AN122

A p p l i c a t i o n N o t e , R e v . 1 . 2 , A ug us t 2 00 7
A p p li c a t i o n N o t e N o . 1 2 2
I n f i n e on ’ s B F P 7 4 0 F U l tr a L ow N o i s e R F
T r a n s i s t o r i n 2 . 33 G H z S D A R S L o w N o i s e
Amplifier Application
R F & P r o t e c ti o n D e v i c e s
Edition 2007-08-30
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2009.
All Rights Reserved.
LEGAL DISCLAIMER
THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE IMPLEMENTATION
OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY
DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE
INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY
ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY
DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT
LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY
THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
Application Note No. 122
Application Note No. 122
Revision History: 2007-08-30, Rev. 1.2
Previous Version: 2007-02-14, Rev. 1.1
Page
Subjects (major changes since last revision)
All
Change of layout
Application Note
3
Rev. 1.2, 2007-08-30
Application Note No. 122
Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low
1
Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz
SDARS Low Noise Amplifier Application
Applications
•
LNA stage for Satellite Digital Audio Radio Service "SDARS" active antennas, e.g. 2320 - 2332.5 MHz
"SIRIUS" or 2332.5 - 234 MHz "XM Radio".
Overview
•
•
The Infineon Technologies Silicon-Germanium-Carbon BFP740F HBT RF Transistor in TSFP-4 package is
shown in a +3.0 V 2.33 GHz LNA application. Amplifier draws 8.9 mA. +5 V power supply can be used if bias
resistor values are changed.
Transistor package size is 1.4 x 1.2 x 0.55 mm including external leads (RoHS compliant package).
Specification Targets
Summary of Results
(T =25 °C, Network Analyzer Source Power = -30 dBm, VCC = 3.0 V, VCE = 2.6 V, I = 8.9 mA)
Table 1
Summary of Results
Frequency
MHz
dB[s11]² dB[s21]² dB[s12]² dB[s22]² NF1)
dB
IIP3
OIP3
IP1dB
OP1dB
dBm
dBm
dBm
dBm
2320
10.6
18.9
24.9
10.7
0.64
---
---
---
---
2332
10.8
18.8
24.8
10.4
0.65
+9.7
+28.5
-12.0
+5.8
2345
10.9
18.8
24.8
10.2
0.64
---
---
---
---
1) PCB loss is not extracted. If PCB loss were extracted, NF would be approximately 0.1 dB lower.
Cross Sectional Diagram of PC Board (standard FR4 material)
7230(7$//$<(55)75$&(6&20321(176
LQFKPP
',(/(&75,&/$<(5
,17(51$/*5281'3/$1(0,''/(0(7$//$<(5
LQFKPP"
7+,6',(/(&75,&/$<(5)250(&+$1,&$/5,*,',7<2)3&%7+,&.1(66127&5,7,&$/
$6/21*$6),1,6+('%2$5'7+,&.1(66'2(6127(;&((',1&+PP
%277200(7$//$<(5
$1B3&%BFURVVBVHFWLRQYVG
Figure 1
PCB Cross Section
Application Note
4
Rev. 1.2, 2007-08-30
Application Note No. 122
Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low
Schematic Diagram
Total Parts Count = 11 pieces, including BFR740F Transistor.
9FF 9
127(0HDVXUHYROWDJHDW3&%WRHOLPLQDWH
YROWDJHGURSDFURVVVXSSO\ZLUHV
-
'&&RQQHFWRU
, P$
3&% 5HY$
3&%RDUG0DWHULDO 6WDQGDUG)5
&
X)
5
.
&
X)
5
RKPV
/
%ODFNUHFWDQJOHVDUHPLFURVWULS
Q+
WUDFNVQRWFKLSFRPSRQHQWV
-
5),1387
5
RKPV
/
4
Q+
%)3)6L*H
7UDQVLVWRU
76)3
&
S)
&
S)
RKPPLFURVWULS
-
5)287387
RKPPLFURVWULS
&
S)
7RWDO&RPSRQHQW&RXQW LQFOXGLQJ%)3)WUDQVLVWRU
%)3)9FH 9
,QGXFWRUV 5HVLVWRUV &DSDFLWRUV ,QGXFWLYH(PLWWHU'HJHQHUDWLRQ0LFURVWULS
IRU,3 LPSURYHPHQW5)PDWFKLQJ
:LGWK LQFKPP
/HQJWK LQFKPP
$1B6FKHPDWLFYVG
Figure 2
Schematic Diagram
Application Note
5
Rev. 1.2, 2007-08-30
Application Note No. 122
Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low
Details on TSFP-4 Package. Dimensions in millimeters (mm)
0.2 ±0.05
1
3
1.2 ±0.05
0.2 ±0.05
4
0.55 ±0.04
2
0.2 ±0.05
10˚ MAX.
0.8 ±0.05
1.4 ±0.05
0.15 ±0.05
0.5 ±0.05
0.5 ±0.05
Figure 3
GPX01010
Package Outline TSLP-4
0.9
0.45
0.35
0.5
0.5
HLGF1011
Figure 4
Footpint for TSLP-4
Application Note
6
Rev. 1.2, 2007-08-30
Application Note No. 122
Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low
Noise Figure, Plot, 2132.5 to 2532.5 MHz. Center of Plot (x-axis) is 2332.5 MHz.
5RKGH6FKZDU])6(.
)HE
1RLVH)LJXUH
(871DPH
0DQXIDFWXUHU
2SHUDWLQJ&RQGLWLRQV
2SHUDWRU1DPH
7HVW6SHFLILFDWLRQ
&RPPHQW
%)3)1RLVH)LJXUH*+]6'$56/1$$SSOLFDWLRQ
,QILQHRQ7HFKQRORJLHV
9 99FH 9, P$7 &
*HUDUG:HYHUV
*+]
2Q%)3)3&%)5HY$
)HEUXDU\
$QDO\]HU
5)$WW
5HI/YO
G%
G%P
5%:
9%:
0+]
+]
5DQJH G%
5HI/YODXWR 21
0RGH
'LUHFW
(15 18(15
0HDVXUHPHQW
QGVWDJHFRUU 21
1RLVH)LJXUHG%
0+]
0+]',9
0+]
$1BSORWBQIYVG
Figure 5
Plot of Noise Figure (2132.5 - 2532.5 MHz)
Application Note
7
Rev. 1.2, 2007-08-30
Application Note No. 122
Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low
Noise Figure, Tabular Data
2 GHz - 4 GHz
From Rhode & Schwarz FSEK3+ FSEM30
System Preamplifier = MITEQ SMC-02
Table 2
Noise Figure
Frequency
Noise Figure
Temp
2132.5 MHz
0.64 dB
46.4 K
2145.0 MHz
0.63 dB
45.5 K
2157.5 MHz
0.65 dB
47.2 K
2170.0 MHz
0.64 dB
45.7 K
2182.5 MHz
0.66 dB
47.3 K
2195.0 MHz
0.65 dB
46.9 K
2207.7 MHz
0.67 dB
48.0 K
2220.0 MHz
0.63 dB
45.6 K
2232.5 MHz
0.64 dB
46.4 K
2245.0 MHz
0.64 dB
45.9 K
2257.5 MHz
0.65 dB
46.6 K
2270.0 MHz
0.64 dB
46.3 K
2282.5 MHz
0.64 dB
46.1 K
2295.0 MHz
0.65 dB
46.9 K
2307.5 MHz
0.65 dB
46.9 K
2320.0 MHz
0.64 dB
46.0 K
2332.5 MHz
0.65 dB
46.5 K
2345.0 MHz
0.64 dB
45.7 K
2357.5 MHz
0.67 dB
48.2 K
2370.0 MHz
0.64 dB
46.3 K
2382.5 MHz
0.65 dB
46.8 K
2395.0 MHz
0.62 dB
44.8 K
2407.5 MHz
0.66 dB
47.8 K
2420.0 MHz
0.66 dB
47.4 K
2432.5 MHz
0.65 dB
47.0 K
2445.0 MHz
0.66 dB
47.2 K
2457.5 MHz
0.67 dB
48.2 K
2470.0 MHz
0.64 dB
45.9 K
2482.5 MHz
0.67 dB
48.2 K
2495.0 MHz
0.65 dB
47.2 K
2507.5 MHz
0.66 dB
47.3 K
2520.0 MHz
0.67 dB
48.1 K
2532.5 MHz
0.69 dB
49.7 K
Application Note
8
Rev. 1.2, 2007-08-30
Application Note No. 122
Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low
Scanned Image of PC Board
Figure 6
Image of PC Board
Application Note
9
Rev. 1.2, 2007-08-30
Application Note No. 122
Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low
Scanned Image of PC Board, Close-In Shot
Figure 7
Image of PC Board, Close-In Shot
Application Note
10
Rev. 1.2, 2007-08-30
Application Note No. 122
Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low
Gain Compression at 2332 MHz (curve x-axis is LNA output power)
Amplifier is checked for 1 dB compression point at VCC = 3.0 V, IC = 8.9 mA (with VCE = 2.6 V). An Agilent power
meter was used to ensure accurate power levels are measured (as opposed to using Vector Network Analyzer in
"Power Sweep" mode).
Output P1dB ≅ +5.8 dBm; Input P1dB = +5.8 dBm - (Gain - 1 dB) = +5.8 dBm -17.8 dB = -12.0 dBm
Table 3
Gain Compression, Tabular Data
POUT, dBm
Gain, dB
-4.0
18.8
-3.0
18.8
-2.0
18.8
-1.0
18.8
0.0
18.8
+1.0
18.8
+2.0
18.7
+3.0
18.6
+4.0
18.5
+5.0
18.3
+6.0
18.6
+7.0
18.7
Application Note
11
Rev. 1.2, 2007-08-30
Application Note No. 122
Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low
$1BSORWBJDLQBFRPSYVG
Figure 8
Plot of Gain Compression
PLEASE NOTE - All plots are from Rohde and Schwarz ZVC Network Analyzer, T = 25 °C,
SOURCE POWER ≈ -30 dBm, VCC = 3.0 V, I = 9.0 mA
Application Note
12
Rev. 1.2, 2007-08-30
Application Note No. 122
Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low
Amplifier Stability
T = 25 °C, VCC = 3.0 V, VCE = 2.6 V, I = 8.9 mA
Stability Factor "K" shown below from "screen shot" taken from Rohde and Schwarz ZVC network analyzer. ZVC
Vector Network Analyzer calculates and plots K in real time, from measured S parameters. Note, minimum K value
is ~ 0.97 at 2.5 GHz, which is ≈ 1, for practical purposes; => amplifier is unconditionally stable over 5 MHz to 8 GHz
ranges
&+ .
/,1 5H
8
P8
5() 8
P8
*+] * + ]
*+]
P8
*+]
P8
*+]
P8
*+]
&$/
2)6
P8
&3/
8
),/
602
P8
67$57
0+]
'DWH
Figure 9
)(%
*+]
6723 *+]
$1BSORWBDPSBVWDELOLW\YVG
Stabilty Factor K(f)
Application Note
13
Rev. 1.2, 2007-08-30
Application Note No. 122
Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low
Input Return Loss, Log Mag
5 MHz to 8 GHz Sweep
&+ 6
G%
G%
0$* G%
5() G%
G%
*+] * + ]
*+]
G%
*+]
G%
*+]
G%
*+]
G%
&$/
2)6
G%
&3/
),/
602
G%
67$57
0+]
'DWH
Figure 10
)(%
*+]
6723 *+]
$1BSORWBLQSXWBUHWXUQBORVVYVG
Plot of Input Return Loss (5 MHz - 8 GHz)
Application Note
14
Rev. 1.2, 2007-08-30
Application Note No. 122
Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low
Input Return Loss, Smith Chart
Reference Plane = Input SMA Connector on PC Board
5 MHz to 8 GHz Sweep
&+ 6
8
M
*+]
M
*+]
M
*+]
M
*+]
&$/
2)6
&3/
),/
602
67$57
0+]
'DWH
Figure 11
)(%
6723 *+]
$1BVPLWKBLQSXWBUHWXUQBORVVYVG
Smith Chart of Input Return Loss (5 MHz - 8 GHz)
Application Note
15
Rev. 1.2, 2007-08-30
Application Note No. 122
Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low
Forward Gain
5 MHz to 8 GHz Sweep
&+ 6
G%
G%
0$* G%
5() G%
G%
*+] * + ]
*+]
G%
*+]
G%
*+]
G%
*+]
&$/
G%
2)6
G%
&3/
),/
602
G%
67$57
0+]
'DWH
Figure 12
)(%
*+]
6723 *+]
$1BSORWBIZBJDLQYVG
Plot of Forward Gain (5 MHz - 8 GHz)
Application Note
16
Rev. 1.2, 2007-08-30
Application Note No. 122
Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low
Reverse Isolation
5 MHz to 8 GHz
&+ 6
G%
G%
0$* G%
5() G%
G%
*+] * + ]
*+]
G%
*+]
G%
*+]
G%
*+]
G%
&$/
2)6
G%
&3/
),/
602
G%
67$57
0+]
'DWH
Figure 13
)(%
*+]
6723 *+]
$1BSORWBUHYHUVHBLVRODWLRQYVG
Plot of Reverse Isolation (5 MHz - 8 GHz)
Application Note
17
Rev. 1.2, 2007-08-30
Application Note No. 122
Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low
Output Return Loss, Log Mag
5 MHz to 8 GHz
&+ 6
G%
G%
0$* G%
5() G%
G%
*+] * + ]
*+]
G%
*+]
G%
*+]
G%
*+]
G%
&$/
2)6
G%
&3/
),/
602
G%
67$57
0+]
'DWH
Figure 14
)(%
*+]
6723 *+]
$1BSORWBRXWSXWBUHWXUQBORVVYVG
Plot of Output Return Loss (5 MHz - 8 GHz)
Application Note
18
Rev. 1.2, 2007-08-30
Application Note No. 122
Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low
Output Return Loss, Smith Chart
Reference Plane = Output SMA Connector on PC Board
5 MHz to 8 GHz Sweep
&+ 6
8
M
*+]
M
*+]
M
*+]
M
*+]
&$/
2)6
&3/
),/
602
67$57
0+]
'DWH
Figure 15
)(%
6723 *+]
$1BVPLWKBRXWSXWBUHWXUQBORVVYVG
Smith Chart of Output Return Loss (5 MHz - 8 GHz)
Application Note
19
Rev. 1.2, 2007-08-30
Application Note No. 122
Infineon’s BFP740F Ultra Low Noise RF Transistor in 2.33 GHz SDARS Low
Two-Tone Test, 2331.5 MHz
Input Stimulus for Amplifier Two-Tone Test:
f1 = 2331 MHz, f2 = 2332 MHz, -20 dB each tone
Input IP3 = -20 + (59.3 / 2) = +9.7 dBm
Output IP3 = +9.7 dBm + 18.8 dB gain = +28.5 dBm
$1BSORWBWZRBWRQHYVG
Figure 16
Tow-Tone Test @ 2331.5 MHz
Application Note
20
Rev. 1.2, 2007-08-30