AN129 - Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F Transistor

A pp li c at io n N o t e, R e v . 1. 2 , N ov e m be r 2 00 7
A p p li c a t i o n N o t e N o . 1 2 9
L o w N o i s e A m p l i fi e r f or 2 .3 t o 2 .5 G H z
A p pl i c a t i o n s us i n g t h e S i G e B F P 6 4 0F T r a n s i s t or
S m a l l S i g n a l D i s c r et e s
Edition 2007-11-28
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2007.
All Rights Reserved.
LEGAL DISCLAIMER
THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE IMPLEMENTATION
OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY
DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE
INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY
ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY
DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT
LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY
THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
Application Note No. 129
Application Note No. 129
Revision History: 2007-11-28, Rev. 1.2
Previous Version: 2005-08-19, Rev. 1.1
Page
Subjects (major changes since last revision)
All
Small changes in figure descriptions
Application Note
3
Rev. 1.2, 2007-11-28
Application Note No. 129
Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F
1
Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe
BFP640F Transistor
Applications
•
•
2.4 GHz ISM band (Blue Tooth, Cordless Phone, Wireless LAN, ZigBee, etc.)
2.33 GHz “SDARS” Satellite Radio (e.g. “XM Radio”)
Overview
•
•
•
BFP640F in TSFP-4 package is evaluated for 2.3 - 2.5 GHz LNA application. Note TSFP-4 package is only
1.4 x 1.2 x 0.55 mm high. Printed Circuit Board used is Infineon Part Number 640F-021904 Rev A. Standard
FR4 material is used in a three-layer PCB. Please refer to cross-sectional diagram below.
Low-cost, standard "0402" case-size SMT passive components are used throughout. Please refer to
schematic and Bill Of Material. The LNA is unconditionally stable from 5 MHz to 8 GHz.
Total PCB area used for the single LNA stage is < 40 mm². Total Parts count, including the BFP640 transistor,
is 12.
Target Specifications
•
Design Goals: Gain = 15 dB min, Noise Figure < 1.0 dB, Input / Output Return Loss 10 dB or better,
current < 7 mA from a 3.0 V power supply.
Summary of Results
T = 25 °C, VCC = 3.0 V, IC = 6.3 mA, VCE = 2.5 V, network analyzer source power ≅ -30 dBm
Table 1
Summary of Results
dB [S22]² NF(1)
dB
IIP3 (2)
OIP3(2)
IP1dB
OP1dB
dBm
dBm
dBm
dBm
21.0
17.9
0.9
---
---
---
---
15.5
20.7
16.8
0.9
+0.1
+29.6
-11.1
+3.4
15.1
20.5
14.4
0.9
---
---
---
---
Frequency dB [S11]² dB [S21]²
MHz
dB [S12]²
2330
10.3
15.7
2400
11.1
2500
12.5
(1) Note that PCB loss is not extracted. If PCB loss were extracted, NF would be 0.1 to 0.2 dB lower.
(2) Outstanding Third-Order Intercept Performance
PCB Cross - Section Diagram
7+,663$&,1*&5,7,&$/
723/$<(5
LQFKPP
,17(51$/*5281'3/$1(
LQFKPP"
/$<(5)250(&+$1,&$/5,*,',7<2)3&%7+,&.1(66+(5(127
&5,7,&$/$6/21*$6727$/3&%7+,&.1(66'2(6127(;&(('
,1&+PP63(&,),&$7,21)25727$/3&%7+,&.1(66
,1&+PPPP
%27720/$<(5
$1B3&%YVG
Figure 1
PCB - Cross Sectional Diagram
Application Note
4
Rev. 1.2, 2007-11-28
Application Note No. 129
Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F
TSFP-4 Package Details
(Dimensions in Millimeters). Note maximum package height is 0.59 mm / 0.023 inch.
0.2±0.05
3
1
1.2±0.05
0.2±0.05
4
0.55±0.04
2
0.2±0.05
10˚ MAX.
0.8±0.05
1.4±0.05
0.15±0.05
0.5±0.05
0.5±0.05
Figure 2
GPX01010
Package Details of TSFP-4
Recommended Soldering Footprint for TSFP-4 (dimensions in millimeters).
Device package is to be oriented as shown in above drawing (e.g. orient long package dimension horizontally on
this footprint).
0.9
0.45
0.35
0.5
0.5
HLGF1011
Figure 3
Package Footprint of TSFP-4
Application Note
5
Rev. 1.2, 2007-11-28
Application Note No. 129
Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F
Bill of Material
Table 2
Bill of Material
Reference
Designator
Value
Manufacturer
Case Size
Function
C1
33 pF
Various
0402
DC blocking, input. Also, using cap above
serf-resonance makes it slightly inductive,
slightly improving input match.
C2
1.2 pF
Various
0402
DC block, output. also influences output
and input impedance match.
C3
0.022 µF
Various
0402
Decoupling, low frequency. Also improves
Third-Order Intercept.
C4
8.2 pF
Various
0402
Decoupling (RF short).
C5
5.6 pF
Various
0402
Decoupling (RF short). Also has influence
on output match and stability.
C6
0.022 µF
Various
0402
Decoupling, low frequency.
L1
12 nH
Murata LQG 15HN series 0402
low cost inductor
RF choke at input.
L2
3.9 nH
Murata LQG 15HN series 0402
low cost inductor
RF Choke + impedance match at output.
R1
10 Ω
Various
0402
Stability improvement.
R2
43 kΩ
Various
0402
Bring bias current / voltage into base of
transistor.
R3
68 Ω
Various
0402
Provides some negative feedback for DC
bias / DC operating point to compensate for
variations in transistor DC current gain,
temperature variations, etc.
Q1
-
Infineon Technologies
TSFP-4
BFP640F B7HF Transistor
J1, J2
-
Johnson 142-0701-841
-
RF input / output connectors
J3
-
AMP 5 pin header MTA100 series 640456-5
(standard pin plating) or
641215-5 (gold plated
pins)
-
DC connector
Application Note
Pins 1, 5 = ground
Pin 3 = VCC
Pins 2, 4 = no connection
6
Rev. 1.2, 2007-11-28
Application Note No. 129
Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F
Schematic Diagram for 2300 - 2500 MHz LNA
727$/ 3$576 &2817
!
!
!
!
9FF
9
-
'& &RQQHFWRU
%)3) 6L*H 7UDQVLVWRU
FKLS FDSDFLWRUV
FKLS UHVLVWRUV
FKLS LQGXFWRUV
,
P$
5
RKPV
5
.
&
X)
&
S)
5
RKPV
/
%ODFN UHFWDQJOHV DUH PLFURVWULS
Q+
WUDFNV QRW FKLS FRPSRQHQWV -
5) ,1387
&
X)
/
4
Q+
%)3) 6L*H
7UDQVLVWRU
76)3
RKP PLFURVWULS
&
S)
&
S)
3&%
&
S)
-
5) 287387
RKP PLFURVWULS
) 5HY$
3& %RDUG 0DWHULDO
,QGXFWLYH (PLWWHU 'HJHQHUDWLRQ 0LFURVWULS IRU
,3 LPSURYHPHQW 5) PDWFKLQJ
:LGWK LQFK PP
/HQJWK LQFK PP
%)3) 9FH
6WDQGDUG )5
9 $1B6FKHPDWLFYVG
Figure 4
Schematic Diagram
Application Note
7
Rev. 1.2, 2007-11-28
Application Note No. 129
Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F
Noise Figure, Plot, Center of Plot (x-axis) is 2400 MHz.
5RKGH6FKZDU])6(.
$XJ
1RLVH)LJXUH
(871DPH
0DQXIDFWXUHU
2SHUDWLQJ&RQGLWLRQV
2SHUDWRU1DPH
7HVW6SHFLILFDWLRQ
&RPPHQW
%)3)/1$WR*+]
,QILQHRQ7HFKQRORJLHV
9 9, P$7 &
*HUDUG:HYHUV
$XJXVW
$QDO\]HU
5)$WW
5HI/YO
G%
G%P
5%: 0+]
9%: +]
5DQJH G%
5HI/YODXWR 21
0RGH 'LUHFW
(15 +3$(15
0HDVXUHPHQW
QGVWDJHFRUU 21
1RLVH)LJXUHG%
0+]
0+]',9
0+]
$1BSORWBQIYVG
Figure 5
Noise Figure
Application Note
8
Rev. 1.2, 2007-11-28
Application Note No. 129
Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F
Noise Figure, Tabular Data
Table 3
Noise Figure
Frequency
Noise Figure
2200 MHz
0.92 dB
2210 MHz
0.88 dB
2220 MHz
0.91 dB
2230 MHz
0.91 dB
2240 MHz
0.89 dB
2250 MHz
0.89 dB
2260 MHz
0.94 dB
2270 MHz
0.89 dB
2280 MHz
0.91 dB
2290 MHz
0.90 dB
2300 MHz
0.91 dB
2310 MHz
0.93 dB
2320 MHz
0.93 dB
2330 MHz
0.91 dB
2340 MHz
0.94 dB
2350 MHz
0.90 dB
2360 MHz
0.91 dB
2370 MHz
0.92 dB
2380 MHz
0.91 dB
2390 MHz
0.92 dB
2400 MHz
0.91 dB
2410 MHz
0.90 dB
2420 MHz
0.94 dB
2430 MHz
0.90 dB
2440 MHz
0.91 dB
2450 MHz
0.91 dB
2460 MHz
0.91 dB
2470 MHz
0.91 dB
2480 MHz
0.91 dB
2490 MHz
0.92 dB
2500 MHz
0.91 dB
2510 MHz
0.94 dB
2520 MHz
0.93 dB
2530 MHz
0.94 dB
2540 MHz
0.92 dB
2550 MHz
0.93 dB
2560 MHz
0.92 dB
2570 MHz
0.91 dB
2580 MHz
0.92 dB
Application Note
9
Rev. 1.2, 2007-11-28
Application Note No. 129
Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F
Table 3
Noise Figure (cont’d)
Frequency
Noise Figure
2590 MHz
0.94 dB
2600 MHz
0.92 dB
Application Note
10
Rev. 1.2, 2007-11-28
Application Note No. 129
Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F
Scanned Image of PC Board
Figure 6
Image of PC Board
Application Note
11
Rev. 1.2, 2007-11-28
Application Note No. 129
Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F
Scanned Image of PC Board, Close-In Shot. Total PCB area.
Figure 7
Image of PC Board, Close-In Shot
Application Note
12
Rev. 1.2, 2007-11-28
Application Note No. 129
Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F
Gain Compression at 2400 MHz, VCC = 3.0 V, I = 6.3 mA, VCE = 2.5 V
Amplifier is checked for output1 dB compression point. An Agilent power meter was used to ensure accurate
power levels are measured (as opposed to using Vector Network Analyzer in “Power Sweep” mode).
Output P1dB ≅ +3.4 dBm
Input P1dB ≅ +3.4 dBm - (Gain - 1 dB) = +0.8 dBm - 14.5 dB = -11.1 dBm
Table 4
Gain Compression at 2400 MHz
Pin, dBm
Pout, dBm
-5.0
15.5
-4.0
15.5
-3.0
15.5
-2.0
15.4
-1.0
15.4
0.0
15.3
+1.0
15.2
+2.0
15.1
+3.0
14.8
+4.0
14.1
+5.0
13.0
%)3)*DLQ&RPSUHVVLRQ9P$&
*DLQ
2XWSXWB3RZHU
$1BSORWBJDLQBFRPSYVG
Figure 8
Plot of Gain Compression at 2400 MHz
Application Note
13
Rev. 1.2, 2007-11-28
Application Note No. 129
Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F
PLEASE NOTE - All Network Analyzer screen-shots are from Rohde and Schwarz ZVC Network Analyzer,
T = 25 °C, source power ≈ -30 dBm
Amplifier Stability, Stability Factor “K”
Rohde and Schwarz ZVC Network Analyzer calculates and plots Stability Factor "K" in real time, from 5 MHz to
8 GHz. Note minimum K value is near 1.05 at 2.5 GHz. Amplifier is unconditionally Stable from 5 MHz to 8 GHz.
&+ .
8
/,1 5H
8
5() 8
8
*+] * + ]
*+]
8
*+]
8
*+]
8
*+]
&$/
2)6
8
&3/
),/
N
8
602
8
67$57
0+]
'DWH
Figure 9
$8*
*+]
6723 *+]
$1BSORWBVWDELOLW\B.YVG
Plot of K(f)
Application Note
14
Rev. 1.2, 2007-11-28
Application Note No. 129
Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F
Input Return Loss, Log Mag
5 MHz to 8 GHz Sweep
&+ 6
G%
G%
0$* G%
5() G%
G%
*+] * + ]
*+]
G%
*+]
G%
*+]
&$/
G%
2)6
G%
&3/
),/
N
G%
67$57
0+]
'DWH
Figure 10
$8*
*+]
6723 *+]
$1BSORWBLQSXWBUHWXUQBORVVYVG
Plot of Input Return Loss
Application Note
15
Rev. 1.2, 2007-11-28
Application Note No. 129
Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F
Input Return Loss, Smith Chart
Reference Plane = Input SMA Connector on PC Board
5 MHz to 8 GHz Sweep
&+ 6
8
M
*+]
M
*+]
M
*+]
&$/
2)6
&3/
),/
N
67$57
0+]
'DWH
Figure 11
$8*
6723 *+]
$1BVPLWKBLQSXWBUHWXUQBORVVYVG
Smith Chart of Input Return Loss
Application Note
16
Rev. 1.2, 2007-11-28
Application Note No. 129
Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F
Forward Gain
5 MHz to8 GHz Sweep
&+ 6
G%
G%
0$* G%
5() G%
G%
*+] * + ]
*+]
G%
*+]
G%
*+]
&$/
G%
2)6
G%
&3/
),/
N
G%
67$57
0+]
'DWH
Figure 12
$8*
*+]
6723 *+]
$1BSORWBIZBJDLQYVG
Plot of Forward Gain
Application Note
17
Rev. 1.2, 2007-11-28
Application Note No. 129
Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F
Reverse Isolation
5 MHz to 8 GHz
&+ 6
G%
G%
0$* G%
5() G%
G%
*+] * + ]
*+]
G%
*+]
G%
*+]
G%
&$/
2)6
G%
&3/
),/
N
G%
67$57
0+]
'DWH
Figure 13
$8*
*+]
6723 *+]
$1BSORWBUHYHUVHBLVRODWLRQYVG
Plot of Reverse Isolation
Application Note
18
Rev. 1.2, 2007-11-28
Application Note No. 129
Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F
Output Return Loss, Log Mag
5 MHz to 8 GHz
&+ 6
G%
G%
0$* G%
5() G%
G%
*+] * + ]
*+]
G%
*+]
G%
*+]
&$/
G%
2)6
G%
&3/
),/
N
G%
67$57
0+]
'DWH
Figure 14
$8*
*+]
6723 *+]
$1BSORWBRXWSXWBUHWXUQBORVVYVG
Plot of Output Return Loss
Application Note
19
Rev. 1.2, 2007-11-28
Application Note No. 129
Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F
Output Return Loss, Smith Chart
Reference Plane = Output SMA Connector on PC Board
5 MHz to 8 GHz Sweep
&+ 6
8
M
*+]
M
M
*+]
*+]
&$/
2)6
&3/
),/
N
67$57
0+]
'DWH
Figure 15
$8*
6723 *+]
$1BVPLWKBRXWSXWBUHWXUQBORVVYVG
Smith Chart of Output Return Loss
Application Note
20
Rev. 1.2, 2007-11-28
Application Note No. 129
Low Noise Amplifier for 2.3 to 2.5 GHz Applications using the SiGe BFP640F
Two-Tone Test, 2400 MHz
Input Stimulus for Amplifier Two-Tone Test.
f1 = 2400 MHz, f2 = 2401 MHz, -17 dBm each tone.
Input IP3 = -17 + (62.1 / 2) = +14.1 dBm
Output IP3 = +14.1 dBm +15.5 dB gain = +29.6 dBm
$1BSORWBWZRBWRQHYVG
Figure 16
Tow-Tone Test, Input Stimulus @ 2400 MHz
Application Note
21
Rev. 1.2, 2007-11-28