PANASONIC GN8061

GN8061
GaAs MMICs
GN8061
GaAs IC
Unit : mm
8
High-speed switching
2
7
●
High output
3
6
Pulse current and DC bias current can be controlled.
4
5
●
0.7min.
6.4±0.2
4.5max. 4.0max.
1.3typ.
1
●
10max.
2.54±0.25
■ Features
0.5
For semiconductor laser drive
■ Absolute Maximum Ratings (Ta = 25˚C)
Parameter
Symbol
Power supply voltage
Rating
VDD
6
V
VSS
–6
V
6
V
VIb2
0.5
V
VIN
– 0.5 to VDD –1.5
V
VIp
Power current
*5
1.5 to 6
V
VOUT* 1
6
V
IDD* 4
55
mA
ISS
40
mA
Output current
IOUT
225
mA
Allowable power dissipation
PD* 2
700
mW
Channel temperature
Tch
150
˚C
Storage temperature
Tstg
– 55 to +150
˚C
Operating ambient temperature
Topr* 3
–10 to + 75
˚C
*1
*2
*3
*4
*5
7.62±0.2
0 to 15˚
VIb1* 1
Pin voltage
1 : GND
2 : VIb1
3 : VIb2
0.35max.
4 : OUT
5 : VIP
6 : VDD
7 : VIN
8 : VSS
8-Lead Plastic DIL Package
Unit
Do not apply the voltage higher than the set VDD .
Guaranteed for the unit in the natural atmosphere.
IC circuit functioning range. Note however that the electrical characteristics shown
at Ta= 25˚C is not guaranteed.
IDD is a current when the pulse output current and bias output current are zero.
Voltage when the constant current source has been connected.
■ Electrical Characteristics (Ta = 25˚C)
Parameter
Pulse output current
Bias output current
Supply current
Input voltage
Symbol
Test circuit
Condition
Min
Typ
Ipmax.
1
VIN= 2.0V, VIb2= – 5V
100
120
Ipmin.
1
VIN= 0.4V, VIb2= – 5V
Ibmax.
2
IP= 0, VIb1= 5V, VIb2= 0
80
100
Ibmin. 1
2
IP= 0, VIb1= 0, VIb2= 0
Ibmin. 2
2
IP= 0, VIb1= 5V, VIb2= – 5V
2
2
IDD
*1
ISS
1
Max
mA
5
mA
1
5
mA
0.1
mA
VIb1= 5V, VIb2 = – 5V, VIN = 0.4V
35
55
mA
IP= 0
25
40
mA
2.5
VIL
Rise time
tr
3
Fall time
tf* 2
3
mA
0.05
VIH
*2
Unit
VIb1= 0, VIb2 – 5V, IP =100mA
Note : Following condition is applied unless otherwise specified: VDD = 5V, VSS= – 5V, VIb1= 0V, VIb2= 0V
Set the supply current of constant current source to IP=120mA and load resistance to RL=10Ω
V
0.4
V
7
ns
5
ns
GN8061
GaAs MMICs
*1
The current value to be supplied from the 5V power supply is a total sum of this value plus the pulse output current and bias output current.
*2
Waveform of input and output signals
Input signal
Output waveform
2µS
90%
10µS
10%
2.5V min.
tr
0.4V max.
tf
tr ··· 10% to 90%
tf ··· 90% to 10%
the input signal
* The rise/fall timeisof2ns
(10 to 90%)
Test circuit 1
Test circuit 2
VIN
–5V
C1
5V
C1
+
–
C2
–
+ C2
0.4V
IP=120mA
–5V
C1
–
+ C2
7
6
5
8
7
6
5
1
2
3
4
1
2
3
4
A
A
VIb1
R1
–5V
VIb2
+ 5V
– C2
C1
–5V
C1
R2
+
–
C2
–
+ C2
5V
C1
IP=100mA
8
7
6
1
2
3
5
4
C3
R1
C3
–5V
FET PROBE
C1
R1
C1
Test circuit 3
PULSE
GENERATOR
5V
C1
IP=0mA
8
0V
+
–
C2
+ 5V
– C2
C1 : 0.1µF
C2 : 3.3µF
C3 : 2200pF
R1 : 10Ω
R2 : 50Ω
+ 5V
– C2
GN8061
GaAs MMICs
■ Block Diagram
OUTSIDE GN8061
+5V
INSIDE GN8061
VDD
VIN
LASER DIODE
OUT
VSS
VSS
VDD
VDD
VIb1
(0 to 5V)
VSS VIP
VSS
from CONTROL
CIRCUIT
VSS
VIb2(–5 to 0V)
■ Caution for Handling
1) The recommended VIN voltage is 2.5 to 3V for [H] and
0 to 0.4V for [L].
2) Do not apply V IN while the power supply is OFF.
3) For the current source to be connected to the V IP pin,
use a Si bipolar transistor as shown in the circuit diagram.
(Example: 2SD874)
To connect a resistor to the emitter or collector, use a
resistor of a few ohm. The use of higher resistor may
cause large change in the voltage at the VIP pin, and
may make the output waveform distortion. (See the pulse
output current control example).
To use another current control circuit, set so that the VIP
pin voltage becomes around 2V.
4) When mounting, minimize the connection distance between the semiconductor laser and IC, and use the chip
parts (C, R) of less parasitic effects.
5) Attention to damage by the power surge (see the example connection of the pin protection circuit).
During handling, take care to ground the human body
and solder iron tip.
6) The current value of the current source connected to the
VIP pin should be zero to protect the semiconductor laser when the power supply is turned ON and OFF.
When the power supply is ON, make VSS to rise earlier
than VDD. When the power supply is OFF, make VDD to
fall earlier than V SS . When V DD = 5V, VSS = 0 even
transitionary, the current of about 30mA flows through
the semiconductor laser.
7) Pay attention to release the heat.
MA3068(VZ=6.8V,Cd=85pF,RZ=6Ω)
GN8061
100 to 200W
3k to 5kW
–5.0V
GND VSS
VIb1
VIN
200 to 2kΩ
VIb2 VDD
5.0V
50Ω
OUT VIP
Connection example of pin protection circuit
GN8061
GND VSS
VIb1
VIN
VIb2 VDD
OUT VIP
–
+
I COLLECTOR
IB
0.22mF
5Ω
VEE=–5 to 0V
Example of pulse output current control circuit
GN8061
GaAs MMICs
PD – Ta
Ib – Vlb2
200
800
400
200
120
80
100
150
200
–0.4
IP min(VIN=0.4V)
–0.8
–1.2
–1.6
–2.0
0
1
2
4
5
6
tf – IP
6
VDD=5V
VIb1=0
VIb2=–5V
IP=100mA(at VSS=–5V)
3
Supply voltage VDD (V)
tr – IP
6
VDD=5V
VSS=–5V
VIb1=0
VIb2=–5V
5
VDD=5V
VSS=–5V
VIb1=0
VIb2=–5V
5
IP max(VIN=2.5V)
IP min(VIN=0.4V)
60
40
20
4
Fall time tf (ns)
80
Rise time tr (ns)
Pulse output current IP (mA)
40
Pin voltage VIb2 (V)
IP – VSS
100
60
0
0
Ambient temperature Ta (˚C)
120
80
20
0
50
0
3
2
1
0
–1
–2
–3
–4
–5
–6
50
100
150
10
10
6
4
3
4
Supply voltage VDD (V)
5
6
4
2
0
0
150
VDD=5V
VIb1=0
VIb2=–5V
IP=100mA
8
2
2
100
tr – VSS
Rise time tr (ns)
Fall time tf (ns)
4
2
50
Pulse output current IP (mA)
VSS=–5V
VIb1=0
VIb2=–5V
IP=50mA
8
6
1
0
tf – VDD
VSS=–5V
VIb1=0
VIb2=–5V
IP=50mA
0
2
Pulse output current IP (mA)
tr – VDD
8
3
0
0
Supply voltage VSS (V)
10
4
1
0
0
Rise time tr (ns)
100
40
0
VSS=–5V
VIb1=0
VIb2=–5V
IP=100mA
(at VDD=5V)
IP max(VIN=2.5V)
Pulse output current IP (mA)
600
120
VDD=5V
VSS=–5V
VIb1=5V
IP=0
160
Bias output current Ib (mA)
Allowable power dissipation PD (mW)
1000
IP – VDD
0
1
2
3
4
Supply voltage VDD (V)
5
0
0
–1
–2
–3
–4
Supply voltage VSS (V)
–5
GN8061
GaAs MMICs
tf – VSS
10
VDD=5V
VIb1=0
VIb2=–5V
IP=100mA
Fall time tf (ns)
8
6
4
2
0
0
–1
–2
–3
–4
Supply voltage VSS (V)
–5