TI SN74LVCH16245ADGG

SN74LVCH16245A
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES063G – DECEMBER 1995 – REVISED JUNE 1998
D
D
D
D
D
D
D
D
D
D
DGG OR DL PACKAGE
(TOP VIEW)
Member of the Texas Instruments
Widebus  Family
EPIC  (Enhanced-Performance Implanted
CMOS) Submicron Process
Typical VOLP (Output Ground Bounce)
< 0.8 V at VCC = 3.3 V, TA = 25°C
Typical VOHV (Output VOH Undershoot)
> 2 V at VCC = 3.3 V, TA = 25°C
Supports Mixed-Mode Signal Operation on
All Ports (5-V Input/Output Voltage With
3.3-V VCC)
Power Off Disables Inputs/Outputs,
Permitting Live Insertion
ESD Protection Exceeds 2000 V Per
MIL-STD-883, Method 3015; Exceeds 200 V
Using Machine Model (C = 200 pF, R = 0)
Latch-Up Performance Exceeds 250 mA Per
JESD 17
Bus Hold on Data Inputs Eliminates the
Need for External Pullup/Pulldown
Resistors
Package Options Include Plastic 300-mil
Shrink Small-Outline (DL) and Thin Shrink
Small-Outline (DGG) Packages
1DIR
1B1
1B2
GND
1B3
1B4
VCC
1B5
1B6
GND
1B7
1B8
2B1
2B2
GND
2B3
2B4
VCC
2B5
2B6
GND
2B7
2B8
2DIR
description
1
48
2
47
3
46
4
45
5
44
6
43
7
42
8
41
9
40
10
39
11
38
12
37
13
36
14
35
15
34
16
33
17
32
18
31
19
30
20
29
21
28
22
27
23
26
24
25
1OE
1A1
1A2
GND
1A3
1A4
VCC
1A5
1A6
GND
1A7
1A8
2A1
2A2
GND
2A3
2A4
VCC
2A5
2A6
GND
2A7
2A8
2OE
This 16-bit (dual-octal) noninverting bus transceiver is designed for 1.65-V to 3.6-V VCC operation.
The SN74LVCH16245A is designed for asynchronous communication between data buses. The
control-function implementation minimizes external timing requirements.
This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the
A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR)
input. The output-enable (OE) input can be used to disable the device so that the buses are effectively isolated.
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators
in a mixed 3.3-V/5-V system environment.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVCH16245A is characterized for operation from –40°C to 85°C.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
EPIC and Widebus are trademarks of Texas Instruments Incorporated.
Copyright  1998, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN74LVCH16245A
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES063G – DECEMBER 1995 – REVISED JUNE 1998
FUNCTION TABLE
(each 8-bit section)
INPUTS
OE
DIR
OPERATION
L
L
B data to A bus
L
H
A data to B bus
H
X
Isolation
logic symbol†
48
1OE
1DIR
1
G3
3 EN1 [BA]
3 EN2 [AB]
25
2OE
2DIR
24
G6
6 EN4 [BA]
6 EN5 [AB]
1A1
47
2
1
1B1
2
1A2
1A3
1A4
1A5
1A6
1A7
1A8
2A1
2A2
2A3
2A4
2A5
2A6
2A7
2A8
46
3
44
5
43
6
41
8
40
9
38
11
37
12
36
13
4
35
5
33
16
32
17
30
19
29
20
27
22
26
23
† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
2
14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1B2
1B3
1B4
1B5
1B6
1B7
1B8
2B1
2B2
2B3
2B4
2B5
2B6
2B7
2B8
SN74LVCH16245A
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES063G – DECEMBER 1995 – REVISED JUNE 1998
logic diagram (positive logic)
1DIR
1
2DIR
48
1A1
25
1OE
47
2A1
2
24
2OE
36
13
1B1
To Seven Other Channels
2B1
To Seven Other Channels
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 6.5 V
Input voltage range, VI: (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 6.5 V
Voltage range applied to any output in the high-impedance or power-off state, VO
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 6.5 V
Voltage range applied to any output in the high or low state, VO
(see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Continuous output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Continuous current through each VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±100 mA
Package thermal impedance, θJA (see Note 3): DGG package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89°C/W
DL package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The value of VCC is provided in the recommended operating conditions table.
3. The package thermal impedance is calculated in accordance with JESD 51.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SN74LVCH16245A
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES063G – DECEMBER 1995 – REVISED JUNE 1998
recommended operating conditions (see Note 4)
VCC
Supply voltage
VIH
High-level input voltage
Operating
Data retention only
VCC = 1.65 V to 1.95 V
VCC = 2.3 V to 2.7 V
VCC = 2.7 V to 3.6 V
VCC = 1.65 V to 1.95 V
VIL
Low-level input voltage
VI
Input voltage
VO
Output voltage
IOH
Low level output current
Low-level
∆t/∆v
Input transition rise or fall rate
MAX
1.65
3.6
1.5
UNIT
V
0.65 × VCC
V
1.7
2
0.35 × VCC
VCC = 2.3 V to 2.7 V
VCC = 2.7 V to 3.6 V
High level output current
High-level
IOL
MIN
0.7
V
0.8
0
5.5
V
High or low state
0
3 state
0
VCC
5.5
V
VCC = 1.65 V
VCC = 2.3 V
–4
VCC = 2.7 V
VCC = 3 V
–12
–8
mA
–24
VCC = 1.65 V
VCC = 2.3 V
4
VCC = 2.7 V
VCC = 3 V
12
8
mA
24
0
5
ns/V
TA
Operating free-air temperature
–40
85
°C
NOTE 4: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN74LVCH16245A
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES063G – DECEMBER 1995 – REVISED JUNE 1998
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
1.65 V to 3.6 V
IOH = –100 µA
IOH = –4 mA
1.65 V
VCC–0.2
1.2
2.3 V
1.7
2.7 V
2.2
3V
2.4
3V
2.2
IOH = –8 mA
VOH
12 mA
IOH = –12
IOH = –24 mA
IOL = 100 µA
VOL
II
Control inputs
A or B ports
0.2
0.45
2.3 V
0.7
IOL = 12 mA
IOL = 24 mA
2.7 V
0.4
3V
0.55
VI = 0 to 5.5 V
VI = 0.58 V
3.6 V
±5
Ioff
IOZ¶
VO = 0 to 5.5 V
ICC
VI = VCC or GND
3.6 V ≤ VI ≤ 5.5 V#
Control inputs
Cio
A or B ports
µA
‡
45
23V
2.3
µA
–45
75
3V
–75
3..6 V
±500
0
±10
µA
3.6 V
±10
µA
IO = 0
20
36V
3.6
One input at VCC – 0.6 V,
Other inputs at
VCC or GND
VI = VCC or GND
V
‡
1 65 V
1.65
VI = 1.7 V
VI = 0.8 V
UNIT
V
1.65 V
VI or VO = 5.5 V
Ci
MAX
1.65 V to 3.6 V
VI = 2 V
VI = 0 to 3.6 V§
∆ICC
TYP†
IOL = 4 mA
IOL = 8 mA
VI = 1.07 V
VI = 0.7 V
II(hold)
(
)
MIN
20
2.7 V to 3.6 V
500
3.3 V
VO = VCC or GND
3.3 V
† All typical values are at VCC = 3.3 V, TA = 25°C.
‡ This information was not available at the time of publication.
§ This is the bus-hold maximum dynamic current required to switch the input from one state to another.
¶ For I/O ports, the parameter IOZ includes the input leakage current, but not II(hold).
# This applies in the disabled state only.
µA
µA
5
pF
7.5
pF
switching characteristics over recommended operating free-air temperature range (unless
otherwise noted) (see Figures 1 through 3)
FROM
(INPUT)
TO
(OUTPUT)
tpd
A or B
ten
OE
tdis
OE
PARAMETER
VCC = 1.8 V
± 0.15 V
VCC = 2.5 V
± 0.2 V
VCC = 2.7 V
MAX
MIN
UNIT
MIN
MAX
MIN
MAX
B or A
‡
‡
‡
‡
4.7
1
4
ns
A or B
‡
‡
‡
‡
6.7
1.5
5.5
ns
A or B
‡
‡
‡
‡
7.1
1.5
6.6
ns
1
ns
tsk(o)||
MIN
VCC = 3.3 V
± 0.3 V
MAX
‡ This information was not available at the time of publication.
|| Skew between any two outputs of the same package switching in the same direction
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SN74LVCH16245A
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES063G – DECEMBER 1995 – REVISED JUNE 1998
operating characteristics, TA = 25°C
TEST
CONDITIONS
PARAMETER
Cpd
Power dissipation capacitance
per transceiver
Outputs enabled
Outputs disabled
f = 10 MHz
VCC = 1.8 V
± 0.15 V
VCC = 2.5 V
± 0.2 V
VCC = 3.3 V
± 0.3 V
TYP
TYP
TYP
†
†
40
†
†
4
† This information was not available at the time of publication.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
pF
SN74LVCH16245A
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES063G – DECEMBER 1995 – REVISED JUNE 1998
PARAMETER MEASUREMENT INFORMATION
VCC = 1.8 V ± 0.15 V
2 × VCC
S1
1k Ω
From Output
Under Test
Open
GND
CL = 30 pF
(see Note A)
1k Ω
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
2 × VCC
Open
LOAD CIRCUIT
tw
VCC
Timing
Input
VCC/2
VCC/2
VCC/2
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC/2
VCC/2
0V
tPLH
Output
Control
(low-level
enabling)
tPLZ
VCC
VCC/2
VCC/2
VOL
Output
Waveform 2
S1 at Open
(see Note B)
VOL + 0.15 V
VOL
tPHZ
tPZH
VOH
VCC/2
0V
Output
Waveform 1
S1 at 2 × VCC
(see Note B)
tPHL
VCC/2
VCC
VCC/2
tPZL
VCC
Input
VOLTAGE WAVEFORMS
PULSE DURATION
th
VCC
Data
Input
VCC/2
0V
0V
tsu
Output
VCC
VCC/2
Input
VCC/2
VOH
VOH – 0.15 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 1. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
SN74LVCH16245A
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES063G – DECEMBER 1995 – REVISED JUNE 1998
PARAMETER MEASUREMENT INFORMATION
VCC = 2.5 V ± 0.2 V
2 × VCC
S1
500 Ω
From Output
Under Test
Open
GND
CL = 30 pF
(see Note A)
500 Ω
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
2 × VCC
GND
LOAD CIRCUIT
tw
VCC
Timing
Input
VCC/2
VCC/2
VCC/2
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC/2
VCC/2
0V
tPLH
Output
Control
(low-level
enabling)
tPLZ
VCC
VCC/2
VCC/2
VOL
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.15 V
VOL
tPHZ
tPZH
VOH
VCC/2
0V
Output
Waveform 1
S1 at 2 × VCC
(see Note B)
tPHL
VCC/2
VCC
VCC/2
tPZL
VCC
Input
VOLTAGE WAVEFORMS
PULSE DURATION
th
VCC
Data
Input
VCC/2
0V
0V
tsu
Output
VCC
VCC/2
Input
VCC/2
VOH
VOH – 0.15 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 2. Load Circuit and Voltage Waveforms
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN74LVCH16245A
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES063G – DECEMBER 1995 – REVISED JUNE 1998
PARAMETER MEASUREMENT INFORMATION
VCC = 2.7 V AND 3.3 V ± 0.3 V
6V
S1
500 Ω
From Output
Under Test
Open
GND
CL = 50 pF
(see Note A)
500 Ω
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
6V
GND
tw
LOAD CIRCUIT
2.7 V
2.7 V
Timing
Input
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
th
2.7 V
Data
Input
1.5 V
1.5 V
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
1.5 V
1.5 V
0V
tPLH
tPHL
VOH
1.5 V
2.7 V
Output
Control
(low-level
enabling)
1.5 V
1.5 V
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
tPLZ
3V
Output
Waveform 1
S1 at 6 V
(see Note B)
Output
Waveform 2
S1 at GND
(see Note B)
1.5 V
0V
tPZL
2.7 V
Output
Input
1.5 V
1.5 V
tsu
Input
1.5 V
1.5 V
tPZH
VOL + 0.3 V
VOL
tPHZ
1.5 V
VOH – 0.3 V
VOH
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 3. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1998, Texas Instruments Incorporated