BF P540 F ES D BF P540 F ES D E SD - Har den ed RF Transis tor wit h 1k V HB M E S D Ra ting in Lo w G a in 2. 4 GH z LN A Applic atio n wi th s ho rt T urn - O n Tu rn Off Ti me For Blu eT ooth and othe r 2. 4 G Hz Applic atio ns re quiri ng lo w to mo der ate gain and f as t s witc h ing speed Applic atio n N ote A N 180 Revision: Rev. 1.2 2011-05-31 RF and P r otecti on D evic es Edition 2011-05-31 Published by Infineon Technologies AG 81726 Munich, Germany © 2011 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. BFP540FESD BFP540FESD 2.4 GHz fast switching LNA Application Note AN180 Revision History: 2011-05-31 Previous Revision: prev. Rev. 1.1 Page Subjects (major changes since last revision) New Layout Trademarks of Infineon Technologies AG A-GOLD™, BlueMoon™, COMNEON™, CONVERGATE™, COSIC™, C166™, CROSSAVE™, CanPAK™, CIPOS™, CoolMOS™, CoolSET™, CONVERPATH™, CORECONTROL™, DAVE™, DUALFALC™, DUSLIC™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, E-GOLD™, EiceDRIVER™, EUPEC™, ELIC™, EPIC™, FALC™, FCOS™, FLEXISLIC™, GEMINAX™, GOLDMOS™, HITFET™, HybridPACK™, INCA™, ISAC™, ISOFACE™, IsoPACK™, IWORX™, M-GOLD™, MIPAQ™, ModSTACK™, MUSLIC™, my-d™, NovalithIC™, OCTALFALC™, OCTAT™, OmniTune™, OmniVia™, OptiMOS™, OPTIVERSE™, ORIGA™, PROFET™, PRO-SIL™, PrimePACK™, QUADFALC™, RASIC™, ReverSave™, SatRIC™, SCEPTRE™, SCOUT™, S-GOLD™, SensoNor™, SEROCCO™, SICOFI™, SIEGET™, SINDRION™, SLIC™, SMARTi™, SmartLEWIS™, SMINT™, SOCRATES™, TEMPFET™, thinQ!™, TrueNTRY™, TriCore™, TRENCHSTOP™, VINAX™, VINETIC™, VIONTIC™, WildPass™, X-GOLD™, XMM™, X-PMU™, XPOSYS™, XWAY™. Other Trademarks AMBA™, ARM™, MULTI-ICE™, PRIMECELL™, REALVIEW™, THUMB™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO. OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Sattelite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2009-10-19 Application Note AN180, Rev. 1.2 3 / 21 2011-05-31 BFP540FESD BFP540FESD 2.4 GHz fast switching LNA List of Content, Figures and Tables Table of Content 1 1.1 Overview ............................................................................................................................................. 5 Summary of Performance Data ............................................................................................................ 5 2 2.1 2.2 Schematic Diagram and Bill of Material ........................................................................................... 6 Schematic Diagram .............................................................................................................................. 6 Bill of Material ....................................................................................................................................... 7 3 3.1 3.2 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.4 3.5 3.5.1 3.5.2 Measurement Data ............................................................................................................................. 8 Noise Figure ......................................................................................................................................... 8 Amplifier Compression Point Measurement ....................................................................................... 10 Amplifier Stability, Gain, Return Loss and Reverse Isolation Plots ................................................... 11 Stability ............................................................................................................................................... 11 Input Return Loss ............................................................................................................................... 12 Forward Gain and Reverse Isolation ................................................................................................. 13 Output Return Loss ............................................................................................................................ 14 Amplifier Third Order Intercept (TOI) Measurement .......................................................................... 15 Amplifier Turn-On / Turn-Off Time Measurements ............................................................................ 16 Turn On Time ..................................................................................................................................... 17 Turn-Off Time ..................................................................................................................................... 18 4 Evaluation Board .............................................................................................................................. 19 5 References ........................................................................................................................................ 20 Author ................................................................................................................................................ 20 List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Block diagram of an example Bluetooth receiver system .................................................................... 5 Schematic diagram............................................................................................................................... 6 Noise figure plot ................................................................................................................................... 8 Gain compression at 2441 MHz, VCC = +2.8 V, I = 5.0 mA, VCE = 2.5 V, T = 25 °C .......................... 10 Amplifier stability: Plot of Stability Factor µ1 ...................................................................................... 11 Input return loss / dB .......................................................................................................................... 12 Input return loss (Smith chart) ............................................................................................................ 12 Forward Gain / dB .............................................................................................................................. 13 Reverse Isolation / dB ........................................................................................................................ 13 Output return loss / dB ....................................................................................................................... 14 Output return loss (Smith chart) ......................................................................................................... 14 Output spectrum of LNA during test ................................................................................................... 15 Turn-on / turn-off time: Test setup ...................................................................................................... 16 Screen shot: Turn on time .................................................................................................................. 17 Screen shot: Turn on time .................................................................................................................. 18 PCB cross section .............................................................................................................................. 19 View of entire PC board ..................................................................................................................... 19 Close-in view of LNA section ............................................................................................................. 19 List of Tables Table 1 Table 2 Table 3 Summary of performance data T=25 °C, network analyzer source power = -25 dBm, VCC = 2.8 V, VCE = 2.5 V, IC=5.0 mA ......................................................................................................................... 5 Bill-of-Material ...................................................................................................................................... 7 Noise figure, tabular data ..................................................................................................................... 9 Application Note AN180, Rev. 1.2 4 / 21 2011-05-31 BFP540FESD BFP540FESD 2.4 GHz fast switching LNA Overview 1 Overview Infineon Technologies BFP540FESD is an ESD-hardened, high gain, low noise Silicon RF Transistor suitable for a wide range of Low Noise Amplifier (LNA) applications. The BFP540FESD is rated to survive up to 1000 V ESD events between any pair of terminals, per the Human Body Model (HBM). Refer to Reference [1], BFP540FESD datasheet, and refer to Refernce [2] for details on how the BFP540FESD sand similar Infineon RF transistors achieve improved ESD-robustness. The circuit shown is targeted for higher sensitivity or longer range BlueTooth and similar applications. Commercially available fully integrated CMOS BlueTooth transceiver chips may claim receiver sensitivity numbers which are far higher than real-world implementations permit. Losses in the bandpass filter (see block diagram below) are often higher than claimed due to non-ideal effects. Therefore, to improve receiver sensitivity, some (external) gain is required just after the antenna. However, too much external LNA gain compromises the large-signal handling capability of the BlueTooth receiver. We want just enough gain to dominate the overall system noise figure, no more. The LNA shown in this applications note is an attempt to achieve such a balance, with a gain of between 8 dB and 9 dB. LNAs for this application must be able to switch on / off within about 1 µs (1000 ns). The charge storage (capacitance) used in this circuit is minimized to reduce on / off times. Trade-off for reduced capacitance values is a reduction in Third Order Intercept (IP3) performance. Inductive emitter degeneration is used to improve amplifier low-frequency stability and impedance matching. Refer to Reference [3] for a general overview of charge storage and inductive emitter degeneration. Losses in filter section degrade sensitivity thus external LNA is sometimes needed BlueTooth CMOS RFIC Differential Interface Low Noise Amplifier Low / Moderate Gain BFP540FESD Mixed-Mode Bandpass Filter (Single Ended Input, Balanced Output) Figure 1 Block diagram of an example Bluetooth receiver system 1.1 Summary of Performance Data Table 1 To MIC / Speaker Summary of performance data T=25 °C, network analyzer source power = -25 dBm, VCC = 2.8 V, VCE = 2.5 V, IC=5.0 mA 2 2 Frequency (MHz) dB[s11] 2400 -10.0 8.9 -23.9 2441 -10.3 8.7 -23.9 2483.5 -10.5 8.5 -23.8 dB[s21] dB[s12] 2 2 1 IIP3 (dBm) IP1dB (dBm) -10.2 NF (dB) 1.4 -10.1 1.4 -6.3 -13.6 -10.0 1.4 dB[s22] Amplifier is unconditionally Stable (µ1 > 1.0) from 50 MHz to 12 GHz. External parts count (not including BFP540FESD transistor) = 14; 6 capacitors, 6 resistors, and 2 chip inductors. All passives are 0402 case size. BFP540FESD transistor package is RoHS – compliant and measures 3 1.4 x 1.2 x 0.55 mm . 1 Does not extract PCB loss. If PCB loss (at input) were extracted, NF would be ~0.1 dB lower. Application Note AN180, Rev. 1.2 5 / 21 2011-05-31 BFP540FESD BFP540FESD 2.4 GHz fast switching LNA Schematic Diagram and Bill of Material 2 Schematic Diagram and Bill of Material 2.1 Schematic Diagram Inductors are Murata LQP15M Series (formerly LQP10A) 0402 case size. Capacitors and resistors are 0402 case size. J3 DC Connector V cc = 2.8 V PCB = 740F-080930 Rev A PC Board Material = Standard FR4 I = 5.0 mA = 50 ohm microstripline 14 external passives used: 6 capacitors 2 inductors 6 resistors R2 36K C3 8.2pF C4 33pF R1 13 ohms L1 15nH J1 RF INPUT C1 0.5pF R3 39 ohms C2 8.2pF C5 6.8pF L2 Q1 5.1nH BFP540FESD ESD-Hardened Transistor Q1: VCE = 2.5 V W L C6 1.0pF R4 8.2 ohms R5 8.2 ohms J2 RF OUTPUT R6 150 ohms 3 dB attenuator “Tee-pad” (for gain reduction) Figure 2 Emitter Schematic diagramfor low frequency stability improvement, impedance matching. Inductive Degeneration One identical microstrip track from each of the two emitter leads to a separate ground via hole is used. Ground hole via diameter is 0.012 inch / 0.3mm. Microstrip inductor dimensions are: Inductive degeneration is used for / low frequency stability improvement and impedance matching. One W = 0.010emitter inch / 0.25 mm; L = 0.023 inch 0.584 mm, height “h” between top layer RF traces and identical microstrip track from each of the two emitters leads to a separate ground via hole is used. Ground hole internal ground plane is 0.012 inch / 0.3mm. Note if spacing in the user‟s PCB between top via diameter is 0.012 inch (0.3 mm). layer RF traces and internal ground plane is substantially greater than 0.012 inch / 0.3 mm, e.g. 0.062 inchdimensions / 1.6 mm thick, the= additional hole inductance the(0.584 thickermm). PCB will suffice by Microstrip are: W 0.010 inch via (0.25 mm); L = 0.023ofinch itself, and the microstrip inductors can be eliminated entirely. Height between top layer RF traces and internal ground plane is 0.012 inch (0.3 mm). Note if spacing in the user’s PCB between top layer RF traces and internal ground plane is substantially greater than 0.012 inch (0.3 mm), for example 0.062 inch (1.6 mm) thick, the additional via hole inductance of the thicker PCB will suffice by itself, and the microstrip inductors can be eliminated entirely. Application Note AN180, Rev. 1.2 6 / 21 2011-05-31 BFP540FESD BFP540FESD 2.4 GHz fast switching LNA Schematic Diagram and Bill of Material 2.2 Bill of Material Table 2 Bill-of-Material Symbol Value Unit Size Manufacturer C1 0.5 pF 0402 Various Impedance matching, input C2 8.2 pF 0402 Various RF decoupling / blocking cap C3 8.2 pF 0402 Various RF decoupling / blocking cap C4 33 pF 0402 Various RF decoupling / blocking cap C5 16.8 pF 0402 Various RF decoupling / blocking cap; also influences output match and amplifier stability margin C6 1.0 pF 0402 Various L1 15 nH 0402 Murata LQP L2 5.1 nH 0402 Murata LQP Output DC blocking cap; also improves input match due to nonzero s21 of transistor RF choke at LNA input (for DC bias to base) RF choke at LNA output, for DC bias to collector. Also influences matching and stability R1 13 Ω 0402 Various RF stability improvement R2 36 kΩ 0402 Various DC biasing (base current) R3 39 Ω 0402 Various DC biasing; provides DC negative feedback to stabilize DC operating point over temperature vartiation, transistor hFE variation, etc. R4 8.2 Ω 0402 Various For 3 dB “Tee” attenuator R5 8.2 Ω 0402 Various For 3 dB “Tee” attenuator R6 150 BFP540FESD Ω Various For 3 dB “Tee” attenuator Q1 Application Note AN180, Rev. 1.2 0402 TSPF-4 Comment Infineon Technologies LNA active device 7 / 21 2011-05-31 BFP540FESD BFP540FESD 2.4 GHz fast switching LNA Measurement Data 3 Measurement Data 3.1 Noise Figure Rohde & Schwarz FSEK3 02 Apr 2009 Noise Figure Measurement EUT Name: Manuf acturer: Operating Conditions: Operator Name: Test Specification: Comment: BFP540FESD, Low Gain, Fast Switching / Fast Turn ON-OFF Time Infineon Technologies T=25 C, V = 2.8V, Vce = 2.5V, I = 5.0mA Gerard Wevers BlueTooth LNA PCB = 740F-080930 RevA ; Preamp = MITEQ SMC-02 2 April 2009 Analyzer RF Att: Ref Lvl: 0.00 dB -50.00 dBm RBW : VBW : 1 MHz 100 Hz Range: 30.00 dB Ref Lvl auto: ON Measurement 2nd stage corr: ON Mode: Direct ENR: 346A_1.ENR Noise Figure /dB 1.90 1.80 1.70 1.60 1.50 1.40 1.30 1.20 1.10 1.00 0.90 2300 MHz Figure 3 30 MHz / DIV 2600 MHz Noise figure plot Application Note AN180, Rev. 1.2 8 / 21 2011-05-31 BFP540FESD BFP540FESD 2.4 GHz fast switching LNA Measurement Data Table 3 Noise figure, tabular data Frequency NF Noise temperature 2300 MHz 1.32 dB 102.7 K 2310 MHz 1.33 dB 104 K 2320 MHz 1.34 dB 104.6 K 2330 MHz 1.33 dB 103.7 K 2340 MHz 1.34 dB 104.8 K 2350 MHz 1.37 dB 107.4 K 2360 MHz 1.34 dB 104.8 K 2370 MHz 1.36 dB 106.4 K 2380 MHz 1.34 dB 104.7 K 2390 MHz 1.39 dB 109.2 K 2400 MHz 1.36 dB 106.9 K 2410 MHz 1.37 dB 107.8 K 2420 MHz 1.39 dB 109.1 K 2430 MHz 1.35 dB 106.1 K 2440 MHz 1.40 dB 110.2 K 2450 MHz 1.39 dB 108.9 K 2460 MHz 1.63 dB 132.3 K 2470 MHz 1.59 dB 127.9 K 2480 MHz 1.38 dB 108.4 K 2490 MHz 1.39 dB 109.5 K 2500 MHz 1.40 dB 110.4 K 2510 MHz 1.44 dB 114.2 K 2520 MHz 1.42 dB 112.1 K 2530 MHz 1.43 dB 113.4 K 2540 MHz 1.43 dB 112.7 K 2550 MHz 1.42 dB 112.3 K 2560 MHz 1.43 dB 113.1 K 2570 MHz 2580 MHz 1.44 dB 1.43 dB 114.5 K 113.1 K 2590 MHz 1.48 dB 117.3 K 2600 MHz 1.50 dB 120.1 K Application Note AN180, Rev. 1.2 9 / 21 2011-05-31 BFP540FESD BFP540FESD 2.4 GHz fast switching LNA Measurement Data 3.2 Amplifier Compression Point Measurement ZVB20 Vector Network Analyzer is set up to sweep input power to LNA in a “Power Sweep” at a fixed frequency of 2441 MHz. ZVB20 Port 1, which provides INPUT power to drive the LNA, has its power level calibrated (“SOURCE POWER CAL”) with the NRP-Z21 power sensor to ensure power level accuracy with the reference plane at the RF input connector of the amplifier. X-axis of VNA screen-shot below shows input power to LNA swept from –25 dBm to –5 dBm. Input 1 dB compression point = -13.6 dBm Output 1 dB compression point = -13.6 dBm + (Gain – 1dB) = -13.6 dBm +8.5 dB = -5.1 dBm Trc1 S21 dB Mag 1 dB / Ref 8 dB Cal int PCal Smo 1 M 1 -24.98 dBm • M 2 -13.58 dBm S21 8.4685 dB 7.5270 dB M19 M2 8 7 6 5 4 3 2 1 Ch1 Start -25 dBm Freq 2.441 GHz Stop -5 dBm 4/2/2009, 2:35 AM Figure 4 Gain compression at 2441 MHz, VCC = +2.8 V, I = 5.0 mA, VCE = 2.5 V, T = 25 °C Application Note AN180, Rev. 1.2 10 / 21 2011-05-31 BFP540FESD BFP540FESD 2.4 GHz fast switching LNA Measurement Data 3.3 Amplifier Stability, Gain, Return Loss and Reverse Isolation Plots 3.3.1 Stability Rohde and Schwarz ZVB Network Analyzer Calculates and plots stability factor “µ1” of the BFP540FESD amplifier in real time. Stability Factor µ1 is defined as follows: The necessary and sufficient condition for Unconditional Stability is µ1 > 1. In the plot, µ1 > 1 over 10 MHz to 12 GHz; amplifier is Unconditionally Stable over 10 MHz to 12 GHz frequency range. Trc1 µ1 Lin Mag 500 mU/ Ref 1 U Cal Smo 1 M 1 2.400000 GHz 1.7528 U • M 2 2.441000 GHz 1.7715 U M 3 2.483500 GHz 1.7868 U µ1 5000 4500 4000 3500 3000 2500 M123 M M 2000 1500 1000 Ch1 Start 50 MHz Pwr -25 dBm Stop 12 GHz 4/1/2009, 10:42 PM Figure 5 Amplifier stability: Plot of Stability Factor µ1 Application Note AN180, Rev. 1.2 11 / 21 2011-05-31 BFP540FESD BFP540FESD 2.4 GHz fast switching LNA Measurement Data 3.3.2 Input Return Loss Reference plane is input SMA connector on PC board. Trc1 S11 dB Mag 5 dB / Ref -20 dB Cal Smo 1 M 1 2.400000 GHz -10.032 dB • M 2 2.441000 GHz -10.280 dB M 3 2.483500 GHz -10.495 dB S11 10 5 0 -5 M M M123 -10 -15 -20 -25 -30 Ch1 Start 50 MHz Pwr -25 dBm Stop 12 GHz 4/1/2009, 10:38 PM Figure 6 Input return loss / dB Trc1 S11 Smith Ref 1 U Cal Smo 1 1 S11 M 1 2.400000 GHz 34.983 j23.312 1.546 2 • M 2 2.441000 GHz 35.791 j23.239 1.515 M 3 2.483500 GHz 36.410 j23.160 5 1.484 0.5 M M M12 3 0 0.2 0.5 1 2 Ω Ω nH Ω Ω nH Ω Ω nH 5 -5 -0.5 -2 -1 Ch1 Start 50 MHz Pwr -25 dBm Stop 12 GHz 4/1/2009, 10:39 PM Figure 7 Input return loss (Smith chart) Application Note AN180, Rev. 1.2 12 / 21 2011-05-31 BFP540FESD BFP540FESD 2.4 GHz fast switching LNA Measurement Data 3.3.3 Forward Gain and Reverse Isolation Trc1 S21 dB Mag 5 dB / Ref -20 dB Cal Smo M 1 2.400000 GHz 8.8642 dB • M 2 2.441000 GHz 8.6961 dB M 3 2.483500 GHz 8.5227 dB S21 M M M123 10 1 5 0 -5 -10 -15 -20 -25 -30 Ch1 Start 50 MHz Pwr -25 dBm Stop 12 GHz 4/1/2009, 10:40 PM Figure 8 Forward Gain / dB Trc1 S12 dB Mag 5 dB / Ref -20 dB Cal Smo 1 M 1 2.400000 GHz -23.930 dB • M 2 2.441000 GHz -23.870 dB M 3 2.483500 GHz -23.794 dB S12 -15 -20 M M123 M -25 -30 -35 -40 -45 -50 -55 Ch1 Start 50 MHz Pwr -25 dBm Stop 12 GHz 4/1/2009, 10:40 PM Figure 9 Reverse Isolation / dB Application Note AN180, Rev. 1.2 13 / 21 2011-05-31 BFP540FESD BFP540FESD 2.4 GHz fast switching LNA Measurement Data 3.3.4 Output Return Loss Reference plane is output SMA connector on PC board. Trc1 S22 dB Mag 5 dB / Ref 0 dB Cal Smo 1 M 1 2.400000 GHz -10.202 dB • M 2 2.441000 GHz -10.121 dB M 3 2.483500 GHz -10.028 dB S22 5 0 -5 M M123 M -10 -15 -20 -25 -30 -35 Ch1 Start 50 MHz Pwr -25 dBm Stop 12 GHz 4/1/2009, 10:41 PM Figure 10 Output return loss / dB Trc1 S22 Smith Ref 1 U Cal Smo 1 1 S22 M 1 2.400000 GHz 33.217 j20.820 1.381 2 • M 2 2.441000 GHz 34.203 j22.000 1.434 M 3 2.483500 GHz 35.466 j23.680 5 1.518 0.5 M123 M M 0 0.2 0.5 1 2 Ω Ω nH Ω Ω nH Ω Ω nH 5 -5 -0.5 -2 -1 Ch1 Start 50 MHz Pwr -25 dBm Stop 12 GHz 4/1/2009, 10:41 PM Figure 11 Output return loss (Smith chart) Application Note AN180, Rev. 1.2 14 / 21 2011-05-31 BFP540FESD BFP540FESD 2.4 GHz fast switching LNA Measurement Data 3.4 Amplifier Third Order Intercept (TOI) Measurement In-band third order intercept point (IIP3) test: Input Stimulus: f2 = 2440 MHz, f2 = 2442 MHz, -28 dBm each tone. Input IP3 =-28 + (43.4/2) = -6.3dBm. Output IP3 = -6.3 dBm + 8.7 dB gain = +2.4 dBm Figure 12 Output spectrum of LNA during test Application Note AN180, Rev. 1.2 15 / 21 2011-05-31 BFP540FESD BFP540FESD 2.4 GHz fast switching LNA Measurement Data 3.5 Amplifier Turn-On / Turn-Off Time Measurements The amplifier is tested for turn-on / turn-off time. See diagram below. The RF signal generator runs continuously at a power level sufficient to drive the output of the LNA to approximately 0 dBm when the LNA has DC power ON. Agilent DSO6104A Digital Oscilloscope +Vcc to amplifier „Scope Probe +DC Pin Amplifier 3 dB Attenuator Pad RF Signal Generator Agilent 8473B Detector Ch. 1 (Trigger, edge) 1 Megaohm input Z Ch. 2 ( 1 Megaohm or 50 ohm input Z) ! Note ! It may be necessary to set Ch. 2 Input Impedance to 50 ohms instead of 1M ohm. 1M ohm setting may not allow detector to discharge rapidly, depending on detector type and detector’s output capacitance, and might give erroneous results to turn-off time measurement, e.g. could indicate excessively long turn-off times. The user can test turnoff time with Ch. 2 input impedance set to 1M ohm and then 50 ohms and see if the two results differ. 1. Signal Generator set such that output power of Amplifier is ~ 0 dBm when LNA is powered ON 2. Channel 1 of oscilloscope monitors input power supply voltage to Amplifier (+1.8, +2.8 or +3.0 volts ON, depending on the amplifier, and 0 volts when OFF). Hook oscilloscope probe to +Vcc pin on amplifier to monitor Vcc rising / falling edge. 3. Channel 2 of oscilloscope monitors rectified RF output of Amplifier 4. To make measurement of turn-on time, leave DC power supply on, disconnect and “ground” +Vcc line to discharge amplifier, then insert Vcc line back into power supply. This method will eliminate turn on time transient of power supply itself. Set up trigger of O‟Scope to trigger on rising edge of Ch.1 5. To make measurement of turn-off time, with supply ON, reset o‟scope, setup trigger to trigger on falling edge of Ch. 1, and simply remove +Vcc line / wire from the power supply input to turn amplifier OFF. Figure 13 Turn-on / turn-off time: Test setup Application Note AN180, Rev. 1.2 16 / 21 2011-05-31 BFP540FESD BFP540FESD 2.4 GHz fast switching LNA Measurement Data 3.5.1 Turn On Time Refer to oscilloscope screen-shot below. Upper trace (yellow, Channel 1) is the DC power supply turn-on step waveform whereas the lower trace (green, Channel 2) is the rectified RF output signal of the LNA stage. Amplifier turn-on time is aproximately 250 nanoseconds, or ~ 0.25 microseconds. Main source of time delay in the LNA turn-on event are the R-C time constants formed by (R3 * C4), [ (R2 + R3) * C3 ], etc. Charge storage has been minimized in this circuit so as to speed up turn on and turn off times. (Refer to Schematic diagram on page 6). Note that the input impedance of the oscilloscope for Channel 2, which senses the rectified RF output power of the amplifier, is set to 1 M for this picture. Note: Both 50 and 1 M input impedances were tested for turn-on time and there was no appreciable difference in results for turn-on time measurement. Figure 14 Screen shot: Turn on time Application Note AN180, Rev. 1.2 17 / 21 2011-05-31 BFP540FESD BFP540FESD 2.4 GHz fast switching LNA Measurement Data 3.5.2 Turn-Off Time Upper trace (Channel 1, yellow color) is the falling edge of the DC power supply voltage. Rectified RF output signal (Channel 2, lower green trace) takes about ~ 66 nanoseconds, or 0.066 microseconds, to settle out after power supply is disconnected. Note: Input impedance of digital oscilloscope which senses RF detector diode output (Channel 2) is set to 50 for this plot, as if a 1 M input impedance were used, the Schottky diode detector would have to discharge through the large 1 M impedance, which would result in erroneously long turn-off times. Figure 15 Screen shot: Turn on time Application Note AN180, Rev. 1.2 18 / 21 2011-05-31 BFP540FESD BFP540FESD 2.4 GHz fast switching LNA Evaluation Board 4 Evaluation Board PC board uses standard, low-cost FR4 glass-epoxy material. A cross-section diagram of the PC board is given below. PCB CROSS SECTION 0.012 inch / 0.305 mm TOP LAYER INTERNAL GROUND PLANE 0.028 inch / 0.711 mm ? LAYER FOR MECHANICAL RIGIDITY OF PCB, THICKNESS HERE NOT CRITICAL AS LONG AS TOTAL PCB THICKNESS DOES NOT EXCEED 0.045 INCH / 1.14 mm (SPECIFICATION FOR TOTAL PCB THICKNESS: 0.040 + 0.005 / - 0.005 INCH; 1.016 + 0.127 mm / - 0.127 mm ) BOTTOM LAYER Figure 16 PCB cross section Figure 17 View of entire PC board Figure 18 Close-in view of LNA section Application Note AN180, Rev. 1.2 19 / 21 2011-05-31 BFP540FESD BFP540FESD 2.4 GHz fast switching LNA References 5 References [1] BFP540FESD Datasheet, Infineon Technologies AG [2] “ESD-Hardened Device Fuels UHF Amplifiers”. Microwaves & RF Magazine, July 2004. This article discusses one technique for improving ESD robustness in silicon bipolar RF transistors. The article describes the Infineon BFP460 device, however the basic concepts presented also apply to the BFP540FESD, which, like the BFP460, also uses a “buffer layer” to achieve increased ESD-robustness. [3] “A High IIP3 Low Noise Amplifier for 1900 MHz Applications Using the SiGe BFP620 Transistor”. Applied Microwaves and Wireless, July 2000. Pages 2 – 4 discuss the use of Inductive Emitter Degeneration and additional charge storage (capacitance) to stabilize and linearize LNA’s using Silicon Bipolar RF Transistors like the BFP620 or BFP540FESD used in this Applications Note (AN180). Unlike the LNA shown in this reference, the LNA used in this Applications Note (AN180) had to minimize use of charge storage in order to achieve fast ON / OFF times. This resulted in compromising some Third-Order Intercept (TOI) performance. Author Gerard Wevers, Senior Staff Engineer of Business Unit “RF and Protection Devices” Application Note AN180, Rev. 1.2 20 / 21 2011-05-31 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG AN180