A pp li c at i on N ot e , R ev . 1 . 2 , J an ua ry 2 00 8 A p p li c a t i o n N o t e N o . 1 3 8 D u a l - B a n d ( L 1 + L 2) G P S Lo w N o i s e A m p l i f i e r u s i n g th e S i G e B F P 64 0 H B T R F T r an s i s t o r R F & P r o t e c ti o n D e v i c e s Edition 2008-01-10 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2009. All Rights Reserved. LEGAL DISCLAIMER THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Application Note No. 138 Application Note No. 138 Revision History: 2008-01-10, Rev. 1.2 Previous Version: 2005-08-09, Rev. 1.1 Page Subjects (major changes since last revision) All Small changes in figure descriptions Application Note 3 Rev. 1.2, 2008-01-10 Application Note No. 138 Dual-Band (L1 + L2) GPS Low Noise Amplifier using the SiGe BFP640 HBT RF 1 Dual-Band (L1 + L2) GPS Low Noise Amplifier using the SiGe BFP640 HBT RF Transistor Applications • GPS Low Noise Amplifiers (LNAs) for 3 V systems, where reception of both L1 (1575.42 MHz) and L2 (1227.6 MHz) GPS signals is required. Overview The Infineon BFP640 SiGe Heterojunction Bipolar Transistor in SOT343 package is shown in a low-cost LNA circuit suitable for dual band GPS applications operating from a 3 V power supply. PC board is fabricated from standard, low-cost, commercial grade glass-epoxy material ("FR4"). 0402 case-size passive components are used. Target Specifications Gain @ 1227.6 MHz => >18 dB; Gain @ 1575.42 MHz => > 17 dB; OP1dB > +3 dBm; Noise Figure (NF) < 3 dB; VCC = 3.0 Volts, I < 15 mA. Remarks (T = 25 °C) • • • • • Amplifier is unconditionally stable from 5 MHz - 8 GHz (K>1). See plot on Page 7 19.9 dB gain at 1227.6 MHz, 18.5 dB gain at 1575.42 MHz Noise Figure = 1.1 dB for both L1 and L2 frequencies1) 9.1 mA current consumption at 3.0 V Output P1dB meets target at 1575 MHz, but is slightly low at 1227 MHz. OP1dB can be improved by increasing current; do this by reducing value of resistor R2 (see Figure 2) Summary of Results Table 1 Summary of Results, T = 25 °C Frequency (MHz) dB[s11]² dB[s21]² dB[s12]² dB[s22]² NF1) dB IIP3 OIP3 IP1dB OP1dB dBm dBm dBm dBm 1227.6 11.3 19.9 27.6 18.9 1.1 --- --- -17.6 +1.3 1575.4 17.2 18.5 25.6 11.3 1.1 +5.7 +24.2 -14.4 +3.1 Cross Sectional Diagram of PC Board 723/$<(5 LQFKPP ,17(51$/*5281'3/$1( LQFKPP" /$<(5)250(&+$1,&$/5,*,',7<2)3&%7+,&.1(66+(5(127 &5,7,&$/$6 /21*$6727$/3&%7+,&.1(66'2(6127(;&((',1&+PP 63(&,),&$7,21)25727$/3&%7+,&.1(66,1&+ PPPP %27720/$<(5 Figure 1 $1B3&%YVG PCB - Cross Sectional Diagram 1) Note that PCB loss is not extracted. If PCB loss were extracted, NF would be 0.1 to 0.2 dB lower Application Note 4 Rev. 1.2, 2008-01-10 Application Note No. 138 Dual-Band (L1 + L2) GPS Low Noise Amplifier using the SiGe BFP640 HBT RF Schematic Diagram 9FF 7RWDO SDUWV FRXQW 7RWDO SDVVLYHV %)3 WUDQVLVWRU &KLS 5HVLVWRUV &KLS ,QGXFWRUV &KLS &DSDFLWRUV 9 - '& &RQQHFWRU , ! ! ! ! P$ 5 RKPV 5 . ,QGXFWRUV DUH 0XUDWD /430 6HULHV %ODFN UHFWDQJOHV DUH RKP PLFURVWULS WUDFNV & X) / Q+ & X) 5 RKPV 4 %)3 6L*H 7UDQVLVWRU - 5) ,1387 / Q+ & S) - 5) 287387 & S) 3&% 5HY$ 3& %RDUG 0DWHULDO 6WDQGDUG )5 & S) ,QGXFWLYH (PLWWHU 'HJHQHUDWLRQ 0LFURVWULS IRU ,3 LPSURYHPHQW 5) PDWFKLQJ ORZ IUHTXHQF\ VWDELOLW\ LPSURYHPHQW :LGWK LQFK PP /HQJWK LQFK PP %)3 9FH 9 $1B6FKHPDWLFYVG Figure 2 Schematic Diagram Application Note 5 Rev. 1.2, 2008-01-10 Application Note No. 138 Dual-Band (L1 + L2) GPS Low Noise Amplifier using the SiGe BFP640 HBT RF Noise Figure, Plot, 1100 MHz to 1700 MHz, Center of Plot (x-axis) is 1400 MHz. 5RKGH6FKZDU])6(. $XJ 1RLVH)LJXUH (871DPH 0DQXIDFWXUHU 2SHUDWLQJ&RQGLWLRQV 2SHUDWRU1DPH 7HVW6SHFLILFDWLRQ &RPPHQW %)3'XDO%DQG*36/1$/DQG/IUHTXHQFLHV ,QILQHRQ7HFKQRORJLHV$* 9FF 9, P$9FH 9 *HUDUG:HYHUV /:56'/1$3 2Q3&%5HY$ $XJXVW $QDO\]HU 5)$WW 5HI/YO G% G%P 5%: 0+] 9%: +] 5DQJH G% 5HI/YODXWR 21 0RGH 'LUHFW (15 +3$(15 0HDVXUHPHQW QGVWDJHFRUU 21 1RLVH)LJXUHG% 0+] 0+]',9 0+] $1BSORWBQIYVG Figure 3 Noise Figure Application Note 6 Rev. 1.2, 2008-01-10 Application Note No. 138 Dual-Band (L1 + L2) GPS Low Noise Amplifier using the SiGe BFP640 HBT RF Noise Figure, Tabular Data From Rohde & Schwarz FSEK3 + FSEB30 System Preamplifier = MITEQ SMC-02 Table 2 Noise Figure Frequency Noise Figure 1100 MHz 1.13 dB 1125 MHz 1.13 dB 1150 MHz 1.14 dB 1175 MHz 1.11 dB 1200 MHz 1.12 dB 1225 MHz 1.12 dB 1250 MHz 1.12 dB 1275 MHz 1.11 dB 1300 MHz 1.11 dB 1325 MHz 1.11 dB 1350 MHz 1.10 dB 1375 MHz 1.11 dB 1400 MHz 1.09 dB 1425 MHz 1.10 dB 1450 MHz 1.09 dB 1475 MHz 1.08 dB 1500 MHz 1.07 dB 1525 MHz 1.09 dB 1550 MHz 1.09 dB 1575 MHz 1.07 dB 1600 MHz 1.08 dB 1625 MHz 1.08 dB 1650 MHz 1.08 dB 1675 MHz 1.10 dB 1700 MHz 1.11 dB Application Note 7 Rev. 1.2, 2008-01-10 Application Note No. 138 Dual-Band (L1 + L2) GPS Low Noise Amplifier using the SiGe BFP640 HBT RF Scanned Image of PC Board Figure 4 Image of PC Board Application Note 8 Rev. 1.2, 2008-01-10 Application Note No. 138 Dual-Band (L1 + L2) GPS Low Noise Amplifier using the SiGe BFP640 HBT RF Scanned Image of PC Board, Close-In Shot. Total PCB area used ≅ 50 mm² Figure 5 Image of PC Board, Close-In Shot Application Note 9 Rev. 1.2, 2008-01-10 Application Note No. 138 Dual-Band (L1 + L2) GPS Low Noise Amplifier using the SiGe BFP640 HBT RF Stability Rohde and Schwarz ZVC Network Analyzer calculates and plots Stability Factor "K" in real time, from 5 MHz to 8 GHz. Note K>1 from 5 MHz to 8 GHz; minimum K value is approximately 1.1 at ≈ 6.6 GHz. Amplifier is Unconditionally Stable over 5 MHz - 8 GHz frequency range. &+ . 8 /,1 5H 8 5() 8 8 *+] * + ] *+] 8 *+] 8 *+] &$/ 2)6 8 &3/ ),/ N 8 602 8 67$57 0+] 'DWH $8* *+] 6723 *+] $1BSORWBVWDELOLW\B.YVG Figure 6 Plot of K(f) Application Note 10 Rev. 1.2, 2008-01-10 Application Note No. 138 Dual-Band (L1 + L2) GPS Low Noise Amplifier using the SiGe BFP640 HBT RF Gain Compression at 1227 MHz and 1575 MHz Amplifier is checked for output 1 dB compression point at VCC = 3 V, I = 9.1 mA (with VCE = 2.6 V). An Agilent power meter was used to ensure accurate power levels are measured (as opposed to using Vector Network Analyzer in "Power Sweep" mode). 1227 MHz: Output P1dB ≅ + 1.3 dBm; Input P1dB = +1.3 dBm - (Gain - 1 dB) = +1.3 dBm - 18.9 dB = -17.6 dBm 1575 MHz: Output P1dB ≅ + 3.1 dBm; Input P1dB = +3.1 dBm - (Gain - 1 dB) = +1.3 dBm - 17.5 dB = -14.4 dBm Table 3 Gain Compression POUT, dBm Gain @ 1227 MHz, dB Gain @ 1575 MHz, dB -10.0 19.9 18.5 -9.0 19.9 18.5 -8.0 19.9 18.5 -7.0 19.8 18.5 -6.0 19.8 18.4 -5.0 19.8 18.4 -4.0 19.7 18.4 -3.0 19.7 18.4 -2.0 19.6 18.3 -1.0 19.5 18.3 0.0 19.4 18.2 +1.0 19.1 18.1 +2.0 18.6 17.9 +3.0 17.7 17.5 +4.0 16.3 16.7 *DLQG% *DLQB *DLQB 2XWSXWB3RZHU $1BSORWBJDLQBFRPSYVG Figure 7 Plot of Gain Compression, Output Power in dB Application Note 11 Rev. 1.2, 2008-01-10 Application Note No. 138 Dual-Band (L1 + L2) GPS Low Noise Amplifier using the SiGe BFP640 HBT RF Please Note - all plots are taken from Rohde and Schwarz ZVC Network Analyzer, with T = 25 °C, source power ≈ -30 dBm Input Return Loss, Log Mag 5 MHz - 8 GHz Sweep &+ 6 G% G% 0$* G% 5() G% G% *+] * + ] *+] G% *+] G% &$/ 2)6 G% &3/ ),/ N 602 G% 67$57 0+] 'DWH Figure 8 $8* *+] 6723 *+] $1BSORWBLQSXWBUHWXUQBORVVYVG Plot of Input Return Loss Application Note 12 Rev. 1.2, 2008-01-10 Application Note No. 138 Dual-Band (L1 + L2) GPS Low Noise Amplifier using the SiGe BFP640 HBT RF Input Return Loss, Smith Chart Reference Plane = Input SMA Connector on PC Board 5 MHz - 8 GHz Sweep &+ 6 8 M *+] M *+] &$/ 2)6 &3/ ),/ N 602 67$57 0+] 'DWH Figure 9 $8* 6723 *+] $1BVPLWKBLQSXWBUHWXUQBORVVYVG Smith Chart of Input Return Loss Application Note 13 Rev. 1.2, 2008-01-10 Application Note No. 138 Dual-Band (L1 + L2) GPS Low Noise Amplifier using the SiGe BFP640 HBT RF Forward Gain 5 MHz - 8 GHz Sweep &+ 6 G% G% 0$* G% 5() G% G% *+] * + ] *+] G% *+] &$/ G% 2)6 G% &3/ ),/ N 602 G% 67$57 0+] 'DWH Figure 10 $8* *+] 6723 *+] $1BSORWBIZBJDLQYVG Plot of Forward Gain Application Note 14 Rev. 1.2, 2008-01-10 Application Note No. 138 Dual-Band (L1 + L2) GPS Low Noise Amplifier using the SiGe BFP640 HBT RF Reverse Isolation 5 MHz - 8 GHz Sweep &+ 6 G% G% 0$* G% 5() G% G% *+] * + ] *+] G% *+] G% &$/ 2)6 G% &3/ ),/ N 602 G% 67$57 0+] 'DWH Figure 11 $8* *+] 6723 *+] $1BSORWBUHYHUVHBLVRODWLRQYVG Plot of Reverse Isolation Application Note 15 Rev. 1.2, 2008-01-10 Application Note No. 138 Dual-Band (L1 + L2) GPS Low Noise Amplifier using the SiGe BFP640 HBT RF Output Return Loss, Log Mag 5 MHz - 8 GHz Sweep &+ 6 G% G% 0$* G% 5() G% G% *+] * + ] *+] G% *+] &$/ G% 2)6 G% &3/ ),/ N 602 G% 67$57 0+] 'DWH Figure 12 $8* *+] 6723 *+] $1BSORWBRXWSXWBUHWXUQBORVVYVG Plot of Output Return Loss Application Note 16 Rev. 1.2, 2008-01-10 Application Note No. 138 Dual-Band (L1 + L2) GPS Low Noise Amplifier using the SiGe BFP640 HBT RF Output Return Loss, Smith Chart Reference Plane = Output SMA Connector on PC Board 5 MHz - 8 GHz Sweep &+ 6 8 M *+] M *+] &$/ 2)6 &3/ ),/ N 602 67$57 0+] 'DWH Figure 13 $8* 6723 *+] $1BVPLWKBRXWSXWBUHWXUQBORVVYVG Smith Chart of Output Return Loss Application Note 17 Rev. 1.2, 2008-01-10 Application Note No. 138 Dual-Band (L1 + L2) GPS Low Noise Amplifier using the SiGe BFP640 HBT RF Two-Tone Test, 1575 MHz Input Stimulus for Amplifier Two-Tone Test. f1 = 1575 MHz, f2 = 1576 MHz, -25 dBm each tone. LNA response to two-tone test is below (spectrum analyzer screen-shot). Input IP3 = -25 + (61.4 / 2) = +5.7 dBm. Output IP3 = +5.7 dBm + 18.5 dB gain = +24.2 dBm $1BSORWBWZRBWRQHBWHVWYVG Figure 14 Tow-Tone Test, LNA Response @ 1575 MHz Application Note 18 Rev. 1.2, 2008-01-10