating input voltage 2.8 – 4.5 V VCC_SDNOM Nominal output voltage – Table 50 – V IVCC_SD Operating load current 0.0 – 100 mA VCC_SDTOL Output voltage accuracy, 2.8 V < VIN < 4.5 V, 0.0 mA < IVCC_SD < 100 mA, VCC_SD[1:0] = 00 to 11 -3.0 – 3.0 % IVCC_SDQ Quiescent current, no load, change in IVIN and IVIN2, when VCC_SD enabled – 13 – A 122 167 280 mA IVCC_SDLIM Current limit, IVCC_SD when VCC_SD is forced to VCC_SDNOM/2 Notes 30. When the LDO output voltage is set above 2.6 V, the minimum allowed input voltage needs to be at least the output voltage plus 0.25 V. 31. The maximum operating input voltage is 4.55 V when VPWR LDO is used. 32. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied at the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between 1.8 V and 3.3 V. This voltage can be an output from any PF3001 regulator, or external system supply. Table 20. Dynamic electrical characteristics - VCC_SD All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VCC_SD = 1.85 V, IVCC_SD = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VCC_SD = 1.85 V, IVCC_SD = 10 mA, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit 35 52 40 60 – – dB – – – -114 -129 -135 -102 -123 -130 Notes VCC_SD linear regulator PSRRVCC_SD PSRR, IVCC_SD = 75 mA, 20 Hz to 20 kHz • VCC_SD[1:0] = 00 - 10, VIN = 2.8 V + 100 mV • VCC_SD[1:0] = 10 - 11, VIN = VCC_SDNOM + 1.0 V Output noise density, VIN = 2.8V, IVCC_SD = 75 mA NOISEVCC_SD • 100 Hz to <1.0 kHz • 1.0 kHz to <10 kHz • 10 kHz to 1.0 MHz dBV/Hz tONVCC_SD Turn-on time, enable to 90% of end value, VIN = 2.8 V to 4.5 V, IVCC_SD = 0.0 mA 60 – 500 s tOFFVCC_SD Turn-off time, disable to 10% of initial value, VIN = 2.8 V, IVCC_SD = 0.0 mA – – 10 ms VCC_SDOSHT Start-up overshoot, VIN = 2.8 V to 4.5 V, IVCC_SD = 0.0 mA – 1.0 2.0 % PF3001 20 NXP Semiconductors GENERAL PRODUCT CHARACTERISTICS Table 21. Static electrical characteristics – V33 All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, V33 = 3.3 V, IV33 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, V33 = 3.3 V, IV33 = 10 mA, and 25 °C, unless otherwise noted. Symbol Parameter Min Typ Max Unit Notes 2.8 – 4.5 V (33), (34), (35) V33 linear regulator VIN Operating input voltage, 2.9 V V33NOM 3.6 V V33NOM Nominal output voltage – Table 49 – V IV33 Operating load current 0.0 – 350 mA Output voltage tolerance, 2.8 V < VIN < 4.5 V, 0.0 mA < IV33 < 350 mA, V33[1:0] = 00 to 11 -3.0 – 3.0 % – 13 – A 435 584.5 950 mA V33TOL IV33Q IV33LIM Quiescent current, no load, change in IVIN, when V33 enabled Current limit, IV33 when V33 is forced to V33NOM/2 Notes 33. When the LDO Output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper regulation due to the dropout voltage generated through the internal LDO transistor. 34. The maximum operating input voltage is 4.55 V when VPWR LDO is used. 35. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied at the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between 1.8 V and 3.3 V. This voltage can be an output from any PF3001 regulator, or external system supply. Table 22. Dynamic electrical characteristics – V33 All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, V33 = 3.3 V, IV33 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, V33 = 3.3 V, IV33 = 10 mA, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes 52 60 – dB (36) – – – -114 -129 -135 -102 -123 -130 Turn-on time, enable to 90% of end value, VIN = 2.8 V, to 4.5 V, IV33 = 0.0 mA 60 – 500 s tOFFV33 Turn-off time, disable to 10% of initial value, VIN = 2.8 V, IV33 = 0.0 mA – – 10 ms V33OSHT Start-up overshoot, VIN = 2.8 V to 4.5 V, IV33 = 0.0 mA – 1.0 2.0 % V33 linear regulator PSRRV33 PSRR, IV33 = 262.5 mA, 20 Hz to 20 kHz, V33[1:0] = 00 - 11, VIN = V33NOM + 1.0 V Output noise density, VIN = 2.8 V, IV33 = 262.5 mA NOISEV33 tONV33 • 100 Hz to <1.0 kHz • 1.0 kHz to <10 kHz • 10 kHz to 1.0 MHz dBV/Hz Notes 36. When the LDO Output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper regulation due to the dropout voltage generated through the internal LDO transistor. PF3001 NXP Semiconductors 21 GENERAL PRODUCT CHARACTERISTICS Table 23. Static electrical characteristics – VLDO3 All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VLDO34IN = 3.6 V, VLDO3 = 3.3 V, ILDO3 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VLDO34IN = 3.6 V, VLDO3 = 3.3 V, ILDO3 = 10 mA, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes 2.8 VLDO3NOM +0.250 – – 3.6 3.6 V (37) VLDO3 linear regulator VLDO34IN Operating input voltage • 1.8 V VLDO3NOM 2.5 V • 2.6 V VLDO3NOM 3.3 V VLDO3NOM Nominal output voltage – Table 48 – V ILDO3 Operating load current 0.0 – 100 mA Output voltage tolerance, VLDO34INMIN < VLDO34IN < 4.5 V, 0.0 mA < ILDO3 < 100 mA, VLDO3 = 1.8 V to 3.3 V -3.0 – 3.0 % – 13 – A 122 167 280 mA VLDO3TOL ILDO3Q ILDO3LIM Quiescent current, no load, change in IVIN and IVLDO34IN, When VLDO3 enabled Current limit, ILDO3 when VLDO3 is forced to VLDO3NOM/2 Notes 37. The maximum operating input voltage is 4.55 V when VPWR LDO is used. Table 24. Dynamic electrical characteristics – VLDO3 All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VLDO34IN = 3.6 V, VLDO3 = 3.3 V, ILDO3 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VLDO34IN = 3.6 V, VLDO3 = 3.3 V, ILDO3 = 10 mA, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit • VLDO3 = 1.8 V to 3.3 V, VLDO34IN = VLDO34INMIN + 100 mV • VLDO3 = 1.8 V to 3.3 V, VLDO34IN = VLDO3NOM + 1.0 V 35 52 40 60 – – dB Output noise density, VLDO34IN = VLDO34INMIN, ILDO3 = 75 mA • 100 Hz to <1.0 kHz • 1.0 kHz to <10 kHz • 10 kHz to 1.0 MHz – – – -114 -129 -135 -102 -123 -130 Notes VLDO3 linear regulator PSRR, ILDO3 = 75 mA, 20 Hz to 20 kHz PSRRVLDO3 NOISEVLDO3 dBV/Hz tONLDO3 Turn-on time, enable to 90% of end value, VLDO34IN = VLDO34INMIN to 4.5 V, ILDO3 = 0.0 mA 60 – 500 s tOFFLDO3 Turn-off time, disable to 10% of initial value, VLDO34IN = VLDO34INMIN, ILDO3 = 0.0 mA – – 10 ms LDO3OSHT Start-up overshoot, VLDO34IN = VLDO34IN2MIN to 4.5 V, ILDO3 = 0.0 mA – 1.0 2.0 % PF3001 22 NXP Semiconductors GENERAL PRODUCT CHARACTERISTICS Table 25. Static electrical characteristics - VLDO4 All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VLDO34IN = 3.6 V, VLDO4 = 3.3 V, ILDO4 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VLDO34IN = 3.6 V, VLDO4 = 3.3 V, ILDO4 = 10 mA, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes 2.8 VLDO4NOM +0.250 – – 3.6 3.6 V (38) VLDO4 linear regulator VLDO34IN Operating input voltage • 1.8 V VLDO4NOM 2.5 V • 2.6 V VLDO4NOM 3.3 V VLDO4NOM Nominal output voltage – Table 48 – V ILDO4 Operating load current 0.0 – 350 mA Output voltage tolerance, VLDO34INMIN < VLDO34IN < 4.5 V, 0.0 mA < ILDO3 < 100 mA, VLDO4 = 1.9 V to 3.3 V -3.0 – 3.0 % – 13 – A Current limit, ILDO4 when VLDO4 is forced to VLDO4NOM/2 435 584.5 950 mA PSRR, ILDO4 = 262.5 mA, 20 Hz to 20 kHz • VLDO4 = 1.9 V to 3.3 V, VLDO34IN = VLDO34INMIN + 100 mV • VLDO4 = 1.9 V to 3.3 V, VLDO34IN = VLDO4NOM + 1.0 V 35 52 40 60 – – dB VLDO4TOL ILDO4Q ILDO4LIM PSRRVLDO4 Quiescent current, no load, change in IVIN and IVLDO34IN, When VLDO4 enabled Notes 38. The maximum operating input voltage is 4.55 V when VPWR LDO is used. Table 26. Dynamic electrical characteristics - VLDO4 All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VLDO34IN = 3.6 V, VLDO4 = 3.3 V, ILDO4 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VLDO34IN = 3.6 V, VLDO4 = 3.3 V, ILDO4 = 10 mA, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. – – – -114 -129 -135 -102 -123 -130 Unit Notes VLDO4 linear regulator NOISEVLDO4 Output noise density, VLDO34IN2 = VLDO34INMIN, ILDO4 = 262.5 mA • 100 Hz to <1.0 kHz • 1.0 kHz to <10 kHz • 10 kHz to 1.0 MHz dBV/Hz tONLDO4 Turn-on time, enable to 90% of end value, VLDO34IN = VLDO34INMIN, 4.5 V, ILDO4 = 0.0 mA 60 – 500 s tOFFLDO4 Turn-off time, disable to 10% of initial value, VLDO34IN = VLDO34INMIN, ILDO4 = 0.0 mA – – 10 ms Start-up overshoot, VLDO34IN = VLDO34INMIN, 4.5 V, ILDO4 = 0.0 mA – 1.0 2.0 % LDO4OSHT Table 27. Static electrical characteristics - Coin Cell All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, typical external component values, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes Coin cell VCOINACC Charge voltage accuracy -100 – -100 mV ICOINACC Charge current accuracy -30 – 30 % ICOIN Coin cell charge current • ICOINHI (in On mode) • ICOINLO (in On mode) – – 60 10 – – A PF3001 NXP Semiconductors 23 GENERAL PRODUCT CHARACTERISTICS Table 28. Static electrical characteristics - Digital I/O All parameters are specified at TA = -40 °C to 105 °C, VDDIO = 1.7 V to 3.6 V, VPWR = 0 V (external FET not populated), and typical external component values and full load current range, unless otherwise noted. Pin Name PWRON RESETBMCU Parameter • VL • VH • VOL • VOH Load condition Min. Max. Unit – – 0.0 0.8 * VSNVS 0.2 * VSNVS 3.6 V -2.0 mA Open Drain 0.0 0.7 * VDDIO 0.4 * VDDIO VDDIO V – – 0.0 0.8 * VDDIO 0.2 * VDDIO 3.6 V SCL • VL • VH SDA • VL • VH • VOL • VOH – – -2.0 mA Open Drain 0.0 0.8 * VDDIO 0.0 0.7 * VDDIO 0.2 * VDDIO 3.6 0.4 * VDDIO VDDIO V INTB • VOL • VOH -2.0 mA Open Drain 0.0 0.7 * VDDIO 0.4 * VDDIO VDDIO V – – 0.0 0.8 * VDDIO 0.2 * VDDIO 3.6 V SD_VSEL • VL • VH Notes Table 29. Static electrical characteristics - Internal Supplies All parameters are specified at TA = -40 °C to 105 °C, VIN = 2.8 V to 4.5 V, LICELL = 1.8 V to 3.3 V, and typical external component values. Typical values are characterized at VIN = 3.6 V, LICELL = 3.0 V, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes – – 1.5 1.3 – – V (39) – – 2.775 0.0 – – V (39) (39) VCOREDIG (digital core supply) VCOREDIG Output voltage • ON mode • Coin cell mode and OFF mode VCORE (analog core supply) VCORE Output voltage • ON mode and charging • Coin cell mode and OFF mode VCOREREF (bandgap regulator reference) VCOREREF Output voltage at 25 °C – 1.2 – V VCOREREFACC Absolute trim accuracy – 0.5 – % VCOREREFTACC Temperature drift – 0.25 – % Notes 39. 3.1 V < VIN < 4.5 V, no external loading on VCOREDIG, VCORE, or VCOREREF. Table 30. Static electrical characteristics - UVDET threshold All parameters are specified at TA = -40 °C to 105 °C, VIN = 2.8 V to 4.5 V, LICELL = 1.8 V to 3.3 V, and typical external component values. Typical values are characterized at VIN = 3.6 V, LICELL = 3.0 V, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit – 2.5 – – 3.1 – V Notes VIN UVDET threshold VUVDET • Rising • Falling PF3001 24 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6 Functional description and application information 6.1 Introduction The PF3001 is a highly integrated, low quiescent current power management IC featuring three buck regulators and seven LDO regulators. The PF3001 provides all the necessary rails to power a complete system including the application processor, memory, and peripherals. The PF3001 operates from an input voltage of up to 5.5 V. Output voltage, start-up sequence, and other functions are set in integrated one-time-programmable (OTP) memory. 6.2 Power generation The buck regulators in the PF3001 provide supply to the processor cores and to other voltage domains, such as I/O and memory. Dynamic voltage scaling is provided to allow controlled supply rail adjustments for the processor cores and other circuitry. The linear regulators in the PF3001 can be used as general purpose regulators to power peripherals and lower power processor rails. The VCC_SD LDO regulator supports the dual voltage requirement by high speed SD card readers. Depending on the system power path configuration, the LDO regulators can be directly supplied from the main input supply or from the switching regulators to power peripherals, such as audio, camera, Bluetooth, and Wireless LAN, etc. The VSNVS block behaves as an LDO, or as a bypass switch to supply the SNVS/SRTC circuitry on the i.MX processors; VSNVS may be powered from VIN, or from a coin cell. To accommodate applications powered by main supplies of voltages higher than 4.5 V and up to 5.5 V, the PF3001 incorporates a frontend LDO regulator using an external pass FET to keep the maximum regulator input voltage of the regulators at 4.5 V. Applications with an input voltage lower than 4.5 V can directly power the regulators without using the front-end LDO. Table 31 shows a summary of the voltage regulators in the PF3001. Table 31. PF3001 power tree Supply Output voltage (V) Programming step size (mV) Maximum load current (mA) SW1 0.7 to 1.425 1.8 and 3.3 25 (N/A) 2750 SW2 1.5 to 1.85 2.5 to 3.3 50 variable 1250 SW3 0.9 to 1.65 50 1500 VLDO1 1.8 to 3.3 50 100 VLDO2 0.8 to 1.55 50 250 VCC_SD 2.85 to 3.3 1.8 to 1.85 150 50 100 V33 2.85 to 3.3 150 350 VLDO3 1.8 to 3.3 100 100 VLDO4 1.8 to 3.3 100 350 VSNVS 3.0 NA 1.0 PF3001 NXP Semiconductors 25 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION PF3001 SW1 0.700 V to 3.3 V 2.75 A 1.1 V i.MX Series MCU VDD_ARM (A7 Core) (SOC Logic) VIN 4.5 V (typ.) SW2 1.50 V to 1.85 V or 2.25 V to 3.30 V 1.25 A 1.8 V SW3 0.90 V to 1.65 V 1.5 A 1.35 V VCC_SD 1.80 V to 1.85 V or 2.85 V to 3.3 V 100 mA V33 2.85 V to 3.30 V 350 mA VDDA_1P8 (I/O) NVCC_DRAM_CKE (DDR IO) 3.3 V 3.3 V VCC_SD_IO NVCC_3P3 (3.3 V GPIO PAD) VDDA_USBx_3P3 (USB OTG PHY) VDD_LPSR NVCC_GPIOx VIN MUX / COIN CHRG Coincell VIN SW2 VLDO2INMAX = 3.4 V VSNVS 1.0 V to 3.0 V 1.0 mA VSNVS_IN VLDO1 1.8 V to 3.3 V 100 mA 1.8 V VLDO2 0.80 V to 1.55 V 250 mA 1.5 V VLDO3 1.8 V to 3.3 V 100 mA VIN VLDO4 1.8 V to 3.3 V 350 mA USB_OTG DDR3L Peripherals 3.3 V 3.3 V Figure 5. PF3001 typical power map Figure 5 shows a simplified power map with various recommended options to supply the different block within the PF3001, as well as the typical application voltage domain on the i.MX Series processors. Note that each application power tree is dependent upon the system’s voltage and current requirements, therefore a proper input voltage should be selected for the regulators. PF3001 26 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.3 Functional description 6.3.1 Control logic and interface signals The PF3001 is fully programmable via the I2C interface. Additional communication is provided by direct logic interfacing including INTB, RESETBMCU, PWRON, and SD_VSEL. Refer to Table 28 for logic levels for these pins. 6.3.1.1 PWRON PWRON is an input signal to the IC which generates a turn-on event. A turn-on event brings the PF3001 out of OFF mode and into the ON mode. Refer to Modes of operation for the various modes (states) of operation of the IC. If the PWRON signal is high and VIN > UVDET, the PMIC turns on; the interrupt and sense bits, PWRONI and PWRONS respectively, are set. 6.3.1.2 RESETBMCU RESETBMCU is an open-drain, active low output. It is de-asserted 2.0 ms after the last regulator in the start-up sequence is enabled. This signal can be used to bring the processor out of reset (POR), or as an indicator which all supplies have been enabled; it is only asserted during a turn-off event. The RESETBMCU signal is internal timer based and does not monitor the regulators. 6.3.1.3 INTB INTB is an open drain, active low output. It is asserted when any fault occurs, provided the fault interrupt is unmasked. INTB is de-asserted after the fault interrupt is cleared by software, which requires writing a “1” to the fault interrupt bit. 6.3.1.4 SD_VSEL SD_VSEL is an input pin which sets the output voltage range of the VCC_SD regulator. When SD_VSEL = HIGH, the VCC_SD regulator operates in the lower output voltage range. When SD_VSEL = LOW, the VCC_SD regulator operates in the higher output voltage range. The SD_VSEL input buffer is powered by the VDDIO supply. When a valid VDDIO voltage is not present, the output of the SD_VSEL buffer defaults to a logic high thus keeping the VCC_SD regulator output in the lower voltage range. PF3001 NXP Semiconductors 27 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.3.2 Start-up The PF3001 is available in a number of pre-programmed fixed start-up sequences to suit a wide variety of system configurations. Refer to Table 32 for programming details of the different values. Table 32. Start-up configuration (40) Registers Pre-programmed OTP configuration A1 A2 A3 A4 A5 A6 A7 Default I C Address 0x08 0x08 0x08 0x08 0x08 0x08 0x08 VSNVS_VOLT 3.0 V 3.0 V 3.0 V 3.0 V 3.0 V 3.0 V 3.0 V SW1_VOLT 1.10 V 1.10 V 1.375 V 1.375 V 1.375 V 1.4 V 1.4 V 2 SW1_SEQ 1 1 2 1 1 3 3 SW2_VOLT 1.8 V 1.8 V 3.3 V 3.3 V 3.15 V 3.3 V 3.3 V SW2_SEQ 2 2 4 2 2 3 3 SW3_VOLT 1.35 V 1.2 V 1.35 V 1.5 V 1.2 V 1.2 V 1.35 V SW3_SEQ 5 5 3 3 4 3 3 VLDO1_VOLT 1.8 V 1.8 V 3.3 V 1.8 V 1.8 V 3.3 V 3.3 V VLDO1_SEQ 4 4 OFF OFF 3 3 3 VLDO2_VOLT 1.5 V 1.5 V 1.5 V 1.2 V 1.5 V 1.5 V 1.5 V VLDO2_SEQ 4 4 OFF 3 OFF OFF OFF VLDO3_VOLT 3.3 V 3.3 V 2.5 V 1.8 V 3.1 V 1.8 V 1.8 V VLDO3_SEQ 3 3 OFF OFF 2 3 OFF VLDO4_VOLT 3.3 V 3.3 V 1.8 V 1.8 V 1.8 V 1.8 V 1.8 V VLDO4_SEQ 3 3 4 3 3 3 3 V33_VOLT 3.3 V 3.3 V 3.0 V 3.3 V 2.85 V 3.3 V 3.3 V V33_SEQ 3 3 1 2 OFF 2 2 VCC_SD_VOLT 3.3 V/1.85 V 3.3 V/1.85 V 3.3 V/1.85 V 3.0 V/1.80 V 3.15 V/1.80 V 3.3 V/1.85 V 3.3 V/1.85 V VCC_SD_SEQ 4 4 5 3 2 3 3 PU CONFIG, SEQ_CLK_SPEED 2000 µs 2000 µs 500 µs 2000 µs 2000 µs 2000 µs 2000 µs PU CONFIG, SWDVS_CLK 12.5 mV/µs 12.5 mV/µs 6.25 mV/s 12.5 mV/µs 12.5 mV/µs 6.25 mV/s 6.25 mV/s PU CONFIG, PWRON Level sensitive Level sensitive Level sensitive Level sensitive Level sensitive Level sensitive Level sensitive SW1_FREQ 2.0 MHz 2.0 MHz 2.0 MHz 2.0 MHz 2.0 MHz 2.0 MHz 2.0 MHz SW2_FREQ 2.0 MHz 2.0 MHz 2.0 MHz 2.0 MHz 2.0 MHz 2.0 MHz 2.0 MHz SW3_FREQ 2.0 MHz 2.0 MHz 2.0 MHz 2.0 MHz 2.0 MHz 2.0 MHz 2.0 MHz Notes 40. This table specifies the default output voltage of the LDOs and SWx after start-up and/or when the LDOs and SWx are enabled. The VCC_SD voltage depends on the state of the SD_VSEL pin. PF3001 28 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.3.3 Start-up timing diagram Figure 6 shows the start-up timing of the regulators as determined by their OTP sequence. The trimmed 32 kHz clock controls all the startup timing. UVDET VIN tr1 3V td1 is time from VIN > UVDET to VSNVS starting to rise. td1 is typically 5 ms tr1 is time VSNVS takes to go from 1 V to 3 V. Typically it is 650 s. td1 1V VSNVS td2 td2 is user determined delay. Can be zero if PWRON pulled up to VSNVS PWRON td3 is delay of regulator(s) whose OTP sequence is set to 1. With SEQ_CLK_SPEED = 0.5 ms, td3 is typically 2 ms with a minimum of 1 ms and maximum of 3 ms With SEQ_CLK_SPEED = 2 ms, td3 is typically 4.5 ms with a minimum of 2.5 ms and maximum of 6.5 ms td3 Regulator Outputs td4 td4 is controlled by the OTP sequence setting of the regulator(s). Refer to Table 32. Regulator Outputs td5 is the time for RESETBMCU to go high from the regulator(s) with the last OTP sequence. It is typically 2 ms with a minimum of 1.8 ms and maximum of 2.2 ms. td5 RESETBMCU Figure 6. Start-up timing diagram 6.3.4 16 MHz and 32 kHz clocks The PF3001 incorporates two clocks: a trimmed 16 MHz RC oscillator and an untrimmed 32 kHz RC oscillator. The 32 kHz untrimmed clock is only used in the following conditions: • VIN < UVDET • All regulators are in PFM switching mode A 32 kHz clock, derived from the 16 MHz trimmed clock, is used when accurate timing is needed under the following conditions: • During start-up, VIN > UVDET When the 16 MHz is active in the ON mode, the debounce times are referenced to the 32 kHz derived from the 16 MHz clock. The exceptions are the LOWVINI and PWRONI interrupts, which are referenced to the 32 kHz untrimmed clock. Switching frequency of the switching regulators is derived from the trimmed 16 MHz clock. The 16 MHz clock and hence the switching frequency of the regulators, can be adjusted to improve the noise integrity of the system. By changing the factory trim values of the 16 MHz clock, the user may add an offset as small as 3.0% of the nominal frequency. Contact your NXP representative for detailed information on this feature. PF3001 NXP Semiconductors 29 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.3.5 6.3.5.1 Optional front-end input LDO regulator LDO regulator description This section describes the optional front-end LDO regulator provided by the PF3001 in order to facilitate the operation with supply voltages higher than 4.5 V and up to 5.5 V. For non-battery operated applications, when the input supply voltage exceeds 4.5 V, the front-end LDO can be activated by populating the external PMOS pass FET MP1 in Figure 7 and connecting the VPWR pin to the main supply. Under this condition, the LDO control block self-starts with a local bandgap reference. When the VIN pin reaches UVDET rising threshold, the reference is switched to the main trimmed bandgap reference to maintain the required VIN accuracy. In applications using an input supply voltage of 4.5 V or lower, the PMOS pass FET should not be populated, the VPWR pin should be grounded externally, and the VIN pin should be used instead as the main supply input pin. The input pins of the switching regulators should always be connected to the VIN net. The main components of the LDO regulator are an external power P-channel MOSFET and an internal differential error amplifier. One input of the amplifier monitors a fraction of the output voltage at VIN determined by the resistor ratio of R1 and R2 as shown in Figure 7. The second input to the differential amplifier is from a stable bandgap voltage reference. If the output voltage rises too high relative to the reference voltage, the gate voltage of the power FET is changed to maintain a constant output voltage. VP WR VPWR VR EF LDOG _ MP1 + VIN R1 CVI N R2 VP WR Figure 7. Front-end LDO block diagram 6.3.5.2 Undervoltage/short-circuit and overvoltage detection Short-circuit to GND at VIN is detected using an under voltage monitor at VIN which senses excessive droop on the VIN line and consequently turns off (disable) the external PMOS pass FET. Overvoltage at VPWR is detected if VPWR exceeds the VPWROV threshold (typically 6.0 V). Upon the detection of an overvoltage event an interrupt is generated and bit 2 is set in INTSTAT3 register. The INTB pin is pulled low if the VPWROVM mask bit is cleared. The interrupt is filtered using a 122 s debouncing circuit. The VPWROV interrupt is not asserted if the overvoltage event occurs during start up. The VPWROVS bit can be read using I2C to detect an overvoltage condition. PF3001 30 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.3.5.3 External components Table 33 lists the typical component values for the general purpose LDO regulators. Table 33. Input LDO external components Component Value Minimum output capacitor on VIN rail 100 F (41) MP1 Fairchild FDMA908PZ, Vishay SiA447DJ, or comparable Notes 41. Use X5R/X7R ceramic capacitors with a voltage rating at least two times the nominal voltage. The 100 F capacitance is the total capacitance on the VIN rail including the capacitance at the various regulator inputs. For example, 2 x 22 F capacitors can be used along with 10 F capacitors at all the SWx and LDOx inputs to achieve a total of 100 F capacitance. 6.3.6 Internal core voltages All regulators use the main bandgap as the reference. The main bandgap is bypassed with a capacitor at VCOREREF. VCOREDIG is a 1.5 V regulator powering all the digital logic in the PF3001. VCOREDIG is regulated at 1.28 V in off and coin cell modes. The VCORE supply is used to bias internal analog rails. No external DC loading is allowed on VCORE, VCOREDIG, or VCOREREF. VCOREDIG is kept powered as long as there is a valid supply and/or valid coin cell. 6.3.7 Buck regulators The PF3001 integrates three independent buck regulators: SW1, SW2, and SW3. Each regulator has associated registers controlling its output voltage during on mode. After boot up, contents of the SWxVOLT[4:0] register can be set through I2C to set the output voltage during on mode. VIN SWxIN CINSWx CINSWxHF SWx SWxMODE ISENSE Controller SWxLX Driver LSWx COSWx SWxFAULT EP Internal Compensation SWxFB I2C Interface Z2 Z1 EA VREF DAC Discharge Figure 8. Generic SWx block diagram PF3001 NXP Semiconductors 31 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Table 34. SWx regulators external components Components CINSWx CINSWxHF COSWx LSWx Description Values SWx input capacitor 10 F SWx decoupling input capacitor 0.1 F SWx output capacitor 2 x 22 F (10 V or higher voltage rated capacitors) or 3 x 22 F (6.3 V rated capacitors) 1.5 H SWx inductor Use X5R or X7R capacitors with voltage rating at least two times the nominal voltage. 6.3.7.1 Switching modes The buck regulators can operate in different switching modes. Changing between switching modes can occur by I2C programming. Available switching modes for buck regulators are presented in Table 35. Table 35. Switching mode description Mode Description OFF The regulator is switched off and the output voltage is discharged using an internal resistor PFM In this mode, the regulator operates in forced PFM mode. The main error amplifier is turned off and a hysteretic comparator is used to regulate output voltage. Use this mode for load currents less than 50 mA. PWM In this mode, the regulator operates in forced PWM mode. APS In this mode, the regulator operates in pulse skipping mode at light loads and switches over to PWM modes for heavier load conditions. This is the default mode in which the regulators power up during a turn-on event. During soft-start of the buck regulators, the controller transitions through the PFM, APS, and PWM switching modes. 3.0 ms after the output voltage reaches regulation, the controller transitions to the selected switching mode. Depending on the particular switching mode selected, additional ripple may be observed on the output voltage rail as the controller transitions between switching modes. The operating mode of the regulator in on mode is controlled using the SWxMODE[3:0] bits associated with each regulator. Table 36 summarizes the Buck regulator programmability for normal mode. Table 36. Regulator mode control SWxMODE[3:0] Normal mode 0000 Off 0001 PWM 0011 PFM 1000 (default) APS PF3001 32 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.3.7.2 Dynamic voltage scaling To reduce overall power consumption, processor core voltages can be varied depending on the mode or activity level of the processor. Normal operation: The output voltage is selected by I2C bits SW1[4:0] for SW1 and SW2[2:0] for SW2, and SW3[3:0] for SW3. A voltage transition initiated by I2C is governed by the DVS stepping rate which is 25 mV per step each 4.0 s. The regulators have a strong sourcing and sinking capability in PWM mode, therefore the fastest rising and falling slopes are determined by the regulator in PWM mode. However, if the regulators are programmed in PFM or APS mode during a DVS transition, the falling slope can be influenced by the load. Additionally, as the current capability in PFM mode is reduced, controlled DVS transitions in PFM mode could be affected. Critically timed DVS transitions are best assured with PWM mode operation. Figure 9 shows the general behavior for the regulators when initiated with I2C programming. During the DVS period the overcurrent condition on the regulator should be masked. Figure 9. Voltage stepping with fixed DVS 6.3.7.3 Regulator phase clock The SWxPHASE[1:0] bits select the phase of the regulator clock as shown in Table 37. By default, each regulator is initialized at 90 ° out of phase with respect to each other. For example, SW1 is set to 0 °, SW2 is set to 90 °, and SW3 is set to 180 ° by default at power up. Table 37. Regulator phase clock selection SWxPHASE[1:0] Phase of clock sent to regulator (degrees) 00 0 01 90 10 180 11 270 The SWxFREQ[1:0] register is used to set the desired switching frequency for each one of the buck regulators. Table 39 shows the selectable options for SWxFREQ[1:0]. For each frequency, all phases are available, this allows regulators operating at different frequencies to have different relative switching phases. However, not all combinations are practical. For example, 2.0 MHz, 90 ° and 4.0 MHz, 180 ° are the same in terms of phasing. Table 38 shows the optimum phasing when using more than one switching frequency. PF3001 NXP Semiconductors 33 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Table 38. Optimum phasing Frequencies Optimum phasing 1.0 MHz 2.0 MHz 0° 180 ° 1.0 MHz 4.0 MHz 0° 180 ° 2.0 MHz 4.0 MHz 0° 180 ° 1.0 MHz 2.0 MHz 4.0 MHz 0° 90 ° 90 ° Table 39. Regulator frequency configuration SWxFREQ[1:0] Frequency 00 1.0 MHz 01 2.0 MHz (default) 10 4.0 MHz 11 Reserved 6.3.7.4 SW1 SW1 is a 2.75 A buck regulator. The SW1 output voltage is programmable from 1.5 V to 3.3 V. In this configuration, the SW1LX pins are connected together to a single inductor, providing up to 2.75 A current capability for high current applications. The feedback and all other controls are accomplished using the SW1FB pin. 6.3.7.5 SW1 setup and control registers SW1 output voltages are programmable from 0.7 V to 1.425 V in steps of 25 mV. They can additionally be programmed at 1.8 V or 3.3 V. The output voltage set point is independently programmed for Normal mode by setting the SW1[4:0] bits respectively. Table 40 shows the output voltage coding. Table 40. SW1 output voltage configuration Set Point SW1[4:0] SW1x output (V) Set Point SW1[4:0] SW1x output (V) 0 00000 0.700 16 10000 1.100 1 00001 0.725 17 10001 1.125 2 00010 0.750 18 10010 1.150 3 00011 0.775 19 10011 1.175 4 00100 0.800 20 10100 1.200 5 00101 0.825 21 10101 1.225 6 00110 0.850 22 10110 1.250 7 00111 0.875 23 10111 1.275 8 01000 0.900 24 11000 1.300 9 01001 0.925 25 11001 1.325 10 01010 0.950 26 11010 1.350 11 01011 0.975 27 11011 1.375 12 01100 1.000 28 11100 1.400 PF3001 34 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Table 40. SW1 output voltage configuration (continued) Set Point SW1[4:0] SW1x output (V) Set Point SW1[4:0] SW1x output (V) 13 01101 1.025 29 11101 1.425 14 01110 1.050 30 11110 1.800 15 01111 1.075 31 11111 3.300 Table 41 provides a list of registers used to configure and operate the SW1 regulator. Table 41. SW1 register summary Register Address Output SW1VOLT 0x20 SW1 output voltage set point in normal operation SW1MODE 0x23 SW1 switching mode selector register SW1CONF 0x24 SW1 phase and frequency configuration 6.3.7.6 SW2 setup and control registers SW2 is a single phase, 1.25 A rated buck regulator. The SW2 output voltage is programmable from 1.5 V to 1.85 V in 50 mV steps if the CTL_SW2_HL bit is low or from 2.5 V to 3.3 V in 150 mV steps, if the bit CTL_SW2_HL is set high. This internal bit CTL_SW2_HL is decided by the SW2 start-up voltage in the start-up sequence. During normal operation, output voltage of the SW2 regulator can be changed through I2C only within the range set by the CTL_SW2_HL bit. The output voltage set point is independently programmed for Normal mode by setting the SW2[2:0] bits, respectively. Table 42 shows the output voltage coding valid for SW2. Table 42. SW2 output voltage configuration Low output voltage range (CTL_SW2_HL= 0) High output voltage range (CTL_SW2_HL=1) SW2[2:0] SW2 output SW2[2:0] SW2 output 000 1.500 000 2.500 001 1.550 001 2.800 010 1.600 010 2.850 011 1.650 011 3.000 100 1.700 100 3.100 101 1.750 101 3.150 110 1.800 110 3.200 111 1.850 111 3.300 Setup and control of SW2 is done through the I2C registers listed in Table 43. Table 43. SW2 register summary Register SW2VOLT Address 0x35 Description SW2 output voltage set point on normal operation SW2MODE 0x38 SW2 switching mode selector register SW2CONF 0x39 SW2 phase, frequency, and ILIM configuration PF3001 NXP Semiconductors 35 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.3.7.7 SW3 setup and control registers SW3 output voltage is programmable from 0.90 V to 1.65 V in 50 mV steps to support different types of DDR memory as listed in Table 44. Table 44. SW3 output voltage configuration SW3[3:0] SW3 output (V) SW3[3:0] SW3 output (V) 0000 0.90 1000 1.30 0001 0.95 1001 1.35 0010 1.00 1010 1.40 0011 1.05 1011 1.45 0100 1.10 1100 1.50 0101 1.15 1101 1.55 0110 1.20 1110 1.60 0111 1.25 1111 1.65 Table 45 provides a list of registers used to configure and operate SW3. Table 45. SW3 register summary Register Address Output SW3VOLT 0x3C SW3 output voltage set point on normal operation SW3MODE 0x3F SW3 switching mode selector register SW3CONF 0x40 SW3 phase, frequency, and ILIM configuration 6.3.8 LDO regulators description This section describes the LDO regulators provided by the PF3001. All regulators use the main bandgap as reference. When a regulator is disabled, the output discharges through an internal pull-down resistor. VINx VINx VREF _ VLDOxEN + VLDOxLPWR VLDOx VLDOx 2 IC Interface CLDOx VLDOx Discharge Figure 10. General LDO block diagram PF3001 36 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.3.8.1 External components Table 46 lists the typical component values for the general purpose LDO regulators. Table 46. LDO external components Regulator Output capacitor (F)(42) VLDO1 2.2 VLDO2 4.7 VLDO3 2.2 VLDO4 4.7 V33 4.7 VCC_SD 2.2 Notes 42. Use X5R/X7R ceramic capacitors. 6.3.8.2 Current limit protection All the LDO regulators in the PF3001 have current limit protection. In the event of an overload condition, the regulators transitions from a voltage regulator to a current regulator which regulates output current per the current limit threshold. Additionally, if the REGSCPEN bit in Table 107 is set, the LDO is turned off if the current limit event lasts for more than 8.0 ms. The LDO is disabled by resetting its VLDOxEN bit, while at the same time, an interrupt VLDOxFAULTI is generated to flag the fault to the system processor. The VLDOxFAULTI interrupt is maskable through the VLDOxFAULTM mask bit. By default, the REGSCPEN is not set; therefore, at start-up none of the regulators is disabled if an overloaded condition occurs. A fault interrupt, VLDOxFAULTI, is generated in an overload condition regardless of the state of the REGSCPEN bit. 6.3.8.3 LDO voltage control Each LDO is fully controlled through its respective VLDOxCTL register. This register enables the user to set the LDO output voltage according toTable 47 for VLDO1 and VLDO2; and uses the voltage set point on Table 48 for VLDO3 and VLDO4. Table 49 lists the voltage set points for the V33 LDO and Table 50 provides the output voltage set points for the VCC_SD LDO, based on SD_VSEL control signal. Table 47. VLDO1, VLDO2 output voltage configuration VLDO1[3:0] VLDO2[3:0] VLDO1 output (V) VLDO2 output (V) 0000 1.80 0.80 0001 1.90 0.85 0010 2.00 0.90 0011 2.10 0.95 0100 2.20 1.00 0101 2.30 1.05 0110 2.40 1.10 0111 2.50 1.15 1000 2.60 1.20 1001 2.70 1.25 1010 2.80 1.30 1011 2.90 1.35 1100 3.00 1.40 PF3001 NXP Semiconductors 37 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Table 47. VLDO1, VLDO2 output voltage configuration (continued) VLDO1[3:0] VLDO2[3:0] VLDO1 output (V) VLDO2 output (V) 1101 3.10 1.45 1110 3.20 1.50 1111 3.30 1.55 Table 48. VLDO3, VLDO4 output voltage configuration VLDO3[3:0] VLDO4[3:0] VLDO3 or VLDO4 output (V) 0000 1.80 0001 1.90 0010 2.00 0011 2.10 0100 2.20 0101 2.30 0110 2.40 0111 2.50 1000 2.60 1001 2.70 1010 2.80 1011 2.90 1100 3.00 1101 3.10 1110 3.20 1111 3.30 Table 49. V33 output voltage configuration V33[1:0] V33 output (V) 00 2.85 01 3.00 10 3.15 11 3.30 Table 50. VCC_SD output voltage configuration VCC_SD[1:0] VCC_SD output (V) VSD_VSEL= 0 VCC_SD output (V) VSD_VSEL= 1 00 2.85 1.80 01 3.00 1.80 10 3.15 1.80 11 3.30 1.85 Along with the output voltage configuration, the LDOs can be enabled or disabled at anytime during normal mode operation. Each regulator has associated I2C bits for this. Table 51 presents a summary of all valid combinations of the control bits on VLDOxCTL register and the expected behavior of the LDO output. PF3001 38 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Table 51. LDO control VLDOxEN/ V33EN/ VCC_SDEN VLDOxOUT/ V33OUT/ VCC_SDOUT 0 Off 1 On 6.3.9 VSNVS LDO/switch VSNVS powers the low power, SNVS/RTC domain on the processor. It derives its power from either VIN, or coin cell, and cannot be disabled. When powered by both, VIN takes precedence when above the appropriate comparator threshold. When powered by VIN, VSNVS is an LDO capable of supplying 3.0 V. When powered by coin cell, the VSNVS output tracks the coin cell voltage by means of a switch, whose maximum resistance is 100 . In this case, the VSNVS voltage is simply the coin cell voltage minus the voltage drop across the switch, which is 100 mV at a rated maximum load current of 1000 A. When the coin cell is applied for the first time, VSNVS outputs 1.0 V. Only when VIN is applied thereafter does VSNVS transition to its default value, or programmed value if different. Upon subsequent removal of VIN, with the coin cell attached, VSNVS changes configuration from an LDO to a switch, provided certain conditions are met as described in Table 52. PF3000 VIN VIN VTLI 2.25 V (VTL0) 4.5 VV 4.5 LDO /SWITCH LICELL Charger In pu t Se nse / Sel ecto r VREF LDO\ _ + Coin Cell 1.8 - 3.3 V Z VSNVS 2 I C In terface Figure 11. VSNVS supply switch architecture Table 52 provides a summary of the VSNVS operation at different input voltage VIN and with or without coin cell connected to the system. Table 52. SNVS Modes of Operation VSNVSVOLT[2:0] VIN MODE 110 > VTH1 VIN LDO 3.0 V 110 < VTL1 Coin cell switch PF3001 NXP Semiconductors 39 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.3.9.1 VSNVS control The VSNVS output level is configured through the VSNVSVOLT[2:0] bits on VSNVSCTL register as shown in table Table 53. Table 53. Register VSNVSCTL - ADDR 0x6B Name Bit # R/W Default VSNVSVOLT 2:0 R/W 0b000 Unused 7:3 – 0b00000 Description Configures VSNVS output voltage.(43) 000 = RSVD 001 = RSVD 010 = RSVD 011 = RSVD 100 = RSVD 101 = RSVD 110 = 3.0 V (default) 111 = RSVD Unused Notes 43. Only valid when a valid input voltage is present. 6.3.9.2 VSNVS external components Table 54. VSNVS external components Capacitor Value (F) VSNVS 0.47 6.3.9.3 Coin cell battery backup The LICELL pin provides for a connection of a coin cell backup battery or a “super” capacitor. If the voltage at VIN goes below the VIN threshold (VTL1), contact-bounced, or removed, the coin cell maintained logic is powered by the voltage applied to LICELL. The supply for internal logic and the VSNVS rail switches over to the LICELL pin when VIN goes below VTL1, even in the absence of a voltage at the LICELL pin, resulting in clearing of memory and turning off VSNVS. Applications concerned about this behavior can tie the LICELL pin to any system voltage between 1.8 V and 3.0 V. A 0.47 F capacitor should be placed from LICELL to ground under all circumstances. 6.3.9.4 Coin cell charger control The coin cell charger circuit functions as a current-limited voltage source, resulting in the CC/CV taper characteristic typically used for rechargeable Lithium-Ion batteries. The coin cell charger is enabled via the COINCHEN bit while the coin cell voltage is programmable through the VCOIN[2:0] bits on register COINCTL on Table 55. The coin cell charger voltage is programmable. In the ON state, the charger current is fixed at ICOINHI. In the OFF state, coin cell charging is not available as the main battery could be depleted unnecessarily. The coin cell charging stops when VIN is below UVDET. Table 55. Coin cell charger voltage VCOIN[2:0] VCOIN (V) (44) 000 2.50 001 2.70 010 2.80 011 2.90 100 3.00 101 3.10 PF3001 40 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Table 55. Coin cell charger voltage (continued) VCOIN[2:0] VCOIN (V) (44) 110 3.20 111 3.30 Notes 44. Coin cell voltages selected based on the type of LICELL used on the system. Table 56. Register COINCTL - ADDR 0x1A Name Bit # R/W Default VCOIN 2:0 R/W 0x00 Coin cell charger output voltage selection. See Table 55 for all options selectable through these bits. COINCHEN 3 R/W 0x00 Enable or disable the coin cell charger Unused 7:4 – 0x00 Unused 6.3.9.5 Description External components Table 57. Coin cell charger external components Component Value Units 100 nF LICELL bypass capacitor 6.4 Power dissipation During operation, the temperature of the die should not exceed the operating junction temperature noted in Table 4. To optimize the thermal management and to avoid overheating, the PF3001 provides thermal protection. An internal comparator monitors the die temperature. Interrupts THERM110, THERM120, THERM125, and THERM130 is generated when the respective thresholds specified in Table 58 are crossed in either direction. The temperature range can be determined by reading the THERMxxxS bits in register INTSENSE0. In the event of excessive power dissipation, thermal protection circuitry shuts down the PF3001. This thermal protection acts above the thermal protection threshold listed in Table 58. To avoid any unwanted power downs resulting from internal noise, the protection is debounced for 8.0 ms. This protection should be considered as a fail-safe mechanism and therefore the system should be configured such that this protection is not tripped under normal conditions. Table 58. Thermal protection thresholds Parameter Min. Typ. Max. Units Thermal 110 °C threshold (THERM110) 100 110 120 °C Thermal 120 °C threshold (THERM120) 110 120 130 °C Thermal 125 °C threshold (THERM125) 115 125 135 °C Thermal 130 °C threshold (THERM130) 120 130 140 °C Thermal warning hysteresis 2.0 – 4.0 °C Thermal protection threshold 130 140 150 °C PF3001 NXP Semiconductors 41 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.5 Modes of operation 6.5.1 State diagram The operation of the PF3001 can be reduced to three states, or modes: ON, OFF, and Coin cell. Figure 12 shows the state diagram of the PF3001, along with the conditions to enter and exit from each state. Coin Cell VIN < UVDET VIN > UVDET VIN < UVDET OFF PWRON=1 & VIN > UVDET ON PWRON = 0 Thermal shudown Figure 12. State diagram To complement the state diagram in Figure 12, a description of the states is provided in following sections. Note that VIN must exceed the rising UVDET threshold to allow a power up. Refer to Table 30 for the UVDET thresholds. Additionally, I2C control is not possible in the coin cell mode and the interrupt signal, INTB, is only active in the on state. 6.5.1.1 ON mode The PF3001 enters the on mode after a turn-on event. RESETBMCU is de-asserted, and pulled high via an external pull-up resistor, in this mode of operation. To enter the on mode, VIN voltage must surpass the rising UVDET threshold and PWRON must be asserted. From the on mode, when the voltage at VIN drops below the undervoltage falling threshold, UVDET, the state machine transitions to the coin cell mode. 6.5.1.2 OFF mode The PF3001 enters the Off mode after a turn-off event. Only VCOREDIG and VSNVS are powered in the mode of operation. To exit the off mode, a valid turn-on event is required. RESETBMCU is asserted, LOW, in this mode. Turn off events can be achieved using the PWRON pin, thermal protection, as described by the following. 6.5.1.3 PWRON pin The PWRON pin is used to power off the PF3001. The PWRON pin powers off the PMIC under conditions where the PWRON pin is low. 6.5.1.4 Thermal protection If the die temperature surpasses a given threshold, the thermal protection circuit powers off the PMIC to avoid damage. A turn-on event does not power on the PMIC while it is in thermal protection. The part remains in off mode until the die temperature decreases below a given threshold. See Power dissipation section for more detailed information. PF3001 42 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.5.1.5 Coin cell mode In the coin cell state, the coin cell is the only valid power source to the PMIC. No turn-on event is accepted in the coin cell state. Transition to the off state requires VIN surpasses the UVDET threshold. RESETBMCU is held low in this mode. If the coin cell is depleted, a complete system reset occurs. At the next application of power and the detection of a turn-on event, the system re-initializes with all I2C bits including, those that reset on COINPORB are restored to their default states. 6.5.2 State machine flow summary Table 59 provides a summary matrix of the PF3001 flow diagram to show the conditions needed to transition from one state to another. Table 59. State machine flow summary Next state Initial State STATE 6.5.3 OFF Coin cell ON OFF X VIN < UVDET PWRON = 1 and VIN > UVDET Coin cell VIN > UVDET X X VIN < UVDET X Thermal Shutdown ON PWRON = 0 Performance characteristics curves VIN = 3.6 V, SW1OUT = 1.0 V, SW2OUT = 1.8 V, SW3OUT = 1.0 V, Switching frequency = 2.0 MHz, Mode = APS; LDO1OUT = 1.8 V, LDO2OUT = 1.0 V, LDO3OUT = 1.8 V, LDO4OUT = 1.8 V, V33OUT = 3.3 V, VCC_SDOUT = 3.3 V, unless otherwise noted Figure 14. Load transient response - LDO2 Figure 13. Start-up sequence PF3001 NXP Semiconductors 43 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Figure 15. Load transient response - LDO1, LDO3 and VCC_SD Figure 17. Load transient response - buck regulators Figure 18. Quiescent current - LDOs Figure 16. Load transient response - LDO4 and V33 PF3001 44 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Figure 19. Load regulation - LDOs Figure 21. Dropout voltage - VLDO1, VLDO3, VCC_SD - VOUT = 1.8 V Figure 20. Dropout voltage - VLDO1, VLDO3, VCC_SD VOUT = 3.3 V Figure 22. Dropout voltage - VLDO4, V33 - VOUT = 3.3 V Figure 23. Dropout voltage - VLDO4 - VOUT = 1.8 V PF3001 NXP Semiconductors 45 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Control interface I2C block description 6.6 The PF3001 contains an I2C interface port which allows access by a processor, or any I2C master, to the register set. Via these registers the resources of the IC can be controlled. The registers also provide status information about how the IC is operating. I2C device ID 6.6.1 I2C interface protocol requires a device ID for addressing the target IC on a multi-device bus. The I2C address of the PF3001 is set to 0x08. I2C operation 6.6.2 The I2C mode of the interface is implemented generally following the fast mode definition which supports up to 400 kbits/s operation (exceptions to the standard are noted to be 7-bit only addressing and no support for General Call addressing.) Timing diagrams, electrical specifications, and further details can be found in the I2C specification, which is available for download. I2C read operations are also performed in byte increments separated by an ACK. Read operations also begin with the MSB and each byte is sent out unless a STOP command or NACK is received prior to completion. The following examples show how to write and read data to and from the IC. The host initiates and terminates all communication. The host sends a master command packet after driving the start condition. The device responds to the host if the master command packet contains the corresponding slave address. In the following examples, the device is always shown responding with an ACK to transmissions from the host. If at any time a NACK is received, the host should terminate the current transaction and retry the transaction. . Packet Type Device Address 7 Host SDA Reg ister Addre ss 0 START Host can also drive another Start instead of Stop Master Driven Data ( byte 0 ) 7 7 0 0 0 STOP R/W A C K Slave SDA A C K A C K Figure 24. I2C write example Packet Type Device Address 23 Host SDA START Register Address 16 15 Device Address 8 7 0 START 0 NA CK 1 STOP R/W R/W Slave SDA Host can also drive another Start instead of Stop PMIC Driven Data A C K A C K A C K 7 0 Figure 25. I2C read example PF3001 46 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.6.3 Interrupt handling The system is informed about important events based on interrupts. Unmasked interrupt events are signaled to the processor by driving the INTB pin low. Each interrupt is latched so even if the interrupt source becomes inactive, the interrupt remains set until cleared. Each interrupt can be cleared by writing a “1” to the appropriate bit in the Interrupt Status register; this causes the INTB pin to go high. If there are multiple interrupt bits set the INTB pin remains low until all are either masked or cleared. If a new interrupt occurs while the processor clears an existing interrupt bit, the INTB pin remains low. Each interrupt can be masked by setting the corresponding mask bit to a 1. As a result, when a masked interrupt bit goes high, the INTB pin does not go low. A masked interrupt can still be read from the Interrupt Status register. This gives the processor the option of polling for status from the IC. The IC powers up with all interrupts masked, so the processor must initially poll the device to determine if any interrupts are active. Alternatively, the processor can unmask the interrupt bits of interest. If a masked interrupt bit was already high, the INTB pin goes low after unmasking. The sense registers contain status and input sense bits so the system processor can poll the current state of interrupt sources. They are read only, and not latched or clearable. Interrupts generated by external events are debounced; therefore, the event needs to be stable throughout the debounce period before an interrupt is generated. Nominal debounce periods for each event are documented in the INT summary Table 60. Due to the asynchronous nature of the debounce timer, the effective debounce time can vary slightly. 6.6.4 Interrupt bit summary Table 60 summarizes all interrupt, mask, and sense bits associated with INTB control. For more detailed behavioral descriptions, refer to the related chapters. Table 60. Interrupt, Mask, and Sense Bits Interrupt Mask Sense LOWVINI LOWVINM LOWVINS PWRONI PWRONM PWRONS Purpose Trigger Debounce time (ms) Low input voltage detect Sense is 1 if below 2.70 V threshold H to L 3.9 (45) Power on button event H to L 31.25 (45) Sense is 1 if PWRON is high. L to H 31.25 Dual 3.9 THERM110 THERM110M THERM110S Thermal 110 °C threshold Sense is 1 if above threshold THERM120 THERM120M THERM120S Thermal 120 °C threshold Sense is 1 if above threshold Dual 3.9 THERM125 THERM125M THERM125S Thermal 125 °C threshold Sense is 1 if above threshold Dual 3.9 THERM130 THERM130M THERM130S Thermal 130 °C threshold Sense is 1 if above threshold Dual 3.9 SW1FAULTI SW1FAULTM SW1FAULTS Regulator 1 overcurrent limit Sense is 1 if above current limit L to H 8.0 SW2FAULTI SW2FAULTM SW2FAULTS Regulator 2 overcurrent limit Sense is 1 if above current limit L to H 8.0 SW3FAULTI SW3FAULTM SW3FAULTS Regulator 3 overcurrent limit Sense is 1 if above current limit L to H 8.0 VLDO1FAULTI VLDO1FAULTM VLDO1FAULTS VLDO1 overcurrent limit Sense is 1 if above current limit L to H 8.0 VLDO2FAULTI VLDO2FAULTM VLDO2FAULTS VLDO2 overcurrent limit Sense is 1 if above current limit L to H 8.0 VCC_SDFAULTI VCC_SDFAULTM VCC_SDFAULTS VCC_SD overcurrent limit Sense is 1 if above current limit L to H 8.0 V33FAULTI V33FAULTM V33FAULTS V33 overcurrent limit Sense is 1 if above current limit L to H 8.0 VLDO3FAULTI VLDO3FAULTM VLDO1FAULTS VLDO3 overcurrent limit Sense is 1 if above current limit L to H 8.0 PF3001 NXP Semiconductors 47 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Table 60. Interrupt, Mask, and Sense Bits (continued) Interrupt Mask Sense Purpose Trigger Debounce time (ms) VLDO4FAULTI VLDO4FAULTM VLDO4FAULTS VLDO4 overcurrent limit Sense is 1 if above current limit L to H 8.0 VPWROVI VPWROVM VPWROVS VPWR pin overvoltage interrupt L to H 0.122 Notes 45. Typical debounce timing for the falling edge can be extended with PWRONDBNC[1:0]. A full description of all interrupt, mask, and sense registers is provided in Table 61 to Table 72. Table 61. Register INTSTAT0 - ADDR 0x05 Bit # R/W Default PWRONI Name 0 R/W1C 0 Power on interrupt bit LOWVINI 1 R/W1C 0 Low-voltage interrupt bit THERM110I 2 R/W1C 0 110 °C thermal interrupt bit THERM120I 3 R/W1C 0 120 °C thermal interrupt bit THERM125I 4 R/W1C 0 125 °C thermal interrupt bit THERM130I 5 R/W1C 0 130 °C thermal interrupt bit 7:6 – 0b00 Unused Description Unused Table 62. Register INTMASK0 - ADDR 0x06 Name Bit # R/W Default PWRONM 0 R/W1C 0 Power on interrupt mask bit LOWVINM 1 R/W1C 0 Low-voltage interrupt mask bit THERM110M 2 R/W1C 0 110 °C thermal interrupt mask bit THERM120M 3 R/W1C 0 120 °C thermal interrupt mask bit THERM125M 4 R/W1C 0 125 °C thermal interrupt mask bit THERM130M 5 R/W1C 0 130 °C thermal interrupt mask bit 7:6 – 0b00 Unused Description Unused Table 63. Register INTSENSE0 - ADDR 0x07 Name Bit # R/W Default Description PWRONS 0 R 0 Power on sense bit 0 = PWRON low 1 = PWRON high LOWVINS 1 R 0 Low-voltage sense bit 0 = VIN > 2.7 V 1 = VIN 2.7 V THERM110S 2 R 0 110 °C thermal sense bit 0 = Below threshold 1 = Above threshold THERM120S 3 R 0 120 °C thermal sense bit 0 = Below threshold 1 = Above threshold THERM125S 4 R 0 125 °C thermal sense bit 0 = Below threshold 1 = Above threshold PF3001 48 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Table 63. Register INTSENSE0 - ADDR 0x07 (continued) Name Bit # R/W Default Description THERM130S 5 R 0 130 °C thermal sense bit 0 = Below threshold 1 = Above threshold ICTEST1S 6 R 0 0 = ICTEST1 pin is grounded 1 = ICTEST1 to VCOREDIG or greater ICTEST2S 7 R 0 Additional ICTEST2 voltage sense pin 0 = ICTEST2 pin is grounded 1 = ICTEST2 to VCOREDIG or greater Table 64. Register INTSTAT1 - ADDR 0x08 Bit # R/W Default SW1FAULTI Name 0 R/W1C 0 SW1 overcurrent interrupt bit Description Unused 1 R/W1C 0 Unused Unused 2 R/W1C 0 Unused SW2FAULTI 3 R/W1C 0 SW2 overcurrent interrupt bit SW3FAULTI 4 R/W1C 0 SW3 overcurrent interrupt bit Unused 5 R/W1C 0 Unused Unused 6 R/W1C 0 Unused Unused 7 – 0 Unused Table 65. Register INTMASK1 - ADDR 0x09 Name Bit # R/W Default Description SW1FAULTM 0 R/W 1 SW1 overcurrent interrupt mask bit Unused 1 R/W 1 Unused Unused 2 R/W 1 Unused SW2FAULTM 3 R/W 1 SW2 overcurrent interrupt mask bit SW3FAULTM 4 R/W 1 SW3 overcurrent interrupt mask bit Unused 5 R/W 1 Unused Unused 6 R/W 1 Unused Unused 7 – 0 Unused Table 66. Register INTSENSE1 - ADDR 0x0A Name Bit # R/W Default Description SW1FAULTS 0 R 0 SW1 overcurrent sense bit 0 = Normal operation 1 = Above current limit Unused 1 R 0 Unused Unused 2 R 0 Unused SW2FAULTS 3 R 0 SW2 overcurrent sense bit 0 = Normal operation 1 = Above current limit SW3FAULTS 4 R 0 SW3 overcurrent sense bit 0 = Normal operation 1 = Above current limit PF3001 NXP Semiconductors 49 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Table 66. Register INTSENSE1 - ADDR 0x0A (continued) Name Bit # R/W Default Description Unused 5 R 0 Unused Unused 6 R 0 Unused Unused 7 – 0 Unused Table 67. Register INTSTAT3 - ADDR 0x0E Name Bit # R/W Default Description Unused 0 R/W1C 0 Unused Unused 1 – 0b0 Unused VPWROVI 2 R/W1C 0b0 High when overvoltage event is detected in the front-end LDO circuit. This bit defaults to 0b1 when VPWR is grounded and the VIN path is used to power the PF3001. Unused 5:3 – 0b0 Unused Unused 6 R/W1C 0b0 Unused Unused 7 R/W1C 0 Unused Table 68. Register INTMASK3 - ADDR 0x0F Name Bit # R/W Default Unused 0 R/W 1 Unused Unused 1 – 0 Unused VPWR overvoltage interrupt mask bit VPWROVM Description 2 R/W 1 Unused 5:3 – 0b000 Unused Unused 6 R/W 1 Unused Unused 7 R/W 1 Unused Table 69. Register INTSENSE3 - ADDR 0x10 Name Bit # R/W Default Unused 0 R 0 Unused Unused 1 – 0b0 Unused VPWROVS Description 2 R 0 Unused 5:3 – 0b000 VPWR overvoltage interrupt sense bit Unused Unused 6 R 0 Unused Unused 7 R 0 Unused PF3001 50 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Table 70. Register INTSTAT4 - ADDR 0x11 Name Bit # R/W Default Description VLDO1FAULTI 0 R/W1C 0 VLDO1 overcurrent interrupt bit VLDO2FAULTI 1 R/W1C 0 VLDO2 overcurrent interrupt bit VCC_SDFAULTI 2 R/W1C 0 VCC_SD overcurrent interrupt bit V33FAULTI 3 R/W1C 0 V33 overcurrent interrupt bit VLDO3FAULTI 4 R/W1C 0 VLDO3 overcurrent interrupt bit VLDO4FAULTI 5 R/W1C 0 VLDO4 overcurrent interrupt bit 7:6 – 0b00 Unused Unused Table 71. Register INTMASK4 - ADDR 0x12 Name Bit # R/W Default VLDO1FAULTM 0 R/W 1 VLDO1 overcurrent interrupt mask bit VLDO2FAULTM 1 R/W 1 VLDO2 overcurrent interrupt mask bit VCC_SDFAULTM 2 R/W 1 VCC_SD overcurrent interrupt mask bit V33FAULTM 3 R/W 1 V33 overcurrent interrupt mask bit VLDO3FAULTM 4 R/W 1 VLDO3 Overcurrent interrupt mask bit 5 R/W 1 VLDO4 Overcurrent interrupt mask bit 7:6 – 0b00 VLDO4FAULTM Unused Description Unused Table 72. Register INTSENSE4 - ADDR 0x13 Name Bit # R/W Default VLDO1FAULTS 0 R 0 VLDO1 overcurrent sense bit 0 = Normal operation 1 = Above current limit VLDO2FAULTS 1 R 0 VLDO2 overcurrent sense bit 0 = Normal operation 1 = Above current limit VCC_SDFAULTS 2 R 0 VCC_SD overcurrent sense bit 0 = Normal operation 1 = Above current limit V33FAULTS 3 R 0 V33 overcurrent sense bit 0 = Normal operation 1 = Above current limit VLDO3FAULTS 4 R 0 VLDO3 overcurrent sense bit 0 = Normal operation 1 = Above current limit VLDO4FAULTS 5 R 0 VLDO4 overcurrent sense bit 0 = Normal operation 1 = Above current limit 7:6 – 0b00 Unused Description Unused PF3001 NXP Semiconductors 51 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.6.5 Specific registers 6.6.5.1 IC and version identification The IC and other version details can be read via identification bits. These are hard-wired on the chip and described in Table 73 to Table 75. Table 73. Register DEVICEID - ADDR 0x00 Name Bit # R/W Default Description DEVICEID 3:0 R 0x1 0001 = PF3001 Unused 7:4 – 0x3 Unused Table 74. Register SILICON REV- ADDR 0x03 Name Bit # METAL_LAYER_REV FULL_LAYER_REV 3:0 7:4 R/W R R Default Description 0x0 Represents the metal mask revision Pass 0.0 = 0000 … Pass 0.15 = 1111 0x1 Represents the full mask revision Pass 1.0 = 0001 … Pass 15.0 = 1111 Table 75. Register FABID - ADDR 0x04 Name Bit # R/W Default Description FIN 1:0 R 0b00 Allows for characterizing different options within the same reticule FAB 3:2 R 0b00 Represents the wafer manufacturing facility Unused 7:4 R 0b0000 6.6.5.2 Unused Embedded memory There are four register banks of general purpose embedded memory to store critical data. The data written to MEMA[7:0], MEMB[7:0], MEMC[7:0], and MEMD[7:0] is maintained by the coin cell when the main battery is deeply discharged, removed, or contact-bounced. The contents of the embedded memory are reset by COINPORB. The banks can be used for any system need for bit retention with coin cell backup. Table 76. Register MEMA ADDR 0x1C Name MEMA Bit # R/W Default 7:0 R/W 0x00 Description Memory bank A Table 77. Register MEMB ADDR 0x1D Name MEMB Bit # R/W Default 7:0 R/W 0x00 Description Memory bank B Table 78. Register MEMC ADDR 0x1E Name MEMC Bit # R/W Default 7:0 R/W 0x00 Description Memory bank C PF3001 52 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Table 79. Register MEMD ADDR 0x1F Name MEMD 6.6.5.3 Bit # R/W Default 7:0 R/W 0x00 Description Memory bank D Register descriptions This section describes all the PF3001 registers and their individual bits. Address order is as listed in Register map. 6.6.5.3.1 Interrupt status register 0 (INTSTAT0) INSTAT0 is one of the four status interrupt registers. This register contains six status flags. Write a logic 1 to clear a flag. Table 80. Status interrupt register 0 (INTSTAT0) Access: User read/write (46) Address: 0x05 functional page 7 6 R W Default 0 0 5 4 3 2 1 0 THERM130I THERM125I THERM120I THERM110I LOWVINI PWRONI 0 0 0 0 0 0 = Unimplemented or Reserved Notes 46. Read: Anytime Write: Anytime Table 81. INTSTAT0 field descriptions Field Description 5 THERM130I 130 °C thermal interrupt bit — THERM130I is set to 1 when the THERM130 threshold specified in is crossed in either direction (bidirectional). This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 Die temperature has not crossed THERM130 threshold. 1 Die temperature has crossed THERM130 threshold. 4 THERM125I 125 °C thermal interrupt bit — THERM125I is set to 1 when the THERM125 threshold specified in is crossed in either direction (bidirectional). This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 Die temperature has not crossed THERM125 threshold. 1 Die temperature has crossed THERM125 threshold. 3 THERM120I 120 °C thermal interrupt bit — THERM120I is set to 1 when the THERM120 threshold specified in is crossed in either direction (bidirectional). This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 Die temperature has not crossed THERM120 threshold. 1 Die temperature has crossed THERM120 threshold. 110 °C thermal interrupt bit — THERM110I is set to 1 when the THERM110 threshold specified in 2 THERM110I is crossed in either direction (bi-directional). This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 Die temperature has not crossed THERM110 threshold. 1 Die temperature has crossed THERM110 threshold. 1 LOWVINI Low-voltage interrupt bit — LOWVINI is set to 1 when a low-voltage event occurs on VIN. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 VIN > 2.7 V (typical) 1 VIN 2.7 V (typical) 0 PWRONI Power on interrupt bit —PWRONI is set to 1 when the turn on event occurs. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 Power on has not occurred. 1 Power on has occurred. PF3001 NXP Semiconductors 53 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.6.5.3.2 Interrupt status mask register 0 (INTMASK0) INTMASK0 is the mask register for the status interrupt register INTSTAT0. Write a logic 0 to a bit to unmask the corresponding interrupt. When unmasked, the corresponding interrupt state is reflected on the INTB pin. Table 82. Interrupt status mask register 0 (INTMASK0) Access: User read/write (47) Address: 0x06 functional page 7 6 R W Default 0 5 4 3 2 1 0 THERM130M THERM125M THERM120M THERM110M LOWVINM PWRONM 1 1 1 1 1 1 0 = Unimplemented or Reserved Notes 47. Read: Anytime Write: Anytime Table 83. INTMASK0 field descriptions Field Description 5 THERM130M 130 °C thermal interrupt mask bit 0 THERM130I Unmasked 1 THERM130I Masked 4 THERM125M 125 °C thermal interrupt mask bit 0 THERM125I Unmasked 1 THERM125I Masked 3 THERM120M 120 °C thermal interrupt mask bit 0 THERM120I Unmasked 1 THERM120I Masked 2 THERM110M 110 °C thermal interrupt mask bit 0 THERM110I Unmasked 1 THERM110I Masked 1 LOWVINM Low-voltage interrupt mask bit 0 LOWVINI Unmasked 1 LOWVINI Masked 0 PWRONM Power on interrupt mask bit 0 PWRONI Unmasked 1 PWRONI Masked PF3001 54 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.6.5.3.3 Interrupt sense register 0 (INTSENSE0) This register has seven read-only sense bits. These sense bits reflects the actual state of the corresponding function. Table 84. Interrupt sense register 0 (INTSENSE0) Access: User read-only (48) Address: 0x07 functional page 7 R 6 ICTEST2S 5 4 3 2 1 0 THERM130S THERM125S THERM120S THERM110S LOWVINS PWRONS X (51) X (51) X (51) X (51) X (50) X (49) W Default X (52) 0 = Unimplemented or Reserved Notes 48. 49. 50. 51. 52. Read: Anytime Default value depends on the initial PWRON pin state. Default value depends on the initial VIN voltage. Default value depends on the initial temperature of the die. Default value depends on the initial ICTEST2 pin state. Table 85. INTSENSE0 field descriptions Field 7 ICTEST2S Description VDDOTP voltage sense bit 0 ICTEST2 grounded. 1 ICTEST2 to VCOREDIG or greater. 5 THERM130S 130 °C thermal interrupt sense bit 0 Die temperature below THERM130 threshold. 1 Die temperature above THERM130 threshold. 4 THERM125S 125 °C thermal interrupt sense bit 0 Die temperature below THERM125 threshold. 1 Die temperature has crossed THERM125 threshold. 3 THERM120S 120 °C thermal interrupt sense bit 0 Die temperature below THERM120 threshold. 1 Die temperature has crossed THERM120 threshold. 2 THERM110S 110 °C thermal interrupt sense bit 0 Die temperature below THERM110 threshold. 1 Die temperature has crossed THERM110 threshold. 1 LOWVINS Low-voltage interrupt sense bit 0 VIN > 2.7 V (typical) 1 VIN 2.7 V (typical) 0 PWRONS Power on interrupt sense bit 0 PWRON low. 1 PWRON high. PF3001 NXP Semiconductors 55 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.6.5.3.4 Interrupt status register 1 (INTSTAT1) INSTAT1 is one of the three status interrupt registers. This register contains three status flags. Write a logic 1 to clear a flag. Table 86. Status interrupt register 1 (INTSTAT1) Access: User read/write (53) Address: 0x08 functional page 7 6 5 R W Default 0 0 0 4 3 SW3FAULTI SW2FAULTI 0 0 2 1 0 SW1FAULTI 0 0 0 = Unimplemented or Reserved Notes 53. Read: Anytime Write: Anytime Table 87. INTSTAT1 field descriptions Field Description 4 SW3FAULTI SW3 overcurrent interrupt bit — SW3FAULTI is set to 1 when the SW3 regulator is in current limit protection. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 SW3 in normal operation 1 SW3 above current limit 3 SW2FAULTI SW2 overcurrent interrupt bit — SW2FAULTI is set to 1 when the SW2 regulator is in current limit protection. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 SW2 in normal operation 1 SW2 above current limit 0 SW1FAULTI SW1 overcurrent interrupt bit — SW1FAULTI is set to 1 when the SW1 regulator is in current limit protection. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 SW1 in normal operation 1 SW1 above current limit 6.6.5.3.5 Interrupt status mask register 1 (INTMASK1) INTMASK1 is the mask register for the status interrupt register INTSTAT1. Write a logic 0 to a bit to unmask the corresponding interrupt. When unmasked, the corresponding interrupt state is reflected on the INTB pin. Table 88. Interrupt status mask register 1 (INTMASK1) Access: User read/write (54) Address: 0x09 functional page 7 6 5 R W Default 0 0 0 4 3 SW3FAULTM SW2FAULTM 1 1 2 1 0 SW1FAULTM 0 1 0 = Unimplemented or Reserved Notes 54. Read: Anytime Write: Anytime PF3001 56 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Table 89. INTMASK1 field descriptions Field Description 4 SW3FAULTM SW3 overcurrent interrupt mask bit 0 SW3FAULTI Unmasked 1 SW3FAULTI Masked 3 SW2FAULTM SW2 overcurrent interrupt mask bit 0 SW2FAULTI Unmasked 1 SW2FAULTI Masked 0 SW1FAULTM SW1 overcurrent interrupt mask bit 0 SW1FAULTI Unmasked 1 SW1FAULTI Masked 6.6.5.3.6 Interrupt sense register 1 (INTSENSE1) This register has three read-only sense bits. These sense bits reflect the actual state of the corresponding function. Table 90. Interrupt sense register 1 (INTSENSE1) Access: User read-only (55) Address: 0x0A functional page 7 6 5 R 4 3 SW3FAULTS SW2FAULTS X(56) X(56) 2 1 0 SW1FAULTS W Default 0 0 0 0 X(56) X(56) = Unimplemented or Reserved Notes 55. Read: Anytime 56. Default value depends on the regulator initial state Table 91. INTSENSE1 field descriptions Field Description 4 SW3FAULTS SW3 overcurrent sense bit 0 SW3 in normal operation 1 SW3 above current limit 3 SW2FAULTS SW2 overcurrent sense bit 0 SW2 in normal operation 1 SW2 above current limit 0 SW1FAULTS SW1 overcurrent sense bit 0 SW1 in normal operation 1 SW1 above current limit PF3001 NXP Semiconductors 57 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.6.5.3.7 Interrupt status register 3 (INTSTAT3) INSTAT3 is one of the status interrupt registers. This register contains a status flag. Write a logic 1 to clear a flag. Table 92. Status interrupt register 3 (INTSTAT3) Access: User read/write (57) Address: 0x0E Functional Page 7 6 5 4 3 R 2 1 0 0 0 VPWROVI W Default 0 0 0 0 0 0 = Unimplemented or Reserved Notes 57. Read: Anytime Write: Anytime Table 93. INTSTAT3 field descriptions Field 2 VPWROVI 6.6.5.3.8 Description VPWR overvoltage interrupt bit — High when overvoltage event is detected in the front-end LDO circuit. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 VPWR in normal operation range. 1 VPWR in overvoltage range. Interrupt status mask register 3 (INTMASK3) INTMASK3 is the mask register for the status interrupt register INTSTAT3. Write a logic 0 to a bit to unmask the corresponding interrupt. When unmasked, the corresponding interrupt state is reflected on the INTB pin. Table 94. Interrupt status mask register 3 (INTMASK3) Access: User read/write (58) Address: 0x0F functional page 7 6 5 4 3 R 2 1 0 0 1 VPWROVM W Default 1 1 0 0 0 1 = Unimplemented or Reserved Notes 58. Read: Anytime Write: Anytime Table 95. INTMASK3 field descriptions Field 2 VPWROVM Description VPWR overvoltage interrupt mask bit 0 VPWROVI Unmasked 1 VPWROVI Masked PF3001 58 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.6.5.3.9 Interrupt sense register 3 (INTSENSE3) This register has a read-only sense bit. This sense bit reflects the actual state of the corresponding function. Table 96. Interrupt sense register 3 (INTSENSE3) Access: User read-only (59) Address: 0x10 functional page 7 6 5 4 3 R 2 1 0 0 0 VPWROVS W Default 0 0 0 0 0 0 = Unimplemented or Reserved Notes 59. Read: Anytime Table 97. INTSENSE3 field descriptions Field Description VPWR overvoltage interrupt sense bit 0 VPWR in normal operation range. 1 VPWR in overvoltage range. 2 VPWROVS 6.6.5.3.10 Interrupt status register 4 (INTSTAT4) INSTAT4 is one of the status interrupt registers. This register contains six status flags. Write a logic 1 to clear a flag. Table 98. Status interrupt register 4 (INTSTAT4) Access: User read/write (60) Address: 0x11 functional page 7 6 R W Default 0 0 5 4 3 VLDO4FAULTI VLDO3FAULTI V33FAULTI 0 0 0 2 1 0 VCC_SDFAULTI VLDO2FAULTI VLDO1FAULTI 0 0 0 = Unimplemented or Reserved Notes 60. Read: Anytime Write: Anytime PF3001 NXP Semiconductors 59 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Table 99. INTSTAT4 field descriptions Field Description 5 VLDO4FAULTI VLDO4 overcurrent interrupt bit — VLDO4FAULTI is set to 1 when the VLDO4 regulator is in current limit protection. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 VLDO4 in normal operation 1 VLDO4 above current limit 4 VLDO3FAULTI VLDO3 overcurrent interrupt bit — VLDO3FAULTI is set to 1 when the VLDO3 regulator is in current limit protection. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 VLDO3 in normal operation 1 VLDO3 above current limit 3 V33FAULTI V33 overcurrent interrupt bit — V33FAULTI is set to 1 when the V33 regulator is in current limit protection. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 V33 in normal operation 1 V33 above current limit 2 VCC_SDFAULTI VCC_SD overcurrent interrupt bit — VCC_SDFAULTI is set to 1 when the VCC_SD regulator is in current limit protection. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 VCC_SD in normal operation 1 VCC_SD above current limit 1 VLDO2FAULTI VLDO2 overcurrent interrupt bit — VLDO2FAULTI is set to 1 when the VLDO2 regulator is in current limit protection. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 VLDO2 in normal operation range. 1 VLDO2 above current limit 0 VLDO1FAULTI VLDO1 overcurrent interrupt bit — VLDO1FAULTI is set to 1 when the VLDO1 regulator is in current limit protection. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 VLDO1 in normal operation range. 1 VLDO1 above current limit 6.6.5.3.11 Interrupt status mask register 4 (INTMASK4) INTMASK4 is the mask register for the status interrupt register INTSTAT4. Write a logic 0 to a bit to unmask the corresponding interrupt. When unmasked, the corresponding interrupt state is reflected on the INTB pin. Table 100. Interrupt status mask register 4 (INTMASK4) Access: User read/write (61) Address: 0x12 functional page 7 6 R 4 VLDO4FAULTM VLDO3FAULTM W Default 5 0 0 1 1 3 V33FAULTM 1 2 1 0 VCC_SDFAULTM VLDO2FAULTM VLDO1FAULTM 1 1 1 = Unimplemented or Reserved Notes 61. Read: Anytime Write: Anytime PF3001 60 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Table 101. INTMASK4 field descriptions Field Description 5 VLDO4FAULTM VLDO4 overcurrent interrupt mask bit 0 VLDO4FAULTI Unmasked 1 VLDO4FAULTI Masked 4 VLDO3FAULTM VLDO3 overcurrent interrupt mask bit 0 VLDO3FAULTI Unmasked 1 VLDO3FAULTI Masked V33 overcurrent interrupt mask bit 0 V33FAULTI Unmasked 1 V33FAULTI Masked 3 V33FAULTM VCC_SD overcurrent interrupt mask bit 0 VCC_SDFAULTI Unmasked 1 VCC_SDFAULTI Masked 2 VCC_SDFAULTM 1 VLDO2FAULTM VLDO2 overcurrent interrupt mask bit 0 VLDO2FAULTI Unmasked 1 VLDO2FAULTI Masked 0 VLDO1FAULTM VLDO1 overcurrent interrupt mask bit 0 VLDO1FAULTI Unmasked 1 VLDO1FAULTI Masked 6.6.5.3.12 Interrupt sense register 4 (INTSENSE4) This register has read-only sense bits. These sense bits reflect the actual state of the corresponding function. Table 102. Interrupt sense register 4 (INTSENSE4) Access: User read-only (62) Address: 0x13 functional page 7 6 R 5 4 VLDO4FAULTS VLDO3FAULTS 3 V33FAULTS 2 1 0 VCC_SDFAULTS VLDO2FAULTS VLDO1FAULTS W Default 0 0 X (63) X (63) X (63) X (63) X (63) X (63) = Unimplemented or Reserved Notes 62. Read: Anytime 63. Default value depends on the regulator initial state PF3001 NXP Semiconductors 61 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Table 103. INTSENSE4 field descriptions Field Description 5 VLDO4FAULTS VLDO4 overcurrent sense bit 0 VLDO4 in normal operation 1 VLDO4 above current limit 4 VLDO3FAULTS VLDO3 overcurrent sense bit 0 VLDO3 in normal operation 1 VLDO3 above current limit 3 V33FAULTS V33 overcurrent sense bit 0 V33 in normal operation 1 V33 above current limit 2 VCC_SDFAULT S VCC_SD overcurrent sense bit 0 VCC_SD in normal operation 1 VCC_SD above current limit 1 VLDO2FAULTS VLDO2 overcurrent sense bit 0 VLDO2 in normal operation 1 VLDO2 above current limit 0 VLDO1FAULTS VLDO1 overcurrent sense bit 0 VLDO1 in normal operation 1 VLDO1 above current limit 6.6.5.3.13 Coin cell control register (COINCTL) This register is used to control the coin cell charger. Table 104. Coin cell control register (COINCTL) Access: User read/write (64) Address: 0x1A functional page 7 6 5 4 R 2 COINCHEN W Default 3 0 0 0 0 0 1 0 VCOIN 0 0 0 = Unimplemented or Reserved Notes 64. Read: Anytime Write: Anytime Table 105. COINCTL field descriptions Field 3 COINCHEN 2:0 VCOIN Description Coin cell charger enable bit 0 Coin Cell charger disabled. 1 Coin Cell charger enabled. Coin cell charger output voltage selection — This field is used to set the coin cell charging voltage from 2.50 V to 3.30 V. See Table 55 for all options selectable through these bits. PF3001 62 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.6.5.3.14 Power control register (PWRCTL) Table 106. Power control register (PWRCTL) Access: User read/write (65) Address: 0x1B functional page 7 R W 6 5 4 3 2 REGSCPEN Default 0 0 0 1 0 0 1 0 PWRONRSTEN RESTARTEN 0 0 = Unimplemented or Reserved Notes 65. Read: Anytime Write: Anytime Table 107. PWRCTL field descriptions Field Description 7 REGSCPEN Short-circuit protection enable bit — When REGSCPEN is set to 1, whenever a current limit event occurs on a LDO regulator, this regulator is shutdown. 0 Short-circuit protection disabled 1 Short-circuit protection enabled 1 PWRONRSTEN 0 RESTARTEN 6.6.5.3.15 PWRON reset enable bit — When set to 1, the PF3001 can enter OFF mode when the PWRON pin is held low for 4 seconds or longer. See PWRON Pin section for details. 0 Disallow OFF mode after PWRON held low 1 Allow OFF mode after PWRON held low Restart enable bit — When set to 1, the PF3001 restarts automatically after a power off event generated by the PWRON (held low for 4 seconds or longer) when PWR_CFG bit = 1. 0 Automatic restart disabled. 1 Automatic restart enabled. Embedded memory register A (MEMA) Table 108. Embedded memory register A (MEMA) Access: User read/write (66) Address: 0x1C functional page 7 6 5 4 R 3 2 1 0 0 0 0 0 MEMA W Default 0 0 0 0 = Unimplemented or Reserved Notes 66. Read: Anytime Write: Anytime Table 109. MEMA field descriptions Field Description 7:0 MEMA Memory bank A — This register is maintained in case of a main battery loss as long as the coin cell is present. The contents of the embedded memory are reset by COINPORB. PF3001 NXP Semiconductors 63 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.6.5.3.16 Embedded memory register B (MEMB) Table 110. Embedded memory register B (MEMB) Access: User read/write (67) Address: 0x1D functional page 7 6 5 4 R 2 1 0 0 0 0 0 MEMB W Default 3 0 0 0 0 = Unimplemented or Reserved Notes 67. Read: Anytime Write: Anytime Table 111. MEMB field descriptions Field Description 7:0 MEMB Memory bank B — This register is maintained in case of a main battery loss as long as the coin cell is present. The contents of the embedded memory are reset by COINPORB. 6.6.5.3.17 Embedded memory register C (MEMC) Table 112. Embedded memory register C (MEMC) Access: User read/write (68) Address: 0x1E Functional Page 7 6 5 4 R 2 1 0 0 0 0 0 MEMC W Default 3 0 0 0 0 = Unimplemented or Reserved Notes 68. Read: Anytime Write: Anytime Table 113. MEMC field descriptions Field Description 7:0 MEMC Memory bank C — This register is maintained in case of a main battery loss as long as the coin cell is present. The contents of the embedded memory are reset by COINPORB. PF3001 64 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.6.5.3.18 Embedded memory register D (MEMD) Table 114. Embedded memory register D (MEMD) Access: User read/write (69) Address: 0x1F functional page 7 6 5 4 R 3 2 1 0 0 0 0 0 MEMD W Default 0 0 0 0 = Unimplemented or Reserved Notes 69. Read: Anytime Write: Anytime Table 115. MEMD field descriptions Field Description 7:0 MEMD Memory bank D — This register is maintained in case of a main battery loss as long as the coin cell is present. The contents of the embedded memory are reset by COINPORB. 6.6.5.3.19 SW1 voltage control register (SW1VOLT) This register is used to set the output voltage of the SW1 regulator in normal operation. Table 116. SW1 voltage control register (SW1VOLT) Access: User read/write (70) Address: 0x20 functional page 7 6 5 4 3 R 1 0 X (71) X (71) SW1 W Default 2 0 0 0 X (71) X (71) X (71) = Unimplemented or Reserved Notes 70. Read: Anytime Write: Anytime 71. Default value depends on OTP content. Table 117. SW1VOLT field descriptions Field 4:0 SW1 Description SW1 output voltage — Refer to Table 40 PF3001 NXP Semiconductors 65 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.6.5.3.20 SW1 switching mode selector register (SW1MODE) This register is used to set the switching mode of the SW1 regulator. Table 118. SW1 switching mode selector register (SW1MODE) Access: User read/write (72) Address: 0x23 functional page 7 6 5 4 3 2 1 0 X (73) X (73) R SW1MODE W Default 0 0 0 X (73) 0 X (73) = Unimplemented or Reserved Notes 72. Read: Anytime Write: Anytime 73. Default value depends on start-up sequence. Table 119. SW1MODE field descriptions Field 3:0 SW1MODE 6.6.5.3.21 Description SW1 switching mode selector — Refer to Table 36 SW1 configuration register (SW1CONF) This register is used to configure DVS, switching frequency, phase and current limit settings of the SW1 regulator. Table 120. SW1 configuration register (SW1CONF) Access: User read/write (74) Address: 0x24 functional page 7 6 5 R 4 3 SW1PHASE W Default 0 0 0 2 1 SW1ILIM SW1FREQ 0 X (75) 0 X (75) 0 0 = Unimplemented or Reserved Notes 74. Read: Anytime Write: Anytime 75. Default value depends on OTP content. Table 121. SW1CONF field descriptions Field 5:4 SW1PHASE 3:2 SW1FREQ 0 SW1ILIM Description SW1 phase clock bit— SW1PHASE is used to set the phase clock for SW1. Refer to Table 37. SW1 switching frequency— SW1PHASE is used to set the desired switching frequency for SW1. Refer to Table 39. SW1 current limiter bit— This bit configures the current limit for SW1. 0 2.75 A (typ). 1 2.0 A (typ). PF3001 66 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.6.5.3.22 SW2 voltage control register (SW2VOLT) This register is used to set the output voltage of the SW2 regulator in normal operation. Table 122. SW2 voltage control register (SW2VOLT) Access: User read/write (76) Address: 0x35 functional page 7 6 5 4 3 R 2 1 0 X (77) X (77) SW2 W Default 0 0 0 X (77) X (77) X (77) = Unimplemented or Reserved Notes 76. Read: Anytime Write: Anytime 77. Default value depends on start-up sequence. Table 123. SW2VOLT field descriptions Field 4:0 SW2 6.6.5.3.23 Description SW2 output voltage — Refer to Table 42. SW2 switching mode selector register (SW2MODE) This register is used to set the switching mode of the SW2 regulator. Table 124. SW2 switching mode selector register (SW2MODE) Access: User read/write (78) Address: 0x38 functional page 7 6 5 4 3 2 1 0 X (79) X (79) R SW2MODE W Default 0 0 0 0 X (79) X (79) = Unimplemented or Reserved Notes 78. Read: Anytime Write: Anytime 79. Default value depends on start-up sequence. Table 125. SW2MODE field descriptions Field 3:0 SW2MODE Description SW2 switching mode selector — Refer to Table 36. PF3001 NXP Semiconductors 67 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.6.5.3.24 SW2 configuration register (SW2CONF) This register is used to configure DVS, switching frequency, phase and current limit settings of the SW2 regulator. Table 126. SW2 configuration register (SW2CONF) Access: User read/write (80) Address: 0x39 functional page 7 6 5 R 4 3 SW2PHASE W Default 0 0 0 2 1 0 SW2FREQ X (81) 0 SW2ILIM X (81) 0 0 = Unimplemented or Reserved Notes 80. Read: Anytime Write: Anytime 81. Default value depends on OTP content. Table 127. SW2CONF field descriptions Field Description 5:4 SW2PHASE SW2 phase clock bit— SW2PHASE is used to set the phase clock for SW2. Refer to Table 37. 3:2 SW2FREQ SW2 switching frequency— SW2PHASE is used to set the desired switching frequency for SW2. Refer to Table 39. SW2 current limiter bit— This bit configures the current limit for SW2. 0 2.75 A (typ). 1 2.0 A (typ). 0 SW2ILIM 6.6.5.3.25 SW3 voltage control register (SW3VOLT) This register is used to set the output voltage of the SW3 regulator in normal operation. Table 128. SW3 voltage control register (SW3VOLT) Access: User read/write (82) Address: 0x3C functional page 7 6 5 4 3 R 1 0 X (83) X (83) SW3 W Default 2 0 0 0 X (83) X (83) X (83) = Unimplemented or Reserved Notes 82. Read: Anytime Write: Anytime 83. Default value depends on start-up sequence. Table 129. SW3VOLT field descriptions Field 4:0 SW3 Description SW3 output voltage — Refer to Table 44. PF3001 68 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.6.5.3.26 SW3 switching mode selector register (SW3MODE) This register is used to set the switching mode of the SW3 regulator. Table 130. SW3 switching mode selector register (SW3MODE) Access: User read/write (84) Address: 0x3F functional page 7 6 5 4 3 2 1 0 X (85) X (85) R SW3MODE W Default 0 0 0 X (85) 0 X (85) = Unimplemented or Reserved Notes 84. Read: Anytime Write: Anytime 85. Default value depends on start-up sequence. Table 131. SW3MODE field descriptions Field 3:0 SW3MODE 6.6.5.3.27 Description SW3 switching mode selector — Refer to Table 36. SW3 configuration register (SW3CONF) This register is used to configure DVS, switching frequency, phase and current limit settings of the SW3 regulator. Table 132. SW3 configuration register (SW3CONF) Access: User read/write (86) Address: 0x40 functional page 7 6 5 R 4 3 SW3PHASE W Default 0 0 1 2 1 SW3FREQ 0 X (87) 0 SW3ILIM X (87) 0 0 = Unimplemented or Reserved Notes 86. Read: Anytime Write: Anytime 87. Default value depends on OTP content. Table 133. SW3CONF field descriptions Field 5:4 SW3PHASE 3:2 SW3FREQ 0 SW3ILIM Description SW3 phase clock bit— SW3PHASE is used to set the phase clock for SW3. Refer to Table 37. SW3 switching frequency— SW3PHASE is used to set the desired switching frequency for SW3. Refer to Table 39. SW3 current limiter bit— This bit configures the current limit for SW3. 0 3.0 A (typ). 1 2.25 A (typ). PF3001 NXP Semiconductors 69 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.6.5.3.28 VSNVS control register (VSNVSCTL) This register is used to control the VSNVS supply operation. Table 134. VSNVS control register (VSNVSCTL) Access: User read/write (88) Address: 0x6B functional page 7 6 5 4 3 2 1 0 R VSNVSVOLT W Default 0 0 0 0 X (89) 0 X (89) X (89) = Unimplemented or Reserved Notes 88. Read: Anytime Write: Anytime 89. Default value depends on start-up sequence. Table 135. VSNVSCTL field descriptions Field Description VSNVS output voltage configuration— VSNVSVOLT is used to configure the VSNVS output voltage. Values below are typical voltages. 000 = RSVD 001 = RSVD 010 = RSVD 011 = RSVD 100 = RSVD 101 = RSVD 110 = 3.0 V (default) 111 = RSVD 2:0 VSNVSVOLT 6.6.5.3.29 VLDO1 control register (VLDO1CTL) This register is used to configure output voltage, normal mode operation of the VLDO1 regulator. Table 136. VLDO1 control register (VLDO1CTL) Access: User read/write (90) Address: 0x6C functional page 7 6 5 R 3 2 VLDO1EN W Default 4 0 0 0 X (91) 1 0 X (91) X (91) VLDO1 X (91) X (91) = Unimplemented or Reserved Notes 90. Read: Anytime Write: Anytime 91. Default value depends on start-up sequence. PF3001 70 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Table 137. VLDO1CTL field descriptions Field Description VLDO1 enable bit — VLDO1EN is used to enable or disable the VLDO1 regulator. 0 VLDO1 disabled 1 VLDO1 enabled 4 VLDO1EN 3:0 VLDO1 6.6.5.3.30 VLDO1 output voltage configuration— Refer to Table 47. VLDO2 control register (VLDO2CTL) This register is used to configure output voltage, normal mode operation of the VLDO2 regulator. Table 138. VLDO2 control register (VLDO2CTL) Access: User read/write (92) Address: 0x6D functional page 7 6 5 R 4 3 2 VLDO2EN W Default 0 0 0 1 0 X (93) X (93) VLDO2 X (93) X (93) X (93) = Unimplemented or Reserved Notes 92. Read: Anytime Write: Anytime 93. Default value depends on start-up sequence. Table 139. VLDO2CTL field descriptions Field 4 VLDO2EN 3:0 VLDO2 Description VLDO2 enable bit — VLDO2EN is used to enable or disable the VLDO2 regulator. 0 VLDO2 Disabled 1 VLDO2 Enabled VLDO2 output voltage configuration— Refer to Table 47. PF3001 NXP Semiconductors 71 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.6.5.3.31 VCC_SD control register (VCC_SDCTL) This register is used to configure output voltage, Normal mode operation of the VCC_SD regulator. Table 140. CC_SD control register (VCC_SDCTL) Access: User read/write (94) Address: 0x6E functional page 7 6 5 R 4 3 2 1 0 VCC_SDEN W Default 0 0 0 VCC_SD X (95) 0 0 X (95) X (95) = Unimplemented or Reserved Notes 94. Read: Anytime Write: Anytime 95. Default value depends on start-up sequence. Table 141. VCC_SDCTL field descriptions Field Description VCC_SD enable bit — VCC_SDEN is used to enable or disable the VCC_SD regulator. 0 VCC_SD Disabled 1 VCC_SD Enabled 4 VCC_SDEN 1:0 VCC_SD 6.6.5.3.32 VCC_SD output voltage configuration— Refer to Table 50. V33 control register (V33CTL) This register is used to configure output voltage, normal mode operation of the V33 regulator. Table 142. V33 control register (V33CTL) Access: User read/write (96) Address: 0x6F functional page 7 6 5 R 4 3 2 1 0 V33EN W Default 0 0 0 X (97) V33 0 0 X (97) X (97) = Unimplemented or Reserved Notes 96. Read: Anytime Write: Anytime 97. Default value depends on start-up sequence. Table 143. V33CTL field descriptions Field 4 V33EN 1:0 V33 Description V33 enable bit — V33EN is used to enable or disable the VLDO2 regulator. 0 V33 Disabled 1 V33 Enabled V33 output voltage configuration— Refer to Table 49. PF3001 72 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.6.5.3.33 VLDO3 control register (VLDO3CTL) This register is used to configure output voltage, normal mode operation of the VLDO3 regulator. Table 144. VLDO3 control register (VLDO3CTL) Access: User read/write (98) Address: 0x70 functional page 7 6 5 R 4 3 2 VLDO3EN W Default 0 0 0 1 0 X (99) X (99) VLDO3 X (99) X (99) X (99) = Unimplemented or Reserved Notes 98. Read: Anytime Write: Anytime 99. Default value depends on start-up sequence. Table 145. VLDO3CTL field descriptions Field Description VLDO3 enable bit — VLDO3EN is used to enable or disable the VLDO3 regulator. 0 VLDO3 Disabled 1 VLDO3 Enabled 4 VLDO3EN 3:0 VLDO3 6.6.5.3.34 VLDO3 output voltage configuration— Refer to Table 48. VLDO4 control register (VLDO4CTL) This register is used to configure output voltage, normal mode operation of the VLDO4 regulator. Table 146. VLDO4 control register (VLDO4CTL) Access: User read/write (100) Address: 0x71 functional page 7 6 5 R 4 3 2 VLDO4EN W Default 0 0 0 1 0 X (101) X (101) VLDO4 X (101) X (101) X (101) = Unimplemented or Reserved Notes 100. Read: Anytime Write: Anytime 101. Default value depends on start-up sequence. Table 147. VLDO4CTL field descriptions Field 4 VLDO4EN 3:0 VLDO4 Description VLDO4 enable bit — VLDO4EN is used to enable or disable the VLDO4 regulator. 0 VLDO4 Disabled 1 VLDO4 Enabled VLDO4 output voltage configuration— Refer to Table 48. PF3001 NXP Semiconductors 73 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.6.5.3.35 Page selection register This register is used to access the extended register pages. Table 148. Page selection register Access: User read/write (102) Address: 0x7F functional page 7 6 5 4 3 2 R 1 0 0 0 PAGE W Default 0 0 0 0 0 0 = Unimplemented or Reserved Notes 102. Read: Anytime Write: Anytime Table 149. Page register field descriptions Field 3:0 PAGE Description Register page selection — The PAGE field is used to select the register pages. 0000 Functional page selected PF3001 74 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION 6.6.6 Register map The register map is only one page and its addresses and data fields are each eight bits wide. This page registers 0x00 to 0x7F are referred to as “functional”. Registers missing in the sequence are reserved; reading from them returns a value 0x00, and writing to them has no effect. The contents of all registers are given in the tables defined in this chapter; each table is structure as follows: Name: Name of the bit Bit #: The bit location in the register (7-0) R/W: Read/Write access and control • R is read-only access • R/W is read and write access • RW1C is read and write access with write 1 to clear Reset: Reset signals are color coded based on the following legend. Bits reset by SC and VCOREDIG_PORB Bits reset by PWRON or loaded default Bits reset by DIGRESETB Bits reset by PORB or RESETBMCU Bits reset by VCOREDIG_PORB Bits reset by POR or OFFB Default: The value after reset, as noted in the default column of the memory map. • Fixed defaults are explicitly declared as 0 or 1. • “X” corresponds to Read/Write bits initialized at start-up. Bits are subsequently I2C modifiable, when their reset has been released. “X”, may also refer to bits which may have other dependencies. For example, some bits may depend on the version of the IC, or a value from an analog block, for instance the sense bits for the interrupts. 6.6.6.1 Register map Table 150. Functional page BITS[7:0] Add Register Name R/W Default 00 DeviceID R 8'b0011_0000 03 04 05 06 07 08 R FABID R INTMASK0 INTSENSE0 INTSTAT1 6 5 4 – – – – 0 0 1 1 3 2 RW1C R/W R RW1C 1 0 DEVICE ID [3:0] 0 0 FULL_LAYER_REV[3:0] SILICONREVI D INTSTAT0 7 0 1 METAL_LAYER_REV[3:0] 8'b0001_0000 0 0 0 1 0 0 0 – – – – 0 0 0 0 0 0 0 0 – – THERM130I THERM125I THERM120I THERM110I LOWVINI PWRONI 0 0 0 0 0 0 0 0 – – THERM130M THERM125M THERM120M THERM110M LOWVINM PWRONM 0 0 1 1 1 1 1 1 ICTEST2S ICTESTS THERM130S THERM125S THERM120S THERM110S LOWVINS PWRONS 0 0 x x x x x x – – – SW3FAULTI SW2FAULTI – – SW1FAULTI 0 0 0 0 0 x 0 0 FAB[1:0] 0 FIN[1:0] 8'b0000_0000 8'b0000_0000 8'b0011_1111 8'b00xx_xxxx 8'b0000_0000 PF3001 NXP Semiconductors 75 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Table 150. Functional page (continued) BITS[7:0] Add Register Name R/W Default 09 INTMASK1 R/W 8'b0111_1111 0A 0E 0F 10 11 12 13 1A 1B INTSENSE1 INTSTAT3 INTMASK3 INTSENSE3 INTSTAT4 INTMASK4 INTSENSE4 COINCTL PWRCTL R RW1C R/W R RW1C R/W R R/W R/W 7 6 5 4 3 2 1 0 – – – SW3FAULTM SW2FAULTM – – SW1FAULTM 0 1 1 1 1 1 1 1 – – – SW3FAULTS SW2FAULTS – – SW1FAULTS 0 x x x x x x x – – – – – VPWROVI – – 0 0 0 0 0 0 0 0 – – – – – VPWROVI – – 1 1 0 0 0 1 0 1 – – – – – VPWROVS – – 0 0 0 0 0 0 0 x – – 0 0 0 0 0 – – VLDO4 FAULTM VLDO3 FAULTM V33 FAULTM 0 0 1 1 1 1 1 1 – – VLDO4 FAULTS VLDO3 FAULTS V33 FAULTS VCC_SD FAULTS VLDO2 FAULTS VLDO1 FAULTS 0 0 x x x x x x – – – – COINCHEN 0 0 0 0 0 REGSCPEN – 0 0 8'b0xxx_xxxx 8'b0000_0000 8'b1100_0101 8'b0000_000x VLDO4FAULTI VLDO3FAULTI V33FAULTI 8'b0000_0000 8'b0011_1111 8'b00xx_xxxx VCC_SDFAUL VLDO2FAULTI VLDO1FAULTI TI 0 0 VCC_SDFAUL VLDO2FAULT TM M 0 VLDO1FAULT M VCOIN[2:0] 8'b0000_0000 – 0 PWRONBDBNC[1:0] 8'b0001_0000 0 1 0 0 PWRONRSTE N RESTARTEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MEMA[7:0] 1C MEMA R/W 8'b0000_0000 0 0 0 0 MEMB[7:0] 1D MEMB R/W 8'b0000_0000 0 0 0 0 MEMC[7:0] 1E MEMC R/W 8'b0000_0000 0 0 0 0 MEMD[7:0] 1F 20 21 22 23 MEMD SW1VOLT SW1STBY SW1OFF SW1MODE R/W R/W R/W R/W R/W 8'b0000_0000 0 0 0 – – – 0 0 0 – – – – – – – – – – – – – 0 0 0 – – – – – – – – – – – – – 0 0 0 – – – – – – – – – 0 0 0 x SW1[4:0] 8'b000x_xxxx 8'b000x_xxxx 8'b000x_xxxx SW1MODE[3:0] 8'b0000_xxxx – – – – PF3001 76 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Table 150. Functional page (continued) BITS[7:0] Add Register Name R/W Default 24 SW1CONF R/W 8'bxx00_xxx0 2E 2F 30 31 32 35 36 37 38 39 3C 3D 3E 3F 40 RSVD RSVD RSVD RSVD RSVD SW2VOLT SW2STBY SW2OFF SW2MODE SW2CONF SW3VOLT RSVD RSVD SW3MODE SW3CONF R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W 7 6 – – SW1PHASE[1:0] x x 0 69 6A RSVD RSVD RSVD R/W R/W R/W 4 – – – x x x – – – x x x – – – 0 3 2 SW1FREQ[1:0] x x 1 0 – SW1ILIM x 0 x x x x x x – – – – x x – 8'b0000_0000 x x x – 8'b0000_0000 x x x – 8'b0000_0000 x x x x – – – – x x x x 0 – – – x – x x – – – – – SW2_HL 0 x x x – – – –- – – – – – – – – 0 x x x x x x x – – – – – – – – x x x x – 8'b0001_0000 – – – – 8'bx100_0000 – SW2[2:0] 8'b0xxx_0110 8'b0xxx_xxxx 8'b0xxx_xxxx 0 x x x – – – – 0 0 0 0 – – SW2PHASE[1:0] x x 0 1 – – – – 0 x x x – – – – – 0 x x – – – SW2MODE[3:0] 8'b0010_1000 1 0 0 0 – SW2ILIM x 0 – – – – – – – x – – – – – – – – – – – – – SW2FREQ[1:0] 8'bxx01_xxx0 x x SW3[3:0] 8'b0xxx_1100 8'b0xxx_1100 8'b0xxx_1100 0 x – x – – 0 – 0 0 1 1 – – SW3PHASE[1:0] x – 1 SW3MODE[3:0] 8'b0011_1000 1 0 SW3FREQ[1:0] 0 0 – SW3ILIM 0 0 8'bxx10_xxx0 – 66 5 – 0 – – – – – 8'b0xx0_0000 0 x x 0 x x x x – – – – – – – – 0 x x x x x x x – – – – – – – – x x x – x x x x 8'b0xxx_xxx0 8'b000x_0000 PF3001 NXP Semiconductors 77 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION Table 150. Functional page (continued) BITS[7:0] Add Register Name R/W Default 6B VSNVSCTL R/W 8'b0000_0110 6C 6D 6E 6F 70 71 7F VLDO1CTL VLDO2CTL VCC_SDCTL V33CTL VLDO3CTL VLDO4CTL RSVD R/W R/W R/W R/W R/W R/W R/W 7 6 5 4 3 2 – – – – – 0 0 0 0 0 – – – VLDO1EN 0 0 0 – – – – VLDO2EN 0 0 0 – – – – – – VCC_SDEN – – 0 0 0 – x x 1 0 VSNVSVOLT[2:0] 1 1 0 – –- – –- VLDO1[3:0] 8'b010x_1110 – – VLDO2[3:0] 8'b000x_1000 VCC_SD[1:0] 8'b000x_xx10 – – – V33EN – – 0 0 0 – x x – – – VLDO3EN 0 0 0 – – – – VLDO4EN 0 0 0 – – – – 0 0 0 – – V33[1:0] 8'b000x_xx10 – – – – – – 0 0 VLDO3[3:0] 8'b010x_0000 – – VLDO4[3:0] 8'b000x_xxxx – – – 8'b0000_0000 0 0 0 PF3001 78 NXP Semiconductors TYPICAL APPLICATIONS 7 Typical applications 7.1 Application diagram 1.0uF VIN VLDO1IN 2.2uF 1.0uF VLDO2IN 4.7uF 1.0uF PF3001 VLDO1 100 mA VLDO1 V33 VLDO2 250 mA VLDO2 VIN VLDO34IN SW1OUT VLDO3 100 mA VLDO3 2.2uF 4.7uF SW1 2.75 A Buck VLDO4 350 mA VLDO4 Core Control logic VIN VIN 4.7uF 2 x 22uF SW1FB GNDREF1 SW2OUT V33 350 mA V33 10uF SW1IN 100nF Initialization State Machine 4.7uF 1.5uH SW1LX VCC_SD 100 mA VCC_SD 2.2uF O/P Drive SW2 1.25 A Buck Supplies Control OTP VIN2 O/P Drive 1.5uH SW2LX SW2IN VIN 100nF 4.7uF 2 x 22uF SW2FB ICTEST2 VDDIO VDDIO CONTROL SW3OUT I2C Interface 4.7k 4.7k 100nF SW3 1.5 A Buck SCL To MCU O/P Drive SDA 1.5uH SW3LX SW3IN VIN 100nF 4.7uF 2 x 22uF SW3FB GNDREF2 Clocks I2C Map 220nF VCOREREF 1.0uF VCORE 32kHz and 16MHz Reference Generation Clocks and resets Package Pin Legend GNDREF Output Pin Input Pin +5V Bi-directional Pin VPWR VREF 100nF LDOG VIN* VIN Best of Supply VDDIO 100k VDDIO 100k 0.47uF SD_VSEL VSNVS VSNVS 220nF Li Cell Charger INTB LICELL RESETBMCU 2 x 47uF Coin Cell Battery LDO PWRON 4.7uF ICTEST1 2 x 47uF Notes: *: The PF3001 can also be powered through VIN directly (ie. 3.7 V Li-ion battery application). In this case, the Front-end LDO regulator is not used ; the external MOSFET has to be unpopulated and VPWR pin must be connected to GND . To/From Processor Figure 26. Typical application schematic PF3001 NXP Semiconductors 79 BILL OF MATERIALS 8 Bill of materials The following table provides a complete list of the recommended components on a full featured system using the PF3001 Critical components are provided with a recommended part number; but equivalent components may be used. Table 151. Bill of materials for -40 °C to 85 °C applications (103) Value Qty Description Part# Manufacturer Component/pin PMIC N/A 1 Power management IC PF3001 NXP IC IND PWR 1.5 H at 1.0 MHz 2.9A 20% 2016 DFE252012P-1R5M Toko Inc. SW1, SW2, SW3 inductors IND PWR 1.5 H at 1.0 MHz 2.2A 20% 1210 BRL3225T1R5M Taiyo Yuden Alternate for low power applications Buck regulators 1.5 µH 3 4.7 µF 3 CAP CER 4.7 F 10 V 20% X5R 0402 GRM155R61A475MEAA Murata SW1, SW2, SW3 input capacitors 0.1 µF 3 CAP CER 0.1 F 10 V 20% X5R 0603 GRM033R61A104ME84 Murata SW1, SW2, SW3 input capacitors (optional) 22 µF 6 CAP CER 22 F 10 V 20% X5R 0201 GRM188R61A226ME15 Murata SW1, SW2, SW3 output capacitors Linear regulators 1.0 µF 3 CAP CER 1.0 F 10 V 20% X5R 0201 GRM033R61A105ME44 Murata VLDO1, VLDO2, VLDO3, and VLDO4 input capacitors 2.2 µF 3 CAP CER 2.2 F 10V 20% X5R 0201 GRM033R61A225ME47 Murata VLDO1, VLDO3, VCC_SD output capacitors 10 µF 1 CAP CER 10 F 10 V 20% X7R 0402 GRM155R61A106ME11 Murata V33 and VCC_SD input capacitor 4.7 µF 3 CAP CER 4.7 F 10V 20% X5R 0402 GRM155R61A475MEAA Murata VLDO2, VLDO4, V33 output capacitors 1.0 µF 4 CAP CER 1.0 F 10V 20% X5R 0201 GRM033R61A105ME44 Murata VCORE, VCOREDIG, capacitors 0.22 µF 2 CAP CER 0.22 F 10V 20% X5R 0201 GRM033R61A224ME90 Murata VCOREREF and coin cell output capacitors 47 µF 4 CAP CER 47 F 10V 20% X5R 0805 GRM21BR61A476ME15 Murata Front-end LDO capacitors for VIN and VPWR 2.2 µF 1 CAP CER 2.2 F 10V 20% X5R 0201 GRM033R61A225ME47 Murata VIN Input Capacitor when not using front-end LDO 0.1 µF 4 CAP CER 0.1 F 10V 10% X5R 0201 GRM033R61A104KE84 Murata VPWR, VIN Input capacitors (optional) N/A 1 TRAN PMOS 11. A 12 V 12 SOT-1220 PMPB15XP NXP External MOSFET 100 k 2 RES MF 100K 1/16W 1% 0402 RC0402FR-07100KL Yageo America Pull-up resistor 4.7 k 2 RES MF 4.70K 1/20W 1% 0201 RC0201FR-074K7L Yageo America Pull-up resistor Miscellaneous Notes 103. NXP does not assume liability, endorse, or warrant components from external manufacturers are referenced in circuit drawings or tables. While NXP offers component recommendations in this configuration, it is the customer’s responsibility to validate their application. PF3001 80 NXP Semiconductors BILL OF MATERIALS Table 152. Bill of materials for -40 °C to 105 °C applications (104) Value Qty Description Part# Manufacturer Component/pin PMIC N/A 1 Power management IC PF3000 NXP IC IND PWR 1.5µH@1MHz 2.9A 20% 2016 DFE201610E-1R5M TOKO INC. SW1, SW2, SW3 inductors IND PWR 1.5µH@1MHz 2.2A 20% 1210 BRL3225T1R5M Taiyo Yuden Alternate for low power applications Buck regulators 1.5 µH 3 4.7 µF 3 CAP CER 4.7µF 10V 10% X7S 0603 GRM188C71A475KE11 Murata SW1, SW2, SW3 input capacitors 0.1 µF 3 CAP CER 0.1µF 10V 10% X7S 0201 GRM033C71A104KE14 Murata SW1, SW2, SW3 input capacitors (optional) 22 µF 6 CAP CER 22µF 10V 20% X7T 0805 GRM21BD71A226ME44 Murata SW1, SW2, SW3 output capacitors Linear regulators 1.0 µF 3 CAP CER 1.0µF 10V 10% X7S 0402 GRM155C71A105KE11 Murata VLDO1, VLDO2, VLDO3 and VLDO4 input capacitors 2.2 µF 3 CAP CER 2.2µF 10V 10% X7S 0402 GRM155C71A225KE11 Murata VLDO1, VLDO3, VCC_SD output capacitors 10 µF 1 CAP CER 10µF 10V 20% X7T 0603 GRM188D71A106MA73 Murata V33 and VCC_SD input capacitor 4.7 µF 3 CAP CER 4.7µF 10V 10% X7S 0603 GRM188C71A475KE11 Murata VLDO2, VLDO4, V33 output capacitors 1.0 µF 4 CAP CER 1.0µF 10V 10% X7R 0402 GRM155C71A105KE11 Murata VCORE, VCOREDIG capacitors 0.22 µF 2 CAP CER 0.22µF 10V 10% X7R 0402 GRM155R71A224KE01 Murata VCOREREF and coin cell output capacitors 47 µF 4 CAP CER 47µF 10V 20% X7R 1210 GRM32ER71A476ME15 Murata Front-end LDO capacitors for VIN and VPWR. 2.2 µF 1 CAP CER 2.2µF 10V 10% X7S 0402 GRM155C71A225KE11 Murata VIN Input Capacitor when not using front-end LDO 0.1 µF 4 CAP CER 0.1µF 10V 10% X7S 0201 GRM033C71A104KE14 Murata VPWR, VIN input capacitors (optional) N/A 1 TRAN PMOS 11. A 12 V 12 SOT1220 PMPB15XP NXP External MOSFET 100 k 2 RES MF 100K 1/16W 1% 0402 RC0402FR-07100KL YAGEO AMERICA Pull-up resistors 4.7 k 2 RES MF 4.70K 1/20W 1% 0201 RC0201FR-074K7L YAGEO AMERICA I²C pull-up resistors Notes 104. NXP does not assume liability, endorse, or warrant components from external manufacturers are referenced in circuit drawings or tables. While NXP offers component recommendations in this configuration, it is the customer’s responsibility to validate their application. PF3001 NXP Semiconductors 81 THERMAL INFORMATION 9 Thermal information 9.1 Rating data The thermal rating data of the packages has been simulated with the results listed in Thermal ratings. Junction to ambient thermal resistance nomenclature: the JEDEC specification reserves the symbol RJA or JA (Theta-JA) strictly for junction-to-ambient thermal resistance on a 1s test board in natural convection environment. RJMA or JMA (Theta-JMA) is used for both junction-to-ambient on a 2s2p test board in natural convection and for junction-to-ambient with forced convection on both 1s and 2s2p test boards. It is anticipated the generic name, Theta-JA, continues to be commonly used. The JEDEC standards can be consulted at http://www.jedec.org. 9.2 Estimation of junction temperature An estimation of the chip junction temperature TJ can be obtained from the equation: TJ = TA + (RJA x PD) with: TA = Ambient temperature for the package in °C RJA = Junction to ambient thermal resistance in °C/W PD = Power dissipation in the package in W The junction to ambient thermal resistance is an industry standard value providing a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board RJA and the value obtained on a four layer board RJMA. Actual application PCBs show a performance close to the simulated four layer board value although this may be somewhat degraded in case of significant power dissipated by other components placed close to the device. At a known board temperature, the junction temperature TJ is estimated using the following equation TJ = TB + (RJB x PD) with TB = Board temperature at the package perimeter in °C RJB = Junction to board thermal resistance in °C/W PD = Power dissipation in the package in W When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. PF3001 82 NXP Semiconductors PACKAGING 10 Packaging 10.1 Packaging dimensions Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.nxp.com and perform a keyword search for the drawing's document number. See the Thermal characteristics section for specific thermal characteristics for each package. Table 153. Package drawing information Package Suffix Package outline drawing number 48-pin QFN 7X7 mm - 0.5mm pitch EP 98ASA00719D 48 QFN 7.0 mm x 7.0 mm WF-type (wettable flank) EP 98ASA00933D PF3001 NXP Semiconductors 83 PACKAGING PF3001 84 NXP Semiconductors PACKAGING PF3001 NXP Semiconductors 85 PACKAGING PF3001 86 NXP Semiconductors PACKAGING PF3001 NXP Semiconductors 87 PACKAGING PF3001 88 NXP Semiconductors REVISION HISTORY 11 Revision history Revision Date 1.0 2.0 Description of Changes 8/2015 • Initial release 9/2015 • Corrected package image on page 1 • • Added 98ASA00933D and the page 1 package image for wettable flank Changed Table 2, pins 7, 10, 18, and 28, from Bypass with at least a 10 F to Bypass with at least a 4.7 F Added PC33PF3001A6ES and PC33PF3001A7ES to Table 2 3/2016 • PF3001 NXP Semiconductors 89 How to Reach Us: Information in this document is provided solely to enable system and software implementers to use NXP products. Home Page: NXP.com There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits Web Support: http://www.nxp.com/support products herein. based on the information in this document. NXP reserves the right to make changes without further notice to any NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation, consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by the customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: http://www.nxp.com/terms-of-use.html. NXP, the NXP logo, Freescale, the Freescale logo and SMARTMOS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. All rights reserved. © 2016 NXP B.V. Document Number: PF3001 Rev. 2.0 3/2016