ESD7951S D

ESD7951S
Transient Voltage
Suppressors
ESD Protection Diodes with Ultra−Low
Capacitance
http://onsemi.com
The ESD7951 is designed to protect voltage sensitive components that
require ultra−low capacitance from ESD and transient voltage events.
Excellent clamping capability, low capacitance, low leakage, and fast
response time, make these parts ideal for ESD protection on designs
where board space is at a premium. Because of its low capacitance, it is
suited for use in high frequency designs such as USB 2.0 high speed and
antenna line applications.
1
2
PIN 1.
2.
CATHODE
ANODE
Specification Features:
• Ultra Low Capacitance 0.5 pF
• Low Clamping Voltage
• Small Body Outline Dimensions:
•
•
•
•
•
•
•
2
1
SOD−923
CASE 514AB
0.039″ x 0.024″ (1.00 mm x 0.60 mm)
Low Body Height: 0.016″ (0.4 mm)
Stand−off Voltage: 5 V
Low Leakage
Response Time is Typically < 1.0 ns
IEC61000−4−2 Level 4 ESD Protection
SZ Prefix for Automotive and Other Applications Requiring Unique
Site and Control Change Requirements; AEC−Q101 Qualified and
PPAP Capable
This is a Pb−Free Device
MARKING DIAGRAM
AA
M
Mechanical Characteristics:
CASE: Void-free, transfer-molded, thermosetting plastic
QUALIFIED MAX REFLOW TEMPERATURE: 260°C
Device Meets MSL 1 Requirements
MAXIMUM RATINGS
IEC 61000−4−2 (ESD)
Symbol
Contact
Air
2
= Specific Device Code
= Date Code
ORDERING INFORMATION
Epoxy Meets UL 94 V−0
LEAD FINISH: 100% Matte Sn (Tin)
MOUNTING POSITION: Any
Rating
AA M
1
Value
Unit
±8
±15
kV
Total Power Dissipation on FR−5 Board
(Note 1) @ TA = 25°C
°PD°
150
mW
Storage Temperature Range
Tstg
−55 to +150
°C
Junction Temperature Range
TJ
−55 to +125
°C
Lead Solder Temperature − Maximum
(10 Second Duration)
TL
260
°C
Device
Package
Shipping†
ESD7951ST5G,
SZESD7951ST5G
SOD−923
(Pb−Free)
8000 / Tape &
Reel
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
Stresses exceeding those listed in the Maximum Ratings table may damage the
device. If any of these limits are exceeded, device functionality should not be
assumed, damage may occur and reliability may be affected.
1. FR−5 = 1.0 x 0.75 x 0.62 in.
See Application Note AND8308/D for further description of survivability specs.
© Semiconductor Components Industries, LLC, 2014
September, 2014 − Rev. 4
1
Publication Order Number:
ESD7951S/D
ESD7951S
ELECTRICAL CHARACTERISTICS
(TA = 25°C unless otherwise noted)
Symbol
Parameter
IPP
Maximum Reverse Peak Pulse Current
VC
Clamping Voltage @ IPP
VRWM
IR
Working Peak Reverse Voltage
IT
VC VBR VRWM IR
Maximum Reverse Leakage Current @ VRWM
VBR
Breakdown Voltage @ IT
IT
Test Current
IF
Forward Current
VF
Forward Voltage @ IF
Ppk
Peak Power Dissipation
C
I
IPP
IR VRWM VBR VC
IT
V
IPP
Bi−Directional TVS
Capacitance @ VR = 0 and f = 1.0 MHz
*See Application Note AND8308/D for detailed explanations of
datasheet parameters.
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
VRWM
(V)
IR (mA)
@ VRWM
VBR (V) @ IT
(Note 2)
IT
C (pF)
VC (V)
@ IPP = 1 A
(Note 3)
VC
Per IEC61000−4−2
(Note 4)
Device*
Device
Marking
Max
Max
Min
mA
Typ
Max
Max
ESD7951ST5G
AA
5.0
1.0
5.4
1.0
0.5
0.9
12.9
Figures 1 and 2
See Below
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
*Includes SZ−prefix devices where applicable.
2. VBR is measured with a pulse test current IT at an ambient temperature of 25°C.
3. Surge current waveform per Figure 5.
4. For test procedure see Figures 3 and 4 and Application Note AND8307/D.
Figure 1. ESD Clamping Voltage Screenshot
Positive 8 kV Contact per IEC61000−4−2
Figure 2. ESD Clamping Voltage Screenshot
Negative 8 kV Contact per IEC61000−4−2
http://onsemi.com
2
ESD7951S
IEC61000−4−2 Waveform
IEC 61000−4−2 Spec.
Ipeak
Level
Test Voltage (kV)
First Peak
Current
(A)
Current at
30 ns (A)
Current at
60 ns (A)
1
2
7.5
4
2
2
4
15
8
4
3
6
22.5
12
6
4
8
30
16
8
100%
90%
I @ 30 ns
I @ 60 ns
10%
tP = 0.7 ns to 1 ns
Figure 3. IEC61000−4−2 Spec
ESD Gun
Oscilloscope
TVS
50 W
Cable
50 W
Figure 4. Diagram of ESD Test Setup
The following is taken from Application Note
AND8308/D − Interpretation of Datasheet Parameters
for ESD Devices.
systems such as cell phones or laptop computers it is not
clearly defined in the spec how to specify a clamping voltage
at the device level. ON Semiconductor has developed a way
to examine the entire voltage waveform across the ESD
protection diode over the time domain of an ESD pulse in the
form of an oscilloscope screenshot, which can be found on
the datasheets for all ESD protection diodes. For more
information on how ON Semiconductor creates these
screenshots and how to interpret them please refer to
AND8307/D.
ESD Voltage Clamping
For sensitive circuit elements it is important to limit the
voltage that an IC will be exposed to during an ESD event
to as low a voltage as possible. The ESD clamping voltage
is the voltage drop across the ESD protection diode during
an ESD event per the IEC61000−4−2 waveform. Since the
IEC61000−4−2 was written as a pass/fail spec for larger
% OF PEAK PULSE CURRENT
100
PEAK VALUE IRSM @ 8 ms
tr
90
PULSE WIDTH (tP) IS DEFINED
AS THAT POINT WHERE THE
PEAK CURRENT DECAY = 8 ms
80
70
60
HALF VALUE IRSM/2 @ 20 ms
50
40
30
tP
20
10
0
0
20
40
t, TIME (ms)
60
Figure 5. 8 X 20 ms Pulse Waveform
http://onsemi.com
3
80
ESD7951S
PACKAGE DIMENSIONS
SOD−923
CASE 514AB
ISSUE C
−X−
D
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD
FINISH. MINIMUM LEAD THICKNESS IS THE
MINIMUM THICKNESS OF BASE MATERIAL.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
FLASH, PROTRUSIONS, OR GATE BURRS.
−Y−
E
1
2X b
0.08 X Y
2
TOP VIEW
DIM
A
b
c
D
E
HE
L
L2
A
c
HE
MILLIMETERS
MIN
NOM MAX
0.34
0.37
0.40
0.15
0.20
0.25
0.07
0.12
0.17
0.75
0.80
0.85
0.55
0.60
0.65
0.95
1.00
1.05
0.19 REF
0.05
0.10
0.15
INCHES
MIN
NOM MAX
0.013 0.015 0.016
0.006 0.008 0.010
0.003 0.005 0.007
0.030 0.031 0.033
0.022 0.024 0.026
0.037 0.039 0.041
0.007 REF
0.002 0.004 0.006
SIDE VIEW
SOLDERING FOOTPRINT*
2X
L
1.20
2X
2X
0.36
2X
L2
PACKAGE
OUTLINE
BOTTOM VIEW
0.25
DIMENSIONS: MILLIMETERS
See Application Note AND8455/D for more mounting details
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
4
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
ESD7951S/D