A pp li c at io n N o t e, R e v . 1. 2 , N ov e m be r 2 00 7 A p p li c a t i o n N o t e N o . 1 2 9 L o w N o i s e A m p l i fi e r f or 2 .3 t o 2 .5 G H z A p pl i c a t i o n s us i n g t h e S i G e B F P 6 4 0F T r a n s i s t or S m a l l S i g n a l D i s c r et e s Edition 2007-11-28 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved. LEGAL DISCLAIMER THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Application Note No. 129 Application Note No. 129 Revision History: 2007-11-28, Rev. 1.2 Previous Version: 2005-08-19, Rev. 1.1 Page Subjects (major changes since last revision) All Small changes in figure descriptions Application Note 3 Rev. 1.2, 2007-11-28 Application Note No. 129 Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F 1 Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F Transistor Applications • • 2.4 GHz ISM band (Blue Tooth, Cordless Phone, Wireless LAN, ZigBee, etc.) 2.33 GHz “SDARS” Satellite Radio (e.g. “XM Radio”) Overview • • • BFP640F in TSFP-4 package is evaluated for 2.3 - 2.5 GHz LNA application. Note TSFP-4 package is only 1.4 x 1.2 x 0.55 mm high. Printed Circuit Board used is Infineon Part Number 640F-021904 Rev A. Standard FR4 material is used in a three-layer PCB. Please refer to cross-sectional diagram below. Low-cost, standard "0402" case-size SMT passive components are used throughout. Please refer to schematic and Bill Of Material. The LNA is unconditionally stable from 5 MHz to 8 GHz. Total PCB area used for the single LNA stage is < 40 mm². Total Parts count, including the BFP640 transistor, is 12. Target Specifications • Design Goals: Gain = 15 dB min, Noise Figure < 1.0 dB, Input / Output Return Loss 10 dB or better, current < 7 mA from a 3.0 V power supply. Summary of Results T = 25 °C, VCC = 3.0 V, IC = 6.3 mA, VCE = 2.5 V, network analyzer source power ≅ -30 dBm Table 1 Summary of Results dB [S22]² NF(1) dB IIP3 (2) OIP3(2) IP1dB OP1dB dBm dBm dBm dBm 21.0 17.9 0.9 --- --- --- --- 15.5 20.7 16.8 0.9 +0.1 +29.6 -11.1 +3.4 15.1 20.5 14.4 0.9 --- --- --- --- Frequency dB [S11]² dB [S21]² MHz dB [S12]² 2330 10.3 15.7 2400 11.1 2500 12.5 (1) Note that PCB loss is not extracted. If PCB loss were extracted, NF would be 0.1 to 0.2 dB lower. (2) Outstanding Third-Order Intercept Performance PCB Cross - Section Diagram 7+,663$&,1*&5,7,&$/ 723/$<(5 LQFKPP ,17(51$/*5281'3/$1( LQFKPP" /$<(5)250(&+$1,&$/5,*,',7<2)3&%7+,&.1(66+(5(127 &5,7,&$/$6/21*$6727$/3&%7+,&.1(66'2(6127(;&((' ,1&+PP63(&,),&$7,21)25727$/3&%7+,&.1(66 ,1&+PPPP %27720/$<(5 $1B3&%YVG Figure 1 PCB - Cross Sectional Diagram Application Note 4 Rev. 1.2, 2007-11-28 Application Note No. 129 Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F TSFP-4 Package Details (Dimensions in Millimeters). Note maximum package height is 0.59 mm / 0.023 inch. 0.2±0.05 3 1 1.2±0.05 0.2±0.05 4 0.55±0.04 2 0.2±0.05 10˚ MAX. 0.8±0.05 1.4±0.05 0.15±0.05 0.5±0.05 0.5±0.05 Figure 2 GPX01010 Package Details of TSFP-4 Recommended Soldering Footprint for TSFP-4 (dimensions in millimeters). Device package is to be oriented as shown in above drawing (e.g. orient long package dimension horizontally on this footprint). 0.9 0.45 0.35 0.5 0.5 HLGF1011 Figure 3 Package Footprint of TSFP-4 Application Note 5 Rev. 1.2, 2007-11-28 Application Note No. 129 Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F Bill of Material Table 2 Bill of Material Reference Designator Value Manufacturer Case Size Function C1 33 pF Various 0402 DC blocking, input. Also, using cap above serf-resonance makes it slightly inductive, slightly improving input match. C2 1.2 pF Various 0402 DC block, output. also influences output and input impedance match. C3 0.022 µF Various 0402 Decoupling, low frequency. Also improves Third-Order Intercept. C4 8.2 pF Various 0402 Decoupling (RF short). C5 5.6 pF Various 0402 Decoupling (RF short). Also has influence on output match and stability. C6 0.022 µF Various 0402 Decoupling, low frequency. L1 12 nH Murata LQG 15HN series 0402 low cost inductor RF choke at input. L2 3.9 nH Murata LQG 15HN series 0402 low cost inductor RF Choke + impedance match at output. R1 10 Ω Various 0402 Stability improvement. R2 43 kΩ Various 0402 Bring bias current / voltage into base of transistor. R3 68 Ω Various 0402 Provides some negative feedback for DC bias / DC operating point to compensate for variations in transistor DC current gain, temperature variations, etc. Q1 - Infineon Technologies TSFP-4 BFP640F B7HF Transistor J1, J2 - Johnson 142-0701-841 - RF input / output connectors J3 - AMP 5 pin header MTA100 series 640456-5 (standard pin plating) or 641215-5 (gold plated pins) - DC connector Application Note Pins 1, 5 = ground Pin 3 = VCC Pins 2, 4 = no connection 6 Rev. 1.2, 2007-11-28 Application Note No. 129 Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F Schematic Diagram for 2300 - 2500 MHz LNA 727$/ 3$576 &2817 ! ! ! ! 9FF 9 - '& &RQQHFWRU %)3) 6L*H 7UDQVLVWRU FKLS FDSDFLWRUV FKLS UHVLVWRUV FKLS LQGXFWRUV , P$ 5 RKPV 5 . & X) & S) 5 RKPV / %ODFN UHFWDQJOHV DUH PLFURVWULS Q+ WUDFNV QRW FKLS FRPSRQHQWV - 5) ,1387 & X) / 4 Q+ %)3) 6L*H 7UDQVLVWRU 76)3 RKP PLFURVWULS & S) & S) 3&% & S) - 5) 287387 RKP PLFURVWULS ) 5HY$ 3& %RDUG 0DWHULDO ,QGXFWLYH (PLWWHU 'HJHQHUDWLRQ 0LFURVWULS IRU ,3 LPSURYHPHQW 5) PDWFKLQJ :LGWK LQFK PP /HQJWK LQFK PP %)3) 9FH 6WDQGDUG )5 9 $1B6FKHPDWLFYVG Figure 4 Schematic Diagram Application Note 7 Rev. 1.2, 2007-11-28 Application Note No. 129 Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F Noise Figure, Plot, Center of Plot (x-axis) is 2400 MHz. 5RKGH6FKZDU])6(. $XJ 1RLVH)LJXUH (871DPH 0DQXIDFWXUHU 2SHUDWLQJ&RQGLWLRQV 2SHUDWRU1DPH 7HVW6SHFLILFDWLRQ &RPPHQW %)3)/1$WR*+] ,QILQHRQ7HFKQRORJLHV 9 9, P$7 & *HUDUG:HYHUV $XJXVW $QDO\]HU 5)$WW 5HI/YO G% G%P 5%: 0+] 9%: +] 5DQJH G% 5HI/YODXWR 21 0RGH 'LUHFW (15 +3$(15 0HDVXUHPHQW QGVWDJHFRUU 21 1RLVH)LJXUHG% 0+] 0+]',9 0+] $1BSORWBQIYVG Figure 5 Noise Figure Application Note 8 Rev. 1.2, 2007-11-28 Application Note No. 129 Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F Noise Figure, Tabular Data Table 3 Noise Figure Frequency Noise Figure 2200 MHz 0.92 dB 2210 MHz 0.88 dB 2220 MHz 0.91 dB 2230 MHz 0.91 dB 2240 MHz 0.89 dB 2250 MHz 0.89 dB 2260 MHz 0.94 dB 2270 MHz 0.89 dB 2280 MHz 0.91 dB 2290 MHz 0.90 dB 2300 MHz 0.91 dB 2310 MHz 0.93 dB 2320 MHz 0.93 dB 2330 MHz 0.91 dB 2340 MHz 0.94 dB 2350 MHz 0.90 dB 2360 MHz 0.91 dB 2370 MHz 0.92 dB 2380 MHz 0.91 dB 2390 MHz 0.92 dB 2400 MHz 0.91 dB 2410 MHz 0.90 dB 2420 MHz 0.94 dB 2430 MHz 0.90 dB 2440 MHz 0.91 dB 2450 MHz 0.91 dB 2460 MHz 0.91 dB 2470 MHz 0.91 dB 2480 MHz 0.91 dB 2490 MHz 0.92 dB 2500 MHz 0.91 dB 2510 MHz 0.94 dB 2520 MHz 0.93 dB 2530 MHz 0.94 dB 2540 MHz 0.92 dB 2550 MHz 0.93 dB 2560 MHz 0.92 dB 2570 MHz 0.91 dB 2580 MHz 0.92 dB Application Note 9 Rev. 1.2, 2007-11-28 Application Note No. 129 Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F Table 3 Noise Figure (cont’d) Frequency Noise Figure 2590 MHz 0.94 dB 2600 MHz 0.92 dB Application Note 10 Rev. 1.2, 2007-11-28 Application Note No. 129 Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F Scanned Image of PC Board Figure 6 Image of PC Board Application Note 11 Rev. 1.2, 2007-11-28 Application Note No. 129 Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F Scanned Image of PC Board, Close-In Shot. Total PCB area. Figure 7 Image of PC Board, Close-In Shot Application Note 12 Rev. 1.2, 2007-11-28 Application Note No. 129 Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F Gain Compression at 2400 MHz, VCC = 3.0 V, I = 6.3 mA, VCE = 2.5 V Amplifier is checked for output1 dB compression point. An Agilent power meter was used to ensure accurate power levels are measured (as opposed to using Vector Network Analyzer in “Power Sweep” mode). Output P1dB ≅ +3.4 dBm Input P1dB ≅ +3.4 dBm - (Gain - 1 dB) = +0.8 dBm - 14.5 dB = -11.1 dBm Table 4 Gain Compression at 2400 MHz Pin, dBm Pout, dBm -5.0 15.5 -4.0 15.5 -3.0 15.5 -2.0 15.4 -1.0 15.4 0.0 15.3 +1.0 15.2 +2.0 15.1 +3.0 14.8 +4.0 14.1 +5.0 13.0 %)3)*DLQ&RPSUHVVLRQ9P$& *DLQ 2XWSXWB3RZHU $1BSORWBJDLQBFRPSYVG Figure 8 Plot of Gain Compression at 2400 MHz Application Note 13 Rev. 1.2, 2007-11-28 Application Note No. 129 Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F PLEASE NOTE - All Network Analyzer screen-shots are from Rohde and Schwarz ZVC Network Analyzer, T = 25 °C, source power ≈ -30 dBm Amplifier Stability, Stability Factor “K” Rohde and Schwarz ZVC Network Analyzer calculates and plots Stability Factor "K" in real time, from 5 MHz to 8 GHz. Note minimum K value is near 1.05 at 2.5 GHz. Amplifier is unconditionally Stable from 5 MHz to 8 GHz. &+ . 8 /,1 5H 8 5() 8 8 *+] * + ] *+] 8 *+] 8 *+] 8 *+] &$/ 2)6 8 &3/ ),/ N 8 602 8 67$57 0+] 'DWH Figure 9 $8* *+] 6723 *+] $1BSORWBVWDELOLW\B.YVG Plot of K(f) Application Note 14 Rev. 1.2, 2007-11-28 Application Note No. 129 Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F Input Return Loss, Log Mag 5 MHz to 8 GHz Sweep &+ 6 G% G% 0$* G% 5() G% G% *+] * + ] *+] G% *+] G% *+] &$/ G% 2)6 G% &3/ ),/ N G% 67$57 0+] 'DWH Figure 10 $8* *+] 6723 *+] $1BSORWBLQSXWBUHWXUQBORVVYVG Plot of Input Return Loss Application Note 15 Rev. 1.2, 2007-11-28 Application Note No. 129 Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F Input Return Loss, Smith Chart Reference Plane = Input SMA Connector on PC Board 5 MHz to 8 GHz Sweep &+ 6 8 M *+] M *+] M *+] &$/ 2)6 &3/ ),/ N 67$57 0+] 'DWH Figure 11 $8* 6723 *+] $1BVPLWKBLQSXWBUHWXUQBORVVYVG Smith Chart of Input Return Loss Application Note 16 Rev. 1.2, 2007-11-28 Application Note No. 129 Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F Forward Gain 5 MHz to8 GHz Sweep &+ 6 G% G% 0$* G% 5() G% G% *+] * + ] *+] G% *+] G% *+] &$/ G% 2)6 G% &3/ ),/ N G% 67$57 0+] 'DWH Figure 12 $8* *+] 6723 *+] $1BSORWBIZBJDLQYVG Plot of Forward Gain Application Note 17 Rev. 1.2, 2007-11-28 Application Note No. 129 Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F Reverse Isolation 5 MHz to 8 GHz &+ 6 G% G% 0$* G% 5() G% G% *+] * + ] *+] G% *+] G% *+] G% &$/ 2)6 G% &3/ ),/ N G% 67$57 0+] 'DWH Figure 13 $8* *+] 6723 *+] $1BSORWBUHYHUVHBLVRODWLRQYVG Plot of Reverse Isolation Application Note 18 Rev. 1.2, 2007-11-28 Application Note No. 129 Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F Output Return Loss, Log Mag 5 MHz to 8 GHz &+ 6 G% G% 0$* G% 5() G% G% *+] * + ] *+] G% *+] G% *+] &$/ G% 2)6 G% &3/ ),/ N G% 67$57 0+] 'DWH Figure 14 $8* *+] 6723 *+] $1BSORWBRXWSXWBUHWXUQBORVVYVG Plot of Output Return Loss Application Note 19 Rev. 1.2, 2007-11-28 Application Note No. 129 Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F Output Return Loss, Smith Chart Reference Plane = Output SMA Connector on PC Board 5 MHz to 8 GHz Sweep &+ 6 8 M *+] M M *+] *+] &$/ 2)6 &3/ ),/ N 67$57 0+] 'DWH Figure 15 $8* 6723 *+] $1BVPLWKBRXWSXWBUHWXUQBORVVYVG Smith Chart of Output Return Loss Application Note 20 Rev. 1.2, 2007-11-28 Application Note No. 129 Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F Two-Tone Test, 2400 MHz Input Stimulus for Amplifier Two-Tone Test. f1 = 2400 MHz, f2 = 2401 MHz, -17 dBm each tone. Input IP3 = -17 + (62.1 / 2) = +14.1 dBm Output IP3 = +14.1 dBm +15.5 dB gain = +29.6 dBm $1BSORWBWZRBWRQHYVG Figure 16 Tow-Tone Test, Input Stimulus @ 2400 MHz Application Note 21 Rev. 1.2, 2007-11-28