GN8061 GaAs MMICs GN8061 GaAs IC Unit : mm 8 High-speed switching 2 7 ● High output 3 6 Pulse current and DC bias current can be controlled. 4 5 ● 0.7min. 6.4±0.2 4.5max. 4.0max. 1.3typ. 1 ● 10max. 2.54±0.25 ■ Features 0.5 For semiconductor laser drive ■ Absolute Maximum Ratings (Ta = 25˚C) Parameter Symbol Power supply voltage Rating VDD 6 V VSS –6 V 6 V VIb2 0.5 V VIN – 0.5 to VDD –1.5 V VIp Power current *5 1.5 to 6 V VOUT* 1 6 V IDD* 4 55 mA ISS 40 mA Output current IOUT 225 mA Allowable power dissipation PD* 2 700 mW Channel temperature Tch 150 ˚C Storage temperature Tstg – 55 to +150 ˚C Operating ambient temperature Topr* 3 –10 to + 75 ˚C *1 *2 *3 *4 *5 7.62±0.2 0 to 15˚ VIb1* 1 Pin voltage 1 : GND 2 : VIb1 3 : VIb2 0.35max. 4 : OUT 5 : VIP 6 : VDD 7 : VIN 8 : VSS 8-Lead Plastic DIL Package Unit Do not apply the voltage higher than the set VDD . Guaranteed for the unit in the natural atmosphere. IC circuit functioning range. Note however that the electrical characteristics shown at Ta= 25˚C is not guaranteed. IDD is a current when the pulse output current and bias output current are zero. Voltage when the constant current source has been connected. ■ Electrical Characteristics (Ta = 25˚C) Parameter Pulse output current Bias output current Supply current Input voltage Symbol Test circuit Condition Min Typ Ipmax. 1 VIN= 2.0V, VIb2= – 5V 100 120 Ipmin. 1 VIN= 0.4V, VIb2= – 5V Ibmax. 2 IP= 0, VIb1= 5V, VIb2= 0 80 100 Ibmin. 1 2 IP= 0, VIb1= 0, VIb2= 0 Ibmin. 2 2 IP= 0, VIb1= 5V, VIb2= – 5V 2 2 IDD *1 ISS 1 Max mA 5 mA 1 5 mA 0.1 mA VIb1= 5V, VIb2 = – 5V, VIN = 0.4V 35 55 mA IP= 0 25 40 mA 2.5 VIL Rise time tr 3 Fall time tf* 2 3 mA 0.05 VIH *2 Unit VIb1= 0, VIb2 – 5V, IP =100mA Note : Following condition is applied unless otherwise specified: VDD = 5V, VSS= – 5V, VIb1= 0V, VIb2= 0V Set the supply current of constant current source to IP=120mA and load resistance to RL=10Ω V 0.4 V 7 ns 5 ns GN8061 GaAs MMICs *1 The current value to be supplied from the 5V power supply is a total sum of this value plus the pulse output current and bias output current. *2 Waveform of input and output signals Input signal Output waveform 2µS 90% 10µS 10% 2.5V min. tr 0.4V max. tf tr ··· 10% to 90% tf ··· 90% to 10% the input signal * The rise/fall timeisof2ns (10 to 90%) Test circuit 1 Test circuit 2 VIN –5V C1 5V C1 + – C2 – + C2 0.4V IP=120mA –5V C1 – + C2 7 6 5 8 7 6 5 1 2 3 4 1 2 3 4 A A VIb1 R1 –5V VIb2 + 5V – C2 C1 –5V C1 R2 + – C2 – + C2 5V C1 IP=100mA 8 7 6 1 2 3 5 4 C3 R1 C3 –5V FET PROBE C1 R1 C1 Test circuit 3 PULSE GENERATOR 5V C1 IP=0mA 8 0V + – C2 + 5V – C2 C1 : 0.1µF C2 : 3.3µF C3 : 2200pF R1 : 10Ω R2 : 50Ω + 5V – C2 GN8061 GaAs MMICs ■ Block Diagram OUTSIDE GN8061 +5V INSIDE GN8061 VDD VIN LASER DIODE OUT VSS VSS VDD VDD VIb1 (0 to 5V) VSS VIP VSS from CONTROL CIRCUIT VSS VIb2(–5 to 0V) ■ Caution for Handling 1) The recommended VIN voltage is 2.5 to 3V for [H] and 0 to 0.4V for [L]. 2) Do not apply V IN while the power supply is OFF. 3) For the current source to be connected to the V IP pin, use a Si bipolar transistor as shown in the circuit diagram. (Example: 2SD874) To connect a resistor to the emitter or collector, use a resistor of a few ohm. The use of higher resistor may cause large change in the voltage at the VIP pin, and may make the output waveform distortion. (See the pulse output current control example). To use another current control circuit, set so that the VIP pin voltage becomes around 2V. 4) When mounting, minimize the connection distance between the semiconductor laser and IC, and use the chip parts (C, R) of less parasitic effects. 5) Attention to damage by the power surge (see the example connection of the pin protection circuit). During handling, take care to ground the human body and solder iron tip. 6) The current value of the current source connected to the VIP pin should be zero to protect the semiconductor laser when the power supply is turned ON and OFF. When the power supply is ON, make VSS to rise earlier than VDD. When the power supply is OFF, make VDD to fall earlier than V SS . When V DD = 5V, VSS = 0 even transitionary, the current of about 30mA flows through the semiconductor laser. 7) Pay attention to release the heat. MA3068(VZ=6.8V,Cd=85pF,RZ=6Ω) GN8061 100 to 200W 3k to 5kW –5.0V GND VSS VIb1 VIN 200 to 2kΩ VIb2 VDD 5.0V 50Ω OUT VIP Connection example of pin protection circuit GN8061 GND VSS VIb1 VIN VIb2 VDD OUT VIP – + I COLLECTOR IB 0.22mF 5Ω VEE=–5 to 0V Example of pulse output current control circuit GN8061 GaAs MMICs PD – Ta Ib – Vlb2 200 800 400 200 120 80 100 150 200 –0.4 IP min(VIN=0.4V) –0.8 –1.2 –1.6 –2.0 0 1 2 4 5 6 tf – IP 6 VDD=5V VIb1=0 VIb2=–5V IP=100mA(at VSS=–5V) 3 Supply voltage VDD (V) tr – IP 6 VDD=5V VSS=–5V VIb1=0 VIb2=–5V 5 VDD=5V VSS=–5V VIb1=0 VIb2=–5V 5 IP max(VIN=2.5V) IP min(VIN=0.4V) 60 40 20 4 Fall time tf (ns) 80 Rise time tr (ns) Pulse output current IP (mA) 40 Pin voltage VIb2 (V) IP – VSS 100 60 0 0 Ambient temperature Ta (˚C) 120 80 20 0 50 0 3 2 1 0 –1 –2 –3 –4 –5 –6 50 100 150 10 10 6 4 3 4 Supply voltage VDD (V) 5 6 4 2 0 0 150 VDD=5V VIb1=0 VIb2=–5V IP=100mA 8 2 2 100 tr – VSS Rise time tr (ns) Fall time tf (ns) 4 2 50 Pulse output current IP (mA) VSS=–5V VIb1=0 VIb2=–5V IP=50mA 8 6 1 0 tf – VDD VSS=–5V VIb1=0 VIb2=–5V IP=50mA 0 2 Pulse output current IP (mA) tr – VDD 8 3 0 0 Supply voltage VSS (V) 10 4 1 0 0 Rise time tr (ns) 100 40 0 VSS=–5V VIb1=0 VIb2=–5V IP=100mA (at VDD=5V) IP max(VIN=2.5V) Pulse output current IP (mA) 600 120 VDD=5V VSS=–5V VIb1=5V IP=0 160 Bias output current Ib (mA) Allowable power dissipation PD (mW) 1000 IP – VDD 0 1 2 3 4 Supply voltage VDD (V) 5 0 0 –1 –2 –3 –4 Supply voltage VSS (V) –5 GN8061 GaAs MMICs tf – VSS 10 VDD=5V VIb1=0 VIb2=–5V IP=100mA Fall time tf (ns) 8 6 4 2 0 0 –1 –2 –3 –4 Supply voltage VSS (V) –5