APPLICATION NOTE Circuit description of CCM420 monitor AN97032 Philips Semiconductors Circuit description of CCM420 monitor Application Note AN97032 Abstract 2 The CCM420 demo monitor is a full I C-bus controlled 17” colour monitor. It’s extensive geometry control and excellent video performance with a high level of integration make it a high-performance monitor at moderate cost and easy application. 2 Purchase of Philips I C components conveys 2 a license under the I C patent to use the com2 ponents in the I C system, provided the system 2 conforms to the I C specifications defined by Philips. © Philips Electronics N.V. 1997 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. 2 Philips Semiconductors Circuit description of CCM420 monitor Application Note AN97032 APPLICATION NOTE Circuit description of CCM420 monitor AN97032 Author: Hans Verhees Philips Semiconductors Systems Laboratory Eindhoven, The Netherlands Keywords Colour Monitor Geometry control EHT supply 2 I C control 17” HiRes Number of pages: 50 Date: 97-10-14 3 Philips Semiconductors Circuit description of CCM420 monitor Application Note AN97032 Summary This application note includes a brief description of the circuits of the CCM420 demo monitor excluding the video part (see references); complete circuit diagrams plus printed circuit board lay-out and parts list as well as hints on the pcb lay-out are given. Debugging of the main printed circuit board and alignment in a complete 2 monitor is also included in the report. Highlights of this design are the I C controlled monitor deflection controller 2 TDA4854, I C controlled video controller TDA4885, full-bridge vertical deflection booster TDA8354, monitor Microcontroller P83C181* and the control software CCM420S. Combining this board with the CMT M41EHN323X145 and video board completes the CCM420 monitor. * The Microcontroller P83C181 is pruned. It can be replaced by the P83C180. This device however has 42 pins (additional DACs are included) which requires a redesign of the pcb. See also appendix CICT IC newsletter no. 17 4 Philips Semiconductors Circuit description of CCM420 monitor Application Note AN97032 CONTENTS 1. INTRODUCTION .......................................................................................................................................... 7 1.1 CCM420 Specification ........................................................................................................................... 8 1.2 List of abbreviations............................................................................................................................... 9 2. BLOCK DIAGRAM...................................................................................................................................... 12 3. CIRCUIT DESCRIPTIONS.......................................................................................................................... 14 3.1 Switched mode power supply .............................................................................................................. 14 3.2 Microcontroller..................................................................................................................................... 14 2 3.3 I C-bus autosync deflection controller for PC/TV monitors TDA4854 .................................................... 14 3.3.1 Brightness uniformity .................................................................................................................. 15 3.4 Horizontal deflection output stage ........................................................................................................ 15 3.4.1 B+ supply ................................................................................................................................... 15 3.4.2 Line driver and output stage........................................................................................................ 15 3.4.3 Linearity and S-correction control................................................................................................ 15 3.5 Vertical deflection output stage ............................................................................................................ 16 3.6 EHT supply.......................................................................................................................................... 16 3.6.1 Grid 1 supply .............................................................................................................................. 17 3.6.2 Grid 2 supply .............................................................................................................................. 17 3.6.3 Focus supply .............................................................................................................................. 17 3.7 Rotation circuit..................................................................................................................................... 17 3.8 Sound circuit........................................................................................................................................ 17 4. CIRCUIT DIAGRAMS ................................................................................................................................. 18 4.1 Last minute changes............................................................................................................................ 18 5. PARTS LIST............................................................................................................................................... 25 5.1 Resistors and potentiometers .............................................................................................................. 25 5.2 Capacitors ........................................................................................................................................... 28 5.3 Transistors .......................................................................................................................................... 29 5.4 Diodes................................................................................................................................................. 30 5.5 Integrated circuits ................................................................................................................................ 31 5.6 Wire-wound components ..................................................................................................................... 31 5.7 Miscellaneous...................................................................................................................................... 31 6. PRINTED CIRCUIT BOARD LAYOUT........................................................................................................ 33 6.1 Lay-out hints........................................................................................................................................ 33 7. ALIGNMENT PROCEDURE ....................................................................................................................... 38 7.1 Equipment ........................................................................................................................................... 38 7.2 Alignment ............................................................................................................................................ 38 8. DEBUGGING PROCEDURE....................................................................................................................... 40 9. REFERENCES............................................................................................................................................ 42 5 Philips Semiconductors Circuit description of CCM420 monitor 6 Application Note AN97032 Philips Semiconductors Circuit description of CCM420 monitor 1. Application Note AN97032 INTRODUCTION 2 The CCM420 demo monitor is a full I C bus controlled monitor. Extensive geometry control, a very wide deflection frequency range (horizontal: 15 - 84 kHz; vertical: 50 - 160 Hz), wide bandwidth video channels (maximum pixel rate 180 Mhz) with perfect grey scale tracking, a full mains range supply combined with complete software control result in a monitor with outstanding specifications while maintaining an economic design. The CCM420 demo monitor is meant to show the latest products of Philips Semiconductors and Philips Components. Key components are: • monitor microcontroller P83C181 • CCM420S monitor control software • I C-bus autosync deflection controller for PC/TV monitors TDA4854 • I C-bus controlled octuple eight bit DAC TDA8447 • full bridge vertical booster TDA8354 • 150 Mhz video controller with I C-bus TDA4885 • hybrid video output stage CR6927 • low power line driver transformer CU15/35 • monitor line deflection transistor BU2532AL • DC controlled linearity corrector PE4025/01 • EHT transformer AT2097/M1 • 0.27 mm dot triplet pitch CRT M41EHN • Optionally available is an active convergence control circuit with the vector processor TDA4845 2 2 2 The monitor microcontroller P83C181 has a DDC interface, auto-sync detection and a hardware sync processor. The DDC interface is DDC2AB compliant. The hardware mode detector has 12 bit resolution for the horizontal and vertical frequency, polarity detection and sync presence detection. The built-in sync processor also has a free-running mode. In this design the microcontroller runs with newly developed software CCM420S. This software allows extensive user control of geometry and colour adjustment. 2 The autosync deflection controller for PC/TV monitors TDA4854 is fully I C-bus controlled and in this application operating with a horizontal frequency range of 15 to 90 kHz (maximum 150 kHz; maximum ratio 6.5 :1). It allows very extensive control of geometry both horizontally and vertically, built-in B+ control part and focus section. Built-in soft-start as well as controlled shut down for B+ and deflection drive signals safeguard the output stages at power-up and power-down, while smooth caption of horizontal frequency during mode-changes ensures adequate protection of the line output stage. The B+ control part is used in the feed-forward mode without any feedback (omitting loop stability problems). The focus section has a fixed correction for the delay in the high voltage output stage. The vertical booster is the newly introduced TDA8354. This is a LVDMOS full bridge current driven output stage for 3.2 Ampere peak-peak maximum and a flyback supply voltage of 68 Volt maximum. The horizontal output stage is separated from the EHT supply to get maximum front of screen performance. The line driver uses a low-power design with the CU15/35 driver transformer and a high-speed switching line output transistor BU2532AL. To obtain optimum scan performance six S-correction switches and a newly designed DC-controlled linearity corrector PE4025/01 are used. The separate EHT supply section is synchronised with the horizontal deflection and uses a dedicated transformer AT2097/M1. Incorporated in this application are a number of protections to prevent spot burn-in. 7 Philips Semiconductors Circuit description of CCM420 monitor Application Note AN97032 The M41EHN tube is fitted with a rotation control coil. The tilt adjustment in this monitor allows an additional control of the bottom line (Tilt respectively NS trapezium). Front of screen performance is further enhanced by means of a brightness-uniformity circuit which can be 2 switched on/off via I C. 1.1 CCM420 Specification General • Mains voltage 90 - 264 Volts AC • Mains frequency 50 - 60 Hz • Power consumption 100 W typical • Operating ambient temperature 10 °C to 40 °C • Weight 20 kg • Dimensions (W x H x D) 417 x 426 x 446 mm 3 Picture tube • Type M41 EHN 323 x 145 2F01R • Horizontal deflection impedance 130 µH (max. hor. freq. 84 kHz) • Vertical deflection impedance 7.7 Ω • Dot triplet pitch 0.27 mm • Recommended active screen area 312 x 234 mm • Anode voltage 2 26.0 kV Video • Maximum dot rate 180 Mhz • Video input signal 700 mVpp linear via three BNC inputs • Video input impedance 75 Ω • Horizontal shift range > ±12.5 mm • Vertical shift range > ±12.5 mm • Horizontal amplitude • Vertical amplitude < 160 mm to > 240 mm • Reference white point x = 0.313; y = 0.329 (D6500) • White point deviation ∆x < 0.01; ∆y < 0.01 • Grey scale tracking ∆x < 0.02; ∆y < 0.02 < 210 mm to > 340 mm Sync signals • Inputs Separate Horizontal/Composite and Vertical inputs via BNC 8 Philips Semiconductors Circuit description of CCM420 monitor • Level TTL • Polarity Positive or negative • Horizontal frequency 15 to 84 kHz • Vertical frequency 50 to 160 Hz Application Note AN97032 User interface • Control Five button keyboard plus USER/SERVICE switch • Indication On Screen Display with 4 lines of 12 characters 1.2 List of abbreviations A1 Auxiliary 1 A2 Auxiliary 2 A3 Auxiliary 3 A4 Auxiliary 4 AGCDIS Automatic gain control in vertical oscillator enabled/disabled ASDC Auto-Sync Deflection Controller BB Blue Black level BG Blue gain Black Lvl B Blue channel black level control register in the TDA4885 Black Lvl G Green channel black level control register in the TDA4885 Black Lvl R Red channel black level control register in the TDA4885 BLKDIS Vertical protection at ‘Clamping/blanking’ and ‘Horizontal unlock’ enabled/disabled in the TDA4854 Brightness Brightness control register in the TDA4885 CLAMP Selection of trailing/leading edge horizontal clamping pulse in the TDA4854 Contrast Contrast control register in the TDA4885 CRT Cathode Ray Tube CT Colour temperature DDC Display Data Channel DISO On Screen Display enabled/disabled in the TDA4885 DISV Video signals enabled/disabled in the TDA4885 DPMS Display Power Management Signalling EHT Extreme High Tension ENN Fast blanking pulse for On Screen Display EW East-West FHMULT East-West output tracking with / independent of horizontal frequency in the TDA4854 9 Philips Semiconductors Circuit description of CCM420 monitor FPOL Selection of positive / negative feedback polarity in the TDA4885 G2 CRT grid 2 Gain B Blue channel gain control register in the TDA4885 Gain G Green channel gain control register in the TDA4885 Gain R Red channel gain control register in the TDA4885 GB Green Black level GG Green gain H Horizontal H-corner Horizontal corner control register in the TDA4854 H-focus Horizontal focus control register in the TDA4854 H-moiré Horizontal Moiré control register in the TDA4854 H-paral Horizontal parallelogram control register in the TDA4854 H-pin Horizontal pincushion control register in the TDA4854 H-pin-bal Horizontal pin-balance control register in the TDA4854 H-pos Horizontal position control register in the TDA4854 H-Rot Horizontal Rotation or Tilt control register in the TDA8447 H-size Horizontal size register in the TDA4854 H-trap Horizontal trapezium control register in the TDA4854 HB Horizontal Pin-balance HBC Horizontal pin-balance enable/disable HC Horizontal Corner HF Horizontal focus HL Horizontal linearity Hlin Horizontal linearity control register in the TDA8447 HP Horizontal Pincushion HPC Horizontal pincushion enable/disable HT Horizontal Trapezium 2 Application Note AN97032 IC Inter IC LVDMOS Low Voltage Depletion Metal Oxide Semiconductor MOD Horizontal and vertical moiré cancellation enabled/disabled in the TDA4854 NS North-South NStrap North-South trapezium control register in the TDA8447 OC On Screen Display contrast Oh On Screen Display Horizontal position OSD On Screen Display OSD Ctrst On Screen Display contrast control register in the TDA4885 Ov On Screen Display Vertical position 10 Philips Semiconductors Circuit description of CCM420 monitor PA Parallelogram PEDST Pedestal blanking enabled/disabled in the TDA4885 RB Red Black level RG Red gain SCK Serial clock SDI Serial data SMPS Application Note AN97032 Switched Mode Power Supply SMPTE Society of Motion Picture and Television Engineers SOFTST Softstart control bit in the TDA4854 STDBY Standby control bit in the TDA4854 TI Tilt TVMOD TV mode at Fmin activated/de-activated in the TDA4854 USB Universal Serial Bus V Vertical V-focus Vertical focus control register in the TDA4854 V-lin Vertical linearity control register in the TDA4854 V-lin-bal Vertical linearity balance control register in the TDA4854 V-moiré Vertical Moiré control register in the TDA4854 V-pos Vertical position control register in the TDA4854 V-size Vertical size control register in the TDA4854 VB Vertical linearity balance VBLK Selection of duration of vertical blanking pulse in the TDA4854 VESA Video Electronics Standard Association VF Vertical focus Vg1 Voltage on grid 1 of the CRT Vg2 Voltage on grid 2 of the CRT Vg2 Grid 2 voltage control register in the TDA8447 VL Vertical linearity VLC Vertical linearity balance control enabled/disabled in the TDA4854 VOVSCN VGA vertical size control bit in the TDA4854 VPC Vertical position and Horizontal trapezium control enabled/disabled in the TDA4854 VSC Vertical linearity and Horizontal corner corrections enabled/disabled in the TDA4854 VT Vertical trapezium 11 Philips Semiconductors Circuit description of CCM420 monitor 2. BLOCK DIAGRAM 12 Application Note AN97032 Philips Semiconductors Circuit description of CCM420 monitor Application Note AN97032 Remarks to the block diagram: 1. The Dynamic convergence circuit is optional. The Vector Processor TDA4845 is not commercially available. 2. Due to time limitation and mechanical restrictions the sound part is, although present in the printed circuit board layout, not inserted and therefor not operational. 13 Philips Semiconductors Circuit description of CCM420 monitor 3. 3.1 Application Note AN97032 CIRCUIT DESCRIPTIONS Switched mode power supply The SMPS is preceded by a mains harmonic reduction coil (L1: TU305b2) in order to reduce mains harmonics distortion. This coil is short-circuited for mains voltages below 175 VAC (T6, T7 and TH2). An additional connector ‘USB-supply’ is present for an optional USB supply (under development; available ???;see references). In this SMPS only DPMS level 1 is realised resulting in a burst-mode operation of the SMPS. Transistor T10 and T11 act as comparator to control the burst mode. In this burst mode the mains input power reduces to less than 2.5 W. In case the USB supply is present, the SMPS is switched-off completely while the microcontroller supply is maintained from the USB supply part (header X3). 2 DPMS level 2 is realised by using the Standby-mode of the TDA4854 activated via I C bus. Overcurrent protection is achieved by means of resistors R32, R33, and R34 connected to pin 13 of the TDA8380. In case of continuous short circuit diodes D32 and D33 provide extra protection by increasing the delay time before the next slow-start is initiated. The only adjustment is the 185 Volt output by means of potentiometer P1. The output voltages of the supply are: 185 V horizontal deflection and EHT output stages; reference voltage for Vg2. 78 V video output stages; 18 V driver stages, rotation circuit and 12 Volt stabiliser; 11 V vertical deflection output stage, 5 Volt stabiliser and heater current; -18 V rotation circuit. 3.2 Microcontroller 2 The microcontroller P83C181 controls all adjustments in the complete monitor by I C bus. The only two adjust2 ments not accessible by I C bus are the “SMPS 185 Volt” and the “EHT 26.0 kV”. The user interface consists of a five button keyboard and an On-Screen-Display. Communication with the OSD controller on the video board is via a high speed interface bus (signals ENN, SDI and SCK). In normal operation the user has only access to the first two levels of the software program. The first level being the video mode information displaying horizontal and vertical frequencies and mode number/identification. The second level gives access to control the brightness, contrast, degaussing, horizontal and vertical moiré cancellation, picture position and size. Brightness and contrast control can be directly accessed by respectively menu u/d buttons and cursor u/d buttons. In the service mode (jumper J301 closed; service switch down on the front keyboard) the higher levels for control of colour (black levels, gain, etc.) and geometry (pin-cushion, pin-balance, trapezium, etc.) can be accessed. 3.3 2 I C-bus autosync deflection controller for PC/TV monitors TDA4854 The TDA4854 is applied here in a basic configuration. This means HSMOD, VSMOD and ASCOR pins are not used (separate horizontal deflection and EHT supply; no DC shift circuit for horizontal deflection). ASCOR is internally connected to PLL2 (bit ACD = 1). 14 Philips Semiconductors Circuit description of CCM420 monitor Application Note AN97032 The horizontal oscillator can be synchronised in the frequency range from 15 to 85 kHz (determined by resistors R350 and R351 and capacitor C318). The value of R350 and R351 can be determined according to the equations in appendix 3. The B+ section is fed with the EWDRV signal from pin 11 with the FHMULT bit = 0 (multiplication with the frequency is achieved in the output stage). The sawtooth generator uses a current source to minimise influence of the supply voltage. Capacitor C312 must have a low temperature coefficient (preferably NP0) to minimise temperature effects. Capacitor C314 must be placed as close as possible to pins 3 and 7 to minimise EMS. The HUNLOCK signal is used as interrupt for the microcontroller in case of a mode change and insertion of vertical blanking pulses on the CRT grid 1 voltage (12 Volt peak). Via diode D303 the sawtooth generator of the North-South trapezium circuit is reset. 3.3.1 Brightness uniformity A brightness uniformity signal can be extracted from the focus signal on pin 32. The signal is buffered by T304 to drive the modulation inputs of the TDA4885 video preamplifier. The brightness uniformity function can be 2 switched on and off by I C control via IC303 register 4 and T305 (Brightness uniformity OFF: register contents set to ‘255’; Brightness uniformity ON: register contents set to ‘0’). 3.4 Horizontal deflection output stage The horizontal deflection output stage consists of three main parts: 3.4.1 B+ supply The signal BDRV from the TDA4854 is buffered (T400/T401) and then fed to the PMOS output transistor. Diode D401 and resistor R403 are added for protection. 3.4.2 Line driver and output stage The line driver stage is built around TR401. The use of the BU2532AL results in a low power driver stage (typically 1.8 W) capable of driving the line output transistor over a wide frequency range. The stage is designed to operate from 15 to 90 kHz. The diode D405 in the collector of T403 BU2532AL ensures the high efficiency of the driver stage. Here a Schottky-barrier type is used for it’s low forward voltage drop. In fact any diode capable of handling the peak deflection current can be used but forward voltage drop should be minimal (in order not to deteriorate linearity). Maximum reverse voltage for D405 is the forward recovery voltage of the deflection flyback diode D404. See also application note ETV/AN97002 3.4.3 Linearity and S-correction control Horizontal linearity is controlled with a newly designed DC-controlled linearity corrector PE4025/01. The control 2 coil is current driven by T405 under I C control via IC303 register 7. S-correction is performed with five switches for the frequency range of 30 to 90 kHz and one extra switch for the TV mode. The S-correction capacitors are switched according to the following table: 15 Philips Semiconductors Circuit description of CCM420 monitor Freq.range < 30 kHz 30 - 34 kHz 34 - 37 kHz 37 - 45 kHz 45 - 53 kHz 53 - 61 kHz 61 - 65 kHz 65 - 71 kHz 71 - 78 kHz 78 - 85 kHz > 85 kHz 3.5 C423 47 nF x x x x x x - C417 120 nF x x x x x - C418 220 nF x x x x x - Application Note AN97032 C419 470 nF x x x - C420 1.2 µF x x x x - C421 5.6µF x - Vertical deflection output stage The vertical deflection output stage is the new full-bridge current driven booster TDA8354 which has output stages with low saturation voltage allowing low power dissipation (depending upon power supply voltage). The circuit around transistor pair T418 / T419 is used as interface for the active convergence control circuit (optional). 3.6 EHT supply The EHT supply is in fact a flyback generator with controlled supply voltage by means of a B+ down converter to enable stabilisation of the EHT output voltage. In order to prevent any kind of visible interaction with the horizontal deflection the EHT generator is synchronised with the horizontal deflection Although the flyback of the EHT generator lags the flyback of the horizontal deflection with ≈ 3µs. The high-voltage transformer AT2097/M1 is specially designed for this EHT generator: primary inductance 450 µH, circuit flyback time 3.3 µs, maximum operating frequency 84 kHz. The extreme high tension output voltage is 26.0 kVolt with a maximum average load current of 700µA (short term peak 1.5 mA). The flyback transistor T109 BUT11A is driven by a one-shot circuit built around IC102A. Using the well defined sawtooth of the PWM controller IC101 and it’s temperature stable reference voltage an accurate pulse is generated. The pulse length is defined by two more or less fixed intervals: 1. storage time of the flyback transistor (≈ 1.2 µs) 2. flyback time of the output stage (≈ 3.4 µs) Increasing this period with an extra wait interval for safety a total pulse length of 7 µs is required. The reference voltage for the X-ray sensor IC102B is increased with a small part of the supply voltage to prevent false triggering at power-up. This is achieved by means of R116 and R117. The EHT output voltage is adjusted with potentiometer P101. The following protections are included: • No horizontal deflection (horizontal flyback voltage below 500 Voltpp): EHT generator stops; automatic soft start when horizontal deflection starts again. • Overvoltage / X-ray: EHT generator is stopped and latched in an off-mode; a restart is only possible after a mains switch-off and on again. 16 Philips Semiconductors Circuit description of CCM420 monitor • Application Note AN97032 Overcurrent: First level protection is here the beam-current level limiter reducing the contrast of the video stages. Second level is the maximum duty-cycle of the UC3843 (≈99%) that cannot be handled by the AC coupling of the PMOS output stage (T119 will not be driven in conduction anymore); in this situation the generator part will continue operating but the output voltage will drop to zero. Restart is only possible after a mains switch-off and on again. 3.6.1 Grid 1 supply The CRT grid 1(Vg1) voltage is fixed at -62 Volt DC with vertical blanking pulses of 12 Volt pp. Protection by pulling Vg1 to -200 Volt is activated in case of absence of horizontal deflection, HUNLOCK signal continuously high, absence of ‘11Volt’ supply voltage and/or a high vertical guard signal. 3.6.2 Grid 2 supply The CRT grid 2 (Vg2) voltage is generated using a high voltage DC amplifier. Its input is driven by a DAC output 2 of the TDA8447 to allow I C bus control. The range is 280 to 665 Volt. 3.6.3 Focus supply The dynamic focus voltage from the output of the TDA4854 is amplified by a high-voltage amplifier and then connected to the coupling capacitor in the EHT transformer. Resistor R173 and diodes D132 and D133 prevent cross-over distortion of the output stage. 3.7 Rotation circuit The circuit for driving the rotation coil on the CRT is extended with a sawtooth generator (IC201 B) to allow separate control of the top and bottom horizontal line. So the adjustment sequence is to align the top line with the tilt control (the complete picture is rotated with this adjustment) and then the bottom line can be aligned with the NS-trapezium adjustment. 3.8 Sound circuit The sound part is a 2 x 1 Watt output stage with DC volume control TDA7053A. In this application 25 Ω speakers should be used. Note: Due to mechanical problems it was not possible to implement the sound input connectors and the speakers in the cabinet. Therefor the circuit is not present in the demo monitors although the lay-out is prepared for it. 17 Philips Semiconductors Circuit description of CCM420 monitor 4. Application Note AN97032 CIRCUIT DIAGRAMS On the next pages the following circuit diagrams are presented: − Switched mode power supply; − Microcontroller plus deflection controller part; − Horizontal and vertical deflection output stages; − CRT grid supply circuits: Vg1, Vg2, focus and dynamic focus amplifier, EHT supply; − Rotation and sound. 4.1 Last minute changes When debugging the final monitor a few small changes were necessary to obtain maximum performance. Component number C8 C12 C414 D19 Old value New value Reason 470 µF / 25 V 3.9 pF / NP0 (not present) BZX79C15 220 µF / 25V 18 pF / NP0 4.7 µF / 200 V BZX79C18 D90 D91 D408 R50 R62 (not present) (not present) (not present) 270 Ω / PR03 120 kΩ / SFR25 BZX79C15 BZX79C15 BYD73D 270 Ω / AC04 180 kΩ / SFR25 R344 R353 R390 R391 R416 R432 R441 56 kΩ / SMD 0805 8.2 kΩ / SMD 0805 (not present) (not present) (not present) 2.7 kΩ / PR02 2.7 kΩ / PR01 33 kΩ / SMD 0805 3.3 kΩ / SMD 0805 3.3 kΩ / SFR25 3.3 kΩ / SFR25 2.2 kΩ / PR02 2.2 kΩ / PR02 2.2 kΩ / PR01 Decrease start-up time SMPS Current sense SMPS Horizontal ringing damper Increase output power during “OFF” mode Protection of T12 during mains switching Protection of T12 during mains switching Horizontal ringing damper PCB may overheat Increase output power during “OFF” mode Pin-cushion range Jitter See text and drawing below See text and drawing below Horizontal ringing damper Horizontal ringing Vertical flyback Zenerdiodes D90 and D91 have to be connected back-to-back (i.e. cathodes tied together) and the two anodes must be connected to Gate respectively Source of T12. In the circuit diagram on the right one can see how it looks. T12 The two zenerdiodes D90 and D91 are placed on the copperside of the board. D90 D91 18 Philips Semiconductors Circuit description of CCM420 monitor Application Note AN97032 An additional damper for the horizontal deflection cannot be combined with the largest S-correction capacitor. Therefor an additional damper is necessary as drawn in the circuit diagram on the left hand side. C414 4u7 200V T415 R434 Add this resistor: SFR25; 3.3 kOhm R31 R6 R5 Add this resistor: SFR25; 3.3 kOhm TH1 XT301 R315 X303 T1 R313 R314 C305 C304 R439 BYD73D R416 2k2 PR02 R420 D408 C416 180n 630VDC R4 SW1 X1 The outputs P0.5 pin 16 and P0.7 pin 14 of IC304 respectively signal “DEGS” and “DPMS” should be equipped with a pull-up resistor of 3k3 to +5 Volt. These resistors are not present in the lay-out. Best location to add these resistors is near R5 and R6 according to the drawing on the right: The transistors BC375b and BC376 will be pruned. Best replacements for these types are BC337 respectively BC327. No further modifications are necessary. Transistor T124 is not correctly placed in the printed circuit board design : collector and emitter connections are interchanged on the board. The circuit diagram and parts list however are correct. C124 and C403 are replaced with 27 nF / 250 Volt due to temporary unavailability of 22 nF / 250 Volt. The following component on the video board has to be changed: Video board: Component number R29 PCB track Old value New value Reason 1.0 Ω / SFR16 3.3 Ω / SFR16 Cut track to pin 3 of connector 1 Heater tension +5 Volt of Video must be disconnected of + 5 Volt of main board. 19 T1 R4 96126 BC548 X1 220n 275V~ 7 2 C2 9 3 TH1 MOC2A60_5 D2 C1 1M R1 220n 275V~ R2 R3 270E 2E7 PR01 AC04 AT4043/20 250V~ 3 D7 BZX79 C6V2 NFR25H R16 18k R35 5k1 R8 1k5 D13 BZX79C5V6 2 TH2 MOC2A60_5 7 9 L1 TU305B2 T2 BSP145 R10 10E R9 10E R18 100k 5k1 R17 R37 1k R28 47k R39 820E R40 22k R38 T6 T7 36k BC548 BC548 R36 100E 680p C10 R13 1M T3 BC547 R12 1k BT151-500R D6 D8 BZX79 C33 R41 680E C13 10u 50V 3p9 C12 0E47 NFR25H R34 R33 0E33 NFR25H NFR25 1N4148 R32 15k D32 C11 4u7 63V IC1 TDA8380A R20 56E R15 220k R14 110k C9 220u 400V R76 R42 15E 22E NFR25 BYD33D 4E7 NFR25 R22 C17 2n2 R24 1k R66 10E NFR25 D9 R65 10E NFR25 D31 C18 R43 1k2 R78 9 7 8 D17 R 1N4148 T8 BC548 DPMS1 5V R46 1k2 4k7 C14 2n2 R47 C19 10n D26 BYD73D D23 D24 D25 BYD33G C38 680p BYR29-800 R50 270E PR03 10k T9 BC548 R45 R52 100E OC1 CNX82A BYD73D D22 BYV28/100 R48 1k 15 13 12 11 17 18 14 4 3 16 5 R44 330E D16 T14 22n C15 4n7 250V~ 6 TR2 10 BI-COLORLED GR 12V BC548 D15 1N4148 1N4148 D14 R30 1k T5 W9NA80 R25 220E PR02 C20 2n7 220p 500V 500V C39 R49 4M7 VR37 C21 L3 L4 10u 100p R59 100k R68 1k R56 100k 10u L6 L5 10u R61 24k BC558 T11 BC558 T10 R57 18k 2k2 D19 BZX79 C15 120k R64 180k R62 D18 1N4148 185V P1 1k R54 5k1 5V C35 4n7 R53 150k VO -18V 11V 18V 78V C29 470u 25V R51 C28 1000u 16V T13 BC548 C27 470u 25V 2AF D20 BZX79 C6V2 R74 1k 1N4148 D29 R67 185V 10E NFR25 F2 D21 BZX79 C6V2 5V 1N4148 D28 2AF C26 470u 25V F4 2AF C25 1000u 16V 470u L7 25V F3 10u C24 10u C23 47u 100V C36 R58 39k L2 C22 10u 150u 250V VO 2 IC2 7812 R75 T17 BC548 47k BSN274 R63 180E NFR25H T12 R55 100E C34 1000u 16V D30 1N4148 11V 1 C30 68u 16V C32 68u 16V 12V DPMS1 5V_USB 5V X3 3p-HEADER C31 330n IC3 78L05 3 Circuit description of CCM420 monitor Line Power 90-260V~ F1 2A SLOW TR1 250V~ 220n C4 275V~ C3 2n2 2n2 SW1 2n2 D1 2n2 C5 D3 C7 D4 C6 8 9 R6 470E 7 10 R5 39k 6 11 C8 470u 25V R11 10E AC05 D33 4xBYW54 4 R7 150k 5 12 2 15 D5 BYD13J BYD33K 5V 1N4148 13 3 14 1 16 100k PR01 470p 1kV DEGS R31 20 390E AC04 D10 USB-supply BYD33M 1 Philips Semiconductors Application Note AN97032 21 R313 100E 100E J301 R314 DEGS C305 100p C304 100p 100E R315 P0.5 P0.6 P0.7 VsyncOUT VsyncIN P1.6 HsyncOUT HsyncIN Vss Vdd ADC0 P3.3 P0.4 P0.3 P0.2 P0.1 P0.0 resetOUT P83C181 XTAL2 XTAL1 INT1not SDA1 R324 R323 R322 R321 R320 R317 R316 100E 100E 100E 100E 100E 100E R318 100E 100E R306 10E 100E 100E R326 4k7 R327 22k IC303 4u7 16V C307 R328 4E7 SDA SCL open=VGAselftest 2n7 J302 C306 100E R319 R325 4k7 C303 68u 16V R307 R308 SDA_DDC 5V_DDC(n.c.) SCL_DDC DDC 100E 100E R332 R331 R330 4k7 4 3 2 1 100p 100p C308 C309 R329 4k7 5V X304 4k7 R364 4k7 SC4 SC3 SC2 SC1 SC0 Keyb CLMP VDEF1 VDEF2 HDRV BDRV INTN(USB) SDA_DDC 10n T305 BC548 6 5 4 3 2 1 R333 1k 4E7 R334 R361 6k8 BC548 R360 27k 12V X305 12V USB C323 R363 10k FCSD SModeN Keyb 5V SCL_DDC HLIN NSTR HROT Vg2D R365 100E R310 68u 16V C311 R343 R342 R341 8k2 100E 100E 2n2 C312 T301 100E R337 2k2 BC558 C5V6 D301 BZX79 R336 R362 2k2 T304 (n.c.) INTN SDA 5V_USB SCL CRT_digital 100p C315 HFLB 1 2 3 4 8 7 6 5 4 3 2 1 100p C316 10n C314 27k R339 X303 X307 R346 R345 100E 100E 56k R344 10k R340 10p C310 R338 1k5 SCK SDI ENN SDA 5V SCL CRT_supply HSYNC VSYNC VOUT1 VOUT2 CLBL R309 R359 12V IC305 HUNLOCK SCL SDA ASCOR n.c. VAGC VREF VCAP Sgnd HPLL1 HBUF HREF HCAP HPLL2 i.c. FOCOS 10k R351 C319 C320 6k8 R358 R356 12k 12V 100E 100E BC548 R355 100n R354 T303 R357 4k7 5k23 1% 100n R352 22k R349 270E T302 BC548 R366 100E C317 12n C318 10n R350 R348 10k 185V -18V VSync 732E 1% R347 220E NFR25 14 13 12 11 1N4148 D303 R353 3k3 100n C321 C324 100n 3n3 -18V 18V HBLNK VSaw SDA SCL VRotS VBLNK HUNLOCK SCL SDA FCSD C322 12 11 HBLNK (n.c.) (n.c.) (n.c.) (n.c.) (n.c.) 10 8 7 6 5 4 3 2 1 10 X306 9 HSync Vg1 11V HBLNK CLMP 11V 78V BCL PeCoMa 9 8 7 15E PR03 6 5 4 3 2 1 TDA4854 EWDRV Vcc Dgnd HDRV PGND BDRV BIN BSENSE BOP XRAY HFLB X301 Circuit description of CCM420 monitor DPMS1 closed=service_mode SModeN VSync HSync R312 22k P2.0 P2.1 SCL1 16kHz SCL0 P1.7 P2.2 IC304 100E 100E SDA0 P2.5 R305 R304 P2.3 XT301 12MHz IC302 SCK 5V IC301 P2.4 C302 68u 16V 10E R302 C301 68u 16V 10E 5V 4 3 2 Keyboard TDA8447 1 BRIGHTNESS UNIFORMITY R301 PCE8582 C2E PCE8582 C2E SDI ENN 5V X302 Philips Semiconductors Application Note AN97032 HDRV HFLB BDRV 12V 18V 22 100E R410 R436 22E R435 22E NFR25 100E R400 10u 63V D407 1N4148 C410 R409 680E C422 68u 16V R408 33E D406 C431 47u 25V 1N4148 BZX79 D409 C6V8 18V R411 18k 10n C409 T404 BC375b C408 470n T401 BC376 TR401 CU15/35 R407 220E 4 3 33n 250V C401 D401 47u 1N4148 25V T400 BC375 C400 1 2 R438 150k 7 1 -HDFEL R421 3k9 T417 BC548 SC0 R439 10k R422 10k SC1 R442 0E47 NFR25 47u 50V C424 Vguard 10E R413 330u 16V C425 T409 BC548 R424 47k R426 150k VpB VoB(-) IC401 TDA8354 VoA(+) VpA L403 10uH T411 BC548 R427 47k R429 150k X402 SC3 R428 10k T410 BUK445 100B C419 470n 250V VertDeflCoil 330E gndA C426 10n Vflb R446 1E8 gndB R447 R445 1E8 R444 2k0 R443 3k3 Vcon HLIN VM SC2 R425 10k T408 BUK445 100B C418 220n 250V R415 27E PR01 T405 BC548C R458 220E PR01 T407 BC548 R419 47k R423 150k C412 4n7 250V T406 BUK445 100B 270E PRO3 R414 T416 BUK445 100B R420 1k 250V L402 C411 4n7 18V D410 BZX79 C39 PE4015/01 47E R412 11V C417 120n 250V R437 47k R418 150k BY 459F D404 X401 STOCKO7 R440 5k6 C423 47n 400V 4n7 2kV C406 +HDEFL C403 22n 250V Vguard R441 2k7 PR01 11V Icomp Ii+ Ii- C427 10n T418 VSaw VDEF2 VDEF1 16kHz T415 BC548 R433 47k 12V R434 10k T414 BUK445 100B C421 5u6 160V R457 4k7 BC558 T419 R456 3k9 R454 330k R455 3k9 BC558 C428 10n T413 BC548 SC4 R431 10k R430 47k R432 2k7 PR02 C429 2n7 T412 BUK445 100B C420 1u2 250V C430 1n R451 10k R450 10k R449 270k 185V R453 100E R452 100E Circuit description of CCM420 monitor 5V BYV99 D403 L401 1.2mH U20 core T403 BU2532AL R405 47E C405 47p 1kV C416 180n 630VDC C407 150n R406 2E7 BZX79 C10 D402 T402 IRF9630 R404 10k D405 1N5822 C404 2n7 100V 120E R403 C402 150u 250V 185V 78V Philips Semiconductors Application Note AN97032 23 R168 1k HUnlock -200V T121 BC548 MPSA92 D128 1N4148 D129 1N4148 R171 1M C129 22n 100V R109 68k 560k R110 R172 120k 47k R119 51k VBLNK VG1 1N4148 C104 2n2 D105 C130 220n 250V D134 BZX79 C4V7 D130 BZX79 C62 R170 T122 IC101 UC3843p DIL8p R169 1k 11V 820E R107 3k3 T103 PH2369 1N4148 D127 330p C102 470p R167 10k 12V 100E 27p 100p C103 R108 C136 C105 C106 3n3 1N4148 100n D107 R133 270E 5k6 Vg2D R135 24k 12V LM393 3 IC102/A 2 1N4148 D109 D108 1N4148 D114 1N4148 56k R122 R124 1 R159 1k R129 3M3 R137 R139 36k 150k R163 D135 BYD33D T113 MPSA44 BZX79 C75 185V 500V C112 2n7 1k R132 D113 150k R162 R136 150k T111 BC375b D112 BYD73D 100u L101 D111 10V 6u8 BYD73D C111 T109 BUT 11A T108 BC376 T107 BC375 R130 3M3 C110 68u 16V D110 T110 BZD23C5V1 BC375b 1M8 R138 1M5 T112 MPSA42 T106 PH2369 C128 68u 16V 27E 1k 1k PR01 R126 R127 R128 68u 16V 3k3 C127 R125 R164 4E7 NFR25H 8 7 2k2 5 IC102/B 4 LM393 C135 47p 6 R117 680k R165 100E 6E8 NFR25H R115 X101 D117 5 6 * 1 2 4k7 R142 270k R144 1M5 D118 BZX79C 6V2 R176 39k 2k2 R175 T115 MPSA44 T114 MPSA44 12V D131 BAS32 R173 D132 1N4148 1k D133 1N4148 R177 11k D120 R145 8k2 100k 3k3 R149 R148 1k C116 100n R150 220k R146 220k C117 1n 1kV 16KHZ BCL 12V 185V R147 R151 13k P101 22k R154 47k 1N4148 R161 10K C121 1u 63V EHT R156 3E3 NFR25 C126 10u 250V T120 BC548 T123 BC548 R143 1M5 T117 MPSA44 T118 MPSA44 R152 1k DF 1n GF GC 3n0 600M GR 1n R141 270k 10u 63V C118 * * * * * * TR101 AT2097/M1 D116 BYD33M -200V C119 1u 250V R153 100E NFR25H D121 BYD73G BYD33M 1k Vg2 1n5 22n C124 BYV27-200 T119 IRF9630 D124 R155 L102 120E PR01 10u R157 10k C123 D122 BYD33M 120E R158 D125 BZX79 C10 R140 1kV C120 4n7 1n BYV 1kV 26E C122 D123 R131 2M7 33n 250V C125 D126 1N4148 FCSD 12V Circuit description of CCM420 monitor Vguard R179 15k R178 47k R166 3k3 HBLNK R105 C107 4u7 63V 1N4148 D106 120k 100E R112 R113 10k R116 R118 C108 R114 10E NFR25H C109 100u 16V C134 15p 4k3 R123 T124 BC548 12V Philips Semiconductors Application Note AN97032 NSTR VRotS HROT 24 P201 10k 1 2 3 R227 100k 7 100n 3 2 1 R224 4k7 R L R223 4k7 R221 4k7 100n C212 R206 R208 22k R222 4k7 C213 68u 16V LM358b C216 SOUND INPUT 220n IC201/B X204 C217 68u 16V 100n C203 5 6 C204 180k R205 BC558 T202 470n C215 470n C214 39k 6 2 8 4 3 14 R-in Vol-R Vol-L L-in 100k R209 2 4 33k R212 8 C207 47u 25V 7 10 TDA7053A IC202 5 IC201/A LM358a R211 43k 100E R213 + - R-out + - 9 13 12 16 C209 47u 25V L-out 1 R217 100E NFR25H T204 BC558 T203 BC548 R215 100E NFR25H 1 3 SPEAKER OUTPUT X203 1 SPEAKER OUTPUT X202 -18V 3 (right) (left) R216 680E 47u 25V C208 680E R214 C210 47u 25V 3E3 R218 R220 22E 470n C211 R219 1k X201 3 Rotation coil L = 65 mH 2 Rs = 125 ohm 1 I = +/-50 mA DC +/- to -/+ 20 mA SAW Circuit description of CCM420 monitor X205 VOLUME CONTROL 4E7 R228 +11V 56k R207 1k8 56k R203 R204 +18V Philips Semiconductors Application Note AN97032 Philips Semiconductors Circuit description of CCM420 monitor 5. Application Note AN97032 PARTS LIST The parts list is only for the main board. No parts are listed to complete the CCM420 monitor. 5.1 Resistors and potentiometers Note: Were no type is mentioned a SFR25 is used. Number R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R20 R22 R24 R25 R28 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 Value 1M 270E 2E7 2322 622 96126 39k 470E 150k 1k5 10E 10E 10E 1k 1M 110k 220k 18k 100k 5k1 56E 22E 1k 220E 47k 1k 390E 15k 0E33 0E47 5k1 100E 1k 36k 820E 22k 680E 15E 1k2 330E 10k 1k2 4k7 1k 4M7 270E Number R51 R52 R53 R54 R55 R56 R57 R58 R59 R61 R62 R63 R64 R65 R66 R67 R68 R74 R75 R76 R78 R105 R107 R108 R109 R110 R112 R113 R114 R115 R116 R117 R118 R119 R122 R123 R124 R125 R126 R127 R128 R129 R130 R131 Type PR01 AC04 PTC NFR25 AC05 NFR25 PR02 AC04 NFR25 NFR25 NFR25 VR37 PR03 25 Value 2k2 100E 150k 5k1 100E 100k 18k 39k 100k 24k 120k 180E 180k 10E 10E 10E 1k 1k 47k 4E7 100k 100E 3k3 820E 68k 560k 120k 100E 10E 6E8 10k 680k 4k3 51k 5k6 56k 2k2 3k3 1k 1k 27 E 3M3 3M3 2M7 Type NFR25 NFR25 NFR25 NFR25 NFR25 PR01 SMD 0805 NFR25 NFR25 SMD 0805 SMD 0805 PR01 Philips Semiconductors Circuit description of CCM420 monitor Number R132 R133 R135 R136 R137 R138 R139 R140 R141 R142 R143 R144 R145 R146 R147 R148 R149 R150 R151 R152 R153 R154 R155 R156 R157 R158 R159 R161 R162 R163 R164 R165 R166 R167 R168 R169 R170 R171 R172 R173 R175 R176 R177 R178 R179 R203 R204 R205 R206 R207 R208 Value 1k 270E 24k 150k 1M8 1M5 36k 1k 270k 270k 1M5 1M5 8k2 220k 220k 1k 3k3 100k 13k 1k 100E 47k 120E 3E3 10k 120E 1k 10k 150k 150k 4E7 100E 3k3 10k 1k 1k 47k 1M 120k 1k 2k2 39k 11k 47k 15k 1k8 56k 180k 39k 56k 22k Application Note AN97032 Number R209 R211 R212 R213 R214 R215 R216 R217 R218 R219 R220 R221 R222 R223 R224 R227 R228 R301 R302 R304 R305 R306 R307 R308 R309 R310 R312 R313 R314 R315 R316 R317 R318 R319 R320 R321 R322 R323 R324 R325 R326 R327 R328 R329 R330 R331 R332 R333 R334 R336 R337 Type Allen Bradley NFR25 PR01 NFR25 NFR25 26 Value 100k 43k 33k 100E 680E 100E 680E 100E 3E3 1k 22E 4k7 4k7 4k7 4k7 100k 4E7 10E 10E 100E 100E 10E 100E 100E 15E 100E 22k 100E 100E 100E 100E 100E 100E 100E 100E 100E 100E 100E 100E 4k7 4k7 22k 4E7 4k7 4k7 100E 100E 1k 4E7 8k2 2k2 Type NFR25 NFR25 PR03 Philips Semiconductors Circuit description of CCM420 monitor Number R338 R339 R340 R341 R342 R343 R344 R345 R346 R347 R348 R349 R350 R351 R352 R353 R354 R355 R356 R357 R358 R359 R360 R361 R362 R363 R364 R365 R366 R400 R403 R404 R405 R406 R407 R408 R409 R410 R411 R412 R413 R414 R415 R418 R419 R420 R421 R422 R423 R424 R425 Value 1k5 27k 10k 100E 100E 100E 56k 100E 100E 10k 10k 270E 5k23/1% 732E/1% 22k 8k2 100E 100E 12k 4k7 6k8 220E 27k 6k8 2k2 10k 4k7 4k7 100E 100E 120E 10k 47E 2E7 220E 33E 680E 100E 18k 47E 10E 270E 27E 150k 47k 1k 3k9 10k 150k 47k 10k Application Note AN97032 Number R426 R427 R428 R429 R430 R431 R432 R433 R434 R435 R436 R437 R438 R439 R440 R441 R442 R443 R444 R445 R446 R447 R449 R450 R451 R452 R453 R454 R455 R456 R457 R458 Type SMD 0805 SMD 0805 SMD 0805 SMD 0805 SMD 0805 SMD 0805 NFR25 Value 150k 47k 10k 150k 47k 10k 2k7 47k 10k 22 22E 47k 150k 10k 5k6 2k7 0E47 3k3 2k0 1E8 1E 330E 270k 10k 10k 100E 100E 330k 3k9 3k9 4k7 220E Type PR02 NFR25 PR01 NFR25 PR01 Potentiometers Number P1 P101 PR03 PR01 27 Value 1k 22k Type EMP10 EMP10 Philips Semiconductors Circuit description of CCM420 monitor 5.2 Application Note AN97032 Capacitors Electrolytic capacitors Number Value C8 470µ/25V C9 220µ/400V C11 4µ7/63V C13 10µ/50V C22 150µ/250V C23 47µ/100V C24 470µ/25V C25 1000µ/16V C26 470µ/25V C27 470µ/25V C28 1000µ/16V C29 470µ/25V C30 68µ/16V C32 68µ/16V C34 1000µ/16V C107 47µ/63V C109 100µ/25V C110 68µ/16V C111 100µ/10V C118 10µ/63V C119 1µ/250V Type 037 057 037 037 057 037 037 037 037 037 037 037 037 037 037 037 037 037 037 037 044 Number C126 C127 C128 C207 C208 C209 C210 C213 C217 C301 C302 C303 C307 C311 C401 C402 C410 C422 C424 C425 C431 Value 10µ/250V 68µ/16V 68µ/16V 47µ/25V 47µ/25V 47µ/25V 47µ/25V 68µ/16V 68µ/16V 68µ/16V 68µ/16V 68µ/16V 47µ/63V 68µ/16V 47µ/25V 150µ/250V 10µ/63V 68µ/16V 47µ/50V 330µ/16V 47µ/25V Type 044 037 037 037 037 037 037 037 037 037 037 037 037 037 037 057 037 037 037 037 037 Film and ceramic capacitors Number Value C1 220n/275V~ C2 220n/275V~ C3 2n2/250V~ C4 2n2/250V~ C5 220n/275V~ C6 2n2/250V~ C7 2n2/250V~ C10 680p C12 10p/100V C14 2n2/100V C15 22n/100V C17 2n2/500V C18 470p/2kV C19 10n/250V C20 220p/500V C21 4n7/250V~ C31 330n C35 4n7 C36 100p/100V C38 680p/500V C39 2n7/500V Type 336-1 336-1 336-1 336-1 336-1 336-1 336-1 730 638 630 370 655 Murata 370 655 336-6 370 630 NP0 655 655 Number C102 C103 C104 C105 C106 C108 C112 C116 C117 C120 C121 C122 C123 C124 C125 C129 C130 C134 C135 C136 C203 Value 470p/100V 330p 2n2 100p/100V 3n3 100n 2n7/500V 100n/63V 1n/1kV 4n7/1kV 1u/63V 1n/1kV 1n5 22n/250V 33n/250V 22n/100V 220n/250V 15p 47p 27p 100n/63V Type 630 630 730 NP0 630 SMD 0805/X7R 655 370 Murata Murata 370 Murata 630 365 365 370 373 SMD 0805/NP0 NP0 SMD 0805/NP0 370 28 Philips Semiconductors Circuit description of CCM420 monitor Number C204 C211 C212 C214 C215 C216 C304 C306 C308 C309 C310 C312 C314 C315 C316 C317 C318 C319 C320 C321 C322 C324 5.3 Number T1 T2 T3 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T17 T103 T106 T107 T108 T109 T110 T111 T112 T113 Type 220n/63V 470n/63V 100n/63V 470n/63V 470n/63V 100n/63V 100p/100V 2n7/500V 100p/100V 100p/100V 10p/100V 2n2 10n/250V 100p/100V 100p/100V 12n 10n 100n/63V 100n/63V 100n 3n3 100n/63V Application Note AN97032 Remarks 370 370 370 370 370 370 NP0 655 NP0 NP0 638 730 370 NP0 NP0 SMD 0805/X7R SMD 1210/NP0 370 370 SMD 0805/X7R SMD 0805/X7R 370 Number C400 C403 C404 C405 C406 C407 C408 C409 C411 C412 C416 C417 C418 C419 C420 C421 C423 C426 C427 C428 C429 C430 Type 33n/250V 22n/250V 2n7/100V 47p/1kV 4n7/2kV 150n/63V 470n/63V 10n/250V 4n7/250V 4n7/250V 180n/630VDC 120n/250V 220n/250V 470n/250V 1µ2/250V 5µ6/160V 47n/400V 10n/250V 10n/250V 10n/250V 2n7/500V 1n/500V Remarks 365 365 630 694 376 370 370 370 370 370 378 379 379 379 379 379 379 370 370 370 655 655 Remarks Number T114 T115 T117 T118 T119 T120 T121 T122 T123 T124 T202 T203 T204 T301 T302 T303 T304 T305 T400 T401 T402 T403 T404 Type MPSA44 MPSA44 MPSA44 MPSA44 IRF9630 BC548c BC548c MPSA92 BC548c BC548c BC558 BC548c BC558 BC558 BC548c BC548c BC548c BC548c BC375b BC376 IRF9630 BU2532AL BC375b Remarks Transistors Type BC548c BSP145 BC547 W9NA80 BC548c BC548c BC548c BC548c BC558 BC558 BSN274 BC548c BC548c BC548c PH2369 PH2369 BC375b BC376 BUT11A BC375b BC375b MPSA42 MPSA44 SMD (to heatsink) (to heatsink) 29 (to heatsink) (to heatsink) (to heatsink) Philips Semiconductors Circuit description of CCM420 monitor Number T405 T406 T407 T408 T409 T410 T411 T412 5.4 Number D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D28 D29 D30 D31 D32 D33 D105 D106 D107 D108 D109 D110 D111 Type BC548c BUK445-100B BC548c BUK445-100B BC548c BUK445-100B BC548c BUK445-100B Application Note AN97032 Remarks Number T413 T414 T415 T416 T417 T418 T419 Type BC548c BUK445-100B BC548c BUK445-100B BC548c BC558 BC558 Remarks Remarks Number D112 D113 D114 D116 D117 D118 D120 D121 D122 D123 D124 D125 D126 D127 D128 D129 D130 D131 D132 D133 D134 D135 D301 D303 D401 D402 D403 D404 D405 D406 D407 D409 D410 Type BYD73D BZX79C75 1N4148 BYD33M BYD33M BZX79C6V2 1N4148 BYD73G BYD33M BYV26E BYV27-200 BZX79C10 1N4148 1N4148 1N4148 1N4148 BZX79C62 BAS32 1N4148 1N4148 BZX79C4V7 BYD33D BZX79C5V6 1N4148 1N4148 BZX79C10 BYV99 BY459F 1N5822 1N4148 1N4148 BZX79C6V8 BZX79C39 Remarks Diodes Type BYW54 BYW54 BYW54 BYW54 BYD13J BT151-500R BZX79C6V2 BZX79C33 BYD33D BYD33M BZX79C5V6 1N4148 1N4148 1N4148 BICOLOURLED 1N4148 BZX79C15 BZX79C6V2 BZX79C6V2 BYD73D BYV28/100 BYD73D BYD33G BYR29-800 1N4148 1N4148 1N4148 BYD33K 1N4148 1N4148 1N4148 1N4148 1N4148 1N4148 1N4148 BZD23C5V1 BYD73D Thyristor 30 SMD (to heatsink) Philips Semiconductors Circuit description of CCM420 monitor 5.5 Number IC1 IC2 IC3 IC101 IC102 IC201 IC202 IC301 IC302 IC303 IC304 IC305 IC401 5.6 Number L1 L2 L3 L4 L5 L6 L7 L101 L102 L401 L402 L403 TR1 TR2 TR101 TR401 5.7 Integrated circuits Type TDA8380A L7812 78L05 UC3843P LM393 LM358 TDA7053A PCE8582C-2E PCE8582C-2E TDA8447 P83C181 TDA4854 TDA8354 Remarks (to heatsink) see appendix 7 (to heatsink) Wire-wound components Type/Value TU305b2 10µ 10µ 10µ 10µ 10µ 10µ 6µ8 10µ CU20 / 1.2mH PE4025/01 10µ CU20d CE425V AT2097/M1 CU15/35 Remarks 3121 218 61281 TDK TDK TDK TDK TDK TDK TDK TDK 8228 001 25771 8228 001 28021 TDK 3112 338 32032 8228 001 23415 3122 268 31292 3128 138 35141 Miscellaneous Optical devices Number Type OC1 CNX82A TH1 M0C2A60_5 TH2 M0C2A60_5 Others F1 2A SLOW F2 2A FAST F3 2A FAST F4 2A FAST SW1 MAINSSWITCH Remarks 31 Application Note AN97032 Philips Semiconductors Circuit description of CCM420 monitor XT301 Connectors Number J3 J301 J302 X1 X2 X201 X202 X203 X204 X205 X301 X302 X303 X304 X305 X306 X307 X401 X402 Crystal 12MHz Type HEADER 3p HEADER 2p HEADER 2p STOCKO 3p STOCKO 4p STOCKO 3p STOCKO 3p STOCKO 3p STOCKO 3p STOCKO 3p STOCKO 14p STOCKO 4p STOCKO 8p STOCKO 4p STOCKO 6p STOCKO 12p STOCKO 4p STOCKO 7p STOCKO 3p Remarks Application Note AN97032 remove middle pin remove middle pin remove middle pin Heatsinks: The areas of the heatsinks are: 2 • horizontal deflection: 140 cm ; Rth ≈ 4 K/W. 2 • vertical deflection: extruded heatsink with ≈60 cm ; Rth ≈ 3 K/W. • EHT: 50 cm ; Rth ≈ 9 K/W. • SMPS: 60 cm ; Rth ≈ 8 K/W. 2 2 Mounting studs for heatsinks: The heatsinks for horizontal deflection, EHT and SMPS are mounted on the PCB via special mounting studs. For each heatsink one of these studs is connected to the ground plane of the circuit to ensure the heatsink is correctly grounded. The heatsink for the vertical deflection is mounted with screws. Again one of these screws is connected to ground to define the heatsink’s potential. Clips for device mounting on heatsinks. Note: the mains voltage is interrupted on the board between filter output and mains switch. This connection must be made by two wires soldered between the appropriate points on the board. The reason for not implementing this connection in the board lay-out is that it requires too much space. 32 Philips Semiconductors Circuit description of CCM420 monitor 6. Application Note AN97032 PRINTED CIRCUIT BOARD LAYOUT On the next pages the following drawings can be found: − component placement with position numbers as seen from the component side; − component placement with values as seen from the component side; − SMD placement with position numbers as seen from the solder side; − copper pattern of printed circuit board. The board dimensions are: 388 mm long by 250 mm wide. 6.1 Lay-out hints Ground track: The common ground track should be kept as clean as possible. This means that only DC currents should be flowing through this track indicating that the AC current is short circuited at it’s source! Therefor you will find resistor capacitor supply filters at every stage. Focus: The focus signal of the TDA4854 and it’s reference ground should be kept close to each other up to the input of the focus output amplifier due to the high gain of this output stage (and the neighbourhood of the EHT circuit as well as the long distance between source and amplifier). Vertical deflection: Keep vertical drive signals of the TDA4854 close together at all places to avoid coupling of magnetic fields in the loop. Horizontal deflection output stage: Keep flyback capacitor and diode of the horizontal deflection stage located close together to damp the forward recovery ringing of the flyback diode. Due to the low leakage inductance of the driver transformer the tracks between transformer and line output transistor should be kept as short as possible. EHT X-ray protection: The connecting points of R129/R130 and R130/R131 are very sensitive due to their high impedance. These points should therefor be kept as small as possible and far away from points with a high voltage swing (i.e. the collector voltage of the BUT11A). 33 D17 C204 T202 R205 R207 R206 R208 IC201 C209 C207 R204 R215 + T203 X204 R214 R203 R365 D303 + R319 C303 IC305 + IC302 X303 R312 R363 C323 C311 C314 R325 R301 R326 R302 R316 R317 + C302 R307 R308 R334 R337 D301 R336 C312 IC304 R315 XT301 SW1 + C301 C307 R458 R413 R314 R313 R321 R323 R324 R322 R320 R332 R331 R362 R361 T304 R360 X307 T302 + C431 R410 R409 R408 R435 D409 R436 C422 T415 T417 T409 T413 T411 T407 R434 R439 R425 R431 R428 TR401 T1 R421 R420 R433 R437 T414 R432 C416 R424 R427 R419 R430 C418 X306 R407 C409 T404 R5 R6 C421 R422 R438 + C410 X1 C417 R412 C2 T410 R426 C419 C411 L402 R414 R309 D1 D2 D3 D4 C6 C7 D404 D6 R43 IC3 D15 X3 + C32 X2 C401 R359 + C402 R403 C400 T401 T400 IC2 + R11 C30 T412 R429 C420 X401 C214 + C217 R227 T303 R356 R357 C212 R217 R220 R212 R216 C210 + C211 T204 R219 + C203 X201 R218 R213 R209 R211 + C423 R221 R223 R222 R224 C208 + C215 IC303 R310 R306 X304 D406 C408 C412 D407 R411 C216 C213 R4 + R364 X205 C316 R343 R342 R341 C306 R333 T301 R228 R358 R346 R345 J301 C315 R355 R354 C320 R352 T305 C319 C308 C309 R318 R327 J302 C310 R348 R338 R347 R349 366 C324 R328 R329 R330 R304 R305 IC301 + C305 C304 T416 X305 T405 R415 X302 R418 R406 T406 C407 X301 T402 C34 R400 C406 C130 D401 + D402 R404 5V-USB D405 R8 D16 T8 D18 R56 R45 T3 R9 T113 D120 R139 R151 R135 T112 T124 D129 R169 T122 D134 R178 R179 R166 L401 D29 R63 T12 R64 T17 C9 + D403 R55 D19 R423 T408 TH1 R67 R75 D114 IC202 C29 L6 C23 T11 T10 R14 D7 T9 T120 C119 R172 R171 D128 R454 R52 C26 C28 R33 R34 R30 T5 D31 R153 R455 R456 R457 R25 L5 T419 T418 D121 R162 C18 TR2 C25 R163 R443 R136 F4 C403 R137 C112 D113 D25 R405 R12 R66 C17 R65 R24 C21 C31 R44 + L3 D8 R13 R177 + C118 R176 + R138 D135 D127 D130 R170 + + R59 R61 R62 R57 R58 R68 R15 R10 + T403 R7 D5 C117 R140 C27 D23 D410 + + C24 D10 R31 D117 D116 R152 C426 C424 R444 IC401 TR101 R441 C20 F3 X402 C430 R141 R74 C38 R76 OC1 R48 C8 R146 T117 R147 C122 D123 D33 D32 C12 C11 R32 IC1 R20 R2 C111 C121 L102 TH2 R36 R41 R37 R38 R40 C13 R35 T7 T6 R42 L2 C425 P1 C35 R54 D20 T13 C22 R150 R143 R173 R142 + T121 C129 R168 R167 R161 R49 + + F2 D22 L7 R155 C123 + C405 C404 R53 C429 R451 R450 R445 R446 + R449 L403 C36 R453 R452 C427 C428 R440 C39 R78 R447 R50 R22 D9 L4 D24 D26 R442 + + D132 D133 C120 + R28 D21 R51 D28 T119 T109 R3 D122 D14 C19 + D126 T14 C15 R16 R18 R115 R114 C109 C110 C4 C5 L1 R124 R128 R127 R165 R126 R164 C1 C3 C128 R1 TR1 T111 D108 T110 IC102 IC101 C106 R110 R109 R118 R105 C103 T103 R107 R108 C104 D105 R133 R122 R113 D107 C107 T106 R154 R156 T107 P101 C126 T108 D106 T115 R144 R145 C116 T114 R148 T123 R131 R132 D110 C10 R17 R47 C14 R159 R175 D118 R149 D124 T118 R157 D125 C124 R158 C125 + D13 + R125 + R116 R130 R129 R123 C135 L101 D111 D112 R39 34 R46 Circuit description of CCM420 monitor F1 X203 C127 + + + C105 C102 D109 X202 Philips Semiconductors Application Note AN97032 558 470n 25V 100E NFR25H 47u+ 548 4k7 100E NFR25H 22 33k 47u 680 25V 56k 25V + 47u 1k Bicolor LED 680 1k8 47u 25V 220n 558 180k 56k 39k 22k LM358 + 100n 4148 12k 6k8 4k7 68u 16V + 68u 16V 100E TDA4854 100E 100E 4k7 Mains- Switch st.-8p 22k 4k7 10E 10k 10n 4u7 63V 68u 16V + 100E 12MHz P83C181 10E 68uPCE8582C 2E 16V + 100E 100E 4E7 2k2 C5V6 558 8k2 68u 2n2 16V + 10n 10 2k2 548 6k8 27k st.-4p 548 220 PR01 100E 100E + 470n 100E 100E 100E 100E 100E + 10u 63V 548 548 548 548 548 548 10k 10k 10k 10k 10k 10k 150k 39k 470 5u6 160V 548 3k9 1k 47k 47k BUK445 4n7 47k 47k 47k 47k PR03 275V 220n BYW54 BYW54 + 10E AC05 BY459F 47u 25V BT151 500R 1k5 4148 100k 400V 547 10k 10E NFR25H 220u 4148 36k 13k 24k 548 4148 MPSA92 1k C4V7 47k 15k 3k3 150k MPSA44 548 MPSA42 1.2mH U20 4148NFR25h 1000u 16V BSN274 180 180k + BYV99 4148 4148 548 3p-header + 68u 16V 78L05 1k2 NFR25 220E + 150u 250V 120 33n 250V 376 375 7812 BUK445 150k 1u2 250V BYW54 BYW54 120n 250V 47 BUK445 150k 470n 250V 4n7 PE4015/01 270 220n 250V st.-12p 2K7 PR02 180n 630VDC 220 10n 375 CU15/35 2.7 1N5822 47 st.7p + 100k 548 22 47u 25V 22 NFR25 100 680 33 C6V8 BUK445 100n 100k 43k 47n 400V + 16V 68u 4148 470n 4k7 4k7 4k7 st.3p 3.3 100 st.3p + 470n TDA8447 100E 10E st.-4p 150k 4148 18k BUK445 150n st.2p 100n 4k7 st.3p 100p +4.7 2p-header 100p 100E 100E 100n 22k 548 100n 4k7 100E 100E 100E 100E 100E 2n7 1k 4E7 10p 10k 1k5 10k 270E 100E 100n 4k7 4k7 100E 100E 100p 100p 100E 22k 2p-header PCE8582C 2E + 100p 100p 548c st.-6p 27 PR01 st.-4p BUK445 15E PR03 + BU2532AL st.-14p 2n2 250VAC 150k 150k 2322-662-96126 2n2 250VAC BYD13J IRF9630 100 TDA7053A MOC2A60-5 220n/250V 68u 16V 4148 548 110k BZX79 C6V2 120k 1M 4148 330k 3k9 3k9 4k7 1u 250V 548 1M8 2n7 C75 BZX79 100 4148 BZX79 C10 10k 10E NFR25 2n2 500V 10E NFR25 1k + 4n7 2kV 1k 5V-USB 330n 330 + 220 PR02 470P 1kV W9NA80 0.33 NFR25H 0.47 NFR25H 1k BYD33K 470u 25V 558 558 BYD73G 150k 100 NFR25H 1M5 BYD33D 22n 100V 1k 10k + 39k 1000u + 22n 250V BZX79 C33 1M 10u 1n 1kV 1k 390 1n 150u 250V st.2p 10u 1k 4n7 EMP10 680p 270 PR01 100u 1u 63V 548 10u 250V 10u 47k 3.3 NFR25H 6.8 NFR25H 68u 16V 100u 25V 4u7 63V 10 NFR25H 100 4148 PH2369 376 375 4148 2n2 250V 1M 220n 275V AT4043/20 220n 275V 2n2 250V 2k2 27 PR01 1k 100 1k 4.7 68u NFR25H 16V 375 4148 375b 3n3 UC3843 68k 4k3 100 330p PH2369 3k3 820 2n2 4148 270 5k6 LM393 68u 16V TU305b2 6u8 MOC2A60-5 100 15 680E 1k 1k 10u 50V 36k 470u 22k 25V 5k1 4148 548 548 4148 10p 63v 4u7 15k NFR25H TDA8380 548 22n 56 18k 5k1 CNX 82A 10u 330u 16V 1n 1kV BYV26E 1k 5k1 BZX79 C6V2 548 4E7 NFR25 BYD33M AC04 + 25V 470u 10u 10u 2k7 PR01 25V 470u C39 BZX79 + 10n 47u 50V 2k0 MPSA44 220k 220k BYD33M 270k 270k 100k BYD33M 1M5 MPSA44 1k AB 1k TDA8354 SK48 AT2097/M1 150k 220p 500V DEV. 1000u 16V + 4148 C62 47k 220k 10 2A FAST 10k 2A FAST BYD33G 470u 25V 100 4148 BZX79 C15 10E 47k 548 NFR25 10u 100k 558 24k 120k 558 18k 47u + 10u 39k 100V 1k 4n7 250V~ 4M7 VR37 + BYV28-100 11k + 10u 63V + 16V FAST 2A BYD73D 3k3 2n7 10k 10k 1E8 1E8 BYD73D BYR29-800 270k 100p 330E NFR25 22E BYD33D 56k 47p 1kV 2n7 + 4148 16V 68u 47k 100E 100E 10n 10n 5k6 2n7 500V 100k PR01 BZX79 C6V2 2k2 4148 2M7 1k st.3p + 270 PR03 150k + 0E47 NFR25 4148 4148 4n7 1kV 2E7 AC04 + + BYD33M 4148 10n 3M3 IRF9630 120 PR01 1n5 BUT11A + 10k 3M3 22k + 3k3 + 1k BZD23 C5V1 100p 470p 4148 1M5 8k2 100n MPSA44 1k MPSA44 BYV27 200V 10k BZX79 C10 120 680p 100k 4k7 2n2 + 2k2 BZX79 C6V2 3k3 47p BYD73D BYD73D BZX79 C5V6 820 + + + 22n 250V 33n 250V 1k2 Circuit description of CCM420 monitor 2A slow 100E 35 100E st.3p Philips Semiconductors Application Note AN97032 Philips Semiconductors Circuit description of CCM420 monitor Application Note AN97032 Location of SMD parts. Control part: R340 R353 R350 C317 C318 R339 R344 C321 This drawing shows the SMD components underneath the deflection controller TDA4854 seen from the solder side. R351 C322 EHT and focus part: SMD parts seen from solder side: D131 • D131: located underneath D132. • R112, R119, C108, C134, C136: located underneath IC101. • R117: located underneath IC102. + R112 + C108 R117 C134 R119 + + C136 SMPS part: T2: located underneath D7. (No drawing shown) 36 Philips Semiconductors 37 RED Application Note AN97032 GREEN Circuit description of CCM420 monitor Philips Semiconductors Circuit description of CCM420 monitor 7. Application Note AN97032 ALIGNMENT PROCEDURE This alignment procedure is written for a complete CCM420 monitor: main board, key board, video board and CRT. In case of failure refer to chapter 8: debugging procedure. 7.1 Equipment Video generator Quantum Data QD903: formats ranging from 640 x 400 to 1280 x 1024 pixels; refresh rates ranging from 60 to 85 Hz. DMM Fluke PM2421 EHT meter Brandenburg Oscilloscope Fluke PM3384A Colour analyser Philips PM5639 PC min. ‘486’ with windows 3.11 with I C interface card Software I C control software version 1.60 for TDA4854, TDA4885 and TDA8447. 7.2 2 2 Alignment 1. Turn both potentiometers on the main board ccw. 2. Connect the video generator and apply a signal with 1024 x 768 pixels at 76 Hz refresh rate (Fh≈64 kHz).Choose testpattern SMPTE. 3. Connect the EHT voltmeter between anode and aquadag of the CRT. 4. Be sure the EEPROM’s are filled with the values as given in appendix Starting values of I2C registers on page 43. 5. If possible make use of a separate degaussing device to demagnetise the CRT. 6. Connect the mains supply voltage and switch the monitor on with the mains switch. 7. Check that the monitor displays a picture after a few seconds. If not refer to the debug section. 8. Adjust the SMPS ‘185 Volt’ output to 185.0 ± 0.20 Volt measured across C22. 9. Adjust the EHT to 26.0 ±0.2 kV. 10. Display a cross-hatch pattern. 11. Adjust static focus with the focus potentiometers on the EHT transformer. 12. Front panel switch “USER - SERV.” must be placed in SERV. position. 13. Press the Menu button once: check that the OSD shows the mode information. If not refer to the debug section. 14. Press the Menu button again: the OSD now displays the user control menu. 2 15. Position the picture in the centre of the screen and adjust width and height to nominal size 312 x 234 mm . 16. Adjust the pincushion, pincushion-balance, corner, trapezium, parallelogram, horizontal and vertical linearity and rotation to obtain optimum geometry. 17. Display a pattern with a 1 Nit luminance. See appendix Video drive levels on page 44. 38 Philips Semiconductors Circuit description of CCM420 monitor Application Note AN97032 18. Adjust grid 2 such that the brightest colour reaches the required level for a total luminance of 1.0 Nit. Note: the required level for each of the three colours for a total luminance of 1.0 Nit is: Red: 0.3 Nit; Green 0.59 Nit; Blue: 0.11 Nit. 19. Then decrease the cathode voltage of the two remaining colours to their respective brightness for a total brightness of 1.0 Nit. 2 20. Display a pattern with a 10x10 cm box in the middle of the screen with RGB input signals of 700 mV. See also appendix Video drive levels on page 44. 21. Adjust the gain of the three channels to a total luminance of 100 Nit with reference D6500. 22. Check the black levels again and re-adjust if necessary. 23. Display a focus pattern (i.e. Randomtext). 24. Adjust the static focus potentiometers on the EHT transformer for optimum sharpness on a screen position in a circle of 150 mm diameter around the centre of the screen. 25. Adjust the dynamic focus for optimum sharpness on the centre and the edges of the screen. 26. Readjust static focus (and then dynamic focus) if necessary. 27. Save the settings. 39 Philips Semiconductors Circuit description of CCM420 monitor 8. Application Note AN97032 DEBUGGING PROCEDURE The debugging of the main board is described in a complete monitor set-up fitted with CRT M41EHN323X145 and video amplifier board PR37981. Only the most common failures are described. 1. No picture: Check: 185 Volt output of SMPS; all other output voltages of the SMPS (+11 V; +18 V; -18 V; +78 V; limits for all output voltages +/- 10 %); +12 Volt (+/- 0.75 V) on pin 10 of the TDA4854; +5 Volt (+/- 0.25 V) on pin 24 of the P83C181; line deflection; EHT part; grid voltages Vg1 (-62 +/- 2 Volt) and Vg2 (400 - 600 Volt); vertical deflection; 2. 185 Volt output not present: Check: mains fuse F1; output rectifier D26; fusible resistors R9, R22, R32, R33 and R34; line deflection parts T402 and T403; supply voltage of IC1; output drive signals of IC1; main switching device T5; over-current protection level on pin 13 of IC1; 3. Auxiliary SMPS output voltages missing: Check: output rectifiers D22, D23, D24, D25; fuses F2, F3, F4; voltage stabilisers IC2 and IC3; 4. Distorted picture: Check: alignment; S-correction switches (see table in chapter 3.4.3 Linearity and S-correction control); linearity control circuit of horizontal deflection; flyback voltage of vertical deflection (Tfb = 300 ± 50 µs; Vpeak = 43 ± 3 Volt); all supply voltages for excess ripple voltages (185 V: < 0.200 Vpp; 11 V: < 0.800 Vpp); 5. No line deflection: Check: presence of horizontal and B+ drive signals of TDA4854; base drive voltage of T403; gate drive voltage of T402; line deflection parts T402 and T403; 40 Philips Semiconductors Circuit description of CCM420 monitor Application Note AN97032 6. No vertical deflection: Check: vertical drive signals of TDA4854; flyback supply voltage; vertical deflection output stage; 7. EHT not present: Note: the horizontal deflection stage must be operating! Check: all fusible resistors R114, R115, R156 and R164; duty-cycle of PWM output pin 6 of IC101 (< 90 %); base drive signal of T109 X-ray output pin 7 of IC102 8. Vg1 not present: Check: supply voltage -200 Volt; protection signals ‘Vguard’, ‘HUNLOCK’ and presence of horizontal flyback pulses; polarity and value of D130; 9. Vg2 not present: Check: supply voltage on C120: 700....900 Volt; output voltage of TDA8447 pin 16 Vg2D: 0.4 to 4.6 Volt; polarity of D135; base voltage of T113; 10. Dynamic focus signals not present: Check: focus signal on pin 32 of TDA4854 supply voltage on C117: 700....900 Volt; emitter voltage of T123; position of D116 and D117; 11. No rotation control: Check: fusible resistors R215, R217; presence of vertical blanking pulse VrotS; signals NSTR and HROT (both 0.4 to 4.6 Volt); signal VRotS; resistor R220. 12. No OSD: Check: connector X303 and the cable to the video board; signals ENN, SDI and SCK on pins 1, 2, 3 of the P83C181 while operating the key board. 41 Philips Semiconductors Circuit description of CCM420 monitor 9. Application Note AN97032 REFERENCES 2 AN97072 Pin description of TDA4854 I C controlled ASDC. AN97039 Video amplifier board with TDA4885 and CR6927. ETV/AN97002 Low power and low cost horizontal drive circuits with U15 core. Data sheets: TDA4854 2 I C-autosync deflection controller for PC/TV monitors Date of issue: 1997 Apr. 16 TDA4885 2 150 MHz video controller with I C-bus Date of issue: 1996 Mar. 13 TDA8354 Full bridge current driven vertical deflection output circuit in LVDMOS Date of issue: 1996 July P83C181 Microcontroller for monitor with DDC interface, auto-sync mode detection and sync processor Date of issue: 1997 Mar. 14 TDA8447 Bus controlled octuple 8-bit DAC Date of issue: 1996 Mar. 11 CR6927 Triple video driver hybrid amplifier Date of issue: 1996 Apr. 19 42 Philips Semiconductors Circuit description of CCM420 monitor APPENDIX 1 Application Note AN97032 2 STARTING VALUES OF I C REGISTERS 2 In the following tables the starting values for the I C registers and the switch position are shown. 2 These values should either be present in the EEPROM or loaded via the I C software control program in the applicable device. TDA4854 control registers and switch positions: Register Value Switch 0/1 H-size 150 BLKDIS 0 H-pos 127 HBC 0 V-size 85 HPC 0 V-pos 63 AGCDIS 0 V-lin 8 VSC 0 V-lin-bal 8 MOD 1 H-pin 40 TVMOD 0 H-pin-bal 8 FHMULT 0 H-trap 8 VOVSCN 0 H-paral 8 CLAMP 1 H-corner 4 VBLK 0 H-focus 27 VLC 0 V-focus 6 VPC 0 H-moire 0 ACD 0 V-moire 0 STDBY 0 SOFTST 1 TDA8447 control registers: Register Value Hlin 127 NStrap 127 H-Rot 127 Vg2 185 43 Philips Semiconductors Circuit description of CCM420 monitor Application Note AN97032 TDA4885 control registers and switch positions: Register Value Switch 0/1 Contrast 58 PEDST 1 Brightness 16 DISO 0 OSD Ctrst 15 DISV 0 Gain R 60 FPOL 1 Gain G 55 Gain B 35 Black level R 190 Black Level G 190 Black Level B 190 APPENDIX 2 VIDEO DRIVE LEVELS To display a grey level of X Nit the necessary drive level at the input of the video stage can be calculated according to the following rules: • For a given drive voltage the output luminance can be calculated according to the following equation: LUM = (C ´ Vdrive)g . • The maximum grey level is set at 100 Nit full screen at a contrast setting of 58 and nominal brightness setting 16 • With a maximum video input level Vdrive = 0.700 Volt for LUM =100 Nit one can derive the gain factor of the video channel with the following equation: C = g LUM Vdrive . Inserting above mentioned numbers, assuming γ = 2.25 result in C = 11.061. • The drive level in Volts for a wanted luminance level LUM can be calculated with the following formula now that all parameters are known: Vdrive • = g LUM / C For example: for 1.0 Nit output, the drive level at the input should be 90.4 mV. APPENDIX 3 TDA4854 HORIZONTAL FREQUENCY RANGE The horizontal frequency range of the TDA4854 is determined by the value of two resistors and one capacitor. The value of resistors R350 and R351 is determined by the frequency limits of the application. The capacitor C318 (horizontal oscillator capacitor connected to pin 29) though should be 10 nF for optimum jitter performance. The value of this capacitor should not be changed. Given a specified frequency range (and C318 = 10 nF) the value of the resistors R350 and R351 can then be calculated with the following formulas: 44 Philips Semiconductors Circuit description of CCM420 monitor Application Note AN97032 Note: the minimum and maximum frequencies in the formulas should be inserted in ‘kHz’. Tolerance taken in account is 3 % for the IC, 2 % for the horizontal oscillator capacitor and 1 % for the resistors R350 and R351. R350 = R' 351 = 78 kΩ F min + 0.0012 ´ F min 2 78 kΩ F max + 0.0012 ´ F max 2 R 351 = R 350 ´ R' 351 ´ 0 .8 kΩ R 350 - R' 351 Note : R’351 does not really exist; this is only for the calculation. For a sync frequency range of 15.6 kHz to 85 kHz the resistor values become: R350 = 5208 Ω; nearest available value: 5230 Ω (1 % SMD resistor); R351 = 735 Ω; nearest available value: 732 Ω (1 % SMD resistor). APPENDIX 4 USER INTERFACE The user interface in the CCM420 monitor consists of a five button keyboard and the control software CCM420S. An OSD window pops up when the user operates one of the pushbuttons: 1. The MENU button gives access to the various levels of user control and service control. 2. The SHIFT left/right and ADJUST down/up perform different actions depending upon the control level: When the MENU button was not activated the SHIFT buttons give direct access to the Brightness control, while the ADJUST buttons give direct access to the Contrast control. In both cases an OSD pops up to inform the user about the action taken. 3. With the MENU button one can scroll down through the control levels. In each control level the desired function can be selected by pushing the SHIFT down or up button. The control is divided into a number of levels. Each of these levels will now be discussed shortly: First level: First line: Second line: Third line: Mode identification; no user control possible. Horizontal frequency Vertical frequency Mode information; either the standard VESA identification (if applicable) is shown or the number of this user defined mode. Second level: First line: Second line Third line: Fourth line: User controls. Brightness, Contrast, Degauss, Horizontal Moiré, Vertical Moiré Horizontal position, Horizontal size, Vertical position, Vertical size momentary setting of actual control name of actual control function. Note: The following control levels can only be accessed if the switch on the left hand side of the keyboard is set in "Service" position. Third level: Video control. 45 Philips Semiconductors Circuit description of CCM420 monitor Application Note AN97032 First line: Red Black level (RB), Green Black level (GB), Blue Black level (BB), OSD contrast (OC), Colour temperature (CT) Second line: Red gain (RG), Green gain (GG), Blue gain (BG), CRT grid 2 (G2) Third line: momentary setting of actual control Fourth line: name of actual control function. Fourth level: Horizontal control. First line: Pincushion (HP), Pin-balance (HB), horizontal linearity (HL), Corner (HC), Trapezium (HT) Second line: Parallelogram (PA) Third line: momentary setting of actual control Fourth line: name of actual control function. Fifth level: First line: Second line: Third line: Fourth line: Vertical control. Vertical linearity (VL), Vertical linearity balance (VB), Vertical trapezium (VT), Tilt (TI) (not used) momentary setting of actual control name of actual control function. Sixth level: Miscellaneous control. First line: Vertical focus (VF), Horizontal focus (HF), Aux 1 (A1) Second line: Aux 2 (A2), Aux 3 (A3), Aux 4 (A4), OSD Hor. pos. (Oh), OSD Vert. pos. (Ov) Third line: momentary setting of actual control Fourth line: name of actual control function. Seventh level: Automatic save and quit. APPENDIX 5 KEYBOARD The circuit diagram of the keyboard to be used with this main board and software is as follows: 3k STATUS 1k CURSOR+ 1k ADJUST+ To X304 1 2 3 4 1k ADJUST1k CURSOR620E USER 1k SERVICE 100k 46 Philips Semiconductors Circuit description of CCM420 monitor APPENDIX 6 Application Note AN97032 2 I C CONTROL MENUS This software can be used in a debugging phase of the hardware for instance in case no µController is available (mind the setting of the S-correction switches). 2 The I C Control Menus control the IC’s via a Personal Computer, which should fulfil the following system requirements: Hardware Requirements: - 80486 compatible PC or a Pentium with a microprocessor running at least 100 Mhz - a hard disk - Centronics parallel printer port 2 - One of the following I C -bus interfaces: - Hardwareless - Single Master (OM 4777; external +5Volt power supply needed) - Multi Master (OM 1022; external +5Volt power supply needed) - HighspeedBoard (Philips PC-MIO board) Software Requirements: - MicroSoft MS-DOS version 3.1 or later - MicroSoft Windows 3.0 or later in standard or enhanced mode GENERAL INFORMATION. ERROR MESSAGES: 2 When starting an I C-Control Menus program an hard- and software test is performed to test whether 2 the Interface card is connected correctly and to test the I C transfer channel. If one of these tests fails an Error Message Window will be displayed, explaining the type of error. If such an error occurs at start-up the program will run in the “demo-mode’, which means that all functions can be controlled 2 but there will be NO I C data transfer. To be able to control the IC’s you should stop the program, solve the problem mentioned in the Error Message Window and restart the program again. SAVING DEFAULT SETTINGS: There are two types of savings: - Application Settings - Set-up Settings The settings of all controls (Potentiometers & CheckBoxes) can be saved within a file called ‘filename.DEF’, in this way several default settings for different Applications can be saved. (The ‘filename’ information can be defined by the user). The Program Environment can be saved by saving the Set-up Settings into a file called ‘program_name.INI’ (The ‘program_name’ will be defined by the program itself, and will correspond to the name of the Program Name). The set-up settings include the following information: 2 - I C data (Interface type, PrinterPort Number, Device address etc.) - Last loaded Application Default File - Screen Position of the Menu Window Both saving actions can be performed via the ‘File’ Menu. 47 Philips Semiconductors Circuit description of CCM420 monitor Application Note AN97032 LOADING DEFAULT SETTINGS: Loading Application Default settings can be performed by activating the “Load Application Settings” Menu Item within the “File”-Menu. When the IC’s are situated within the CCM420 monitor, it is also possible to load the actual default settings of the Monitor, which are saved within the EPROM of the monitor. Before the program is able to perform this action it must be initialised to know what mapping is used. This can be done by performing the “Load Monitors Mapping EPROM File” Menu-Item within the “File”-Menu. After loading the mapping file, called ‘filename.MAP’, a test is performed to control this function. If this test is successful the “Read Defaults CCM420”-Button will become visible in the Menu Window. MENU WINDOW SIZE: 2 The I C Control menus written for the IC’s used in the CCM420 monitor can be displayed in two or more appearances. The first one shows all Controls that can be performed, either by Potentiome2 ters or by CheckBoxes, and the Information Box showing what actual I C data is transferred. By pressing the Expand-Button the Menu Window will show more detailed information, such as Register 2 Contents, etc. Within the I C-Control menus shown below, the Expand Button(s) are indicated by the characters “A” and/or “B” and the several Visible Areas are separated by Vertical Black Line(s). 2 I C-CONTROL MENU OF THE DEFLECTION CONTROLLER IC TDA4854. 48 Philips Semiconductors Circuit description of CCM420 monitor 2 I C-CONTROL MENU OF THE VIDEO CONTROLLER IC TDA4885 2 I C-CONTROL MENU OF THE D-A CONVERTER IC TDA8447 APPENDIX 7 CICT IC NEWSLETTER NO. 17 49 Application Note AN97032 Philips Semiconductors Circuit description of CCM420 monitor Application Note AN97032 P83Cx81 will not be taken to RFS CICT has decide not to proceed with plans to make available the P83Cx81 family of DDC monitor microcontrol2 lers. This family was originally intended to serve the market for DDC monitors which were I C bus controlled. The P83Cx81 was positioned as a cost down version of the P83Cx80 family. However for the following reasons this positioning no longer makes sense: • most customers do not think the P83Cx81 32 pins are enough and they prefer the 42 pins P83Cx80 versions. • the actual cost difference between the P83Cx80 and the P83Cx81 is very small. • the P83Cx80 family can also be easily used for I C bus controlled designs, it is not only for DC controlled designs. • we have no customer orders currently for P83Cx81. 2 Therefore we will not proceed with the development of this family. The P83Cx80 family are of course not affected by this decision. If you have any customer interest in the P83Cx81 family please inform them of this decision ASAP. For those customers investigating the CCM420 demo monitor (which uses P83Cx81) from SLE please be informed that functionally the P83Cx81 is a subset of the P83Cx80 so the CCM420 software can also be run on the P83Cx80. If you have any further questions please contact me directly. Ian Jackson IPM Monitor Microcontrollers Consumer IC Taipei 50