TI TL5001ACP

TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084E – APRIL 1994 – REVISED OCTOBER 1999
1
8
2
7
3
6
4
5
GND
RT
DTC
SCP
description
3
2
1
20 19
NC
GND
FK PACKAGE
(TOP VIEW)
NC
D
OUT
VCC
COMP
FB
OUT
D
D, JG OR P PACKAGE
(TOP VIEW)
Complete PWM Power Control
3.6-V to 40-V Operation
Internal Undervoltage-Lockout Circuit
Internal Short-Circuit Protection
Oscillator Frequency . . . 20 kHz to 500 kHz
Variable Dead Time Provides Control Over
Total Range
±3% Tolerance on Reference Voltage
(TL5001A)
Available in Q-Temp Automotive
HighRel Automotive Applications
Configuration Control / Print Support
Qualification to Automotive Standards
NC
D
D
D
D
D
D
NC
4
18 NC
VCC
5
17 RT
NC
6
16 NC
COMP
7
15 DTC
NC
SCP
NC
FB
NC
The TL5001 and TL5001A incorporate on a single
NC 8
14 NC
monolithic chip all the functions required for a
9 10 11 12 13
pulse-width-modulation (PWM) control circuit.
Designed primarily for power-supply control, the
TL5001/A contains an error amplifier, a regulator,
an oscillator, a PWM comparator with a
dead-time-control input, undervoltage lockout
(UVLO), short-circuit protection (SCP), and an open-collector output transistor. The TL5001A has a typical
reference voltage tolerance of ±3% compared to ±5% for the TL5001.
The error-amplifier common-mode voltage ranges from 0 V to 1.5 V. The noninverting input of the error amplifier
is connected to a 1-V reference. Dead-time control (DTC) can be set to provide 0% to 100% dead time by
connecting an external resistor between DTC and GND. The oscillator frequency is set by terminating RT with
an external resistor to GND. During low VCC conditions, the UVLO circuit turns the output off until VCC recovers
to its normal operating range.
The TL5001C and TL5001AC are characterized for operation from – 20°C to 85°C. The TL5001I and TL5001AI
are characterized for operation from – 40°C to 85°C. The TL5001Q and TL5001AQ are characterized for
operation from – 40°C to 125°C. The TL5001M and TL5001AM are characterized for operation from – 55°C to
125°C.
AVAILABLE OPTIONS
PACKAGED DEVICES
TA
SMALL OUTLINE
(D)
– 20°C to 85°C
– 40°C to 85°C
– 40°C to 125°C
– 55°C to 125°C
PLASTIC DIP
(P)
CERAMIC DIP
(JG)
CHIP CARRIER
(FK)
TL5001CD
TL5001CP
—
—
TL5001ACD
TL5001ACP
—
—
TL5001ID
TL5001IP
—
—
TL5001AID
TL5001AIP
—
—
—
—
TL5001QD
—
TL5001AQD
—
—
—
TL5001MJG
TL5001MFK
—
—
TL5001AMJG
TL5001AMFK
—
—
The D package is available taped and reeled. Add the suffix R to the device type (e.g., TL5001CDR).
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1999, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084E – APRIL 1994 – REVISED OCTOBER 1999
schematic for typical application
VI
+
TPS1101
VO
+
2
VCC
5 SCP
VO
COMP
1
3
TL5001/A
6
7
DTC
FB
4
RT
GND
8
functional block diagram
VCC
2
DTC
6
RT
7
OUT
1
UVLO
IDT
2.5 V
1V
1.5 V
Error
Amplifier
Reference
Voltage
1V
SCP
Comparator 1
OSC
PWM/DTC
Comparator
+
FB
COMP
4
–
3
SCP
Comparator 2
SCP
5
8
GND
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084E – APRIL 1994 – REVISED OCTOBER 1999
detailed description
voltage reference
A 2.5-V regulator operating from VCC is used to power the internal circuitry of the TL5001 and TL5001A and
as a reference for the error amplifier and SCP circuits. A resistive divider provides a 1-V reference for the error
amplifier noninverting input which typically is within 2% of nominal over the operating temperature range.
error amplifier
The error amplifier compares a sample of the dc-to-dc converter output voltage to the 1-V reference and
generates an error signal for the PWM comparator. The dc-to-dc converter output voltage is set by selecting
the error-amplifier gain (see Figure 1), using the following expression:
VO = (1 + R1/R2) (1 V)
Compensation
Network
R1
VI(FB)
3
COMP
4
FB
TL5001/A
–
R2
+
8 GND
To PWM
Comparator
Vref = 1 V
Figure 1. Error-Amplifier Gain Setting
The error-amplifier output is brought out as COMP for use in compensating the dc-to-dc converter control loop
for stability. Because the amplifier can only source 45 µA, the total dc load resistance should be 100 kΩ or more.
oscillator/PWM
The oscillator frequency (fosc) can be set between 20 kHz and 500 kHz by connecting a resistor between RT
and GND. Acceptable resistor values range from 15 kΩ to 250 kΩ. The oscillator frequency can be determined
by using the graph shown in Figure 5.
The oscillator output is a triangular wave with a minimum value of approximately 0.7 V and a maximum value
of approximately 1.3 V. The PWM comparator compares the error-amplifier output voltage and the DTC input
voltage to the triangular wave and turns the output transistor off whenever the triangular wave is greater than
the lesser of the two inputs.
dead-time control (DTC)
DTC provides a means of limiting the output-switch duty cycle to a value less than 100 %, which is critical for
boost and flyback converters. A current source generates a reference current (IDT) at DTC that is nominally
equal to the current at the oscillator timing terminal, RT. Connecting a resistor between DTC and GND generates
a dead-time reference voltage (VDT), which the PWM/DTC comparator compares to the oscillator triangle wave
as described in the previous section. Nominally, the maximum duty cycle is 0 % when VDT is 0.7 V or less and
100 % when VDT is 1.3 V or greater. Because the triangle wave amplitude is a function of frequency and the
source impedance of RT is relatively high (1250 Ω), choosing RDT for a specific maximum duty cycle, D, is
accomplished using the following equation and the voltage limits for the frequency in question as found in
Figure 11 (Voscmax and Voscmin are the maximum and minimum oscillator levels):
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084E – APRIL 1994 – REVISED OCTOBER 1999
dead-time control (DTC) (continued)
R
DT
ǒ
Ǔƪ ǒ
+ Rt ) 1250
Ǔ ) Voscminƫ
D V oscmax – V oscmin
Where
RDT and Rt are in ohms, D in decimal
ǒ
Ǔ
Soft start can be implemented by paralleling the DTC resistor with a capacitor (CDT) as shown in Figure 2. During
soft start, the voltage at DTC is derived by the following equation:
V
DT
[ IDTRDT
1– e
ǒ
ń
–t R
Ǔ
C
DT DT
6 DTC
CDT
TL5001/A
RDT
Figure 2. Soft-Start Circuit
If the dc-to-dc converter must be in regulation within a specified period of time, the time constant, RDTCDT,
should be t0/3 to t0/5. The TL5001/A remains off until VDT ≈ 0.7 V, the minimum ramp value. CDT is discharged
every time UVLO or SCP becomes active.
undervoltage-lockout (UVLO) protection
The undervoltage-lockout circuit turns the output transistor off and resets the SCP latch whenever the supply
voltage drops too low (approximately 3 V at 25°C) for proper operation. A hysteresis voltage of 200 mV
eliminates false triggering on noise and chattering.
short-circuit protection (SCP)
The TL5001/A includes short-circuit protection (see Figure 3), which turns the power switch off to prevent
damage when the converter output is shorted. When activated, the SCP prevents the switch from being turned
on until the internal latching circuit is reset. The circuit is reset by reducing the input voltage until UVLO becomes
active or until the SCP terminal is pulled to ground externally.
When a short circuit occurs, the error-amplifier output at COMP rises to increase the power-switch duty cycle
in an attempt to maintain the output voltage. SCP comparator 1 starts an RC timing circuit when COMP exceeds
1.5 V. If the short is removed and the error-amplifier output drops below 1.5 V before time out, normal converter
operation continues. If the fault is still present at the end of the time-out period, the timer sets the latching circuit
and turns off the TL5001/A output transistor.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084E – APRIL 1994 – REVISED OCTOBER 1999
short-circuit protection (SCP) (continued)
2.5 V
RSCP
185 kΩ
SCP
Comparator 2
12 kΩ
CSCP
SCP
5
From Error
Amp
1.5 V
To Output
Drive Logic
Q1
Vref = 1 V
SCP
Comparator 1
Q2
Figure 3. SCP Circuit
The timer operates by charging an external capacitor (CSCP), connected between the SCP terminal and ground,
towards 2.5 V through a 185-kΩ resistor (RSCP). The circuit begins charging from an initial voltage of
approximately 185 mV and times out when the capacitor voltage reaches 1 V. The output of SCP comparator
2 then goes high, turns on Q2, and latches the timer circuit. The expression for setting the SCP time period is
derived from the following equation:
V
SCP
ǒ
Ǔ
+ (2.5 * 0.185) 1 * e–tń ) 0.185
t
Where
τ = RSCPCSCP
The end of the time-out period, tSCP, occurs when VSCP = 1 V. Solving for CSCP yields:
C SCP
+ 12.46
t SCP
Where
t is in seconds, C in µF.
tSCP must be much longer (generally 10 to 15 times) than the converter start-up period or the converter will not
start.
output transistor
The output of the TL5001/A is an open-collector transistor with a maximum collector current rating of 21 mA and
a voltage rating of 51 V. The output is turned on under the following conditions: the oscillator triangle wave is
lower than both the DTC voltage and the error-amplifier output voltage, the UVLO circuit is inactive, and the
short-circuit protection circuit is inactive.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084E – APRIL 1994 – REVISED OCTOBER 1999
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 V
Amplifier input voltage, VI(FB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V
Output voltage, VO, OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 V
Output current, IO, OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 mA
Output peak current, IO(peak), OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating ambient temperature range, TA: TL5001C, TL5001AC . . . . . . . . . . . . . . . . . . . . . . – 20°C to 85°C
TL5001I, TL5001AI . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C
TL5001Q, TL5001AQ . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C
TL5001M, TL5001AM . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values are with respect to network ground terminal.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
TA = 125°C
POWER RATING
D
725 mW
5.8 mW/°C
464 mW
377 mW
145 mW
FK
1375 mW
11.0 mW/°C
880 mW
715 mW
275 mW
JG
1050 mW
8.4 mW/°C
672 mW
546 mW
210 mW
P
1000 mW
8.0 mW/°C
640 mW
520 mW
200 mW
recommended operating conditions
Supply voltage, VCC
Amplifier input voltage, VI(FB)
MIN
MAX
3.6
40
UNIT
V
0
1.5
V
Output voltage, VO, OUT
50
V
Output current, IO, OUT
20
mA
COMP source current
45
COMP dc load resistance
100
µA
kΩ
Oscillator timing resistor, Rt
15
250
kΩ
Oscillator frequency, fosc
20
500
kHz
TL5001C, TL5001AC
– 20
85
TL5001I, TL5001AI
– 40
85
TL5001Q, TL5001AQ
– 40
125
TL5001M, TL5001AM
– 55
125
Operating ambient temperature,
temperature TA
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
°C
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084E – APRIL 1994 – REVISED OCTOBER 1999
electrical characteristics over recommended operating free-air temperature range, VCC = 6 V,
fosc = 100 kHz (unless otherwise noted)
reference
PARAMETER
TEST CONDITIONS
Output voltage
COMP connected to FB
Input regulation
VCC = 3.6 V to 40 V
TA = – 20°C to 25°C (C suffix)
Output voltage change with temperature
TA = – 40°C to 25°C (I suffix)
TA = 25°C to 85°C
TL5001C, TL5001I
MIN TYP†
MAX
0.95
1
1.05
2
12.5
– 10
–1
10
– 10
–1
10
– 10
–2
10
TL5001AC, TL5001AI
MIN TYP†
MAX
0.97
UNIT
1
1.03
V
2
12.5
mV
– 10
–1
10
– 10
–1
10
– 10
–2
10
mV/V
† All typical values are at TA = 25°C.
undervoltage lockout
PARAMETER
Upper threshold voltage
TEST CONDITIONS
TL5001C, TL5001I
MIN TYP†
MAX
Lower threshold voltage
TA = 25°C
TA = 25°C
Hysteresis
TA = 25°C
100
200
TA = 25°C
2.1
2.55
Reset threshold voltage
† All typical values are at TA = 25°C.
TL5001AC, TL5001AI
MIN TYP†
MAX
UNIT
3
3
2.8
2.8
V
V
100
200
mV
2.1
2.55
V
short-circuit protection
PARAMETER
SCP threshold voltage
TEST CONDITIONS
SCP voltage, latched
TA = 25°C
No pullup
SCP voltage, UVLO standby
No pullup
Input source current
TA = 25°C
TL5001C, TL5001I
MIN TYP†
MAX
TL5001AC, TL5001AI
MIN TYP†
MAX
UNIT
0.95
1.00
1.05
0.97
1.00
1.03
V
140
185
230
140
185
230
mV
60
120
60
120
mV
–15
–20
–15
–20
µA
–10
SCP comparator 1 threshold voltage
† All typical values are at TA = 25°C.
–10
1.5
1.5
V
oscillator
PARAMETER
Frequency
TEST CONDITIONS
TL5001C, TL5001I
MIN TYP†
MAX
Rt = 100 kΩ
Standard deviation of frequency
Frequency change with voltage
Frequency change with temperature
VCC = 3.6 V to 40 V
TA = – 40°C to 25°C
TA = – 20°C to 25°C
TA = 25°C to 85°C
UNIT
100
100
kHz
15
15
kHz
1
1
kHz
–4
– 0.4
4
–4
– 0.4
4
kHz
–4
– 0.4
4
–4
– 0.4
4
kHz
–4
– 0.2
4
–4
– 0.2
4
kHz
Voltage at RT
† All typical values are at TA = 25°C.
1
POST OFFICE BOX 655303
TL5001AC, TL5001AI
MIN TYP†
MAX
• DALLAS, TEXAS 75265
1
V
7
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084E – APRIL 1994 – REVISED OCTOBER 1999
electrical characteristics over recommended operating free-air temperature range, VCC = 6 V,
fosc = 100 kHz (unless otherwise noted) (continued)
dead-time control
PARAMETER
Output (source) current
TL5001C, TL5001I
MIN
TYP†
MAX
TEST CONDITIONS
TL5001C
TL5001I
V(DT) = 1.5 V
V(DT) = 1.5 V
0.9 × IRT‡
0.9 × IRT‡
Duty cycle = 0%
Input threshold voltage
0.5
Duty cycle = 100%
1.1 × IRT
1.2 × IRT
0.7
TL5001AC, TL5001AI
MIN
TYP†
MAX
0.9 × IRT‡
0.9 × IRT‡
1.1 × IRT
1.2 × IRT
0.5
1.3
UNIT
0.7
1.5
1.3
µA
V
1.5
† All typical values are at TA = 25°C.
‡ Output source current at RT
error amplifier
PARAMETER
TEST CONDITIONS
Input voltage
VCC = 3.6 V to 40 V
TL5001C, TL5001I
MIN TYP†
MAX
0
Input bias current
1.5
– 160
Positive
Output voltage swing
1.5
Negative
0
– 500
2.3
0.3
Open-loop voltage amplification
TL5001AC, TL5001AI
MIN TYP†
MAX
– 160
1.5
0.4
Unity-gain bandwidth
1.5
Output (sink) current
Output (source) current
† All typical values are at TA = 25°C.
VI(FB) = 1.2 V, COMP = 1 V
VI(FB) = 0.8 V, COMP = 1 V
1.5
V
– 500
nA
2.3
0.3
80
UNIT
V
0.4
V
80
dB
1.5
MHz
100
600
100
600
µA
– 45
– 70
– 45
– 70
µA
output
PARAMETER
TEST CONDITIONS
Output saturation voltage
IO = 10 mA
VO = 50 V,
Off state current
Off-state
Short-circuit output current
† All typical values are at TA = 25°C.
TL5001C, TL5001I
MIN TYP†
MAX
1.5
VCC = 0
VO = 50 V
VO = 6 V
2
TL5001AC, TL5001AI
MIN TYP†
MAX
1.5
2
10
10
10
10
40
40
UNIT
V
µA
mA
total device
PARAMETER
Standby supply current
TEST CONDITIONS
TL5001C, TL5001I
MIN TYP†
MAX
Off state
Average supply current
† All typical values are at TA = 25°C.
Rt = 100 kΩ
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL5001AC, TL5001AI
MIN TYP†
MAX
UNIT
1
1.5
1
1.5
mA
1.4
2.1
1.4
2.1
mA
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084E – APRIL 1994 – REVISED OCTOBER 1999
electrical characteristics over recommended operating free-air temperature range, VCC = 6 V,
fosc = 100 kHz (unless otherwise noted)
reference
PARAMETER
TEST CONDITIONS
Output voltage
TA = MIN, 25°C
TA = MAX
COMP connected to FB
Input regulation
TA = MIN to MAX
VCC = 3.6 V to 40 V
Output voltage change with
TA = MIN to MAX
temperature
† All typical values are at TA = 25°C.
*Not production tested.
TL5001Q,
TL5001M
MIN TYP†
MAX
TL5001AQ,
TL5001AM
MIN TYP†
MAX
0.95
1.00
1.05
0.97
1.00
1.03
0.93
0.98
1.07
0.94
0.98
1.06
2
12.5
2
12.5
2
*6
2
*6
*– 6
*– 6
UNIT
V
mV
%
undervoltage lockout
PARAMETER
TL5001Q,
TL5001M
TEST CONDITIONS
MIN
TYP†
TL5001AQ,
TL5001AM
MAX
MIN
TYP†
Upper threshold voltage
TA = MIN, 25°C
TA = MAX
3.00
3.00
2.55
2.55
Lower threshold voltage
TA = MIN, 25°C
TA = MAX
2.8
2.8
2.0
2.0
Hysteresis
TA = MIN to MAX
100
200
100
200
Reset threshold voltage
TA = MIN, 25°C
TA = MAX
2.10
2.55
2.10
2.55
0.35
0.63
0.35
0.63
UNIT
MAX
V
V
mV
V
† All typical values are at TA = 25°C.
short-circuit protection
PARAMETER
SCP threshold voltage
SCP voltage, latched
SCP voltage, UVLO standby
Equivalent timing resistance
SCP comparator 1 threshold voltage
† All typical values are at TA = 25°C.
TEST CONDITIONS
TA = MIN, 25°C
TA = MAX
TA = MIN to MAX
TA = MIN to MAX
No pullup
TL5001Q,
TL5001M
MIN TYP†
MAX
TL5001AQ,
TL5001AM
MIN TYP†
MAX
0.95
1.00
1.05
0.97
1.00
1.03
0.93
0.98
1.07
0.94
0.98
1.06
140
185
230
140
185
230
mV
60
120
60
120
mV
No pullup
TA = MIN to MAX
TA = MIN to MAX
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
V
185
185
kΩ
1.5
1.5
V
9
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084E – APRIL 1994 – REVISED OCTOBER 1999
electrical characteristics over recommended operating free-air temperature range, VCC = 6 V,
fosc = 100 kHz (unless otherwise noted) (continued)
oscillator
PARAMETER
TEST CONDITIONS
Frequency
TL5001Q,
TL5001M
MIN TYP†
MAX
TL5001AQ,
TL5001AM
MIN TYP†
MAX
UNIT
100
100
kHz
2
2
kHz
1
1
kHz
TA = MIN to MAX
TA = MIN to MAX
Rt = 100 kΩ
Standard deviation of frequency
Frequency change with voltage
TA = MIN to MAX
Frequency change with
temperature
TA = MIN to MAX
VCC = 3.6 V to 40 V
Q suffix
*– 6
3
*6
*– 6
3
*6
M suffix
*– 9
5
*9
*– 9
5
*9
Voltage at RT
TA = MIN to MAX
† All typical values are at TA = 25°C.
*Not production tested.
1
1
kHz
V
dead-time control
PARAMETER
TL5001Q, TL5001M
MIN
TYP†
MAX
TEST CONDITIONS
Output (source)
current
TA = MIN to MAX
TA = 25°C
Input threshold
voltage
TA = MIN to MAX
V(DT) = 1.5 V
0.9 × IRT‡
Duty cycle = 0%
0.5
Duty cycle = 100%
Duty cycle = 0%
1.1 × IRT
0.7
Duty cycle = 100%
0.9 × IRT‡
1.1 × IRT
0.5
1.3
0.4
TL5001AQ, TL5001AM
MIN
TYP†
MAX
1.3
0.4
1.3
µA
0.7
1.5
0.7
UNIT
1.5
0.7
1.7
1.3
V
1.7
† All typical values are at TA = 25°C.
‡ Output source current at RT
error amplifier
PARAMETER
TL5001Q,
TL5001M
TEST CONDITIONS
MIN
Input bias current
Output
Out
ut voltage
swing
Positive
Negative
Open-loop voltage
amplification
Unity-gain bandwidth
Output (sink) current
Output (source) current
TA = MIN to MAX
1.5
TA = MIN to MAX
TYP†
MAX
– 160
– 500
2.3
0.3
MIN
1.5
0.4
UNIT
TYP†
MAX
– 160
– 500
2.3
0.3
nA
V
0.4
V
TA = MIN to MAX
80
80
dB
TA = MIN to MAX
TA = MIN to MAX
1.5
1.5
MHz
µA
TA = MIN, 25°C
TA = MAX
VI(FB) = 1.2 V, COMP = 1 V
VI(FB) = 0
0.8
8 V,
V COMP = 1 V
100
600
100
600
– 45
– 70
– 45
– 70
– 30
– 45
– 30
– 45
† All typical values are at TA = 25°C.
10
TL5001AQ,
TL5001AM
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
µA
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084E – APRIL 1994 – REVISED OCTOBER 1999
electrical characteristics over recommended operating free-air temperature range, VCC = 6 V,
fosc = 100 kHz (unless otherwise noted) (continued)
output
PARAMETER
Output saturation voltage
Off state current
Off-state
TL5001Q,
TL5001M
MIN TYP†
MAX
TL5001AQ,
TL5001AM
MIN TYP†
MAX
UNIT
IO = 10 mA
VO = 50 V, VCC = 0
VO = 50 V
1.5
1.5
V
VO = 6 V
40
TEST CONDITIONS
TA = MIN to MAX
TA = MIN to MAX
Short-circuit output current
TA = MIN to MAX
† All typical values are at TA = 25°C.
2
2
10
10
10
10
40
µA
mA
total device
PARAMETER
TL5001Q,
TL5001M
TEST CONDITIONS
MIN
Standby supply current
Off state
Average supply current
† All typical values are at TA = 25°C.
TA = MIN to MAX
TA = MIN to MAX
TYP†
MAX
1
1.4
Rt = 100 kΩ
POST OFFICE BOX 655303
TL5001AQ,
TL5001AM
• DALLAS, TEXAS 75265
UNIT
TYP†
MAX
1.5
1
1.5
mA
2.1
1.4
2.1
mA
MIN
11
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084E – APRIL 1994 – REVISED OCTOBER 1999
PARAMETER MEASUREMENT INFORMATION
2.3 V
COMP
1.5 V
DTC
OSC
PWM/DTC
Comparator
OUT
SCP
Comparator 1
1V
SCP
SCP Timing Period
SCP
Comparator 2
VCC
0V
3V
NOTE A: The waveforms show timing characteristics for an intermittent short circuit and a longer short circuit that is sufficient to activate SCP.
Figure 4. PWM Timing Diagram
12
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084E – APRIL 1994 – REVISED OCTOBER 1999
TYPICAL CHARACTERISTICS
OSCILLATION FREQUENCY
vs
AMBIENT TEMPERATURE
OSCILLATOR FREQUENCY
vs
TIMING RESISTANCE
100
VCC = 6 V
DT Resistance = Rt
TA = 25°C
fosc – Oscillation Frequency – kHz
fosc – Oscillator Frequency – Hz
1M
100 k
10 k
10 k
100 k
VCC = 6 V
Rt = 100 kΩ
DT Resistance = 100 kΩ
98
96
94
92
90
88
– 50
1M
– 25
REFERENCE OUTPUT VOLTAGE
vs
POWER-SUPPLY VOLTAGE
∆V ref – Reference Output Voltage Fluctuation – %
V ref – Reference Output Voltage – V
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
0
1
2
3
4
5
50
75
100
REFERENCE OUTPUT VOLTAGE FLUCTUATION
vs
AMBIENT TEMPERATURE
TA = 25°C
FB and COMP
Connected Together
1.8
25
Figure 6
Figure 5
2
0
TA – Ambient Temperature – °C
Rt – Timing Resistance – Ω
6
7
8
9
10
VCC – Power-Supply Voltage – V
0.6
0.4
0.2
0
– 0.2
– 0.4
– 0.6
ÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏ
– 0.8
– 50
VCC = 6 V
FB and COMP
Connected Together
– 25
0
25
50
75
TA – Ambient Temperature – °C
100
Figure 8
Figure 7
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084E – APRIL 1994 – REVISED OCTOBER 1999
TYPICAL CHARACTERISTICS
AVERAGE SUPPLY CURRENT
vs
POWER-SUPPLY VOLTAGE
AVERAGE SUPPLY CURRENT
vs
AMBIENT TEMPERATURE
2
1.3
I CC – Average Supply Current – mA
I CC – Average Supply Current – mA
Rt = 100 kΩ
TA = 25 °C
1.5
1
0.5
0
0
10
20
30
VCC = 6 V
Rt = 100 kΩ
DT Resistance = 100 kΩ
1.2
1.1
1
0.9
0.8
0
– 50
40
– 25
Figure 9
50
75
100
ERROR AMPLIFIER OUTPUT VOLTAGE
vs
OUTPUT (SINK) CURRENT
3
1.8
VCC = 6 V
TA = 25 °C
VO – Error Amplifier Output Voltage – V
PWM Triangle Wave Amplitude Voltage – V
25
Figure 10
PWM TRIANGLE WAVE AMPLITUDE VOLTAGE
vs
OSCILLATOR FREQUENCY
1.5
1.2
Voscmax (100% duty cycle)
0.9
Voscmin (zero duty cycle)
0.6
0.3
0
10 k
VCC = 6 V
VI(FB) = 1.2 V
TA = 25 °C
2.5
2
1.5
1
0.5
0
100 k
1M
fosc – Oscillator Frequency – Hz
10 M
0
0.2
Figure 12
POST OFFICE BOX 655303
0.4
IO – Output (Sink) Current – mA
Figure 11
14
0
TA – Ambient Temperature – °C
VCC – Power-Supply Voltage – V
• DALLAS, TEXAS 75265
0.6
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084E – APRIL 1994 – REVISED OCTOBER 1999
TYPICAL CHARACTERISTICS
ERROR AMPLIFIER OUTPUT VOLTAGE
vs
AMBIENT TEMPERATURE
ERROR AMPLIFIER OUTPUT VOLTAGE
vs
OUTPUT (SOURCE) CURRENT
2.46
VCC = 6 V
VI(FB) = 0.8 V
TA = 25 °C
2.5
VO – Error Amplifier Output Voltage – V
VO – Error Amplifier Output Voltage – V
3
2
1.5
1
0.5
60
80
100
20
40
IO – Output (Source) Current – µA
2.44
2.43
2.42
2.41
2.40
– 50
0
0
2.45
VCC = 6 V
VI(FB) = 0.8 V
No Load
120
25
50
75
– 25
0
TA – Ambient Temperature – °C
Figure 14
Figure 13
ERROR AMPLIFIER CLOSED-LOOP GAIN AND
PHASE SHIFT
vs
OSCILLATOR FREQUENCY
ERROR AMPLIFIER OUTPUT VOLTAGE
vs
AMBIENT TEMPERATURE
40
VCC = 6 V
VI(FB) = 1.2 V
No Load
AV – Error Amplifier Closed-Loop Gain – dB
VO – Error Amplifier Output Voltage – mV
240
220
100
200
180
160
140
120
– 50
– 25
0
25
50
75
TA – Ambient Temperature – °C
100
VCC = 6 V
TA = 25 °C
– 180°
30
– 210°
20
– 240°
AV
– 270°
10
0
φ
– 300°
– 330°
– 10
– 20
10 k
100 k
1M
– 360°
10 M
fosc – Oscillator Frequency – Hz
Figure 15
Figure 16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084E – APRIL 1994 – REVISED OCTOBER 1999
TYPICAL CHARACTERISTICS
OUTPUT DUTY CYCLE
vs
DTC VOLTAGE
SCP TIME-OUT PERIOD
vs
SCP CAPACITANCE
12
120
Output Duty Cycle – %
100
t SCP – SCP Time-Out Period – ms
VCC = 6 V
Rt = 100 kΩ
TA = 25 °C
80
60
40
20
VCC = 6 V
Rt = 100 kΩ
DT Resistance = 200 kΩ
TA = 25 °C
10
8
6
4
2
0
0
0
0.5
1.5
1
DTC Voltage – V
2
0
20
40
100
120
OUTPUT SATURATION VOLTAGE
vs
OUTPUT (SINK) CURRENT
DTC OUTPUT CURRENT
vs
RT OUTPUT CURRENT
2
– 60
VCC = 6 V
TA = 25 °C
DT Voltage = 1.3 V
TA = 25 °C
– 50
VCE – Output Saturation Voltage – V
IO(DT) – DTC Output Current – µ A
80
Figure 18
Figure 17
– 40
– 30
– 20
– 10
0
1.5
1
0.5
0
0
– 10
– 20
– 30
– 40
– 50
– 60
0
IO – RT Output Current – µA
Figure 19
16
60
CSCP – SCP Capacitance – nF
5
10
15
IO – Output (Sink) Current – mA
Figure 20
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
20
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084E – APRIL 1994 – REVISED OCTOBER 1999
APPLICATION INFORMATION
VI
5V
C1
100 µF
10 V
R1
470 Ω
+
Q1
TPS1101
GND
L1
20 µH
3.3 V
C3
0.1 µF
CR1
MBRS140T3
C2
100 µF
10 V
2
C4
1 µF
+
VCC
5
SCP
VO
C5
0.1 µF
R2
56 kΩ
R3
43 kΩ
COMP
1
7
GND
3
U1
TL5001/A
6
C6
0.012 µF
DTC
R5
7.50 kΩ
1%
FB
R7
2.0 kΩ
C7
0.0047 µF
R4
5.1 kΩ
4
RT
R6
3.24 kΩ
1%
GND
8
Partial Bill of Materials:
U1
TL5001/A
Q1
TPS1101
LI
CTX20-1 or
23 turns of #28 wire on
Micrometals No. T50-26B core
C1
TPSD107M010R0100
C2
TPSD107M010R0100
CR1
MBRS140T3
NOTES: A.
B.
C.
D.
+
Texas Instruments
Texas Instruments
Coiltronics
AVX
AVX
Motorola
Frequency = 200 kHz
Duty cycle = 90% max
Soft-start time constant (TC) = 5.6 ms
SCP TC = 70 msA
Figure 21. Step-Down Converter
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084E – APRIL 1994 – REVISED OCTOBER 1999
MECHANICAL DATA
D (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
0.050 (1,27)
0.020 (0,51)
0.014 (0,35)
14
0.010 (0,25) M
8
0.008 (0,20) NOM
0.244 (6,20)
0.228 (5,80)
0.157 (4,00)
0.150 (3,81)
Gage Plane
0.010 (0,25)
1
7
0°– 8°
A
0.044 (1,12)
0.016 (0,40)
Seating Plane
0.069 (1,75) MAX
0.010 (0,25)
0.004 (0,10)
PINS **
0.004 (0,10)
8
14
16
A MAX
0.197
(5,00)
0.344
(8,75)
0.394
(10,00)
A MIN
0.189
(4,80)
0.337
(8,55)
0.386
(9,80)
DIM
4040047 / D 10/96
NOTES: B.
C.
D.
E.
18
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
Falls within JEDEC MS-012
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084E – APRIL 1994 – REVISED OCTOBER 1999
MECHANICAL DATA
FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER
28 TERMINALS SHOWN
18
17
16
15
14
13
NO. OF
TERMINALS
**
12
19
11
20
10
A
B
MIN
MAX
MIN
MAX
20
0.342
(8,69)
0.358
(9,09)
0.307
(7,80)
0.358
(9,09)
28
0.442
(11,23)
0.458
(11,63)
0.406
(10,31)
0.458
(11,63)
21
9
22
8
44
0.640
(16,26)
0.660
(16,76)
0.495
(12,58)
0.560
(14,22)
23
7
52
0.740
(18,78)
0.761
(19,32)
0.495
(12,58)
0.560
(14,22)
24
6
68
25
5
0.938
(23,83)
0.962
(24,43)
0.850
(21,6)
0.858
(21,8)
84
1.141
(28,99)
1.165
(29,59)
1.047
(26,6)
1.063
(27,0)
B SQ
A SQ
26
27
28
1
2
3
4
0.080 (2,03)
0.064 (1,63)
0.020 (0,51)
0.010 (0,25)
0.020 (0,51)
0.010 (0,25)
0.055 (1,40)
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.045 (1,14)
0.035 (0,89)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
4040140 / C 11/95
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a metal lid.
The terminals are gold-plated.
Falls within JEDEC MS-004
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUARY 1997
MECHANICAL DATA
JG (R-GDIP-T8)
CERAMIC DUAL-IN-LINE
0.400 (10,16)
0.355 (9,00)
8
5
0.280 (7,11)
0.245 (6,22)
1
0.063 (1,60)
0.015 (0,38)
4
0.065 (1,65)
0.045 (1,14)
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.130 (3,30) MIN
0.023 (0,58)
0.015 (0,38)
0°–15°
0.100 (2,54)
0.014 (0,36)
0.008 (0,20)
4040107/C 08/96
NOTES: A.
B.
C.
D.
E.
20
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification.
Falls within MIL STD 1835 GDIP1-T8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUARY 1997
MECHANICAL INFORMATION
P (R-PDIP-T8)
PLASTIC DUAL-IN-LINE PACKAGE
0.400 (10,60)
0.355 (9,02)
8
5
0.260 (6,60)
0.240 (6,10)
1
4
0.070 (1,78) MAX
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
0°– 15°
0.010 (0,25) M
0.010 (0,25) NOM
4040082 / B 03/95
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUARY 1997
22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1999, Texas Instruments Incorporated