XMC4500 Microcontroller Series for Industrial Applications XMC4000 Family ARM® Cortex®-M4 32-bit processor core Data Sheet V1.4 2016-01 Microcontrollers Edition 2016-01 Published by Infineon Technologies AG 81726 Munich, Germany © 2016 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. XMC4500 Microcontroller Series for Industrial Applications XMC4000 Family ARM® Cortex®-M4 32-bit processor core Data Sheet V1.4 2016-01 Microcontrollers XMC4500 XMC4000 Family XMC4500 Data Sheet Revision History: V1.4 2016-01 Previous Versions: V1.3, 2014-03 V1.2, 2013-07 V1.1, 2013-07 V1.0, 2013-01 V0.9, 2012-12 V0.8, 2012-11 Page Subjects 43 Added information that PORST Pull-up is identical to the pull-up on standard I/O pins. 42 Added footnote explaining minimum VBAT requirements to start the hibernate domain and/or oscillation of a crystal on RTC_XTAL. 59 Corrected parameter name of of USB pull device (upstream port receiving) definition according to USB standard (referenced to DM instead of DP) 61 Relaxed RTC_XTAL VPPX parameter value and changed it to a system requirement. 115ff Added PG-LQFP-100-25 and PG-LQFP-144-24 package information. 115 Added tables describing the differences between PG-LQFP-100-11 to PGLQFP-100-25 as well as PG-LQFP-144-18 to PG-LQFP-144-24 packages. Trademarks C166™, TriCore™, XMC™ and DAVE™ are trademarks of Infineon Technologies AG. ARM®, ARM Powered®, Cortex®, Thumb® and AMBA® are registered trademarks of ARM, Limited. CoreSight™, ETM™, Embedded Trace Macrocell™ and Embedded Trace Buffer™ are trademarks of ARM, Limited. Synopsys™ is a trademark of Synopsys, Inc. We Listen to Your Comments Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] Data Sheet V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Table of Contents Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 About this Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1 1.1 1.2 1.3 1.4 1.5 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Device Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Device Type Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Definition of Feature Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Identification Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 2.1 2.2 2.2.1 2.2.2 2.2.2.1 2.3 General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Pin Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Port I/O Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Port I/O Function Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Connection Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 14 17 20 27 28 34 3 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8 3.2.9 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Reliability in Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pad Driver and Pad Classes Summary . . . . . . . . . . . . . . . . . . . . . . . . . Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input/Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analog to Digital Converters (VADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . Digital to Analog Converters (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Out-of-Range Comparator (ORC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Die Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . USB OTG Interface DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-Up and Supply Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase Locked Loop (PLL) Characteristics . . . . . . . . . . . . . . . . . . . . . . Internal Clock Source Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 36 36 36 37 38 41 42 43 43 49 53 56 58 59 61 65 68 69 69 70 71 73 74 Data Sheet 5 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Table of Contents 3.3.6 3.3.7 3.3.8 3.3.9 3.3.9.1 3.3.9.2 3.3.9.3 3.3.9.4 3.3.9.5 3.3.10 3.3.10.1 3.3.10.2 3.3.10.3 3.3.10.4 3.3.11 3.3.12 3.3.12.1 3.3.12.2 3.3.12.3 3.3.12.4 4 4.1 4.1.1 4.2 4.3 Data Sheet JTAG Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Serial Wire Debug Port (SW-DP) Timing . . . . . . . . . . . . . . . . . . . . . . . . 78 Embedded Trace Macro Cell (ETM) Timing . . . . . . . . . . . . . . . . . . . . . 79 Peripheral Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Delta-Sigma Demodulator Digital Interface Timing . . . . . . . . . . . . . . 80 Synchronous Serial Interface (USIC SSC) Timing . . . . . . . . . . . . . . 81 Inter-IC (IIC) Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Inter-IC Sound (IIS) Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . 86 SDMMC Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 EBU Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 EBU Asynchronous Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 EBU Burst Mode Access Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 EBU Arbitration Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 EBU SDRAM Access Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 USB Interface Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Ethernet Interface (ETH) Characteristics . . . . . . . . . . . . . . . . . . . . . . . 111 ETH Measurement Reference Points . . . . . . . . . . . . . . . . . . . . . . . 111 ETH Management Signal Parameters (ETH_MDC, ETH_MDIO) . . 112 ETH MII Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 ETH RMII Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quality Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 115 115 115 117 122 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family About this Document About this Document This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC4500 series devices. The document describes the characteristics of a superset of the XMC4500 series devices. For simplicity, the various device types are referred to by the collective term XMC4500 throughout this manual. XMC4000 Family User Documentation The set of user documentation includes: • • • Reference Manual – decribes the functionality of the superset of devices. Data Sheets – list the complete ordering designations, available features and electrical characteristics of derivative devices. Errata Sheets – list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices. Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device. Application related guidance is provided by Users Guides and Application Notes. Please refer to http://www.infineon.com/xmc4000 to get access to the latest versions of those documents. Data Sheet 7 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Summary of Features 1 Summary of Features The XMC4500 devices are members of the XMC4000 Family of microcontrollers based on the ARM Cortex-M4 processor core. The XMC4000 is a family of high performance and energy efficient microcontrollers optimized for Industrial Connectivity, Industrial Control, Power Conversion, Sense & Control. System Masters System Slaves SCU CPU RTC ARM Cortex-M4 ERU0 GPDMA0 System DCode GPDMA1 Ethernet WDT USB OTG ICode FCE Bus Matrix Data Code PSRAM PMU ROM & Flash USIC0 DSD PBA0 CCU80 CCU81 DSRAM2 LEDTS0 CCU43 Peripherals 0 ERU1 Figure 1 POSIF1 DSRAM1 VADC POSIF0 EBU PORTS DAC PBA1 Peripherals 1 CCU40 CCU41 CCU42 SDMMC USIC2 USIC1 CAN System Block Diagram CPU Subsystem • • • • • • CPU Core – High Performance 32-bit ARM Cortex-M4 CPU – 16-bit and 32-bit Thumb2 instruction set – DSP/MAC instructions – System timer (SysTick) for Operating System support Floating Point Unit Memory Protection Unit Nested Vectored Interrupt Controller Two General Purpose DMA with up-to 12 channels Event Request Unit (ERU) for programmable processing of external and internal service requests Data Sheet 8 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Summary of Features • Flexible CRC Engine (FCE) for multiple bit error detection On-Chip Memories • • • • • 16 KB on-chip boot ROM 64 KB on-chip high-speed program memory 64 KB on-chip high speed data memory 32 KB on-chip high-speed communication 1024 KB on-chip Flash Memory with 4 KB instruction cache Communication Peripherals • • • • • • • Ethernet MAC module capable of 10/100 Mbit/s transfer rates Universal Serial Bus, USB 2.0 host, Full-Speed OTG, with integrated PHY Controller Area Network interface (MultiCAN), Full-CAN/Basic-CAN with 3 nodes, 64 message objects (MO), data rate up to 1MBit/s Six Universal Serial Interface Channels (USIC),providing 6 serial channels, usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces LED and Touch-Sense Controller (LEDTS) for Human-Machine interface SD and Multi-Media Card interface (SDMMC) for data storage memory cards External Bus Interface Unit (EBU) enabling communication with external memories and off-chip peripherals Analog Frontend Peripherals • • • Four Analog-Digital Converters (VADC) of 12-bit resolution, 8 channels each, with input out-of-range comparators Delta Sigma Demodulator with four channels, digital input stage for A/D signal conversion Digital-Analogue Converter (DAC) with two channels of 12-bit resolution Industrial Control Peripherals • • • • • • • Two Capture/Compare Units 8 (CCU8) for motor control and power conversion Four Capture/Compare Units 4 (CCU4) for use as general purpose timers Two Position Interfaces (POSIF) for servo motor positioning Window Watchdog Timer (WDT) for safety sensitive applications Die Temperature Sensor (DTS) Real Time Clock module with alarm support System Control Unit (SCU) for system configuration and control Data Sheet 9 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Summary of Features Input/Output Lines • • • • • Programmable port driver control module (PORTS) Individual bit addressability Tri-stated in input mode Push/pull or open drain output mode Boundary scan test support over JTAG interface On-Chip Debug Support • • Full support for debug features: 8 breakpoints, CoreSight, trace Various interfaces: ARM-JTAG, SWD, single wire trace 1.1 Ordering Information The ordering code for an Infineon microcontroller provides an exact reference to a specific product. The code “XMC4<DDD>-<Z><PPP><T><FFFF>” identifies: • • • • • <DDD> the derivatives function set <Z> the package variant – E: LFBGA – F: LQFP – Q: VQFN <PPP> package pin count <T> the temperature range: – F: -40°C to 85°C – X: -40°C to 105°C – K: -40°C to 125°C <FFFF> the Flash memory size. For ordering codes for the XMC4500 please contact your sales representative or local distributor. This document describes several derivatives of the XMC4500 series, some descriptions may not apply to a specific product. For simplicity the term XMC4500 is used for all derivatives throughout this document. Data Sheet 10 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Summary of Features 1.2 Device Types These device types are available and can be ordered through Infineon’s direct and/or distribution channels. Table 1 Synopsis of XMC4500 Device Types 1) Derivative Package Flash Kbytes SRAM Kbytes XMC4500-E144x1024 PG-LFBGA-144 1024 160 XMC4500-F144x1024 PG-LQFP-144 1024 160 XMC4500-F100x1024 PG-LQFP-100 1024 160 XMC4500-F144x768 PG-LQFP-144 768 160 XMC4500-F100x768 PG-LQFP-100 768 160 XMC4502-F100x768 PG-LQFP-100 768 160 XMC4504-F144x512 PG-LQFP-144 512 128 XMC4504-F100x512 PG-LQFP-100 512 128 1) x is a placeholder for the supported temperature range. 1.3 Device Type Features The following table lists the available features per device type. Table 2 Features of XMC4500 Device Types 1) Derivative LEDTS Intf. SDMMC EBU Intf. Intf.2) ETH USB USIC MultiCAN Intf. Intf. Chan. Nodes, 3) MO XMC4500-E144x1024 1 1 SDM MR 1 3x2 N0, N1, N2 MO[0..63] XMC4500-F144x1024 1 1 SDM MR 1 3x2 N0, N1, N2 MO[0..63] XMC4500-F100x1024 1 1 M16 R 1 3x2 N0, N1, N2 MO[0..63] XMC4500-F144x768 1 1 SDM MR 1 3x2 N0, N1, N2 MO[0..63] XMC4500-F100x768 1 1 M16 R 1 3x2 N0, N1, N2 MO[0..63] XMC4502-F100x768 1 1 M16 - 1 3x2 N0, N1, N2 MO[0..63] Data Sheet 11 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Summary of Features Table 2 Features of XMC4500 Device Types (cont’d) 1) Derivative LEDTS Intf. SDMMC EBU Intf. Intf.2) ETH USB USIC MultiCAN Intf. Intf. Chan. Nodes, 3) MO XMC4504-F144x512 1 1 SDM - - 3x2 - XMC4504-F100x512 1 1 M16 - - 3x2 - 1) x is a placeholder for the supported temperature range. 2) Memory types supported S=SDRAM, D=DEMUX, M=MUX 16-bit and 32-bit, M16=MUX 16-bit 3) Supported interfaces, M=MII, R=RMII. Table 3 Features of XMC4500 Device Types 1) Derivative ADC Chan. DSD Chan. DAC Chan. CCU4 Slice CCU8 Slice POSIF Intf. XMC4500-E144x1024 32 4 2 4x4 2x4 2 XMC4500-F144x1024 32 4 2 4x4 2x4 2 XMC4500-F100x1024 24 4 2 4x4 2x4 2 XMC4500-F144x768 32 4 2 4x4 2x4 2 XMC4500-F100x768 24 4 2 4x4 2x4 2 XMC4502-F100x768 24 4 2 4x4 2x4 2 XMC4504-F144x512 32 4 2 4x4 2x4 2 XMC4504-F100x512 24 4 2 4x4 2x4 2 1) x is a placeholder for the supported temperature range. 1.4 Definition of Feature Variants The XMC4500 types are offered with several memory sizes and number of available VADC channels. Table 4 describes the location of the available Flash memory, Table 5 describes the location of the available SRAMs, Table 6 the available VADC channels. Table 4 Flash Memory Ranges Total Flash Size Cached Range Uncached Range 512 Kbytes 0800 0000H − 0807 FFFFH 0C00 0000H − 0C07 FFFFH Data Sheet 12 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Summary of Features Table 4 Flash Memory Ranges (cont’d) Total Flash Size Cached Range Uncached Range 768 Kbytes 0800 0000H − 080B FFFFH 0C00 0000H − 0C0B FFFFH 1,024 Kbytes 0800 0000H − 080F FFFFH 0C00 0000H − 0C0F FFFFH Table 5 SRAM Memory Ranges Total SRAM Size Program SRAM System Data SRAM Communication Data SRAM 128 Kbytes 1000 0000H − 1000 FFFFH 2000 0000H − 2000 FFFFH − 160 Kbytes 1000 0000H − 1000 FFFFH 2000 0000H − 2000 FFFFH 3000 0000H − 3000 7FFFH ADC Channels1) Table 6 Package VADC G0 VADC G1 VADC G2 VADC G3 PG-LQFP-144 PG-LFBGA-144 CH0..CH7 CH0..CH7 CH0..CH7 CH0..CH7 PG-LQFP-100 CH0..CH7 CH0..CH7 CH0..CH3 CH0..CH3 1) Some pins in a package may be connected to more than one channel. For the detailed mapping see the Port I/O Function table. 1.5 Identification Registers The identification registers allow software to identify the marking. Table 7 XMC4500 Identification Registers Register Name Value Marking SCU_IDCHIP 0004 5002H EES-AA, ES-AA SCU_IDCHIP 0004 5003H ES-AB, AB SCU_IDCHIP 0004 5004H AC JTAG IDCODE 101D B083H EES-AA, ES-AA JTAG IDCODE 101D B083H ES-AB, AB JTAG IDCODE 401D B083H AC Data Sheet 13 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family General Device Information 2 General Device Information This section summarizes the logic symbols and package pin configurations with a detailed list of the functional I/O mapping. 2.1 Logic Symbols VAREF VAGND VDDA VSSA (1) (1) (1) (1) VDDC VDDP VSS (4) (4) (1) Exp. Die Pad (VSS) VBAT (1) RTC_XTAL1 (1) VSSO RTC_XTAL2 Port 0 16 bit HIB_IO_0 HIB_IO_1 Port 1 16 bit XTAL1 Port 2 16 bit XTAL2 USB_DP Port 3 16 bit USB_DM VBUS Port 4 8 bit Port 14 14 bit Port 5 12 bit Port 15 12 bit Port 6 7 bit PORST TCK JTAG 3 bit TMS Figure 2 Data Sheet ETM / SWD 5 / 1 bit via Port Pins XMC4500 Logic Symbol PG-LQFP-144 14 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family General Device Information VAREF VAGND VDDA VSSA (1) (1) (1) (1) VDDC VDDP VSS (3) (3) (3) VBAT (1) RTC_XTAL1 (1) VSSO RTC_XTAL2 Port 0 16 bit HIB_IO_0 HIB_IO_1 Port 1 16 bit XTAL1 Port 2 16 bit XTAL2 USB_DP Port 3 16 bit USB_DM VBUS Port 4 8 bit Port 14 14 bit Port 5 12 bit Port 15 12 bit Port 6 7 bit PORST TCK JTAG 3 bit TMS Figure 3 Data Sheet ETM / SWD 5 / 1 bit via Port Pins XMC4500 Logic Symbol PG-LFBGA-144 15 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family General Device Information VAREF VAGND VDDA VSSA (1) (1) (1) (1) VDDC VDDP VSS (4) (4) (1) Exp. Die Pad (VSS) VBAT (1) RTC_XTAL1 (1) VSSO RTC_XTAL2 Port 0 13 bit HIB_IO_0 HIB_IO_1 Port 1 16 bit XTAL1 Port 2 13 bit XTAL2 USB_DP Port 3 7 bit USB_DM VBUS Port 4 2 bit Port 14 14 bit Port 5 4 bit Port 15 4 bit PORST TCK JTAG 3 bit TMS Figure 4 Data Sheet SWD 1 bit via Port Pins XMC4500 Logic Symbol PG-LQFP-100 16 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family General Device Information 2.2 Pin Configuration and Definition 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 P 0.2 P 0.3 P 0.4 P 0.5 P 0.6 P 0.11 P 0.12 P 0.13 P 0.14 P 0.15 P 3.14 P 3.15 P 3.3 P 3.4 P 3.5 P 3.6 P 0.7 P 0.8 V DDP V DDC P 4.0 P 4.1 P 4.2 P 4.3 P 4.4 P 4.5 P 4.6 P 4.7 P 1.6 P 1.7 P 1.8 P 1.9 P 1.0 P 1.1 P 1.2 P 1.3 The following figures summarize all pins, showing their locations on the four sides of the different packages. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 XMC4500 (Top View) P1. 4 P1. 5 P1. 10 P1. 11 P1. 12 P1. 13 P1. 14 P6. 0 P6. 1 P6. 2 P6. 3 P6. 4 P6. 5 P6. 6 P1. 15 TCK TMS P ORS T V DDC VSSO X TA L2 X TA L1 V DDP VSS P5. 0 P5. 1 P5. 2 P5. 3 P5. 4 P5. 5 P5. 6 P5. 7 P2. 6 P2. 7 P2. 0 P2. 1 P 14.5 P 14.4 P 14.3 P 14.2 P 14.1 P 14.0 P 15.15 P 15.14 V A GND VA REF V SS A VDDA P 15.13 P 15.12 P 14.9 P 14.8 P 15.9 P 15.8 P 5.11 P 5.10 P 5.9 P 5.8 P 2.15 P 2.14 V DDC VDDP P 2.13 P 2.12 P 2.11 P 2.10 P 2.9 P 2.8 P 2.5 P 2.4 P 2.3 P 2.2 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 P0. 1 P0. 0 P0. 10 P0. 9 P3. 2 P3. 1 P3. 0 P3. 13 P3. 12 P3. 11 P3. 10 P3. 9 P3. 8 P3. 7 US B_DM US B_DP V B US V DDP V DDC HIB _IO _1 HIB _IO _0 RTC_X TA L1 RTC_X TA L2 VBAT P15. 7 P15. 6 P15. 5 P15. 4 P15. 3 P15. 2 P14. 15 P14. 14 P14. 13 P14. 12 P14. 7 P14. 6 Figure 5 Data Sheet XMC4500 PG-LQFP-144 Pin Configuration (top view) 17 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family General Device Information 1 2 3 4 5 6 7 8 9 10 11 12 A VSS V DDC P 0.2 P 0.3 P 0.5 P 0.6 P 3.6 P 0.8 P 4.1 P 1.8 V DDP VSS A B V DDP P 3.1 P 3.2 P 0. 10 P 0.4 P 3.5 P 0.7 P 4.0 P 1.6 P 1.7 P 1.9 V DDC B C P 3.0 P 3. 13 P 0.1 P 0.0 P 0. 13 P 0. 15 P 4.4 P 4.6 P 4.7 P 1.4 P 1.2 P 1.3 C D US B_D P 3. 12 M P 3. 11 P 0.9 P 0. 12 P 3. 14 P 3. 15 P 4.5 P 1.0 P 1.5 P 1. 11 P 1. 10 D E US B_D V B US P P 3.8 P 3.7 P 0. 11 P 0. 14 P 3.4 P 4.2 P 1.1 P 1. 14 P 1. 12 P 1. 13 E F RTC_X RTC_X HIB _I TA L2 TA L1 O_1 HIB _I O_0 P 3.9 P 3. 10 P 3.3 P 4.3 P 6.1 P 6.4 P 6.5 P 6.6 F G V B A T P 15. 3 P 15. 4 P 15. 6 P 15. 7 TMS TCK P 6.3 P 6.0 P ORS T P 1. 15 G H P 15. 2 P 14.15 P 14.14 P 14.13 P 5. 10 P 5.8 P 5.2 P 5.1 P 5.0 P 6.2 X TA L1 X TA L2 H P 5. 11 P 2. 15 P 5.7 P 5.5 P 2.6 P 5.3 P 2.0 VSSO J P 15. 5 J P 14.12 P 14. 7 P 14. 6 K P 14. 4 P 14. 5 P 14. 2 P 15.15 P 15.12 P 5.9 P 2. 14 P 5.6 P 2.7 P 5.4 P 2.2 P 2.1 K L V DDA P 14. 1 P 14. 0 P 15.14 P 14. 9 P 15. 9 P 2. 12 P 2. 10 P 2.8 P 2.4 P 2.3 V DDP L M V S S A V A GND V A RE F P 15.13 P 14. 8 P 15. 8 P 2. 13 P 2. 11 P 2.9 P 2.5 V DDC VSS M 5 6 7 8 9 10 11 12 1 2 3 P 14. 3 4 XMC4500- (top view) Figure 6 Data Sheet XMC4500 PG-LFBGA-144 Pin Configuration (top view) 18 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 P 0.2 P 0.3 P 0.4 P 0.5 P 0.6 P 0.11 P 0.12 P 3.3 P 3.4 P 3.5 P 3.6 P 0.7 P 0.8 V DDP V DDC P 4.0 P 4.1 P 1.6 P 1.7 P 1.8 P 1.9 P 1.0 P 1.1 P 1.2 P 1.3 General Device Information 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 XMC4500 (Top View) 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P1. 4 P1. 5 P1. 10 P1. 11 P1. 12 P1. 13 P1. 14 P1. 15 TCK TMS P ORS T V DDC VSSO X TA L2 X TA L1 V DDP VSS P5. 0 P5. 1 P5. 2 P5. 7 P2. 6 P2. 7 P2. 0 P2. 1 P 14.5 P 14.4 P 14.3 P 14.2 P 14.1 P 14.0 V A GND VA REF V SS A VDDA P 14.9 P 14.8 P 15.9 P 15.8 P 2.15 P 2.14 V DDC VDDP P 2.10 P 2.9 P 2.8 P 2.5 P 2.4 P 2.3 P 2.2 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 P0. 1 P0. 0 P0. 10 P0. 9 P3. 2 P3. 1 P3. 0 US B_DM US B_DP V B US V DDP V DDC HIB _IO _1 HIB _IO _0 RTC_X TA L1 RTC_X TA L2 VBAT P15. 3 P15. 2 P14. 15 P14. 14 P14. 13 P14. 12 P14. 7 P14. 6 Figure 7 Data Sheet XMC4500 PG-LQFP-100 Pin Configuration (top view) 19 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family General Device Information 2.2.1 Package Pin Summary The following general scheme is used to describe each pin: Table 8 Package Pin Mapping Description Function Package A Package B ... Pad Type Name N Ax ... A2 Notes The table is sorted by the “Function” column, starting with the regular Port pins (Px.y), followed by the dedicated pins (i.e. PORST) and supply pins. The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package. The “Pad Type” indicates the employed pad type (A1, A1+, A2, special=special pad, In=input pad, AN/DIG_IN=analog and digital input, Power=power supply). Details about the pad properties are defined in the Electrical Parameters. In the “Notes”, special information to the respective pin/function is given, i.e. deviations from the default configuration after reset. Per default the regular Port pins are configured as direct input with no internal pull device active. Table 9 Package Pin Mapping Function LQFP-144 LFBGA-144 LQFP-100 Pad Type P0.0 2 C4 P0.1 1 P0.2 144 P0.3 P0.4 P0.5 2 A1+ C3 1 A1+ A3 100 A2 143 A4 99 A2 142 B5 98 A2 141 A5 97 A2 Notes P0.6 140 A6 96 A2 P0.7 128 B7 89 A2 After a system reset, via HWSEL this pin selects the DB.TDI function. P0.8 127 A8 88 A2 After a system reset, via HWSEL this pin selects the DB.TRST function, with a weak pull-down active. P0.9 4 D4 4 A2 P0.10 3 B4 3 A1+ Data Sheet 20 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family General Device Information Table 9 Package Pin Mapping (cont’d) Function LQFP-144 LFBGA-144 LQFP-100 Pad Type P0.11 139 E5 95 A1+ P0.12 138 D5 94 A1+ P0.13 137 C5 - A1+ P0.14 136 E6 - A1+ P0.15 135 C6 - A1+ P1.0 112 D9 79 A1+ P1.1 111 E9 78 A1+ P1.2 110 C11 77 A2 P1.3 109 C12 76 A2 P1.4 108 C10 75 A1+ P1.5 107 D10 74 A1+ P1.6 116 B9 83 A2 P1.7 115 B10 82 A2 P1.8 114 A10 81 A2 P1.9 113 B11 80 A2 P1.10 106 D12 73 A1+ P1.11 105 D11 72 A1+ P1.12 104 E11 71 A2 P1.13 103 E12 70 A2 P1.14 102 E10 69 A2 P1.15 94 G12 68 A2 P2.0 74 J11 52 A2 P2.1 73 K12 51 A2 P2.2 72 K11 50 A2 P2.3 71 L11 49 A2 P2.4 70 L10 48 A2 P2.5 69 M10 47 A2 P2.6 76 J9 54 A1+ P2.7 75 K9 53 A1+ P2.8 68 L9 46 A2 P2.9 67 M9 45 A2 Data Sheet 21 Notes After a system reset, via HWSEL this pin selects the DB.TDO function. V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family General Device Information Table 9 Package Pin Mapping (cont’d) Function LQFP-144 LFBGA-144 LQFP-100 Pad Type P2.10 66 L8 44 P2.11 65 M8 - A2 P2.12 64 L7 - A2 A2 P2.13 63 M7 - A2 P2.14 60 K7 41 A2 P2.15 59 J6 40 A2 P3.0 7 C1 7 A2 P3.1 6 B2 6 A2 P3.2 5 B3 5 A2 P3.3 132 F7 93 A1+ P3.4 131 E7 92 A1+ P3.5 130 B6 91 A2 P3.6 129 A7 90 A2 P3.7 14 E4 - A1+ P3.8 13 E3 - A1+ P3.9 12 F5 - A1+ P3.10 11 F6 - A1+ P3.11 10 D3 - A1+ P3.12 9 D2 - A2 P3.13 8 C2 - A2 P3.14 134 D6 - A1+ P3.15 133 D7 - A1+ P4.0 124 B8 85 A2 P4.1 123 A9 84 A2 P4.2 122 E8 - A1+ P4.3 121 F8 - A1+ P4.4 120 C7 - A1+ P4.5 119 D8 - A1+ P4.6 118 C8 - A1+ P4.7 117 C9 - A1+ P5.0 84 H9 58 A1+ P5.1 83 H8 57 A1+ P5.2 82 H7 56 A1+ Data Sheet Notes 22 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family General Device Information Table 9 Package Pin Mapping (cont’d) Function LQFP-144 LFBGA-144 LQFP-100 Pad Type P5.3 81 J10 - P5.4 80 K10 - A2 P5.5 79 J8 - A2 P5.6 78 K8 - A2 P5.7 77 J7 55 A1+ A2 P5.8 58 H6 - A2 P5.9 57 K6 - A2 P5.10 56 H5 - A1+ P5.11 55 J5 - A1+ P6.0 101 G10 - A2 P6.1 100 F9 - A2 P6.2 99 H10 - A2 P6.3 98 G9 - A1+ P6.4 97 F10 - A2 P6.5 96 F11 - A2 P6.6 95 F12 - A2 P14.0 42 L3 31 AN/DIG_IN P14.1 41 L2 30 AN/DIG_IN P14.2 40 K3 29 AN/DIG_IN P14.3 39 J4 28 AN/DIG_IN P14.4 38 K1 27 AN/DIG_IN P14.5 37 K2 26 AN/DIG_IN P14.6 36 J3 25 AN/DIG_IN P14.7 35 J2 24 AN/DIG_IN P14.8 52 M5 37 AN/DAC/DI G_IN P14.9 51 L5 36 AN/DAC/DI G_IN P14.12 34 J1 23 AN/DIG_IN P14.13 33 H4 22 AN/DIG_IN P14.14 32 H3 21 AN/DIG_IN P14.15 31 H2 20 AN/DIG_IN P15.2 30 H1 19 AN/DIG_IN Data Sheet Notes 23 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family General Device Information Table 9 Package Pin Mapping (cont’d) Function LQFP-144 LFBGA-144 LQFP-100 Pad Type P15.3 29 G2 18 P15.4 28 G4 - AN/DIG_IN P15.5 27 G3 - AN/DIG_IN Notes AN/DIG_IN P15.6 26 G5 - AN/DIG_IN P15.7 25 G6 - AN/DIG_IN P15.8 54 M6 39 AN/DIG_IN P15.9 53 L6 38 AN/DIG_IN P15.12 50 K5 - AN/DIG_IN AN/DIG_IN P15.13 49 M4 - P15.14 44 L4 - AN/DIG_IN P15.15 43 K4 - AN/DIG_IN USB_DP 16 E1 9 special USB_DM 15 D1 8 special HIB_IO_0 21 F4 14 A1 special At the first power-up and with every reset of the hibernate domain this pin is configured as opendrain output and drives "0". As output the medium driver mode is active. HIB_IO_1 20 F3 13 A1 special At the first power-up and with every reset of the hibernate domain this pin is configured as input with no pull device active. As output the medium driver mode is active. TCK 93 G8 67 A1 Weak pull-down active. TMS 92 G7 66 A1+ Weak pull-up active. As output the strong-soft driver mode is active. PORST 91 G11 65 special Weak pull-up permanently active, strong pull-down controlled by EVR. XTAL1 87 H11 61 clock_IN XTAL2 88 H12 62 clock_O Data Sheet 24 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family General Device Information Table 9 Package Pin Mapping (cont’d) Function LQFP-144 LFBGA-144 LQFP-100 Pad Type RTC_XTAL1 22 F2 15 RTC_XTAL2 23 F1 16 clock_O VBAT 24 G1 17 Power VBUS 17 E2 10 special VAREF 46 M3 33 AN_Ref clock_IN VAGND 45 M2 32 AN_Ref VDDA 48 L1 35 AN_Power VSSA 47 M1 34 AN_Power VDDC 19 - 12 Power VDDC 61 - 42 Power VDDC 90 - 64 Power VDDC 125 - 86 Power VDDC - A2 - Power VDDC - B12 - Power VDDC - M11 - Power VDDP 18 - 11 Power VDDP 62 - 43 Power VDDP 86 - 60 Power VDDP 126 - 87 Power VDDP - A11 - Power VDDP - B1 - Power VDDP - L12 - Power VSS 85 - 59 Power VSS - A1 - Power VSS - A12 - Power VSS - M12 - Power Data Sheet Notes 25 When VDDP is supplied VBAT has to be supplied as well. V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family General Device Information Table 9 Package Pin Mapping (cont’d) Function LQFP-144 LFBGA-144 LQFP-100 Pad Type VSSO 89 J12 63 Power VSS Exp. Pad - Exp. Pad Power Data Sheet 26 Notes Exposed Die Pad The exposed die pad is connected internally to VSS. For proper operation, it is mandatory to connect the exposed pad directly to the common ground on the board. For thermal aspects, please refer to the Data Sheet. Board layout examples are given in an application note. V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family General Device Information 2.2.2 Port I/O Functions The following general scheme is used to describe each Port pin: Table 10 Port I/O Function Description Function Outputs ALT1 ALTn P0.0 Pn.y Inputs HWO0 HWI0 Input MODA.OUT MODB.OUT MODB.INA MODA.OUT Input MODC.INA MODA.INA MODC.INB Pn.y XMC4000 Control Logic PAD Input 0 MODA.INA MODA MODB VDDP ... Input n HWI0 HWI1 Pn.y SW MODB.OUT ALT1 ... ALTn HWO0 HWO1 Figure 8 GND Simplified Port Structure Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT defines the output value. Up to four alternate output functions (ALT1/2/3/4) can be mapped to a single port pin, selected by Pn_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad). The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources. The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin. By Pn_HWSEL it is possible to select between different hardware “masters” (HWO0/HWI0, HWO1/HWI1). The selected peripheral can take control of the pin(s). Hardware control overrules settings in the respective port pin registers. Data Sheet 27 V1.4, 2016-01 Subject to Agreement on the Use of Product Information Data Sheet 2.2.2.1 Port I/O Function Table Table 11 Port I/O Functions Function Outputs ALT1 P0.0 P0.1 USB. DRIVEVBUS P0.2 Inputs ALT2 ALT3 ALT4 CAN. N0_TXD CCU80. OUT21 LEDTS0. COL2 U1C1. DOUT0 CCU80. OUT11 LEDTS0. COL3 U1C1. SELO1 CCU80. OUT01 U1C0. DOUT3 EBU. AD0 U1C0. HWIN3 EBU. D0 ETH0. RXD0B CCU80. OUT20 U1C0. DOUT2 EBU. AD1 U1C0. HWIN2 EBU. D1 ETH0. RXD1B P0.3 HWO0 HWO1 HWI0 HWI1 Input Input Input U1C1. DX0D ETH0. CLK_RMIIB ERU0. 0B0 ETH0. CLKRXB ETH0. CRS_DVB ERU0. 0A0 ETH0. RXDVB CCU80. OUT10 U1C0. DOUT1 EBU. AD2 U1C0. HWIN1 EBU. D2 U1C0. DX0A ETH0. TXD0 U1C0. DOUT0 CCU80. OUT00 U1C0. DOUT0 EBU. AD3 U1C0. HWIN0 EBU. D3 U1C0. DX0B P0.6 ETH0. TXD1 U1C0. SELO0 CCU80. OUT30 P0.7 WWDT. SERVICE_OUT U0C0. SELO0 P0.8 SCU. EXTCLK 28 ETH0. TX_EN ETH0. MDC CCU80. OUT12 LEDTS0. COL0 U1C1. SCLKOUT CCU80. OUT02 LEDTS0. COL1 P0.11 U1C0. SCLKOUT CCU80. OUT31 P0.12 U1C1. SELO0 CCU40. OUT3 P0.13 U1C1. SCLKOUT CCU40. OUT2 P0.14 U1C0. SELO1 CCU40. OUT1 U1C0. SELO2 CCU40. OUT0 U0C0. SELO0 CCU40. OUT3 ERU1. PDOUT3 P1.1 DSD. CGPWMP U0C0. SCLKOUT CCU40. OUT2 ERU1. PDOUT2 CCU40. OUT1 ERU1. PDOUT1 P1.3 P1.4 WWDT. SERVICE_OUT CCU80. IN2B DB. TDI EBU. D6 U0C0. DX2B DSD. DIN1A ERU0. 2B1 CCU80. IN0A EBU. AD7 DB. TRST EBU. D7 U0C0. DX1B DSD. DIN0A ERU0. 2A1 CCU80. IN1B EBU. CS1 ETH0. MDIA U1C1. DX2A USB. ID ERU0. 1B0 ETH0. RXERB EBU. HLDA EBU. HLDA DSD. CGPWMN U1C1. DOUT3 U1C1. HWIN3 U1C1. DOUT2 U1C1. HWIN2 EBU. AD14 EBU. AD15 U0C0. MCLKOUT CCU40. OUT0 ERU1. PDOUT0 U0C0. DOUT2 CCU80. OUT33 CCU81. OUT20 U0C0. DOUT1 U1C0. DX1A ERU0. 3A2 U1C1. DX2B ERU0. 2B2 U1C1. DX1B ERU0. 2A2 CCU42. IN2C U0C0. DX1A U0C0. HWIN3 EBU. D14 U0C0. HWIN2 EBU. D15 U0C0. HWIN1 CCU80. IN2A CCU80. IN3A CCU42. IN3C SDMMC. SDWC U0C0. DOUT3 CCU80. IN1A ERU0. 1A0 U0C0. DX2A CAN. N0_TXD ERU1. 3A0 ERU0. 3B2 EBU. AD6 EBU. BREQ Input ERU0. 2B3 U1C0. DX2A U1C1. DX1A SDMMC. RST P1.0 P1.2 ETH0. MDO Input ERU0. 3B0 POSIF0. IN2A POSIF0. IN1A CAN. N1_RXDD CCU40. IN2A ERU1. 2B0 POSIF0. IN0A U0C0. DX0B CCU40. IN3A ERU0. 3A0 ERU1. 2A0 ERU0. 2B0 CCU40. IN1A CCU40. IN0A CCU41. IN0C XMC4500 XMC4000 Family P0.15 V1.4, 2016-01 Subject to Agreement on the Use of Product Information P0.10 U0C0. SCLKOUT U1C1. SELO0 Input ERU1. 3B0 P0.5 P0.9 Input ERU0. 3B3 P0.4 EBU. ADV Input Data Sheet Table 11 Port I/O Functions Function P1.5 (cont’d) Outputs Inputs ALT1 ALT2 ALT3 ALT4 HWO0 CAN. N1_TXD U0C0. DOUT0 CCU80. OUT23 CCU81. OUT10 U0C0. DOUT0 HWO1 HWI0 HWI1 U0C0. HWIN0 P1.6 U0C0. SCLKOUT SDMMC. DATA1_OUT EBU. AD10 SDMMC. DATA1_IN EBU. D10 P1.7 U0C0. DOUT0 DSD. MCLK2 SDMMC. DATA2_OUT EBU. AD11 SDMMC. DATA2_IN EBU. D11 P1.8 U0C0. SELO1 DSD. MCLK1 SDMMC. DATA4_OUT EBU. AD12 SDMMC. DATA4_IN EBU. D12 P1.9 CAN. N2_TXD SDMMC. DATA5_OUT EBU. AD13 SDMMC. DATA5_IN EBU. D13 P1.10 ETH0. MDC P1.11 U0C0. SCLKOUT CCU81. OUT21 U0C0. SELO0 CCU81. OUT11 ETH0. MDO CAN. N1_TXD CCU81. OUT01 SDMMC. DATA6_OUT EBU. AD16 SDMMC. DATA6_IN EBU. D16 U0C1. SELO3 CCU81. OUT20 SDMMC. DATA7_OUT EBU. AD17 SDMMC. DATA7_IN EBU. D17 P1.14 ETH0. TXD1 U0C1. SELO2 CCU81. OUT10 P1.15 SCU. EXTCLK EBU. AD18 LEDTS0. COL1 ETH0. MDO EBU. AD20 P2.1 CCU81. OUT11 DSD. CGPWMP LEDTS0. COL0 DB.TDO/ TRACESWO EBU. AD21 29 DSD. CGPWMN Input Input CAN. N0_RXDA ERU0. 2A0 ERU1. 0A0 CCU41. IN1C DSD. DIN2B Input Input DSD. DIN2A DSD. MCLK2A CAN. N2_RXDA DSD. MCLK1A DSD. MCLK0A CCU41. IN3C ETH0. TXD0 CCU81. OUT00 Input U0C0. DX0A CCU41. IN2C ETH0. TX_EN CCU81. OUT21 Input ETH0. MDIC P1.12 DSD. MCLK2 Input SDMMC. SDCD P1.13 P2.0 Input CAN. N1_RXDC EBU. D18 EBU. AD19 EBU. D19 DSD. MCLK2B EBU. D20 ERU1. 1A0 ERU0. 0B3 EBU. D21 ETH0. CLK_RMIIA CCU40. IN1C ERU1. 0B0 CCU40. IN0C ETH0. CLKRXA P2.2 VADC. EMUX00 CCU81. OUT01 CCU41. OUT3 LEDTS0. LINE0 LEDTS0. EXTENDED0 EBU. AD22 LEDTS0. TSIN0A EBU. D22 ETH0. RXD0A U0C1. DX0A ERU0. 1B2 P2.3 VADC. EMUX01 U0C1. SELO0 CCU41. OUT2 LEDTS0. LINE1 LEDTS0. EXTENDED1 EBU. AD23 LEDTS0. TSIN1A EBU. D23 ETH0. RXD1A U0C1. DX2A ERU0. 1A2 POSIF1. IN2A P2.4 VADC. EMUX02 U0C1. SCLKOUT CCU41. OUT1 LEDTS0. LINE2 LEDTS0. EXTENDED2 EBU. AD24 LEDTS0. TSIN2A EBU. D24 ETH0. RXERA U0C1. DX1A ERU0. 0B2 POSIF1. IN1A CCU41. IN1A P2.5 ETH0. TX_EN U0C1. DOUT0 CCU41. OUT0 LEDTS0. LINE3 LEDTS0. EXTENDED3 EBU. AD25 LEDTS0. TSIN3A EBU. D25 ETH0. RXDVA U0C1. DX0B ERU0. 0A2 POSIF1. IN0A CCU41. IN0A P2.6 U2C0. SELO4 CCU80. OUT13 LEDTS0. COL3 U2C0. DOUT3 DSD. DIN1B CAN. N1_RXDA ERU0. 1B3 P2.7 ETH0. MDC CCU80. OUT03 LEDTS0. COL2 P2.8 ETH0. TXD0 CCU80. OUT32 LEDTS0. LINE4 LEDTS0. EXTENDED4 EBU. AD26 LEDTS0. TSIN4A EBU. D26 DAC. TRIGGER5 CCU40. IN0B CCU40. IN1B CCU40. IN2B CCU40. IN3B P2.9 ETH0. TXD1 CCU80. OUT22 LEDTS0. LINE5 LEDTS0. EXTENDED5 EBU. AD27 LEDTS0. TSIN5A EBU. D27 DAC. TRIGGER4 CCU41. IN0B CCU41. IN1B CCU41. IN2B CCU41. IN3B P2.10 VADC. EMUX10 DB. ETM_TRACEDA TA3 EBU. AD28 EBU. D28 P2.11 ETH0. TXER DB. ETM_TRACEDA TA2 EBU. AD29 EBU. D29 CAN. N1_TXD CCU80. OUT22 U2C0. HWIN3 DSD. DIN0B CCU41. IN3A CCU41. IN2A ETH0. CRS_DVA CCU40. IN3C ERU1. 1B0 CCU40. IN2C XMC4500 XMC4000 Family V1.4, 2016-01 Subject to Agreement on the Use of Product Information ETH0. MDIB Data Sheet Table 11 Port I/O Functions Function ALT1 P2.12 ETH0. TXD2 P2.13 ETH0. TXD3 P2.14 VADC. EMUX11 P2.15 VADC. EMUX12 P3.0 U2C1. SELO0 P3.1 P3.2 (cont’d) Outputs ALT2 U1C0. DOUT0 ALT4 HWO0 HWO1 CCU81. OUT33 ETH0. TXD0 DB. ETM_TRACEDA TA1 EBU. AD30 EBU. D30 CCU43. IN3C ETH0. TXD1 DB. ETM_TRACEDA TA0 EBU. AD31 EBU. D31 CCU43. IN2C CCU80. OUT21 CCU80. OUT11 U0C1. SCLKOUT Inputs ALT3 USB. DRIVEVBUS LEDTS0. LINE6 LEDTS0. EXTENDED6 CCU42. OUT0 CAN. N0_TXD LEDTS0. COLA U1C1. SELO1 CCU42. OUT3 HWI1 Input DB. EBU. ETM_TRACECLK BC0 U0C1. SELO0 P3.3 HWI0 EBU. BC1 LEDTS0. TSIN6A ETH0. COLA EBU. RD U0C1. DX1B EBU. RD_WR U0C1. DX2B Input Input Input EBU. HOLD U2C1. DX0B CCU43. IN2B CCU43. IN3B U1C0. DX0C CCU42. IN0B CCU42. IN1B CCU42. IN2B CCU42. IN3B CCU80. IN2C CCU81. IN0C ERU0. 0B1 CCU80. IN1C CCU80. IN0C DSD. DIN3B CCU42. IN3A CCU80. IN3B DSD. MCLK3B CCU42. IN2A CCU80. IN0B 30 U2C1. MCLKOUT U1C1. SELO2 CCU42. OUT2 DSD. MCLK3 SDMMC. BUS_POWER P3.5 U2C1. DOUT0 U1C1. SELO3 CCU42. OUT1 U0C1. DOUT0 SDMMC. CMD_OUT EBU. AD4 SDMMC. CMD_IN EBU. D4 U2C1. DX0A ERU0. 3B1 CCU42. IN1A P3.6 U2C1. SCLKOUT SDMMC. CLK_OUT EBU. AD5 SDMMC. CLK_IN EBU. D5 U2C1. DX1B ERU0. 3A1 CCU42. IN0A CCU42. OUT0 U0C1. SCLKOUT CCU41. OUT3 LEDTS0. LINE0 U2C0. DX0C CAN. N2_RXDB P3.8 U2C0. DOUT0 U0C1. SELO3 CCU41. OUT2 LEDTS0. LINE1 P3.9 U2C0. SCLKOUT CAN. N1_TXD CCU41. OUT1 LEDTS0. LINE2 P3.10 U2C0. SELO0 CAN. N0_TXD CCU41. OUT0 LEDTS0. LINE3 U0C1. DOUT3 U0C1. HWIN3 P3.11 U2C1. DOUT0 U0C1. SELO2 CCU42. OUT3 LEDTS0. LINE4 U0C1. DOUT2 U0C1. HWIN2 CAN. N1_RXDB U0C1. SELO1 CCU42. OUT2 LEDTS0. LINE5 U0C1. DOUT1 U0C1. HWIN1 CAN. N0_RXDC U0C1. DOUT0 CCU42. OUT1 LEDTS0. LINE6 U0C1. DOUT0 U0C1. HWIN0 U0C1. DX0D U1C1. DOUT1 U1C1. HWIN1 P3.12 U2C1. SCLKOUT P3.14 U1C0. SELO3 P3.15 U1C1. DOUT0 P4.0 P4.1 U2C1. SELO0 P4.2 U2C1. SELO1 DSD. MCLK0 U1C1. DOUT0 POSIF1. IN1B U1C1. DOUT0 DSD. MCLK1 U0C1. SELO0 U2C1. SCLKOUT POSIF1. IN2B POSIF1. IN0B CCU81. IN3C U2C1. DX0D CCU81. IN2C CCU80. IN3C U1C1. DX0B U1C1. HWIN0 CCU42. IN1C U1C1. DX0A SDMMC. DATA0_OUT EBU. AD8 SDMMC. DATA0_IN EBU. D8 SDMMC. DATA3_OUT EBU. AD9 SDMMC. DATA3_IN EBU. D9 U1C1. DX1C DSD. MCLK1B U2C1. DX2B DSD. MCLK0B U1C1. DX0C CCU42. IN0C U0C1. DX0E U2C1. DX0C U2C1. DX2A U2C1. DX1A CCU43. IN1C CCU81. IN1C XMC4500 XMC4000 Family P3.13 V1.4, 2016-01 Subject to Agreement on the Use of Product Information U1C1. SELO4 CAN. N2_TXD Input CCU43. IN1B P3.4 P3.7 Input CCU43. IN0B ERU0. 0A1 EBU. WAIT Input U1C0. DX0D EBU. CS0 SDMMC. LED Input Data Sheet Table 11 Port I/O Functions Function (cont’d) Outputs ALT2 ALT3 U2C1. SELO2 U0C0. SELO5 CCU43. OUT3 P4.4 U0C0. SELO4 CCU43. OUT2 U2C1. DOUT3 U2C1. HWIN3 CCU43. IN2A P4.5 U0C0. SELO3 CCU43. OUT1 U2C1. DOUT2 U2C1. HWIN2 CCU43. IN1A P4.6 U0C0. SELO2 CCU43. OUT0 U2C1. DOUT1 U2C1. HWIN1 CAN. N2_RXDC P4.7 CAN. N2_TXD U2C1. DOUT0 U2C1. HWIN0 U0C0. DX0C P4.3 ALT4 Inputs ALT1 HWO0 HWO1 HWI0 HWI1 Input Input CCU81. OUT33 U2C0. DOUT0 U2C0. HWIN0 U2C0. DX0B ETH0. RXD0D P5.1 U0C0. DOUT0 DSD. CGPWMP CCU81. OUT32 U2C0. DOUT1 U2C0. HWIN1 U2C0. DX0A ETH0. RXD1D P5.2 U2C0. SCLKOUT CCU81. OUT23 P5.3 U2C0. SELO0 CCU81. OUT22 EBU. CKE EBU. A20 P5.4 U2C0. SELO1 CCU81. OUT13 EBU. RAS EBU. A21 U2C0. SELO2 CCU81. OUT12 EBU. CAS EBU. A22 U2C0. SELO3 CCU81. OUT03 EBU. BFCLKO EBU. A23 31 P5.5 P5.6 CCU80. OUT01 P5.9 U1C0. SELO0 CCU80. OUT20 P5.10 U1C0. MCLKOUT CCU80. OUT10 P5.11 LEDTS0. COLA U2C0. DOUT2 U0C0. DX0D CCU81. IN0A Input CCU81. IN1A CCU81. IN2A CCU81. IN3A CCU81. IN0B U2C0. DX1A ETH0. CRS_DVD CCU81. IN1B U2C0. DX2A ETH0. RXERD CCU81. IN2B ETH0. CRSD CCU81. IN3B ETH0. RXDVD ETH0. COLD EBU. BFCLKI U2C0. HWIN2 EBU. SDCLKO EBU. CS2 ETH0. TX_EN EBU. BFCLKO EBU. CS3 LEDTS0. LINE7 LEDTS0. EXTENDED7 LEDTS0. TSIN7A ETH0. RXD2A U1C0. DX1B ETH0. RXD3A U1C0. DX2B ETH0. CLK_TXA U1C0. SELO1 CCU80. OUT00 P6.0 ETH0. TXD2 U0C1. SELO1 CCU81. OUT31 DB. EBU. ETM_TRACECLK A16 P6.1 ETH0. TXD3 U0C1. SELO0 CCU81. OUT30 DB. ETM_TRACEDA TA3 EBU. A17 U0C1. DX2C P6.2 ETH0. TXER U0C1. SCLKOUT CCU43. OUT3 DB. ETM_TRACEDA TA2 EBU. A18 U0C1. DX1C P6.3 Input ETH0. CRSA CCU43. OUT2 U0C1. DX0C ETH0. RXD3B P6.4 U0C1. DOUT0 CCU43. OUT1 EBU. SDCLKO EBU. A19 EBU. SDCLKI ETH0. RXD2B P6.5 U0C1. MCLKOUT CCU43. OUT0 DB. ETM_TRACEDA TA1 EBU. BC2 DSD. DIN3A ETH0. CLK_RMIID ETH0. CLKRXD XMC4500 XMC4000 Family V1.4, 2016-01 Subject to Agreement on the Use of Product Information CCU81. OUT02 Input CCU43. IN0C DSD. CGPWMN U1C0. SCLKOUT Input CCU43. IN0A U2C0. DOUT0 P5.8 Input CCU43. IN3A P5.0 P5.7 Input Data Sheet Table 11 Port I/O Functions Function ALT1 P6.6 (cont’d) Outputs ALT2 ALT3 DSD. MCLK3 ALT4 Inputs HWO0 HWO1 DB. ETM_TRACEDA TA0 EBU. BC3 HWI0 HWI1 Input Input DSD. MCLK3A ETH0. CLK_TXB P14.0 VADC. G0CH0 P14.1 VADC. G0CH1 Input Input Input Input Input P14.2 VADC. G0CH2 VADC. G1CH2 P14.3 VADC. G0CH3 VADC. G1CH3 P14.4 VADC. G0CH4 VADC. G2CH0 P14.5 VADC. G0CH5 VADC. G2CH1 P14.6 VADC. G0CH6 POSIF0. IN1B G0ORC6 P14.7 VADC. G0CH7 POSIF0. IN0B G0ORC7 CAN. N0_RXDB POSIF0. IN2B 32 P14.8 DAC. OUT_0 VADC. G1CH0 VADC. G3CH2 ETH0. RXD0C P14.9 DAC. OUT_1 VADC. G1CH1 VADC. G3CH3 ETH0. RXD1C VADC. G1CH4 P14.13 VADC. G1CH5 P14.14 VADC. G1CH6 P14.15 VADC. G1CH7 G1ORC6 G1ORC7 P15.2 VADC. G2CH2 P15.3 VADC. G2CH3 P15.4 VADC. G2CH4 P15.5 VADC. G2CH5 P15.6 VADC. G2CH6 P15.7 VADC. G2CH7 P15.8 VADC. G3CH0 ETH0. CLK_RMIIC ETH0. CLKRXC P15.9 VADC. G3CH1 ETH0. CRS_DVC ETH0. RXDVC XMC4500 XMC4000 Family V1.4, 2016-01 Subject to Agreement on the Use of Product Information P14.12 Input Data Sheet Table 11 Port I/O Functions Function (cont’d) Outputs ALT1 ALT2 ALT3 ALT4 Inputs HWO0 HWO1 HWI0 HWI1 Input Input Input Input P15.12 VADC. G3CH4 P15.13 VADC. G3CH5 P15.14 VADC. G3CH6 P15.15 VADC. G3CH7 Input Input U2C0. DX0F U2C1. DX0F Input Input USB_DP USB_DM HIB_IO_0 HIBOUT WWDT. SERVICE_OUT HIB_IO_1 HIBOUT WWDT. SERVICE_OUT WAKEUPA WAKEUPB TCK TMS DB.TCK/ SWCLK DB.TMS/ SWDIO PORST XTAL1 33 U0C0. DX0F U0C1. DX0F U1C0. DX0F U1C1. DX0F XTAL2 ERU0. 1B1 RTC_XTAL2 XMC4500 XMC4000 Family V1.4, 2016-01 Subject to Agreement on the Use of Product Information RTC_XTAL1 XMC4500 XMC4000 Family 2.3 Power Connection Scheme Figure 9. shows a reference power connection scheme for the XMC4500. XMC4000 VBAT Hibernate domain 2.1...3.6 V Hibernate control Retention Memory RTC 32 kHz Clock GND M x VDDC Core Domain 100 nF x M Dig. Peripherals GPIOs 10 µF x 1 CPU RAMs Level shift. GND 3.3V N x VDDP 100 nF x N EVR FLASH VSS 10 µF x 1 Exp. Die Pad VSS GND Reference VAREF 100 nF VAGND 3.3V AGND 100 nF PAD Domain Analog Domain ADC DAC Out-of-range comparator VDDA VSSA GND Figure 9 Power Connection Scheme Every power supply pin needs to be connected. Different pins of the same supply need also to be externally connected. As example, all VDDP pins must be connected externally to one VDDP net. In this reference scheme one 100 nF capacitor is connected at each supply pin against VSS. An additional 10 µF capacitor is connected to the VDDP nets and an additional 10 uF capacitor to the VDDC nets. Data Sheet 34 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family The XMC4500 has a common ground concept, all VSS, VSSA and VSSO pins share the same ground potential. In packages with an exposed die pad it must be connected to the common ground as well. VAGND is the low potential to the analog reference VAREF. Depending on the application it can share the common ground or have a different potential. When VDDP is supplied, VBAT must be supplied as well. If no other supply source (e.g. battery) is connected to VBAT, the VBAT pin can also be connected directly to VDDP. Data Sheet 35 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3 Electrical Parameters 3.1 General Parameters 3.1.1 Parameter Interpretation The parameters listed in this section partly represent the characteristics of the XMC4500 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are marked with a two-letter abbreviation in column “Symbol”: • • CC Such parameters indicate Controller Characteristics, which are a distinctive feature of the XMC4500 and must be regarded for system design. SR Such parameters indicate System Requirements, which must be provided by the application system in which the XMC4500 is designed in. Data Sheet 36 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.1.2 Absolute Maximum Ratings Stresses above the values listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Table 12 Absolute Maximum Rating Parameters Parameter Symbol Values Min. Typ. Max. – 150 °C – − 150 °C – – 4.3 V – – VDDP + 1.0 or max. 4.3 V whichever is lower VAIN -1.0 – VAREF SR IIN SR -10 – VDDP + 1.0 or max. 4.3 V whichever is lower +10 mA +25 mA +100 mA TST SR -65 Junction temperature TJ SR -40 Voltage at 3.3 V power supply VDDP SR – pins with respect to VSS Voltage on any Class A and VIN SR -1.0 Storage temperature dedicated input pin with respect to VSS Voltage on any analog input pin with respect to VAGND Input current on any pin during overload condition Unit Note / Test Con dition Absolute maximum sum of all ΣIIN input circuit currents for one port group during overload condition1) SR -25 Absolute maximum sum of all ΣIIN input circuit currents during overload condition SR -100 – – 1) The port groups are defined in Table 16. Figure 10 explains the input voltage ranges of VIN and VAIN and its dependency to the supply level of VDDP.The input voltage must not exceed 4.3 V, and it must not be more than 1.0 V above VDDP. For the range up to VDDP + 1.0 V also see the definition of the overload conditions in Section 3.1.3. Data Sheet 37 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters V V 4.3 VDDP + 1.0 VDDP A B Figure 10 3.1.3 V SS VSS -1.0 -1.0 A Abs. max. input voltage VIN with VDDP > 3.3 V B Abs. max. input voltage VIN with VDDP ≤ 3.3 V Absolute Maximum Input Voltage Ranges Pin Reliability in Overload When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification. Table 13 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met: • • full operation life-time is not exceeded Operating Conditions are met for – pad supply levels (VDDP or VDDA) – temperature If a pin current is outside of the Operating Conditions but within the overload conditions, then the parameters of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters. Note: An overload condition on one or more pins does not require a reset. Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery. Data Sheet 38 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Table 13 Overload Parameters Parameter Symbol Min. Values Typ. Max. Unit Note / Test Condition -5 – 5 mA Input current on any port pin during overload condition IOV SR Absolute sum of all input circuit currents for one port group during overload condition1) IOVG SR – – 20 mA – – 20 mA Absolute sum of all input circuit currents during overload condition IOVS SR – – 80 mA Σ|IOVx|, for all IOVx < 0 mA Σ|IOVx|, for all IOVx > 0 mA ΣIOVG 1) The port groups are defined in Table 16. Figure 11 shows the path of the input currents during overload via the ESD protection structures. The diodes against VDDP and ground are a simplified representation of these ESD protection structures. VDDP VDDP Pn.y IOVx GND ESD Figure 11 GND Pad Input Overload Current via ESD structures Table 14 and Table 15 list input voltages that can be reached under overload conditions. Note that the absolute maximum input voltages as defined in the Absolute Maximum Ratings must not be exceeded during overload. Data Sheet 39 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Table 14 Pad Type A1 / A1+ A2 AN/DIG_IN Table 15 Pad Type A1 / A1+ A2 AN/DIG_IN Table 16 PN-Junction Characterisitics for positive Overload IOV = 5 mA, TJ = -40 °C VIN = VDDP + 1.0 V VIN = VDDP + 0.7 V VIN = VDDP + 1.0 V IOV = 5 mA, TJ = 150 °C VIN = VDDP + 0.75 V VIN = VDDP + 0.6 V VIN = VDDP + 0.75 V PN-Junction Characterisitics for negative Overload IOV = 5 mA, TJ = -40 °C VIN = VSS - 1.0 V VIN = VSS - 0.7 V VIN = VDDP - 1.0 V IOV = 5 mA, TJ = 150 °C VIN = VSS - 0.75 V VIN = VSS - 0.6 V VIN = VDDP - 0.75 V Port Groups for Overload and Short-Circuit Current Sum Parameters Group Pins 1 P0.[15:0], P3.[15:0] 2 P14.[15:0], P15.[15:0] 3 P2.[15:0], P5.[11:0] 4 P1.[15:0], P4.[7:0], P6.[6:0] Data Sheet 40 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.1.4 Pad Driver and Pad Classes Summary This section gives an overview on the different pad driver classes and their basic characteristics. Table 17 Pad Driver and Pad Classes Overview Class Power Type Supply Sub-Class Speed Grade Load A A1 (e.g. GPIO) 6 MHz 100 pF No A1+ (e.g. serial I/Os) 25 MHz 50 pF Series termination recommended A2 (e.g. ext. Bus) 80 MHz 15 pF Series termination recommended 3.3 V LVTTL I/O Termination V VDDP F E e oltag igh V ut H Outp D C B VOH A VOL w ut Lo Outp ge Volta VSS t Strong – sharp drive strength D B Strong – medium drive strength E Medium drive strength C Strong – soft drive strength F Weak drive strength A A B C C Figure 12 D E F Class A2 Pads E F Class A1+ Pads E F Class A1 Pads Strong – slow drive strength Output Slopes with different Pad Driver Modes Figure 12 is a qualitative display of the resulting output slope performance with different output driver modes. The detailed input and output characteristics are listed in Section 3.2.1. Data Sheet 41 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.1.5 Operating Conditions The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the XMC4500. All parameters specified in the following sections refer to these operating conditions, unless noted otherwise. Table 18 Operating Conditions Parameters Parameter Symbol Values Typ. Max. Unit Note / Test Condition SR -40 − 85 °C Temp. Range F -40 − 105 °C Temp. Range X -40 − 125 °C Temp. Range K Min. Ambient Temperature Digital supply voltage Core Supply Voltage TA 1) VDDP SR 3.13 −1) VDDC 3.3 3.63 1.3 − − − 2) V V CC VSS SR 0 Analog supply voltage VDDA SR 3.0 Analog ground voltage for VSSA SR -0.1 VDDA Battery Supply Voltage for VBAT SR 1.953) Digital ground voltage V 2) 3.3 3.6 0 0.1 V V − 3.63 V − 120 MHz − 5 mA Hibernate Domain System Frequency Short circuit current of digital outputs fSYS SR − ISC SR -5 Generated internally Absolute sum of short circuit currents per pin group4) ΣISC_PG SR − − 20 mA Absolute sum of short circuit currents of the device ΣISC_D SR − − 100 mA When VDDP is supplied VBAT has to be supplied as well. 1) See also the Supply Monitoring thresholds, Section 3.3.2. 2) Voltage overshoot to 4.0 V is permissible at Power-Up and PORST low, provided the pulse duration is less than 100 μs and the cumulated sum of the pulses does not exceed 1 h over lifetime. 3) To start the hibernate domain it is required that VBAT ≥ 2.1 V, for a reliable start of the oscillation of RTC_XTAL in crystal mode it is required that VBAT ≥ 3.0 V. 4) The port groups are defined in Table 16. Data Sheet 42 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.2 DC Parameters 3.2.1 Input/Output Pins The digital input stage of the shared analog/digital input pins is identical to the input stage of the standard digital input/output pins. The Pull-up on the PORST pin is identical to the Pull-up on the standard digital input/output pins. Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 19 Standard Pad Parameters Parameter Symbol Pull-Up current Unit − 10 pF |IPDL| CC 150 − μA 1) − 10 μA 2) |IPUH| CC − 10 μA 100 − μA − V HYSA 0.1 × CC VDDP PORST spike filter always blocked pulse duration tSF1 CC − 10 ns PORST spike filter pass-through pulse duration tSF2 CC 100 − ns PORST pull-down current |IPPD| CC 13 − mA Input Hysteresis for pads of all A classes3) Note / Test Condition Max. Pin capacitance (digital CIO CC inputs/outputs) Pull-down current Values Min. VIN ≥ 0.6 × VDDP VIN ≤ 0.36 × VDDP 2) VIN ≥ 0.6 × VDDP 1) VIN ≤ 0.36 × VDDP VIN = 1.0 V 1) Current required to override the pull device with the opposite logic level (“force current”). With active pull device, at load currents between force and keep current the input state is undefined. 2) Load current at which the pull device still maintains the valid logic level (“keep current”). With active pull device, at load currents between force and keep current the input state is undefined. 3) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can not be guaranteed that it suppresses switching due to external system noise. Data Sheet 43 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters V VDDP XMC4000 IN IPDL A IPDL ≥ 150 μA B IPDL ≤ 10 μA A Valid High 0.6 x VDDP Invalid digital input 0.36 x VDDP B Valid Low GND VSS Pull-down active V VDDP VDDP B Valid High 0.6 x VDDP B IN XMC4000 IPUH A IPUH ≤ 10 μA Invalid digital input 0.36 x VDDP IPUH ≥ 100 μA A Valid Low VSS Pull-up active Figure 13 Pull Device Input Characteristics Figure 13 visualizes the input characteristics with an active internal pull device: • • in the cases “A” the internal pull device is overridden by a strong external driver; in the cases “B” the internal pull device defines the input logical state against a weak external load. Data Sheet 44 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Table 20 Standard Pads Class_A1 Parameter Symbol Values Min. Input leakage current Input high voltage Input low voltage Output high voltage, POD1) = weak IOZA1 CC VIHA1 SR VILA1 SR VOHA1 CC Output high voltage, POD1) = medium Output low voltage VOLA1 Unit Max. nA Note / Test Condition 0 V ≤ VIN ≤ VDDP -500 500 0.6 × VDDP max. 3.6 V -0.3 VDDP + 0.3 V 0.36 × VDDP V VDDP - 0.4 − V 2.4 − V VDDP - 0.4 − V IOH ≥ -400 μA IOH ≥ -500 μA IOH ≥ -1.4 mA IOH ≥ -2 mA IOL ≤ 500 μA; 2.4 − V − 0.4 V POD1) = weak CC − 0.4 V IOL ≤ 2 mA; POD1) = medium tFA1 CC Fall time tRA1 CC Rise time − 150 ns CL = 20 pF; POD1) = weak − 50 ns CL = 50 pF; POD1) = medium − 150 ns CL = 20 pF; POD1) = weak − 50 ns CL = 50 pF; POD1) = medium Unit Note / Test Condition μA 0 V ≤ VIN ≤ VDDP 1) POD = Pin Out Driver Table 21 Standard Pads Class_A1+ Parameter Symbol Values Input leakage current IOZA1+ CC -1 VIHA1+ SR 0.6 × VDDP VILA1+ SR -0.3 Min. Input high voltage Input low voltage Data Sheet Max. 45 1 VDDP + 0.3 V 0.36 × VDDP V max. 3.6 V V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Table 21 Standard Pads Class_A1+ Parameter Symbol Values Min. Unit Note / Test Condition IOH ≥ -400 μA IOH ≥ -500 μA IOH ≥ -1.4 mA IOH ≥ -2 mA IOH ≥ -1.4 mA IOH ≥ -2 mA IOL ≤ 500 μA; Max. VOHA1+ VDDP - 0.4 − V CC 2.4 − V Output high voltage, POD1) = medium VDDP - 0.4 − V 2.4 − V Output high voltage, POD1) = strong VDDP - 0.4 − V 2.4 − V − 0.4 V Output high voltage, POD1) = weak Output low voltage VOLA1+ POD1) = weak CC − 0.4 V IOL ≤ 2 mA; POD1) = medium − 0.4 V IOL ≤ 2 mA; POD1) = strong Fall time tFA1+ CC − 150 ns CL = 20 pF; POD1) = weak − 50 ns CL = 50 pF; POD1) = medium − 28 ns CL = 50 pF; POD1) = strong; edge = slow − 16 ns CL = 50 pF; POD1) = strong; edge = soft; Rise time tRA1+ CC − 150 ns CL = 20 pF; POD1) = weak − 50 ns CL = 50 pF; POD1) = medium − 28 ns CL = 50 pF; POD1) = strong; edge = slow − 16 ns CL = 50 pF; POD1) = strong; edge = soft 1) POD = Pin Out Driver Data Sheet 46 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Table 22 Standard Pads Class_A2 Parameter Symbol Input Leakage current IOZA2 CC Input high voltage VIHA2 Values Unit Note / Test Condition Min. Max. -6 6 μA 0 V ≤ VIN < 0.5*VDDP - 1 V; 0.5*VDDP + 1 V <VIN ≤ VDDP -3 3 μA 0.5*VDDP - 1 V < VIN < 0.5*VDDP +1V 0.6 × VDDP VDDP + 0.3 V max. 3.6 V SR Input low voltage 0.36 × VILA2 SR -0.3 V VDDP VOHA2 VDDP - 0.4 − V CC 2.4 − V Output high voltage, POD = medium VDDP - 0.4 − V 2.4 − V Output high voltage, POD = strong VDDP - 0.4 − V 2.4 − V − 0.4 V IOH ≥ -400 μA IOH ≥ -500 μA IOH ≥ -1.4 mA IOH ≥ -2 mA IOH ≥ -1.4 mA IOH ≥ -2 mA IOL ≤ 500 μA Output low voltage, POD = medium − 0.4 V IOL ≤ 2 mA Output low voltage, POD = strong − 0.4 V IOL ≤ 2 mA Output high voltage, POD = weak Output low voltage, POD = weak Data Sheet VOLA2 CC 47 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Table 22 Parameter Fall time Rise time Data Sheet Standard Pads Class_A2 Symbol tFA2 CC Values Unit Note / Test Condition 150 ns CL = 20 pF; POD = weak − 50 ns CL = 50 pF; POD = medium − 3.7 ns CL = 50 pF; POD = strong; edge = sharp − 7 ns CL = 50 pF; POD = strong; edge = medium − 16 ns CL = 50 pF; POD = strong; edge = soft 150 ns CL = 20 pF; POD = weak − 50 ns CL = 50 pF; POD = medium − 3.7 ns CL = 50 pF; POD = strong; edge = sharp − 7.0 ns CL = 50 pF; POD = strong; edge = medium − 16 ns CL = 50 pF; POD = strong; edge = soft Min. Max. − tRA2 CC − 48 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.2.2 Analog to Digital Converters (VADC) Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 23 VADC Parameters (Operating Conditions apply) Parameter Symbol Analog reference voltage5) VAREF SR Analog reference ground5) VAGND SR Analog reference voltage range2)5) VAREF VAGND Values Unit Min. Typ. Max. VAGND − +1 VDDA + V 0.051) VSSM - − VAREF - V 0.05 1 − 1 Note / Test Condition VDDA + V 0.1 SR Analog input voltage Input leakage at analog inputs3) VAIN SR IOZ1 CC VAGND − VDDA V -100 − 200 nA 0.03 × VDDA < VAIN < 0.97 × VDDA -500 − 100 nA 0 V ≤ VAIN ≤ 0.03 × VDDA -100 − 500 nA 0.97 × VDDA ≤ VAIN ≤ VDDA Input leakage current at VAREF IOZ2 CC -1 − 1 μA 0 V ≤ VAREF ≤ VDDA Input leakage current at VAGND IOZ3 CC -1 − 1 μA 0 V ≤ VAGND ≤ VDDA Internal ADC clock fADCI CC 2 CAINSW − − 30 MHz VDDA = 3.3 V 7 20 pF − 25 30 pF CAREFSW − 15 30 pF 20 40 pF Switched capacitance at the analog voltage inputs4) CC Total capacitance of an analog input Switched capacitance at the positive reference voltage input5)6) CAINTOT CC CC Total capacitance of the CAREFTOT − voltage reference inputs5) CC Data Sheet 49 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Table 23 VADC Parameters (Operating Conditions apply) Parameter Symbol Values Min. Total Unadjusted Error Differential Non-Linearity Error8) 8) Gain Error Unit Note / Test Condition 12-bit resolution; VDDA = 3.3 V; VAREF = VDDA7) Typ. Max. − 4 LSB − 3 LSB -4 − 4 LSB EAINLCC -3 EAOFF -4 − 3 LSB − 4 LSB − 1.5 2 mA during conversion VDDP = 3.6 V, TJ = 150 oC − 30 − pC 0 V ≤ VAREF ≤ VDDA9) 700 1 700 Ohm 180 550 900 Ohm − 700 1 700 Ohm TUE CC -4 EADNL -3 CC EAGAIN CC Integral Non-Linearity8) Offset Error 8) CC Worst case ADC VDDA power supply current per active converter IDDAA Charge consumption on VAREF per conversion5) QCONV ON resistance of the analog input path RAIN CC − CC CC ON resistance for the ADC RAIN7T test (pull down for AIN7) CC Resistance of the reference voltage input path RAREF CC 1) A running conversion may become imprecise in case the normal conditions are violated (voltage overshoot). 2) If the analog reference voltage is below VDDA, then the ADC converter errors increase. If the reference voltage is reduced by the factor k (k<1), TUE, DNL, INL, Gain, and Offset errors increase also by the factor 1/k. 3) The leakage current definition is a continuous function, as shown in figure ADCx Analog Inputs Leakage. The numerical values defined determine the characteristic points of the given continuous linear approximation they do not define step function (see Figure 16). 4) The sampling capacity of the conversion C-network is pre-charged to VAREF/2 before the sampling moment. Because of the parasitic elements, the voltage measured at AINx can deviate from VAREF/2. 5) Applies to AINx, when used as alternate reference input. 6) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead, smaller capacitances are successively switched to the reference voltage. 7) For 10-bit conversions, the errors are reduced to 1/4; for 8-bit conversions, the errors are reduced to 1/16. Never less than ±1 LSB. 8) The sum of DNL/INL/GAIN/OFF errors does not exceed the related total unadjusted error TUE. 9) The resulting current for a conversion can be calculated with IAREF = QCONV / tc. The fastest 12-bit post-calibrated conversion of tc = 550 ns results in a typical average current of IAREF = 54.5 µA. Data Sheet 50 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters V VDDA + 0.05 VDDA Precise conversion range (12 bit) VAREF e.g. VAREF = 4/5 of VDDA Valid V AREF Conversion error increases by 5/4 VAGND + 1 Minimum VAREF - VAGND is 1 V VAGND VSSA t Figure 14 VADC Reference Voltage Range The power-up calibration of the VADC requires a maximum number of 4 352 fADCI cycles. REXT VAIN = Analog Input Circuitry RAIN, On ANx CEXT CAINSW CAINTOT - CAINSW VAGNDx RAIN7T Reference Voltage Input Circuitry RAREF, On VAREFx VAREF CAREFTOT - CAREFSW CAREFSW VAGNDx Analog_InpRefDiag Figure 15 Data Sheet VADC Input Circuits 51 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters IOZ1 Single ADC Input 500 nA 200 nA 100 nA V IN [% VD D A] -100 nA 3% 97% 100% -500 nA ADC-Leakage.vsd Figure 16 VADC Analog Input Leakage Current Conversion Time Table 24 Conversion Time (Operating Conditions apply) Parameter Symbol Values Conversion time tC • • • Unit Note CC 2 × TADC + (2 + N + STC + PC +DM) × TADCI μs N = 8, 10, 12 for N-bit conversion TADC = 1 / fPERIPH TADCI = 1 / fADCI STC defines additional clock cycles to extend the sample time PC adds two cycles if post-calibration is enabled DM adds one cycle for an extended conversion time of the MSB Conversion Time Examples System assumptions: fADC = 120 MHz i.e. tADC = 8.33 ns, DIVA = 3, fADCI = 30 MHz i.e. tADCI = 33.3 ns According to the given formulas the following minimum conversion times can be achieved (STC = 0, DM = 0): 12-bit post-calibrated conversion (PC = 2): tCN12C = (2 + 12 + 2) × tADCI + 2 × tADC = 16 × 33.3 ns + 2 × 8.33 ns = 550 ns 12-bit uncalibrated conversion: tCN12 = (2 + 12) × tADCI + 2 × tADC = 14 × 33.3 ns + 2 × 8.33 ns = 483 ns 10-bit uncalibrated conversion: tCN10 = (2 + 10) × tADCI + 2 × tADC = 12 × 33.3 ns + 2 × 8.33 ns = 417 ns 8-bit uncalibrated: tCN8 = (2 + 8) × tADCI + 2 × tADC = 10 × 33.3 ns + 2 × 8.33 ns = 350 ns Data Sheet 52 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.2.3 Digital to Analog Converters (DAC) Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 25 DAC Parameters (Operating Conditions apply) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition per active DAC channel, without load currents of DAC outputs RMS supply current IDD − 2.5 4 mA Resolution RES CC − fURATE_ACC − 12 − Bit Update rate 2 Msam data rate, where ple/s DAC can follow 64 LSB code jumps to ± 1LSB accuracy Update rate fURATE_F CC − 5 Msam data rate, where ple/s DAC can follow 64 LSB code jumps to ± 4 LSB accuracy Settling time tSETTLE CC − 1 2 μs Slew rate SR CC VOUT_MIN 2 5 − V/μs − 0.3 − V code value unsigned: 000H; signed: 800H − 2.5 − V code value unsigned: FFFH; signed: 7FFH CC -4 ±2.5 4 LSB RL ≥ 5 kOhm, CL ≤ 50 pF CC -2 ±1 2 LSB RL ≥ 5 kOhm, CL ≤ 50 pF Minimum output voltage Maximum output voltage CC VOUT_MAX CC Integral non-linearity INL Differential nonlinearity Data Sheet CC DNL 53 at full scale jump, output voltage reaches target value ± 20 LSB V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Table 25 DAC Parameters (Operating Conditions apply) (cont’d) Parameter Symbol Values Min. Offset error Gain error Startup time 3dB Bandwidth of Output Buffer Output sourcing current Typ. Unit Max. Note / Test Condition EDOFF CC EDG_IN CC -6.5 tSTARTUP CC − -1.5 3 % 15 30 μs time from output enabling till code valid ±16 LSB fC1 5 − MHz verified by design -30 − mA − 0.6 − mA CC 2.5 IOUT_SOURCE − ±20 mV CC Output sinking current IOUT_SINK Output resistance ROUT RL CL CC − 50 − Ohm SR 5 − − kOhm SR − − 50 pF Signal-to-Noise Ratio SNR CC − 70 − dB examination bandwidth < 25 kHz Total Harmonic Distortion THD CC − 70 − dB examination bandwidth < 25 kHz Power Supply Rejection Ratio PSRR CC − 56 − dB to VDDA verified by design Load resistance Load capacitance CC Conversion Calculation Unsigned: DACxDATA = 4095 × (VOUT - VOUT_MIN) / (VOUT_MAX - VOUT_MIN) Signed: DACxDATA = 4095 × (VOUT - VOUT_MIN) / (VOUT_MAX - VOUT_MIN) - 2048 Data Sheet 54 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters DAC output VOUT_MAX +/- 4LSB +/- 1LSB 64 LSBs 64 LSBs VOUT_MIN fURATE_A (max) fURATE_F (max) DAC output 20 LSBs VOUT_MAX tSETTLE tSETTLE 20 LSBs VOUT_MIN Figure 17 Data Sheet DAC Conversion Examples 55 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.2.4 Out-of-Range Comparator (ORC) The Out-of-Range Comparator (ORC) triggers on analog input voltages (VAIN) above the analog reference1) (VAREF) on selected input pins (GxORCy) and generates a service request trigger (GxORCOUTy). Note: These parameters are not subject to production test, but verified by design and/or characterization. The parameters in Table 26 apply for the maximum reference voltage VAREF = VDDA + 50 mV. Table 26 ORC Parameters (Operating Conditions apply) Parameter Symbol Values Min. DC Switching Level VODC Hysteresis CC 100 Max. 125 200 mV − VODC mV CC 55 − 450 ns 45 − 105 ns − − ns − − ns VOHYS CC 50 Detection Delay of a tODD persistent Overvoltage Unit Note / Test Condition Typ. Always detected Overvoltage Pulse tOPDD CC 440 Never detected Overvoltage Pulse tOPDN CC − − 49 ns − − 30 ns Release Delay tORD tOED CC 65 − 105 ns CC − 100 200 ns Enable Delay 90 VAIN ≥ VAREF + VODC VAIN ≥ VAREF + 200 mV VAIN ≥ VAREF + 400 mV VAIN ≥ VAREF + 200 mV VAIN ≥ VAREF + 400 mV VAIN ≥ VAREF + 200 mV VAIN ≥ VAREF + 400 mV VAIN ≤ VAREF 1) Always the standard VADC reference, alternate references do not apply to the ORC. Data Sheet 56 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family VODC VOHYS Electrical Parameters VAREF VSS GxORCy GxORCOUTy tODD Figure 18 tORD GxORCOUTy Trigger Generation VAIN (V) T < tOPDN tOPDN < T < tOPDD T > tOPDD VAREF + 400 mV T < tOPDN VAREF + 200 mV tOPDN < T < tOPDD T > tOPDD T > tOPDN VAREF + 100 mV VAREF Never detected Overvoltage Pulse (Too low) Never Overvoltage detected may be Overvoltage detected Pulse (level uncertain) (Too short) Overvoltage may be detected Always detected Overvoltage Pulse Never detected Overvoltage Pulse (Too short) Overvoltage may be detected Always detected Overvoltage Pulse t Figure 19 Data Sheet ORC Detection Ranges 57 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.2.5 Die Temperature Sensor The Die Temperature Sensor (DTS) measures the junction temperature TJ. Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 27 Die Temperature Sensor Parameters Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition − 150 °C Linearity Error ΔTLE CC − (to the below defined formula) ±1 − °C per ΔTJ ≤ 30 °C ΔTOE CC − ±6 − °C ΔTOE = TJ - TDTS tM CC − tTSST SR − − 100 μs − 10 μs Temperature sensor range Offset Error Measurement time Start-up time after reset inactive TSR SR -40 VDDP ≤ 3.3 V1) 1) At VDDP_max = 3.63 V the typical offset error increases by an additional ΔTOE = ±1 °C. The following formula calculates the temperature measured by the DTS in [oC] from the RESULT bit field of the DTSSTAT register. Temperature TDTS = (RESULT - 605) / 2.05 [°C] This formula and the values defined in Table 27 apply with the following calibration values: • • DTSCON.BGTRIM = 8H DTSCON.REFTRIM = 4H Data Sheet 58 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.2.6 USB OTG Interface DC Characteristics The Universal Serial Bus (USB) Interface is compliant to the USB Rev. 2.0 Specification and the OTG Specification Rev. 1.3. High-Speed Mode is not supported. Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 28 USB OTG VBUS and ID Parameters (Operating Conditions apply) Parameter Symbol Values Min. Unit Typ. Max. VBUS input voltage range VIN CC 0.0 − 5.25 V A-device VBUS valid threshold VB1 CC 4.4 − − V A-device session valid VB2 threshold CC 0.8 − 2.0 V B-device session valid VB3 threshold CC 0.8 − 4.0 V B-device session end threshold VB4 CC 0.2 − 0.8 V VBUS input resistance to ground RVBUS_IN − 100 kOhm − − Ohm − − Ohm 14 − 25 kOhm − − 150 μA 40 CC RVBUS_PU 281 B-device VBUS pullup resistor CC B-device VBUS pulldown resistor CC USB.ID pull-up resistor CC VBUS input current IVBUS_IN RVBUS_PD 656 RUID_PU CC Data Sheet Note / Test Condition 59 Pull-up voltage = 3.0 V 0 V ≤ VIN ≤ 5.25 V: TAVG = 1 ms V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Table 29 USB OTG Data Line (USB_DP, USB_DM) Parameters (Operating Conditions apply) Parameter Symbol Values Min. Unit Typ. Max. Note / Test Condition SR − − 0.8 V SR 2.0 − − V Input high voltage (floating) 1) VIHZ SR 2.7 − 3.6 V Differential input sensitivity VDIS CC 0.2 − − V Differential common mode range VCM CC 0.8 − 2.5 V Output low voltage VOL CC 0.0 − 0.3 V 1.5 kOhm pullup to 3.6 V Output high voltage VOH CC 2.8 − 3.6 V 15 kOhm pulldown to 0 V DP pull-up resistor (idle RPUI CC 900 bus) − 1 575 Ohm Input low voltage Input high voltage (driven) VIL VIH DP pull-up resistor (upstream port receiving) RPUA CC 1 425 − 3 090 Ohm DP, DM pull-down resistor RPD CC 14.25 − 24.8 kOhm Input impedance DP, DM ZINP CC 300 − − kOhm 0 V ≤ VIN ≤ VDDP − 44 Ohm Driver output resistance ZDRV CC 28 DP, DM 1) Measured at A-connector with 1.5 kOhm ± 5% to 3.3 V ± 0.3 V connected to USB_DP or USB_DM and at Bconnector with 15 kOhm ± 5% to ground connected to USB_DP and USB_DM. Data Sheet 60 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.2.7 Oscillator Pins Note: It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimal parameters for the oscillator operation. Please refer to the limits specified by the crystal or ceramic resonator supplier. Note: These parameters are not subject to production test, but verified by design and/or characterization. The oscillator pins can be operated with an external crystal (see Figure 20) or in direct input mode (see Figure 21). XTAL1 f OSC GND XTAL2 Damping resistor may be needed for some crystals V VPPX_min VPPX VPPX_min ≤ VPPX ≤ VPPX_max tOSCS t Figure 20 Data Sheet Oscillator in Crystal Mode 61 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters External Clock Source Direct Input Mode XTAL1 not connected XTAL2 V VIHBX_max Inpu ltage h Vo t Hig tH Inpu igh V e oltag VIHBX_min VILBX_max VSS VILBX_min g Volta t Low Inpu e t Figure 21 Data Sheet Oscillator in Direct Input Mode 62 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Table 30 OSC_XTAL Parameters Parameter Symbol Values Min. Input frequency Unit Note / Test Condition Typ. Max. fOSC SR 4 − 40 MHz Direct Input Mode selected 4 − 25 MHz External Crystal Mode selected − − 10 ms Oscillator start-up time1)2) tOSCS Input voltage at XTAL1 VIX SR -0.5 CC − VDDP + V 0.5 Input amplitude (peakto-peak) at XTAL12)3) Input high voltage at XTAL14) VPPX SR 0.4 × VDDP VIHBXSR 1.0 − VDDP + V 1.0 − VDDP + V 0.5 VILBX SR -0.5 − 0.4 V Input leakage current at IILX1 CC -100 XTAL1 − 100 nA Input low voltage at XTAL14) Oscillator power down 0 V ≤ VIX ≤ VDDP 1) tOSCS is defined from the moment the oscillator is enabled wih SCU_OSCHPCTRL.MODE until the oscillations reach an amplitude at XTAL1 of 0.4 * VDDP. 2) The external oscillator circuitry must be optimized by the customer and checked for negative resistance and amplitude as recommended and specified by crystal suppliers. 3) If the shaper unit is enabled and not bypassed. 4) If the shaper unit is bypassed, dedicated DC-thresholds have to be met. Data Sheet 63 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Table 31 RTC_XTAL Parameters Parameter Symbol Values Min. Input frequency Oscillator start-up time1)2)3) fOSC SR − tOSCS − Typ. Unit Max. 32.768 − kHz − 5 s CC Input voltage at RTC_XTAL1 VIX SR -0.3 − VBAT + V Input amplitude (peakto-peak) at RTC_XTAL12)4) VPPX SR 0.4 − − Input high voltage at RTC_XTAL15) VIHBXSR 0.6 × VBAT VILBX SR -0.3 − VBAT + V Input low voltage at RTC_XTAL15) Input Hysteresis for RTC_XTAL15)6) Note / Test Condition 0.3 V 0.3 − 0.36 × V VBAT VHYSX 0.1 × CC VBAT − 0.03 × V 3.0 V ≤ − V VBAT < 3.6 V VBAT < 3.0 V 100 nA VBAT Input leakage current at IILX1 CC -100 RTC_XTAL1 − Oscillator power down 0 V ≤ VIX ≤ VBAT 1) tOSCS is defined from the moment the oscillator is enabled by the user with SCU_OSCULCTRL.MODE until the oscillations reach an amplitude at RTC_XTAL1 of 400 mV. 2) The external oscillator circuitry must be optimized by the customer and checked for negative resistance and amplitude as recommended and specified by crystal suppliers. 3) For a reliable start of the oscillation in crystal mode it is required that VBAT ≥ 3.0 V. A running oscillation is maintained across the full VBAT voltage range. 4) If the shaper unit is enabled and not bypassed. 5) If the shaper unit is bypassed, dedicated DC-thresholds have to be met. 6) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can not be guaranteed that it suppresses switching due to external system noise. Data Sheet 64 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.2.8 Power Supply Current The total power supply current defined below consists of a leakage and a switching component. Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations). Note: These parameters are not subject to production test, but verified by design and/or characterization. If not stated otherwise, the operating conditions for the parameters in the following table are: VDDP = 3.3 V, TA = 25 oC Table 32 Power Supply Parameters Parameter Symbol Values Min. Unit Note / Test Condition Typ. Max. IDDPA CC − 122 − − 110 − 120 / 60 / 60 − 85 − 60 / 60 / 120 − 65 − 24 / 24 / 24 − 52 − 1/1/1 Active supply current Code execution from RAM Flash in Sleep mode IDDPA CC − 98 − − 80 − Active supply current2) Peripherals disabled Frequency: fCPU / fPERIPH / fCCU in MHz IDDPA CC − 115 − − 105 − 120 / 60 / 60 − 80 − 60 / 60 / 120 − 63 − 24 / 24 / 24 − 50 − 1/1/1 IDDPS CC − 115 − − 105 − 120 / 60 / 60 − 83 − 60 / 60 / 120 − 60 − 24 / 24 / 24 − 48 − 1/1/1 − 46 − 100 / 100 / 100 1)10) Active supply current Peripherals enabled Frequency: fCPU / fPERIPH / fCCU in MHz 3) Sleep supply current Peripherals enabled Frequency: fCPU / fPERIPH / fCCU in MHz fCPU / fPERIPH / fCCU in kHz Data Sheet 65 mA mA 120 / 120 / 120 120 / 120 / 120 120 / 60 / 60 mA mA 120 / 120 / 120 120 / 120 / 120 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Table 32 Power Supply Parameters Parameter Symbol Values Min. Unit Note / Test Condition Typ. Max. IDDPS CC − 110 − − 100 − 120 / 60 / 60 − 77 − 60 / 60 / 120 − 59 − 24 / 24 / 24 − 48 − 1/1/1 − 46 − 100 / 100 / 100 IDDPD CC − 20 − − 12 − 4/4/4 − 10 − 1/1/1 fCPU / fPERIPH / fCCU in kHz − 6 − 100 / 100 / 100 Hibernate supply current RTC on7) IDDPH CC − 10 − − 7.5 − − 6.2 − Hibernate supply current RTC off8) IDDPH CC − 9.2 − − 6.7 − − 5.6 − Worst case active supply current9) IDDPA CC − − VDDA power supply current IDDA CC − IDDP current at PORST Low IDDP_PORST − − −11) mA − 16 mA VDDP = 3.6 V, TJ = 150 oC PDISS CC − − 1 W VDDP = 3.6 V, TJ = 150 oC CC − 6 − cycles Sleep supply current4) Peripherals disabled Frequency: fCPU / fPERIPH / fCCU in MHz fCPU / fPERIPH / fCCU in kHz Deep Sleep supply current5) Flash in Sleep mode Frequency: fCPU / fPERIPH / fCCU in MHz mA mA Wake-up time from Sleep to tSSA Active mode Data Sheet 24 / 24 / 24 6) 180 μA μA mA 10) CC Power Dissipation 120 / 120 / 120 66 VBAT = 3.3 V VBAT = 2.4 V VBAT = 2.0 V VBAT = 3.3 V VBAT = 2.4 V VBAT = 2.0 V VDDP = 3.6 V, TJ = 150 oC V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Table 32 Power Supply Parameters Parameter Symbol Values Unit Note / Test Condition − ms Defined by the wake-up of the Flash module, see Section 3.2.9 − ms Wake-up via power-on reset event, see Section 3.3.2 Min. Typ. Max. Wake-up time from Deep Sleep to Active mode − − Wake-up time from Hibernate mode − − 1) CPU executing code from Flash, all peripherals idle. 2) CPU executing code from Flash. 3) CPU in sleep, all peripherals idle, Flash in Active mode. 4) CPU in sleep, Flash in Active mode. 5) CPU in sleep, peripherals disabled, after wake-up code execution from RAM. 6) To wake-up the Flash from its Sleep mode, fCPU ≥ 1 MHz is required. 7) OSC_ULP operating with external crystal on RTC_XTAL 8) OSC_ULP off, Hibernate domain operating with OSC_SI clock 9) Test Power Loop: fSYS = 120 MHz, CPU executing benchmark code from Flash, all CCUs in 100kHz timer mode, all ADC groups in continuous conversion mode, USICs as SPI in internal loop-back mode, CAN in 500kHz internal loop-back mode, interrupt triggered DMA block transfers to parity protected RAMs and FCE, DTS measurements and FPU calculations. The power consumption of each customer application will most probably be lower than this value, but must be evaluated separately. 10) IDDP decreases typically by approximately 6 mA when fSYS decreases by 10 MHz, at constant TJ 11) Sum of currents of all active converters (ADC and DAC) Data Sheet 67 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.2.9 Flash Memory Parameters Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 33 Flash Memory Parameters Parameter Symbol Values Erase Time per 256 Kbyte Sector tERP CC − Min. Unit Typ. Max. 5 5.5 s Erase Time per 64 Kbyte tERP CC − Sector 1.2 1.4 s Erase Time per 16 Kbyte tERP CC − Logical Sector 0.3 0.4 s Program time per page1) tPRP CC − 5.5 11 ms − 15 ms − − μs Erase suspend delay tFL_ErSusp − Note / Test Condition CC Wait time after margin change tFL_Margin 10 Del CC − − 270 μs 22 − − ns For operation with 1 / fCPU < ta wait states must be configured2) Data Retention Time, Physical Sector3)4) tRET CC 20 − − years Max. 1000 erase/program cycles Data Retention Time, Logical Sector3)4) tRETL CC 20 − − years Max. 100 erase/program cycles Data Retention Time, tRTU CC 20 User Configuration Block (UCB)3)4) − − years Max. 4 erase/program cycles per UCB Wake-up time Read access time tWU CC ta CC 1) In case the Program Verify feature detects weak bits, these bits will be programmed once more. The reprogramming takes an additional time of 5.5 ms. 2) The following formula applies to the wait state configuration: FCON.WSPFLASH × (1 / fCPU) ≥ ta. 3) Storage and inactive time included. 4) Values given are valid for an average weighted junction temperature of TJ = 110°C. Data Sheet 68 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.3 AC Parameters 3.3.1 Testing Waveforms VD D P VSS 90% 90% 10% 10% tR tF AC_Rise-Fall-Times.vsd Figure 22 Rise/Fall Time Parameters VD D P VD D P / 2 Test Points VD D P / 2 VSS AC_TestPoints.vsd Figure 23 Testing Waveform, Output Delay VL OAD + 0.1V VL OAD - 0.1V Timing Reference Points VOH - 0.1V VOL + 0.1V AC_HighImp.vsd Figure 24 Data Sheet Testing Waveform, Output High Impedance 69 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.3.2 Power-Up and Supply Monitoring PORST is always asserted when VDDP and/or VDDC violate the respective thresholds. Note: These parameters are not subject to production test, but verified by design and/or characterization. VDDP VDDP XMC4000 RPORST (optional) PORST PORESET External reset trigger IPPD GND GND Figure 25 PORST Circuit Table 34 Supply Monitoring Parameters Parameter Supply Monitoring Symbol Values Min. Digital supply voltage reset VPOR CC threshold Unit Note / Test Condition 3) Typ. Max. 2.791) − 3.052) V Core supply voltage reset threshold VPV CC − − 1.17 V VDDP voltage to ensure defined pad states VDDPPA − 1.0 − V − − 2 μs 4) − 2.5 3.5 ms Time to the first user code instruction − 550 − μs Ramp up after power-on or after a reset triggered by a violation of VPOR or VPV CC tPR SR Startup time from power-on tSSW CC PORST rise time reset with code execution from Flash VDDC ramp up time tVCR CC 1) Minimum threshold for reset assertion. Data Sheet 70 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 2) Maximum threshold for reset deassertion. 3) The VDDP monitoring has a typical hysteresis of VPORHYS = 180 mV. 4) If tPR is not met, low spikes on PORST may be seen during start up (e.g. reset pulses generated by the supply monitoring due to a slow ramping VDDP). 3.3 V VPOR VD D P VD D PPA 1.3 V VDDC VPV tVCR PORST tPR t SSW Pads as programmed High-impedance or pull -device active Undefined Figure 26 3.3.3 Power-Up Behavior Power Sequencing While starting up and shutting down as well as when switching power modes of the system it is important to limit the current load steps. A typical cause for such load steps is changing the CPU frequency fCPU. Load steps exceeding the below defined values may cause a power on reset triggered by the supply monitor. Note: These parameters are not subject to production test, but verified by design and/or characterization. Data Sheet 71 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Table 35 Power Sequencing Parameters Parameter Symbol Values Unit Note / Test Condition 50 mA Load increase on VDDP Δt ≤ 10 ns − 150 mA Load decrease on VDDP Δt ≤ 10 ns − ±100 mV For maximum positive or negative load step − - μs Min. Typ. Max. Positive Load Step Current ΔIPLS SR - − Negative Load Step Current ΔINLS SR - VDDC Voltage Over- ΔVLS CC - / Undershoot from Load Step Positive Load Step Settling tPLSS SR 50 Time Negative Load Step Settling Time tNLSS SR 100 − - μs External Buffer Capacitor on VDDC CEXT SR - 10 - μF In addition C = 100 nF capacitor on each VDDC pin Positive Load Step Examples System assumptions: fCPU = fSYS, target frequency fCPU = 120 MHz, main PLL fVCO = 480 MHz, stepping done by K2 divider, tPLSS between individual steps: 24 MHz - 48 MHz - 68 MHz - 96 MHz - 120 MHz (K2 steps 20 - 10 - 7 - 5 - 4) 24 MHz - 68 MHz - 96 MHz - 120 MHz (K2 steps 20 - 7 - 5 - 4) 24 MHz - 68 MHz - 120 MHz (K2 steps 20 - 7 - 4) Data Sheet 72 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.3.4 Phase Locked Loop (PLL) Characteristics Note: These parameters are not subject to production test, but verified by design and/or characterization. Main and USB PLL Table 36 PLL Parameters Parameter Symbol Accumulated Jitter DP CC Duty Cycle1) PLL base frequency Values Unit Note / Test Condition Min. Typ. Max. − − ±5 ns accumulated over 300 cycles fSYS = 120 MHz DDC CC 46 50 54 % Low pulse to total period, assuming an ideal input clock source fPLLBASE 30 − 140 MHz − 16 MHz − 520 MHz − 400 μs CC VCO input frequency VCO frequency range PLL lock-in time fREF CC 4 fVCO CC 260 tL CC − 1) 50% for even K2 divider values, 50±(10/K2) for odd K2 divider values. Data Sheet 73 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.3.5 Internal Clock Source Characteristics Note: These parameters are not subject to production test, but verified by design and/or characterization. Fast Internal Clock Source Table 37 Fast Internal Clock Parameters Parameter Nominal frequency Accuracy Symbol Values Unit Min. Typ. Max. fOFINC − 36.5 − MHz not calibrated CC − 24 − MHz calibrated ΔfOFI -0.5 − 0.5 % automatic calibration1)2) -15 − 15 % factory calibration, VDDP = 3.3 V -25 − 25 % no calibration, VDDP = 3.3 V -7 − 7 % Variation over voltage range3) 3.13 V ≤ VDDP ≤ 3.63 V 50 − μs CC Start-up time Note / Test Condition tOFIS CC − 1) Error in addition to the accuracy of the reference clock. 2) Automatic calibration compensates variations of the temperature and in the VDDP supply voltage. 3) Deviations from the nominal VDDP voltage induce an additional error to the uncalibrated and/or factory calibrated oscillator frequency. Data Sheet 74 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Slow Internal Clock Source Table 38 Slow Internal Clock Parameters Parameter Symbol Nominal frequency fOSI CC ΔfOSI Accuracy Values Unit Min. Typ. − 32.768 − Max. kHz -4 − % 4 CC Note / Test Condition VBAT = const. 0 °C ≤ TA ≤ 85 °C Start-up time Data Sheet -5 − 5 % -5 − 5 % -10 − 10 % 50 − μs tOSIS CC − 75 VBAT = const. TA < 0 °C or TA > 85 °C 2.4 V ≤ VBAT, TA = 25 °C 1.95 V ≤ VBAT < 2.4 V, TA = 25 °C V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.3.6 JTAG Interface Timing The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000. Note: These parameters are not subject to production test, but verified by design and/or characterization. Note: Operating conditions apply. Table 39 JTAG Interface Timing Parameters Parameter Symbol Min. Values Typ. Max. Unit Note / Test Condition t1 t2 t3 t4 t5 t6 SR 25 – – ns SR 10 – – ns SR 10 – – ns SR – – 4 ns SR – – 4 ns SR 6 – – ns t7 SR 6 – – ns TDO valid after TCK falling t8 edge1) (propagation delay) CC – – 13 ns CL = 50 pF 3 – – ns CL = 20 pF 2 – – ns TCK clock period TCK high time TCK low time TCK clock rise time TCK clock fall time TDI/TMS setup to TCK rising edge TDI/TMS hold after TCK rising edge TDO hold after TCK falling t18 CC edge1) TDO high imped. to valid from TCK falling edge1)2) t9 – – 14 ns CL = 50 pF TDO valid to high imped. from TCK falling edge1) t10 CC – – 13.5 ns CL = 50 pF CC 1) The falling edge on TCK is used to generate the TDO timing. 2) The setup time for TDO is given implicitly by the TCK cycle time. Data Sheet 76 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters t1 TCK 0.9 VD D P 0.1 VD D P 0.5 VD D P t2 t3 t4 t5 JTAG_TCK .vsd Figure 27 Test Clock Timing (TCK) TCK t6 t7 t6 t7 TMS TDI t9 t8 t10 TDO t18 JTAG_IO.vsd Figure 28 Data Sheet JTAG Timing 77 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.3.7 Serial Wire Debug Port (SW-DP) Timing The following parameters are applicable for communication through the SW-DP interface. Note: These parameters are not subject to production test, but verified by design and/or characterization. Note: Operating conditions apply. Table 40 SWD Interface Timing Parameters (Operating Conditions apply) Parameter Symbol Values Typ. Max. Unit Note / Test Condition tSC SR 25 – – ns CL = 30 pF 40 – – ns CL = 50 pF SR 10 – 500000 ns SR 10 – 500000 ns SR 6 – – ns SWDIO input hold t4 after SWDCLK rising edge SR 6 – – ns SWDIO output valid time t5 after SWDCLK rising edge CC – – 17 ns CL = 50 pF – – 13 ns CL = 30 pF t6 SWDIO output hold time from SWDCLK rising edge CC 3 – – ns Min. SWDCLK clock period t1 t2 t3 SWDCLK high time SWDCLK low time SWDIO input setup to SWDCLK rising edge tSC t1 t2 SWDCLK t6 SWDIO (Output) t5 t3 t4 SWDIO (Input) Figure 29 Data Sheet SWD Timing 78 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.3.8 Embedded Trace Macro Cell (ETM) Timing The data timing refers to the active clock edge. The XMC4500 ETM uses the half-rate clocking mode. In this mode both, the rising and falling clock edges are active clock edges. Note: These parameters are not subject to production test, but verified by design and/or characterization. Note: Operating conditions apply, with CL ≤ 15 pF. Table 41 ETM Interface Timing Parameters Parameter Symbol Values Min. TRACECLK period TRACECLK high time TRACECLK low time TRACECLK and TRACEDATA rise time TRACECLK and TRACEDATA fall time Typ. Max. Unit Note / Test Condition t1 t2 t3 t4 CC 16.7 – – ns – CC 2 – – ns – CC 2 – – ns – CC – – 3 ns – t5 CC – – 3 ns – CC -2 – 3 ns – TRACEDATA output valid t6 time t1 TRACECLK t2 Figure 30 t5 t3 t4 ETM Clock Timing TRACECLK t6 t6 TRACEDATA Figure 31 Data Sheet ETM Data Timing 79 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.3.9 Peripheral Timing 3.3.9.1 Delta-Sigma Demodulator Digital Interface Timing The following parameters are applicable for the digital interface of the Delta-Sigma Demodulator (DSD). The data timing is relative to the active clock edge. Depending on the operation mode of the connected modulator that can be the rising and falling clock edge. Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 42 DSD Interface Timing Parameters Parameter Symbol MCLK period in master mode t1 Values Typ. Max. Unit Note / Test Condition CC 33.3 – – ns t1 ≥ 4 x tPERIPH1) MCLK high time in master t2 mode CC 9 – – ns t2 > tPERIPH1) MCLK low time in master mode t3 CC 9 – – ns t3 > tPERIPH1) MCLK period in slave mode t1 SR 33.3 – – ns t1 ≥ 4 x tPERIPH1) MCLK high time in slave mode t2 SR tPERIPH – – ns 1) MCLK low time in slave mode t3 SR tPERIPH – – ns 1) DIN input setup time to the t4 active clock edge SR tPERIPH – +4 – ns 1) t5 SR tPERIPH – +3 – ns 1) Min. DIN input hold time from the active clock edge 1) tPERIPH = 1 / fPERIPH Data Sheet 80 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters t1 t2 t3 MCLK t5 t4 DIN Figure 32 3.3.9.2 DSD Data Timing Synchronous Serial Interface (USIC SSC) Timing The following parameters are applicable for a USIC channel operated in SSC mode. Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 43 USIC SSC Master Mode Timing Parameter Symbol Values Min. SCLKOUT master clock period Unit Typ. Max. tCLK CC 33.3 − − ns Slave select output SELO t1 active to first SCLKOUT transmit edge CC tPB 6.51) − − ns Slave select output SELO t2 inactive after last SCLKOUT receive edge CC tPB 8.51) − − ns t3 CC -6 − 8 ns Receive data input t4 DX0/DX[5:3] setup time to SCLKOUT receive edge SR 23 − − ns Data input DX0/DX[5:3] t5 hold time from SCLKOUT receive edge SR 1 − − ns Data output DOUT[3:0] valid time Note / Test Condition 1) tPB = 1 / fPB Data Sheet 81 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Table 44 USIC SSC Slave Mode Timing Parameter Symbol Values Min. Unit Typ. Max. − − ns Select input DX2 setup to t10 first clock input DX1 transmit edge1) SR 3 − − ns Select input DX2 hold after last clock input DX1 receive edge1) t11 SR 4 − − ns Receive data input DX0/DX[5:3] setup time to shift clock receive edge1) t12 SR 6 − − ns Data input DX0/DX[5:3] hold t13 time from clock input DX1 receive edge1) SR 4 − − ns Data output DOUT[3:0] valid t14 time CC 0 − 24 ns DX1 slave clock period tCLK SR 66.6 Note / Test Condition 1) This input timing is valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0). Data Sheet 82 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Master Mode Timing t1 Select Output SELOx t2 Inactive Inactive Active Clock Output SCLKOUT Receive Edge First Transmit Edge t3 Last Receive Edge Transmit Edge t3 Data Output DOUT[3:0] t4 Data Input DX0/DX[5:3] t4 t5 Data valid t5 Data valid Slave Mode Timing t1 0 Select Input DX2 Clock Input DX1 t1 1 Active Inactive Receive Edge First Transmit Edge t1 2 Data Input DX0/DX[5:3] Inactive Last Receive Edge Transmit Edge t1 2 t1 3 Data valid t13 Data valid t14 t1 4 Data Output DOUT[3:0] Transmit Edge: with this clock edge, transmit data is shifted to transmit data output. Receive Edge: with this clock edge, receive data at receive data input is latched . Drawn for BRGH .SCLKCFG = 00B. Also valid for for SCLKCFG = 01B with inverted SCLKOUT signal. USIC_SSC_TMGX.VSD Figure 33 USIC - SSC Master/Slave Mode Timing Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted. Data Sheet 83 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.3.9.3 Inter-IC (IIC) Interface Timing The following parameters are applicable for a USIC channel operated in IIC mode. Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 45 USIC IIC Standard Mode Timing1) Parameter Symbol Values Unit Min. Typ. Max. Fall time of both SDA and t1 SCL CC/SR - - 300 ns Rise time of both SDA and t2 SCL CC/SR - - 1000 ns 0 - - µs 250 - - ns 4.7 - - µs 4.0 - - µs 4.0 - - µs 4.7 - - µs 4.0 - - µs 4.7 - - µs - - 400 pF Data hold time t3 Note / Test Condition CC/SR Data set-up time t4 CC/SR LOW period of SCL clock t5 CC/SR HIGH period of SCL clock t6 CC/SR t7 Hold time for (repeated) START condition CC/SR Set-up time for repeated START condition CC/SR Set-up time for STOP condition CC/SR t8 t9 Bus free time between a STOP and START condition t10 Capacitive load for each bus line Cb SR CC/SR 1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s. Data Sheet 84 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Table 46 USIC IIC Fast Mode Timing1) Parameter Symbol Values Min. Fall time of both SDA and t1 SCL CC/SR Typ. Unit Max. 20 + 0.1*Cb 300 ns 20 + 0.1*Cb 300 ns 0 - - µs 100 - - ns 1.3 - - µs 0.6 - - µs 0.6 - - µs 0.6 - - µs 0.6 - - µs 1.3 - - µs - - 400 pF Note / Test Condition 2) Rise time of both SDA and t2 SCL CC/SR 2) Data hold time t3 CC/SR Data set-up time t4 CC/SR LOW period of SCL clock t5 CC/SR HIGH period of SCL clock t6 CC/SR t7 Hold time for (repeated) START condition CC/SR Set-up time for repeated START condition CC/SR Set-up time for STOP condition CC/SR t8 t9 Bus free time between a STOP and START condition t10 Capacitive load for each bus line Cb SR CC/SR 1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s. 2) Cb refers to the total capacitance of one bus line in pF. Data Sheet 85 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters t1 SDA t2 t4 70% 30% t1 t3 t2 t6 SCL th t7 9 clock t5 t10 S SDA t8 t7 t9 SCL th 9 clock Sr Figure 34 3.3.9.4 P S USIC IIC Stand and Fast Mode Timing Inter-IC Sound (IIS) Interface Timing The following parameters are applicable for a USIC channel operated in IIS mode. Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 47 USIC IIS Master Transmitter Timing Parameter Symbol Clock period t1 CC t2 CC Clock high time Values Unit Min. Typ. Max. 33.3 − − ns 0.35 x − − ns − − ns Note / Test Condition t1min Clock low time t3 CC 0.35 x t1min Hold time Clock rise time t4 CC t5 CC 0 − − ns − − 0.15 x ns t1min Data Sheet 86 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters t1 t2 t5 t3 SCK t4 WA/ DOUT Figure 35 USIC IIS Master Transmitter Timing Table 48 USIC IIS Slave Receiver Timing Parameter Symbol Clock period Clock high time t6 SR t7 SR Values Unit Min. Typ. Max. 66.6 − − ns 0.35 x − − ns − − ns − − ns − − ns Note / Test Condition t6min Clock low time t8 SR 0.35 x t6min t9 SR Set-up time 0.2 x t6min t10 SR Hold time 0 t6 t7 t8 SCK t9 t10 WA/ DIN Figure 36 Data Sheet USIC IIS Slave Receiver Timing 87 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.3.9.5 SDMMC Interface Timing Note: These parameters are not subject to production test, but verified by design and/or characterization. Note: Operating Conditions apply, total external capacitive load CL = 40 pF. AC Timing Specifications (Full-Speed Mode) Table 49 SDMMC Timing for Full-Speed Mode Parameter Symbol Values Clock frequency in full speed transfer mode (1/tpp) fpp CC 0 24 MHz Clock cycle in full speed transfer mode tpp CC 40 − ns Clock low time tWL CC 10 tWH CC 10 tTLH CC − tTHL CC − tISU_F SR 2 − ns Min. Unit Max. − ns 10 ns 10 ns − ns − ns Outputs valid time in full speed tODLY_F CC − mode 10 ns Outputs hold time in full speed tOH_F mode − ns Clock high time Clock rise time Clock fall time Inputs setup to clock rising edge Inputs hold after clock rising edge Table 50 tIH_F SR 2 CC 0 SD Card Bus Timing for Full-Speed Mode1) Parameter Symbol SD card input setup time tISU tIH Values Min. SD card input hold time Data Sheet Note/ Test Condition 88 Unit Max. 5 − ns 5 − ns Note/ Test Condition V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters SD Card Bus Timing for Full-Speed Mode1) (cont’d) Table 50 Parameter Symbol Values Min. tODLY tOH SD card output valid time SD card output hold time Unit Max. − 14 ns 0 − ns Note/ Test Condition 1) Reference card timing values for calculation examples. Not subject to production test and not characterized. Full-Speed Output Path (Write) t pp (Clock Cycle) SD Clock at Host Pin Driving Edge tCLK_DELAY SD Clock at Card Pin Sampling Edge Output Valid Time: t ODLY_H Output Hold Time: tOH_H tWL Output at Host Pins Output at Card Pins tDATA _DELAY + tTAP_DELAY t IH t ISU Figure 37 Full-Speed Output Path Full-Speed Write Meeting Setup (Maximum Delay) The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB. No clock delay: (1) t ODLY_F + t DATA_DELAY + t TAP_DELAY + t ISU < t WL Data Sheet 89 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters With clock delay: (2) t ODLY_F + t DATA_DELAY + t TAP_DELAY + t ISU < t WL + t CLK_DELAY (3) t DATA_DELAY + t TAP_DELAY + t WL < t PP + t CLK_DELAY – t ISU – t ODLY_F t DATA_DELAY + t TAP_DELAY + 20 < 40 + t CLK_DELAY – 5 – 10 t DATA_DELAY < 5 + t CLK_DELAY – t TAP_DELAY The data can be delayed versus clock up to 5 ns in ideal case of tWL= 20 ns. Full-Speed Write Meeting Hold (Minimum Delay) The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB. (4) t CLK_DELAY < t WL + t OH_F + t DATA_DELAY + t TAP_DELAY – t IH t CLK_DELAY < 20 + t DATA_DELAY + t TAP_DELAY – 5 t DATA_DELAY < 15 + t CLK_DELAY + t TAP_DELAY The clock can be delayed versus data up to 18.2 ns (external delay line) in ideal case of tWL= 20 ns, with maximum tTAP_DELAY = 3.2 ns programmed. Data Sheet 90 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Full-Speed Input Path (Read) tpp (Clock Cycle) SD Clock at Host Pin Sampling Edge tCLK_DELAY SD Clock at Card Pin Driving Edge tODLY tOH tDATA_DELAY + t TAP_DELAY Output at Host Pins Output at Card Pins tISU_H Figure 38 tIH_H Full-Speed Input Path Full-Speed Read Meeting Setup (Maximum Delay) The following equations show how to calculate the allowed combined propagation delay range of the SD_CLK and SD_DAT/CMD signals on the PCB. (5) t CLK_DELAY + t DATA_DELAY + t TAP_DELAY + t ODLY + t ISU_F < 0,5 × t pp t CLK_DELAY + t DATA_DELAY < 0,5 × t pp – t ODLY – t ISU_F – t TAP_DELAY t CLK_DELAY + t DATA_DELAY < 20 – 14 – 2 – t TAP_DELAY t CLK_DELAY + t DATA_DELAY < 4 – t TAP_DELAY The data + clock delay can be up to 4 ns for a 40 ns clock cycle. Data Sheet 91 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Full-Speed Read Meeting Hold (Minimum Delay) The following equations show how to calculate the allowed combined propagation delay range of the SD_CLK and SD_DAT/CMD signals on the PCB. (6) t CLK_DELAY + t OH + t DATA_DELAY + t TAP_DELAY > t IH_F t CLK_DELAY + t DATA_DELAY > t IH_F – t OH – t TAP_DELAY t CLK_DELAY + t DATA_DELAY > 2 – t TAP_DELAY The data + clock delay must be greater than 2 ns if tTAP_DELAY is not used. If the tTAP_DELAY is programmed to at least 2 ns, the data + clock delay must be greater than 0 ns (or less). This is always fulfilled. AC Timing Specifications (High-Speed Mode) Table 51 SDMMC Timing for High-Speed Mode Parameter Symbol Values Min. Clock frequency in high speed fpp transfer mode (1/tpp) Unit Max. CC 0 48 MHz − ns Clock cycle in high speed transfer mode tpp CC 20 Clock low time tWL tWH tTLH tTHL tISU_H CC 7 − ns CC 7 − ns CC − 3 ns CC − 3 ns SR 2 − ns Inputs hold after clock rising edge tIH_H SR 2 − ns Outputs valid time in high speed mode tODLY_H CC − 14 ns Outputs hold time in high speed mode tOH_H − ns Clock high time Clock rise time Clock fall time Inputs setup to clock rising edge Data Sheet CC 2 92 Note/ Test Condition V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters SD Card Bus Timing for High-Speed Mode1) Table 52 Parameter Symbol Values Unit Min. SD card input setup time SD card input hold time SD card output valid time SD card output hold time tISU tIH tODLY tOH Max. 6 − ns 2 − ns − 14 ns 2.5 − ns Note/ Test Condition 1) Reference card timing values for calculation examples. Not subject to production test and not characterized. High-Speed Output Path (Write) tpp (Clock Cycle) SD Clock at Host Pin Driving Edge t CLK_DELAY SD Clock at Card Pin Sampling Edge Output Valid Time: t ODLY_H Output Hold Time: tOH_H tWL Output at Host Pins Output at Card Pins tDATA _DELAY + tTAP_DELAY tIH tISU Figure 39 High-Speed Output Path High-Speed Write Meeting Setup (Maximum Delay) The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB. Data Sheet 93 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters No clock delay: (7) t ODLY_H + t DATA_DELAY + t TAP_DELAY + t ISU < t WL With clock delay: (8) t ODLY_H + t DATA_DELAY + t TAP_DELAY + t ISU < t WL + t CLK_DELAY (9) t DATA_DELAY + t TAP_DELAY – t CLK_DELAY < t WL – t ISU – t ODLY_H t DATA_DELAY – t CLK_DELAY < t WL – t ISU – t ODLY_H – t TAP_DELAY t DATA_DELAY – t CLK_DELAY < 10 – 6 – 14 – t TAP_DELAY t DATA_DELAY – t CLK_DELAY < – 10 – t TAP_DELAY The data delay is less than the clock delay by at least 10 ns in the ideal case where tWL= 10 ns. High-Speed Write Meeting Hold (Minimum Delay) The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB. (10) t CLK_DELAY < t WL + t OH_H + t DATA_DELAY + t TAP_DELAY – t IH t CLK_DELAY – t DATA_DELAY < t WL + t OH_H + t TAP_DELAY – t IH t CLK_DELAY – t DATA_DELAY < 10 + 2 + t TAP_DELAY – 2 t CLK_DELAY – t DATA_DELAY < 10 + t TAP_DELAY The clock can be delayed versus data up to 13.2 ns (external delay line) in ideal case of tWL= 10 ns, with maximum tTAP_DELAY = 3.2 ns programmed. Data Sheet 94 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters High-Speed Input Path (Read) tpp (Clock Cycle) SD Clock at Host Pin Sampling Edge t CLK_DELAY SD Clock at Card Pin Driving Edge tODLY t OH t DATA_DELAY + tTAP_DELAY Output at Host Pins Output at Card Pins t ISU_H Figure 40 tIH_H High-Speed Input Path High-Speed Read Meeting Setup (Maximum Delay) The following equations show how to calculate the allowed combined propagation delay range of the SD_CLK and SD_DAT/CMD signals on the PCB. (11) t CLK_DELAY + t DATA_DELAY + t TAP_DELAY + t ODLY + t ISU_H < t pp t CLK_DELAY + t DATA_DELAY < t pp – t ODLY – t ISU_H – t TAP_DELAY t CLK_DELAY + t DATA_DELAY < 20 – 14 – 2 – t TAP_DELAY t CLK_DELAY + t DATA_DELAY < 4 – t TAP_DELAY The data + clock delay can be up to 4 ns for a 20 ns clock cycle. Data Sheet 95 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters High-Speed Read Meeting Hold (Minimum Delay) The following equations show how to calculate the allowed combined propagation delay range of the SD_CLK and SD_DAT/CMD signals on the PCB. (12) t CLK_DELAY + t OH + t DATA_DELAY + t TAP_DELAY > t IH_H t CLK_DELAY + t DATA_DELAY > t IH_H – t OH – t TAP_DELAY t CLK_DELAY + t DATA_DELAY > 2 – 2,5 – t TAP_DELAY t CLK_DELAY + t DATA_DELAY > – 0,5 – t TAP_DELAY The data + clock delay must be greater than -0.5 ns for a 20 ns clock cycle. This is always fulfilled. 3.3.10 EBU Timing Note: These parameters are not subject to production test, but verified by design and/or characterization. Note: Operating Conditions apply, with Class A2 pins and CL = 16 pF. 3.3.10.1 EBU Asynchronous Timing Note: For each timing, the accumulated PLL jitter must be added separately. Table 53 Common Timing Parameters for all Asynchronous Timings Parameter Sym Limit Values Unit Edge bol Min. Max. Setting CC ta Pulse width deviation from the ideal programmed width due to the A2 pad asymmetry, strong driver mode, rise delay - fall delay. CL = 16 pF. AD(24:16) output delay to ADV rising AD(24:16) output delay edge, multiplexed read / write Data Sheet 96 -1 1.5 ns sharp -2 1 medium CC t13 -5.5 2 – CC t14 -5.5 2 – V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Read Timing Table 54 Asynchronous Read Timing, Multiplexed and Demultiplexed Parameter Symbol A(24:16) output delay to RD rising edge, A(24:16) output delay deviation from the ideal programmed CS rising edge value. ADV rising edge CC CC CC CC BC rising edge CC WAIT input setup SR WAIT input hold SR Data input setup SR Data input hold SR RD / WR output delay CC Data Sheet 97 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 Limit Values Min. Max. -2.5 2.5 -2.5 2.5 -2 2.5 -1.5 4.5 -2.5 2.5 12 – 0 – 12 – 0 – -2.5 1.5 Unit ns V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Multiplexed Read Timing EBU STATE Address Phase Address Hold Phase (opt.) Command Delay Phase Command Phase Recovery Phase (opt.) New Addr. Phase Duration Limits in EBU_CLK Cycles 1...15 0...15 0...7 1...31 0...15 1...15 A[max:16]1) Next Addr. Valid Address pv + pv + t1 t0 pv + CS[3:0] t2 ta CSCOMB pv + pv + ta t3 ADV pv + ta RD pv + t9 pv + ta RD/WR pv + ta t4 BC[3:0] pv + t5 t6 WAIT pv + pv + 2) AD[31:0] t14 t7 t13 Address Out t8 Data In 1) For 16-bit MUX and Twin 16-bit MUX only * 16-bit MUX: - Address A[15:0], Data D[15:0] on pins AD[15:0] only * Twin 16-Bit MUX: - Address A[15:0] on pins AD[15:0] and AD[31:16] in parallel - Data D[31:0] on pins AD[31:0] * 32-bit MUX: - Address A[24:0] on pins AD[24:0] - Data D[31:0] on pins AD[31:0] 2) pv = programmed value, TEBU_CLK * sum (corresponding bitfield values) Figure 41 Data Sheet EBU_MuxRD_Async.vsd Multiplexed Read Access 98 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Demultiplexed Read Timing EBU STATE Address Phase Address Hold Phase (opt.) Command Phase Recovery Phase (opt.) New Addr. Phase Duration Limits in EBU_CLK Cycles 1...15 0...15 1...31 0...15 1...15 A[max:0]1) Next Addr. Valid Address pv + pv + t0 pv + ta t1 t2 CS[3:0] CSCOMB t3 pv + pv + ta ADV pv + ta RD pv + t9 pv + ta RD/WR pv + ta t4 BC[3:0] pv + t5 t6 WAIT t7 D[15:0]2) t8 Data In 1) 2) Address A[max:16] on pins A[max:16], Address A[15:0] on pins AD[31:16] Data D[15:0] on pins AD[15:0] pv = programmed value, TEBU_CLK * sum (corresponding bitfield values) Figure 42 Demultiplexed Read Access Data Sheet 99 EBU_DeMuxRD_Async.vsd V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Write Timing Table 55 Asynchronous Write Timing, Multiplexed and Demultiplexed Parameter A(24:0) output delay A(24:0) output delay CS rising edge ADV rising edge Symbol Limit Values CC to RD/WR rising edge, deviation from CC the ideal programmed CC value. CC BC rising edge CC WAIT input setup SR WAIT input hold SR Data output delay CC Data output delay CC RD / WR output delay CC Data Sheet 100 t30 t31 t32 t33 t34 t35 t36 t37 t38 t39 Min. Max. -2.5 2.5 -2.5 2.5 -2 2 -2 4.5 -2.5 2 12 – 0 – -5.5 2 -5.5 2 -2.5 1.5 Unit ns V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Multiplexed Write Timing EBU STATE Address Phase Address Hold Phase (opt.) Command Phase Data Hold Phase Recovery Phase (opt.) New Addr. Phase Duration Limits in EBU_CLK Cycles 1...15 0...15 1...31 0...15 0...15 1...15 A[max:16]1) Next Addr. Valid Address t30 pv + CS[3:0] pv + t31 ta pv + pv + t32 CSCOMB pv + t33 pv + ta ADV pv + t39 RD pv + ta RD/WR pv + t34 ta pv + ta BC[3:0] t36 t35 WAIT pv + pv + AD[31:0]2) t14 pv + t13 t37 pv + t38 Data Out Address Out 1) For 16-bit MUX and Twin 16-bit MUX only * 16-bit MUX: - Address A[15:0], Data D[15:0] on pins AD[15:0] only * Twin 16-Bit MUX: - Address A[15:0] on pins AD[15:0] and AD[31:16] in parallel - Data D[31:0] on pins AD[31:0] * 32-bit MUX: - Address A[24:0] on pins AD[24:0] - Data D[31:0] on pins AD[31:0] 2) pv = programmed value, TEBU_CLK * sum (corresponding bitfield values) Figure 43 Data Sheet EBU_MuxWR_Async.vsd Multiplexed Write Access 101 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Demultiplexed Write Timing EBU STATE Address Phase Address Hold Phase (opt.) Command Phase Data Hold Phase Recovery Phase (opt.) New Addr. Phase Duration Limits in EBU_CLK Cycles 1...15 0...15 1...31 0...15 0...15 1...15 A[max:0]1) Next Addr. Valid Address pv + t30 pv + ta pv + CS[3:0] pv + t31 t32 CSCOMB pv + t33 pv + ta ADV pv + t39 RD pv + ta RD/WR pv + t34 ta pv + ta BC[3:0] t36 t35 WAIT pv + 2) D[15:0] 1) 2) Data Sheet pv + t38 Data Out Address A[max:16] on pins A[max:16], Address A[15:0] on pins AD[31:16] Data D[15:0] on pins AD[15:0] pv = programmed value, TEBU_CLK * sum (corresponding bitfield values) Figure 44 t37 EBU_DeMuxWR_Async.vsd Demultiplexed Write Access 102 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.3.10.2 EBU Burst Mode Access Timing Note: These parameters are not subject to production test, but verified by design and/or characterization. Note: Operating Conditions apply, with Class A2 pins and CL = 16 pF. Table 56 EBU Burst Mode Read / Write Access Timing Parameters Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Output delay from BFCLKO rising edge t10 CC -2 – 2 ns – RD and RD/WR active/inactive after BFCLKO active edge1) t12 CC -2 – 2 ns – CSx output delay from BFCLKO active edge1) t21 CC -2.5 – 1.5 ns – ADV active/inactive after BFCLKO active edge2) t22 CC -2 – 2 ns – BAA active/inactive after BFCLKO active edge2) t22a CC -2.5 – 1.5 ns – Data setup to BFCLKI rising t23 edge3) SR 3 – – ns – Data hold from BFCLKI rising edge3) t24 SR 0 – – ns – WAIT setup (low or high) to BFCLKI rising edge3) t25 SR 3 – – ns – WAIT hold (low or high) from t26 BFCLKI rising edge3) SR 0 – – ns – 1) An active edge can be a rising or falling edge, depending on the settings of bits BFCON.EBSE / ECSE and the clock divider ratio. Negative minimum values for these parameters mean that the last data read during a burst may be corrupted. However, with clock feedback enabled, this value is an oversampling not required for the internal bus transaction, and will be discarded. 2) This parameter is valid for BUSCONx.EBSE = 1 and BUSAPx.EXTCLK = 00B. For BUSCONx.EBSE = 1 and other values of BUSAPx.EXTCLK, ADV and BAA will be delayed by 1/2 of the internal bus clock period TCPU = 1 / fCPU. For BUSCONx. EBSE = 0 and BUSAPx.EXTCLK = 11B, add 2 internal bus clock periods. For BUSCONx. EBSE = 0 and other values of BUSAPx.EXTCLK, add 1 internal bus clock period. Data Sheet 103 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3) If the clock feedback is not enabled, the input signals are latched using the internal clock in the same way as for asynchronous access. Thus, t5, t6, t7 and t8 from the asynchronous timing apply. Address Phase(s) Command Phase(s) Burst Phase(s) Burst Phase(s) Recovery Phase(s) Next Addr. Phase(s) BFCLKI BFCLKO1) t10 t10 A[max :0] Next Addr. Burst Start Address t22 t2 2 t22 ADV t21 t21 t21 CS[3:0] CSCOMB t1 2 t12 RD RD/WR t2 2 a t2 2a BAA t23 D[31:0] (32-Bit) D[15:0] (16-Bit) t25 t2 4 t23 t2 4 Data (Addr+0) Data (Addr+4) Data (Addr+0) Data (Addr+2) t2 6 WAIT 1) Figure 45 Data Sheet Output delays are always referenced to BCLKO . The reference clock for input characteristics depends on bit EBU _BFCON.FDBKEN. EBU_BFCON.FDBKEN = 0: BFCLKO is the input reference clock . EBU_BFCON.FDBKEN = 1: BFCLKI is the input reference clock (EBU clock feedback enabled ). EBU_BurstRDWR.vsd EBU Burst Mode Read / Write Access Timing 104 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.3.10.3 EBU Arbitration Signal Timing Note: These parameters are not subject to production test, but verified by design and/or characterization. Note: Operating Conditions apply. Table 57 EBU Arbitration Signal Timing Parameters Parameter Symbol Min. Values Typ. Max. Unit Note / Test Cond ition Output delay from BFCLKO rising edge t1 CC – – 16 ns CL = 50 pF Data setup to BFCLKO falling edge t2 SR 11 – – ns – Data hold from BFCLKO falling edge t3 SR 2 – – ns – BFCLKO t1 t1 HLDA Output t1 t1 BREQ Output BFCLKO t2 t3 t2 t3 HOLD Input HLDA Input EBU_Arb .vsd Figure 46 Data Sheet EBU Arbitration Signal Timing 105 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.3.10.4 EBU SDRAM Access Timing Note: These parameters are not subject to production test, but verified by design and/or characterization. Note: Operating Conditions apply, with Class A2 pins and CL = 16 pF. Table 58 EBU SDRAM Access SDCLKO Signal Timing Parameters Parameter Symbol t1 t2 t3 t4 t5 SDCLKO period SDCLKO high time SDCLKO low time SDCLKO rise time SDCLKO fall time Values CC Min. Typ. Max. Unit Note / Test Con dition 12.5 – – ns – SR 5.5 – – ns – SR 3.75 – – ns – SR – – 3.0 ns – SR – – 3.0 ns – t1 SDCLKO 0.9 VD D P 0.1 VD D P 0.5 VD D P t2 t3 t5 t4 EBU_SDCLKO.vsd Figure 47 Data Sheet EBU SDRAM Access CLKOUT Timing 106 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters Table 59 EBU SDRAM Access Signal Timing Parameters Parameter Symbol Limit Values A(15:0) output valid A(15:0) output hold CS(3:0) low from SDCLKO low-to-high transition CC CC CC CS(3:0) high CC RAS low CC RAS high SR CAS low SR CAS high CC RD/WR low CC RD/WR high CC BC(3:0) low CC BC(3:0) high CC D(15:0) output valid CC D(15:0) output hold CC 1) CC CKE output hold1) CC D(15:0) input hold SR D(15:0) input setup to SDCLKO low-to-high transition SR CKE output valid t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t22 t23 t21 t20 Min. Max. – 9 3 – – 9 3 – – 9 3 – – 9 3 – – 9 3 – – 9 3 – – 9 3 – – 7 2 – 3 – 4 – Unit ns 1) Not depicted in the read and write access timing figures below. Data Sheet 107 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters SDCLKO t6 A[15:0] 1) Row t7 Column t9 CS[3:0] CSCOMB RAS t1 2 t1 3 CAS RD/WR t1 6 t1 7 BC[1:0] t2 0 D[15:0] 2) t21 Data (0) 1) 2) Data (n- 1) Address A[15:0] on pins AD[31:16] Data D[15:0] on pins AD[15:0] EBU_SDRAM-RD.vsd Figure 48 Data Sheet EBU SDRAM Read Access Timing 108 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters SDCLKO t6 A[15:0] t7 1) Row Column t8 t9 CS[3:0] CSCOMB t1 0 t1 1 RAS t1 2 t1 3 t1 4 t1 5 CAS RD/WR t1 6 t1 7 BC[1:0] t1 8 D[15:0] t19 Data (0) 2) 1) 2) Data (n-1 ) Address A[15:0] on pins AD[31:16] Data D[15:0] on pins AD[15:0] EBU_SDRAM-WR.vsd Figure 49 Data Sheet EBU SDRAM Write Access Timing 109 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.3.11 USB Interface Characteristics The Universal Serial Bus (USB) Interface is compliant to the USB Rev. 2.0 Specification and the OTG Specification Rev. 1.3. High-Speed Mode is not supported. Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 60 USB Timing Parameters (operating conditions apply) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition – 20 ns CL = 50 pF – 20 ns CL = 50 pF Rise/Fall time matching tR CC 4 tF CC 4 tR/tF CC 90 – 111.11 % CL = 50 pF Crossover voltage VCRS – 2.0 CL = 50 pF Rise time Fall time CC 1.3 D+ 90% V 90% VC R S DVSS 10% 10% tF tR USB_Rise-Fall-Times.vsd Figure 50 Data Sheet USB Signal Timing 110 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.3.12 Ethernet Interface (ETH) Characteristics For proper operation of the Ethernet Interface it is required that fSYS ≥ 100 MHz. Note: These parameters are not subject to production test, but verified by design and/or characterization. 3.3.12.1 ETH Measurement Reference Points ETH Clock ETH I/O 1.4 V 1.4 V 2.0 V 0.8 V 2.0 V 0.8 V tR tF ETH_Testpoints.vsd Figure 51 Data Sheet ETH Measurement Reference Points 111 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.3.12.2 ETH Management Signal Parameters (ETH_MDC, ETH_MDIO) Table 61 ETH Management Signal Timing Parameters Parameter Symbol Values Typ. Max. Unit Note / Test Conditi on CC 400 – – ns CC 160 – – ns CC 160 – – ns CC 10 – – ns CC 10 – – ns SR 0 – 300 ns Min. t1 ETH_MDC high time t2 t3 ETH_MDC low time ETH_MDIO setup time (output) t4 ETH_MDIO hold time (output) t5 t6 ETH_MDIO data valid (input) ETH_MDC period CL = 25 pF t1 t3 t2 ETH_MDC ETH_MDIO sourced by STA: ETH_MDC t4 ETH_MDIO (output) t5 Valid Data ETH_MDIO sourced by PHY: ETH_MDC t6 ETH_MDIO (input) Valid Data ETH_Timing-Mgmt.vsd Figure 52 Data Sheet ETH Management Signal Timing 112 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.3.12.3 ETH MII Parameters In the following, the parameters of the MII (Media Independent Interface) are described. Table 62 ETH MII Signal Timing Parameters Parameter Symbol Values Min. Clock period, 10 Mbps Clock high time, 10 Mbps Clock low time, 10 Mbps Clock period, 100 Mbps Clock high time, 100 Mbps Clock low time, 100 Mbps Input setup time Input hold time Output valid time t7 t8 t9 t7 t8 t9 t10 t11 t12 Typ. Max. Unit Note / Test Condition SR 400 – – ns SR 140 – 260 ns SR 140 – 260 ns SR 40 – – ns SR 14 – 26 ns SR 14 – 26 ns SR 10 – – ns SR 10 – – ns CC 0 – 25 ns CL = 25 pF t7 t9 t8 ETH_MII_RX_CLK ETH_MII_TX_CLK ETH_MII_RX_CLK t1 0 ETH_MII_RXD[3:0] ETH_MII_RX_DV ETH_MII _RX_ER (sourced by PHY ) t1 1 Valid Data ETH_MII_TX_CLK t1 2 ETH_MII _TXD[3:0] ETH_MII_TXEN (sourced by STA ) Valid Data ETH_Timing-MII.vsd Figure 53 Data Sheet ETH MII Signal Timing 113 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Electrical Parameters 3.3.12.4 ETH RMII Parameters In the following, the parameters of the RMII (Reduced Media Independent Interface) are described. Table 63 ETH RMII Signal Timing Parameters Parameter Symbol ETH_RMII_REF_CL clock period t13 Values Unit Note / Test Condit Min. Typ. Max. ion SR 20 – – ns CL = 25 pF; 50 ppm ETH_RMII_REF_CL clock high time t14 SR 7 – 13 ns CL = 25 pF ETH_RMII_REF_CL clock low time t15 SR 7 – 13 ns ETH_RMII_RXD[1:0], ETH_RMII_CRS setup time t16 SR 4 – – ns ETH_RMII_RXD[1:0], ETH_RMII_CRS hold time t17 SR 2 – – ns ETH_RMII_TXD[1:0], ETH_RMII_TXEN data valid t18 CC 4 – 15 ns t1 3 t1 5 t14 ETH_RMII_REF_CL ETH_RMII_REF_CL t1 6 ETH_RMII _RXD[1:0] ETH_RMII _CRS (sourced by PHY ) t17 Valid Data ETH_RMII_REF_CL t18 ETH_RMII _TXD[1:0] ETH_RMII _TXEN (sourced by STA ) Figure 54 Data Sheet Valid Data Valid Data ETH_Timing-RMII .vsd ETH RMII Signal Timing 114 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Package and Reliability 4 Package and Reliability The XMC4500 is a member of the XMC4000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies. Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the Exposed Die Pad may vary. If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration. 4.1 Package Parameters Table 64 provides the thermal characteristics of the packages used in XMC4500. Table 64 Thermal Characteristics of the Packages Parameter Symbol Limit Values Unit Package Types Exposed Die Pad Dimensions (including UGroove where applicable) Ex × Ey CC - 6.5 × 6.5 mm PG-LQFP-144-18 6.5 × 6.5 mm PG-LQFP-144-24 - 7.0 × 7.0 mm PG-LQFP-100-11 - 7.0 × 7.0 mm PG-LQFP-100-25 RΘJA - 40.5 K/W PG-LFBGA-144-10 CC - 22.4 K/W PG-LQFP-144-181) - 19.5 K/W PG-LQFP-144-241) - 23.0 K/W PG-LQFP-100-111) - 21.0 K/W PG-LQFP-100-251) Min. Thermal resistance Junction-Ambient TJ ≤ 150 °C Max. 1) Device mounted on a 4-layer JEDEC board (JESD 51-7) with thermal vias; exposed pad soldered. Note: For electrical reasons, it is required to connect the exposed pad to the board ground VSS, independent of EMC and thermal requirements. 4.1.1 Thermal Considerations When operating the XMC4500 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage. The maximum heat that can be dissipated depends on the package and its integration into the target board. The “Thermal resistance RΘJA” quantifies these parameters. The Data Sheet 115 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Package and Reliability power dissipation must be limited so that the average junction temperature does not exceed 150 °C. The difference between junction temperature and ambient temperature is determined by ΔT = (PINT + PIOSTAT + PIODYN) × RΘJA The internal power consumption is defined as PINT = VDDP × IDDP (switching current and leakage current). The static external power consumption caused by the output drivers is defined as PIOSTAT = Σ((VDDP-VOH) × IOH) + Σ(VOL × IOL) The dynamic external power consumption caused by the output drivers (PIODYN) depends on the capacitive load connected to the respective pins and their switching frequencies. If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation: • • • • Reduce VDDP, if possible in the system Reduce the system frequency Reduce the number of output pins Reduce the load on active output drivers Data Sheet 116 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Package and Reliability 4.2 Package Outlines Table 65 Differences PG-LQFP-14-18 to PG-LQFP-144-24 Change PG-LQFP-144-18 PG-LQFP-144-24 Thermal Resistance Junction Ambient (RΘJA) 22.4 K/W 21.0 K/W Lead Width 0.22±0.05 mm 0.2+0.07-0.03 mm Lead Thickness 0.15+0.05-0.06 mm 0.127+0.073-0.037 mm Exposed Die Pad outer dimensions 6.5 mm × 6.5 mm 6.5 mm × 6.5 mm Exposed Die Pad UGroove inner dimensions n.a. 5.7 mm × 5.7 mm Figure 55 Data Sheet PG-LQFP-144-18 (Plastic Green Low Profile Quad Flat Package) 117 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family H 0.5 0.6 ±0.15 0°...7° 7 +0.073 0.127 -0 .03 35 x 0.5 = 17.5 1.6 MAX. 0.1±0.05 STAND OFF 1.4 ±0.05 Package and Reliability 0.08 C 144x COPLANARITY C SEATING PLANE 2) 0.2 +0.07 -0.03 0.08 M A-B D C 144x 22 20 0.2 A-B D C 144x 1) Bottom View 0.2 A-B D H 4x Ex 3) Ey 3) Ay 3) 22 B 20 A 1) D 144 144 1 Index Marking Exposed Diepad 1) Does not include plastic or metal protrusion of 0.25 max. per side 2) Does not include dambar protrusion 3) Refer table for exposed pad dimension Figure 56 Data Sheet Ax 3) 1 Index Marking PG-LQFP-144-22-PO V04 PG-LQFP-144-24 (Plastic Green Low Profile Quad Flat Package) 118 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Package and Reliability Differences PG-LQFP-100-11 to PG-LQFP-100-24 Change PG-LQFP-100-11 PG-LQFP-100-25 Thermal Resistance Junction Ambient (RΘJA) 23.0 K/W 19.5 K/W Lead Width 0.22±0.05 mm 0.2+0.07-0.03 mm +0.05 0.127+0.073-0.037 mm mm 7.0 mm × 7.0 mm 7.0 mm × 7.0 mm Exposed Die Pad UGroove inner dimensions n.a. 6.2 mm × 6.2 mm -0.06 0.1±0.05 STAND OFF 24 x 0.5 = 12 0.15 +0.05 Exposed Die Pad outer dimensions -0.06 1.6 MAX. 0.15 1.4 ±0.05 Lead Thickness H 0.5 0.6 ±0.15 0°...7° Table 66 0.08 C 100x C SEATING COPLANARITY PLANE 0.08 M A-B D C 100x 0.22 ±0.05 16 14 1) 0.2 A-B D 100x Bottom View 0.2 A-B D H 4x Ex Ey 16 B 14 A 1) D 100 100 1 1 Index Marking Exposed Diepad 1) Does not include plastic or metal protrusion of 0.25 max. per side PG-LQFP-100-3, -4, -8, -11-PO V14 Figure 57 Data Sheet PG-LQFP-100-11 (Plastic Green Low Profile Quad Flat Package) 119 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family 0.6 ±0.15 0°...7° -0.037 H 0.5 0.2 +0.07 -0.03 0.127 +0.073 1.6 MAX. 24 x 0.5 = 12 1.4 ±0.05 0.1±0.05 STAND OFF Package and Reliability 0.08 C 100x C SEATING COPLANARITY PLANE 0.08 M C A-B D 100x 2) Bottom View 16 14 1) 0.2 C A-B D 100x Ex 3) 0.2 H A-B D 4x Ax 3) 100 Ay 3) 16 1) B 14 A Ey 3) D 100 1 1 Index Marking Exposed Diepad 1) Does not include plastic or metal protrusion of 0.25 max. per side 2) Does not include dambar protrusion of 0.08 max. per side 3) Refer table for exposed pad dimension details Figure 58 Data Sheet PG-LQFP-100-24, -25-PO V04 PG-LQFP-100-25 (Plastic Green Low Profile Quad Flat Package) 120 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Package and Reliability Figure 59 PG-LFBGA-144-10 (Plastic Green Low Profile Fine Pitch Ball Grid Array) All dimensions in mm. You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page “Packages”: http://www.infineon.com/packages Data Sheet 121 V1.4, 2016-01 Subject to Agreement on the Use of Product Information XMC4500 XMC4000 Family Package and Reliability 4.3 Quality Declarations The qualification of the XMC4500 is executed according to the JEDEC standard JESD47H. Note: For automotive applications refer to the Infineon automotive microcontrollers. Table 67 Quality Parameters Parameter Symbol Values Min. Operation lifetime tOP CC 20 Typ. Max. − − Unit Note / Test Condition a TJ ≤ 109°C, device permanent on VHBM ESD susceptibility according to Human Body SR Model (HBM) − − 2 000 V EIA/JESD22A114-B ESD susceptibility according to Charged Device Model (CDM) VCDM − − 500 V Conforming to JESD22-C101-C Moisture sensitivity level MSL − − 3 − JEDEC J-STD-020D − − 260 °C Profile according to JEDEC J-STD-020D SR CC Soldering temperature TSDR SR Data Sheet 122 V1.4, 2016-01 Subject to Agreement on the Use of Product Information w w w . i n f i n e o n . c o m Published by Infineon Technologies AG