MC14027B Dual J-K Flip-Flop The MC14027B dual J−K flip−flop has independent J, K, Clock (C), Set (S) and Reset (R) inputs for each flip−flop. These devices may be used in control, register, or toggle functions. Features • • • • • • • • • Diode Protection on All Inputs Supply Voltage Range = 3.0 Vdc to 18 Vdc Logic Swing Independent of Fanout Logic Edge−Clocked Flip−Flop Design Logic State is Retained Indefinitely with Clock Level Either High or Low; Information is Transferred to the Output Only on the Positive−Going Edge of the Clock Pulse Capable of Driving Two Low−Power TTL Loads or One Low−Power Schottky TTL Load Over the Rated Temperature Range Pin−for−Pin Replacement for CD4027B NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable This Device is Pb−Free and is RoHS Compliant MAXIMUM RATINGS (Voltages Referenced to VSS) Symbol Value Unit −0.5 to +18.0 V −0.5 to VDD + 0.5 V Input or Output Current (DC or Transient) per Pin ± 10 mA PD Power Dissipation, per Package (Note 1) 500 mW TA Ambient Temperature Range −55 to +125 °C Tstg Storage Temperature Range −65 to +150 °C TL Lead Temperature (8−Second Soldering) 260 °C VDD Vin, Vout Iin, Iout Parameter DC Supply Voltage Range Input or Output Voltage Range (DC or Transient) PIN ASSIGNMENT QA 1 16 VDD QA 2 15 QB CA 3 14 QB RA 4 13 CB KA 5 12 RB JA 6 11 KB SA 7 10 JB VSS 8 9 SB 16 This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high−impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS ≤ (Vin or Vout) ≤ VDD. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open. August, 2014 − Rev. 8 SOIC−16 D SUFFIX CASE 751B MARKING DIAGRAM Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Temperature Derating: “D/DW” Packages: –7.0 mW/_C From 65_C To 125_C © Semiconductor Components Industries, LLC, 2014 http://onsemi.com 1 14027BG AWLYWW 1 A WL YY, Y WW G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Indicator ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. Publication Order Number: MC14027B/D MC14027B TRUTH TABLE Inputs C† Outputs* J K S R Qn‡ Qn+1 Qn+1 1 X 0 0 0 1 0 X 0 0 0 1 1 0 0 X 0 0 0 0 1 X 1 0 0 1 0 1 1 1 0 0 Qo Qo Qo X X 0 0 X Qn Qn X X X 1 0 X 1 0 X X X 0 1 X 0 1 X X X 1 1 X 1 1 No Change ‡ X = Don’t Care † = Level Change = Present State * = Next State BLOCK DIAGRAM 7 6 J 3 C 5 K S R Q 1 Q 2 Q 15 Q 14 4 9 10 J 13 C 11 K S R 12 VDD = PIN 16 VSS = PIN 8 ORDERING INFORMATION Package Shipping† MC14027BDG SOIC−16 (Pb−Free) 48 Units / Rail NLV14027BDG* SOIC−16 (Pb−Free) 48 Units / Rail MC14027BDR2G SOIC−16 (Pb−Free) 2500 Units / Tape & Reel NLV14027BDR2G* SOIC−16 (Pb−Free) 2500 Units / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable. http://onsemi.com 2 MC14027B ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS) −55_C 25_C VDD Vdc Min Max Min Typ (Note 2) 125_C Max Min Max Unit Output Voltage Vin = VDD or 0 “0” Level VOL 5.0 10 15 − − − 0.05 0.05 0.05 − − − 0 0 0 0.05 0.05 0.05 − − − 0.05 0.05 0.05 Vdc Vin = 0 or VDD “1” Level VOH 5.0 10 15 4.95 9.95 14.95 − − − 4.95 9.95 14.95 5.0 10 15 − − − 4.95 9.95 14.95 − − − Vdc Input Voltage (VO = 4.5 or 0.5 Vdc) (VO = 9.0 or 1.0 Vdc) (VO = 13.5 or 1.5 Vdc) “0” Level VIL 5.0 10 15 − − − 1.5 3.0 4.0 − − − 2.25 4.50 6.75 1.5 3.0 4.0 − − − 1.5 3.0 4.0 (VO = 0.5 or 4.5 Vdc) (VO = 1.0 or 9.0 Vdc) (VO = 1.5 or 13.5 Vdc) “1” Level 5.0 10 15 3.5 7.0 11 − − − 3.5 7.0 11 2.75 5.50 8.25 − − − 3.5 7.0 11 − − − 5.0 5.0 10 15 –3.0 –0.64 –1.6 –4.2 − − − − –2.4 –0.51 −1.3 −3.4 –4.2 –0.88 –2.25 −8.8 − − − − –1.7 −0.36 –0.9 −2.4 − − − − IOL 5.0 10 15 0.64 1.6 4.2 − − − 0.51 1.3 3.4 0.88 2.25 8.8 − − − 0.36 0.9 2.4 − − − mAdc Input Current Iin 15 − ±0.1 − ± 0.00001 ±0.1 − ±1.0 mAdc Input Capacitance (Vin = 0) Cin − − − − 5.0 7.5 − − pF Quiescent Current (Per Package) IDD 5.0 10 15 − − − 1.0 2.0 4.0 − − − 0.002 0.004 0.006 1.0 2.0 4.0 − − − 30 60 120 mAdc IT 5.0 10 15 Characteristic Output Drive Current (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc) (VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc) Symbol VIH Vdc IOH Source Sink Total Supply Current (Notes 3 & 4) (Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching) Vdc mAdc IT = (0.8 mA/kHz) f + IDD IT = (1.6 mA/kHz) f + IDD IT = (2.4 mA/kHz) f + IDD mAdc Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance. 3. The formulas given are for the typical characteristics only at 25_C. 4. To calculate total supply current at loads other than 50 pF: IT(CL) = IT(50 pF) + (CL − 50) Vfk where: IT is in mA (per package), CL in pF, V = (VDD − VSS) in volts, f in kHz is input frequency, and k = 0.002. http://onsemi.com 3 MC14027B SWITCHING CHARACTERISTICS (Note 5) (CL = 50 pF, TA = 25_C) Characteristic Symbol Output Rise and Fall Time tTLH, tTHL = (1.5 ns/pF) CL + 25 ns tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns tTLH, tTHL = (0.55 ns/pF) CL + 12.5 ns tTLH, tTHL Propagation Delay Times** Clock to Q, Q tPLH, tPHL = (1.7 ns/pF) CL + 90 ns tPLH, tPHL = (0.66 ns/pF) CL + 42 ns tPLH, tPHL = (0.5 ns/pF) CL + 25 ns tPLH, tPHL VDD Min Typ (Note 6) Max 5.0 10 15 − − − 100 50 40 200 100 80 Unit ns ns 5.0 10 15 − − − 175 75 50 350 150 100 Set to Q, Q tPLH, tPHL = (1.7 ns/pF) CL + 90 ns tPLH, tPHL = (0.66 ns/pF) CL + 42 ns tPLH, tPHL = (0.5 ns/pF) CL + 25 ns 5.0 10 15 − − − 175 75 50 350 150 100 Reset to Q, Q tPLH, tPHL = (1.7 ns/pF) CL + 265 ns tPLH, tPHL = (0.66 ns/pF) CL + 67 ns tPLH, tPHL = (0.5 ns/pF) CL + 50 ns 5.0 10 15 − − − 350 100 75 450 200 150 Setup Times tsu 5.0 10 15 140 50 35 70 25 17 − − − ns Hold Times th 5.0 10 15 140 50 35 70 25 17 − − − ns tWH, tWL 5.0 10 15 330 110 75 165 55 38 − − − ns fcl 5.0 10 15 − − − 3.0 9.0 13 1.5 4.5 6.5 MHz tTLH, tTHL 5.0 10 15 − − − − − − 15 5.0 4.0 ms Set 5 10 15 90 45 35 10 5 3 − − − Reset 5 10 15 50 25 20 – 30 – 15 – 10 − − − 5.0 10 15 250 100 70 125 50 35 − − − Clock Pulse Width Clock Pulse Frequency Clock Pulse Rise and Fall Time Removal Times Set and Reset Pulse Width trem tWH ns 5. The formulas given are for the typical characteristics only at 25_C. 6. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance. http://onsemi.com 4 ns MC14027B 20 ns 20 ns VDD 90% 50% 10% J 20 ns K 90% 50% 10% tsu tsu 20 ns th 90% 50% 10% C VSS 20 ns VDD VSS 20 ns VDD VSS 20 ns 90% SET OR RESET tw tWL tWH 1 fcl tPLH tPHL VOH 90% 50% 10% Q CLOCK VDD 50% 10% 20 ns 90% 50% Q or Q 20 ns 10% tw tPLH tPHL Inputs R and S low. For the measurement of tWH, I/fcl, and PD the Inputs J and K are kept high. VSS trem VOL tTHL tTLH 20 ns VSS VOH 50% VOL Figure 1. Dynamic Signal Waveforms (J, K, Clock, and Output) Figure 2. Dynamic Signal Waveforms (Set, Reset, Clock, and Output) LOGIC DIAGRAM (1/2 of Device Shown) S Q C J C C C K C C C C R Q C C VDD C http://onsemi.com 5 MC14027B PACKAGE DIMENSIONS SOIC−16 D SUFFIX PLASTIC SOIC PACKAGE CASE 751B−05 ISSUE K −A− 16 9 1 8 −B− P NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 8 PL 0.25 (0.010) M B S DIM A B C D F G J K M P R G R K F X 45 _ C −T− SEATING PLANE J M D MILLIMETERS MIN MAX 9.80 10.00 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.386 0.393 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.229 0.244 0.010 0.019 16 PL 0.25 (0.010) M T B S A S SOLDERING FOOTPRINT* 8X 6.40 16X 1 1.12 16 16X 0.58 1.27 PITCH 8 9 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 6 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC14027B/D