A p p l i c a t i o n N o t e , R e v . 1 . 2 , A ug us t 2 00 7 A p p li c a t i o n N o t e N o . 1 2 2 I n f i n e on ’ s B F P 7 4 0 F U l tr a L ow N o i s e R F T r a n s i s t o r i n 2 . 33 G H z S D A R S L o w N o i s e Amplifier Application R F & P r o t e c ti o n D e v i c e s Edition 2007-08-30 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2009. All Rights Reserved. LEGAL DISCLAIMER THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Application Note No. 122 Application Note No. 122 Revision History: 2007-08-30, Rev. 1.2 Previous Version: 2007-02-14, Rev. 1.1 Page Subjects (major changes since last revision) All Change of layout Application Note 3 Rev. 1.2, 2007-08-30 Application Note No. 122 Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low 1 Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low Noise Amplifier Application Applications • LNA stage for Satellite Digital Audio Radio Service "SDARS" active antennas, e.g. 2320 - 2332.5 MHz "SIRIUS" or 2332.5 - 234 MHz "XM Radio". Overview • • The Infineon Technologies Silicon-Germanium-Carbon BFP740F HBT RF Transistor in TSFP-4 package is shown in a +3.0 V 2.33 GHz LNA application. Amplifier draws 8.9 mA. +5 V power supply can be used if bias resistor values are changed. Transistor package size is 1.4 x 1.2 x 0.55 mm including external leads (RoHS compliant package). Specification Targets Summary of Results (T =25 °C, Network Analyzer Source Power = -30 dBm, VCC = 3.0 V, VCE = 2.6 V, I = 8.9 mA) Table 1 Summary of Results Frequency MHz dB[s11]² dB[s21]² dB[s12]² dB[s22]² NF1) dB IIP3 OIP3 IP1dB OP1dB dBm dBm dBm dBm 2320 10.6 18.9 24.9 10.7 0.64 --- --- --- --- 2332 10.8 18.8 24.8 10.4 0.65 +9.7 +28.5 -12.0 +5.8 2345 10.9 18.8 24.8 10.2 0.64 --- --- --- --- 1) PCB loss is not extracted. If PCB loss were extracted, NF would be approximately 0.1 dB lower. Cross Sectional Diagram of PC Board (standard FR4 material) 7230(7$//$<(55)75$&(6&20321(176 LQFKPP ',(/(&75,&/$<(5 ,17(51$/*5281'3/$1(0,''/(0(7$//$<(5 LQFKPP" 7+,6',(/(&75,&/$<(5)250(&+$1,&$/5,*,',7<2)3&%7+,&.1(66127&5,7,&$/ $6/21*$6),1,6+('%2$5'7+,&.1(66'2(6127(;&((',1&+PP %277200(7$//$<(5 $1B3&%BFURVVBVHFWLRQYVG Figure 1 PCB Cross Section Application Note 4 Rev. 1.2, 2007-08-30 Application Note No. 122 Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low Schematic Diagram Total Parts Count = 11 pieces, including BFR740F Transistor. 9FF 9 127(0HDVXUHYROWDJHDW3&%WRHOLPLQDWH YROWDJHGURSDFURVVVXSSO\ZLUHV - '&&RQQHFWRU , P$ 3&% 5HY$ 3&%RDUG0DWHULDO 6WDQGDUG)5 & X) 5 . & X) 5 RKPV / %ODFNUHFWDQJOHVDUHPLFURVWULS Q+ WUDFNVQRWFKLSFRPSRQHQWV - 5),1387 5 RKPV / 4 Q+ %)3)6L*H 7UDQVLVWRU 76)3 & S) & S) RKPPLFURVWULS - 5)287387 RKPPLFURVWULS & S) 7RWDO&RPSRQHQW&RXQW LQFOXGLQJ%)3)WUDQVLVWRU %)3)9FH 9 ,QGXFWRUV 5HVLVWRUV &DSDFLWRUV ,QGXFWLYH(PLWWHU'HJHQHUDWLRQ0LFURVWULS IRU,3 LPSURYHPHQW5)PDWFKLQJ :LGWK LQFKPP /HQJWK LQFKPP $1B6FKHPDWLFYVG Figure 2 Schematic Diagram Application Note 5 Rev. 1.2, 2007-08-30 Application Note No. 122 Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low Details on TSFP-4 Package. Dimensions in millimeters (mm) 0.2 ±0.05 1 3 1.2 ±0.05 0.2 ±0.05 4 0.55 ±0.04 2 0.2 ±0.05 10˚ MAX. 0.8 ±0.05 1.4 ±0.05 0.15 ±0.05 0.5 ±0.05 0.5 ±0.05 Figure 3 GPX01010 Package Outline TSLP-4 0.9 0.45 0.35 0.5 0.5 HLGF1011 Figure 4 Footpint for TSLP-4 Application Note 6 Rev. 1.2, 2007-08-30 Application Note No. 122 Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low Noise Figure, Plot, 2132.5 to 2532.5 MHz. Center of Plot (x-axis) is 2332.5 MHz. 5RKGH6FKZDU])6(. )HE 1RLVH)LJXUH (871DPH 0DQXIDFWXUHU 2SHUDWLQJ&RQGLWLRQV 2SHUDWRU1DPH 7HVW6SHFLILFDWLRQ &RPPHQW %)3)1RLVH)LJXUH*+]6'$56/1$$SSOLFDWLRQ ,QILQHRQ7HFKQRORJLHV 9 99FH 9, P$7 & *HUDUG:HYHUV *+] 2Q%)3)3&%)5HY$ )HEUXDU\ $QDO\]HU 5)$WW 5HI/YO G% G%P 5%: 9%: 0+] +] 5DQJH G% 5HI/YODXWR 21 0RGH 'LUHFW (15 18(15 0HDVXUHPHQW QGVWDJHFRUU 21 1RLVH)LJXUHG% 0+] 0+]',9 0+] $1BSORWBQIYVG Figure 5 Plot of Noise Figure (2132.5 - 2532.5 MHz) Application Note 7 Rev. 1.2, 2007-08-30 Application Note No. 122 Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low Noise Figure, Tabular Data 2 GHz - 4 GHz From Rhode & Schwarz FSEK3+ FSEM30 System Preamplifier = MITEQ SMC-02 Table 2 Noise Figure Frequency Noise Figure Temp 2132.5 MHz 0.64 dB 46.4 K 2145.0 MHz 0.63 dB 45.5 K 2157.5 MHz 0.65 dB 47.2 K 2170.0 MHz 0.64 dB 45.7 K 2182.5 MHz 0.66 dB 47.3 K 2195.0 MHz 0.65 dB 46.9 K 2207.7 MHz 0.67 dB 48.0 K 2220.0 MHz 0.63 dB 45.6 K 2232.5 MHz 0.64 dB 46.4 K 2245.0 MHz 0.64 dB 45.9 K 2257.5 MHz 0.65 dB 46.6 K 2270.0 MHz 0.64 dB 46.3 K 2282.5 MHz 0.64 dB 46.1 K 2295.0 MHz 0.65 dB 46.9 K 2307.5 MHz 0.65 dB 46.9 K 2320.0 MHz 0.64 dB 46.0 K 2332.5 MHz 0.65 dB 46.5 K 2345.0 MHz 0.64 dB 45.7 K 2357.5 MHz 0.67 dB 48.2 K 2370.0 MHz 0.64 dB 46.3 K 2382.5 MHz 0.65 dB 46.8 K 2395.0 MHz 0.62 dB 44.8 K 2407.5 MHz 0.66 dB 47.8 K 2420.0 MHz 0.66 dB 47.4 K 2432.5 MHz 0.65 dB 47.0 K 2445.0 MHz 0.66 dB 47.2 K 2457.5 MHz 0.67 dB 48.2 K 2470.0 MHz 0.64 dB 45.9 K 2482.5 MHz 0.67 dB 48.2 K 2495.0 MHz 0.65 dB 47.2 K 2507.5 MHz 0.66 dB 47.3 K 2520.0 MHz 0.67 dB 48.1 K 2532.5 MHz 0.69 dB 49.7 K Application Note 8 Rev. 1.2, 2007-08-30 Application Note No. 122 Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low Scanned Image of PC Board Figure 6 Image of PC Board Application Note 9 Rev. 1.2, 2007-08-30 Application Note No. 122 Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low Scanned Image of PC Board, Close-In Shot Figure 7 Image of PC Board, Close-In Shot Application Note 10 Rev. 1.2, 2007-08-30 Application Note No. 122 Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low Gain Compression at 2332 MHz (curve x-axis is LNA output power) Amplifier is checked for 1 dB compression point at VCC = 3.0 V, IC = 8.9 mA (with VCE = 2.6 V). An Agilent power meter was used to ensure accurate power levels are measured (as opposed to using Vector Network Analyzer in "Power Sweep" mode). Output P1dB ≅ +5.8 dBm; Input P1dB = +5.8 dBm - (Gain - 1 dB) = +5.8 dBm -17.8 dB = -12.0 dBm Table 3 Gain Compression, Tabular Data POUT, dBm Gain, dB -4.0 18.8 -3.0 18.8 -2.0 18.8 -1.0 18.8 0.0 18.8 +1.0 18.8 +2.0 18.7 +3.0 18.6 +4.0 18.5 +5.0 18.3 +6.0 18.6 +7.0 18.7 Application Note 11 Rev. 1.2, 2007-08-30 Application Note No. 122 Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low $1BSORWBJDLQBFRPSYVG Figure 8 Plot of Gain Compression PLEASE NOTE - All plots are from Rohde and Schwarz ZVC Network Analyzer, T = 25 °C, SOURCE POWER ≈ -30 dBm, VCC = 3.0 V, I = 9.0 mA Application Note 12 Rev. 1.2, 2007-08-30 Application Note No. 122 Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low Amplifier Stability T = 25 °C, VCC = 3.0 V, VCE = 2.6 V, I = 8.9 mA Stability Factor "K" shown below from "screen shot" taken from Rohde and Schwarz ZVC network analyzer. ZVC Vector Network Analyzer calculates and plots K in real time, from measured S parameters. Note, minimum K value is ~ 0.97 at 2.5 GHz, which is ≈ 1, for practical purposes; => amplifier is unconditionally stable over 5 MHz to 8 GHz ranges &+ . /,1 5H 8 P8 5() 8 P8 *+] * + ] *+] P8 *+] P8 *+] P8 *+] &$/ 2)6 P8 &3/ 8 ),/ 602 P8 67$57 0+] 'DWH Figure 9 )(% *+] 6723 *+] $1BSORWBDPSBVWDELOLW\YVG Stabilty Factor K(f) Application Note 13 Rev. 1.2, 2007-08-30 Application Note No. 122 Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low Input Return Loss, Log Mag 5 MHz to 8 GHz Sweep &+ 6 G% G% 0$* G% 5() G% G% *+] * + ] *+] G% *+] G% *+] G% *+] G% &$/ 2)6 G% &3/ ),/ 602 G% 67$57 0+] 'DWH Figure 10 )(% *+] 6723 *+] $1BSORWBLQSXWBUHWXUQBORVVYVG Plot of Input Return Loss (5 MHz - 8 GHz) Application Note 14 Rev. 1.2, 2007-08-30 Application Note No. 122 Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low Input Return Loss, Smith Chart Reference Plane = Input SMA Connector on PC Board 5 MHz to 8 GHz Sweep &+ 6 8 M *+] M *+] M *+] M *+] &$/ 2)6 &3/ ),/ 602 67$57 0+] 'DWH Figure 11 )(% 6723 *+] $1BVPLWKBLQSXWBUHWXUQBORVVYVG Smith Chart of Input Return Loss (5 MHz - 8 GHz) Application Note 15 Rev. 1.2, 2007-08-30 Application Note No. 122 Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low Forward Gain 5 MHz to 8 GHz Sweep &+ 6 G% G% 0$* G% 5() G% G% *+] * + ] *+] G% *+] G% *+] G% *+] &$/ G% 2)6 G% &3/ ),/ 602 G% 67$57 0+] 'DWH Figure 12 )(% *+] 6723 *+] $1BSORWBIZBJDLQYVG Plot of Forward Gain (5 MHz - 8 GHz) Application Note 16 Rev. 1.2, 2007-08-30 Application Note No. 122 Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low Reverse Isolation 5 MHz to 8 GHz &+ 6 G% G% 0$* G% 5() G% G% *+] * + ] *+] G% *+] G% *+] G% *+] G% &$/ 2)6 G% &3/ ),/ 602 G% 67$57 0+] 'DWH Figure 13 )(% *+] 6723 *+] $1BSORWBUHYHUVHBLVRODWLRQYVG Plot of Reverse Isolation (5 MHz - 8 GHz) Application Note 17 Rev. 1.2, 2007-08-30 Application Note No. 122 Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low Output Return Loss, Log Mag 5 MHz to 8 GHz &+ 6 G% G% 0$* G% 5() G% G% *+] * + ] *+] G% *+] G% *+] G% *+] G% &$/ 2)6 G% &3/ ),/ 602 G% 67$57 0+] 'DWH Figure 14 )(% *+] 6723 *+] $1BSORWBRXWSXWBUHWXUQBORVVYVG Plot of Output Return Loss (5 MHz - 8 GHz) Application Note 18 Rev. 1.2, 2007-08-30 Application Note No. 122 Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low Output Return Loss, Smith Chart Reference Plane = Output SMA Connector on PC Board 5 MHz to 8 GHz Sweep &+ 6 8 M *+] M *+] M *+] M *+] &$/ 2)6 &3/ ),/ 602 67$57 0+] 'DWH Figure 15 )(% 6723 *+] $1BVPLWKBRXWSXWBUHWXUQBORVVYVG Smith Chart of Output Return Loss (5 MHz - 8 GHz) Application Note 19 Rev. 1.2, 2007-08-30 Application Note No. 122 Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low Two-Tone Test, 2331.5 MHz Input Stimulus for Amplifier Two-Tone Test: f1 = 2331 MHz, f2 = 2332 MHz, -20 dB each tone Input IP3 = -20 + (59.3 / 2) = +9.7 dBm Output IP3 = +9.7 dBm + 18.8 dB gain = +28.5 dBm $1BSORWBWZRBWRQHYVG Figure 16 Tow-Tone Test @ 2331.5 MHz Application Note 20 Rev. 1.2, 2007-08-30