NCP5111 D

NCP5111
High Voltage, High and Low
Side Driver
The NCP5111 is a high voltage power gate driver providing two
outputs for direct drive of 2 N−channel power MOSFETs or IGBTs
arranged in a half−bridge configuration.
It uses the bootstrap technique to ensure a proper drive of the
high−side power switch.
www.onsemi.com
MARKING
DIAGRAMS
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
High Voltage Range: up to 600 V
dV/dt Immunity ±50 V/nsec
Gate Drive Supply Range from 10 V to 20 V
High and Low Drive Outputs
Output Source / Sink Current Capability 250 mA / 500 mA
3.3 V and 5 V Input Logic Compatible
Up to VCC Swing on Input Pins
Extended Allowable Negative Bridge Pin Voltage Swing to −10 V
for Signal Propagation
Matched Propagation Delays between Both Channels
One Input with Internal Fixed Dead Time (650 ns)
Under VCC LockOut (UVLO) for Both Channels
Pin−to−Pin Compatible with Industry Standards
These are Pb−Free Devices
Typical Applications
• Half−bridge Power Converters
8
1
SOIC−8
D SUFFIX
CASE 751
P5111
ALYW
G
1
NCP5111
AWL
YYWWG
PDIP−8
P SUFFIX
CASE 626
NCP5111 = Specific Device Code
A
= Assembly Location
L or WL
= Wafer Lot
Y or YY
= Year
W or WW = Work Week
G or G
= Pb−Free Package
(Note: Microdot may be in either location)
PINOUT INFORMATION
VCC
IN
GND
DRV_LO
1
2
3
4
8
7
6
5
VBOOT
DRV_HI
BRIDGE
NC
ORDERING INFORMATION
Device
Package
Shipping†
NCP5111PG
PDIP−8
(Pb−Free)
50 Units / Rail
NCP5111DR2G
SOIC−8 2500 / Tape & Reel
(Pb−Free)
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specification
Brochure, BRD8011/D.
© Semiconductor Components Industries, LLC, 2016
February, 2016 − Rev. 6
1
Publication Order Number:
NCP5111/D
NCP5111
Vbulk
+
C1
D4
GND
Q1
Vcc
C3
GND
NCP1395
U1
NCP5111
1
8
VBOOT
Vcc
2
7
IN
DRV_HI
3
6
Bridge
GND
4
5
DRV_LO NC
T1
D1
L1
Out+
+
C4
C3
Lf
Out−
D2
Q2
C6
GND
GND
GND
R1
D3
GND
U2
Figure 1. Typical Application Resonant Converter (LLC type)
Vbulk
+
C1
C5
D4
GND
Q1
Vcc
C3
GND
SG3526
MC34025
TL594
NCP1561
U1
NCP5111
1
8
Vcc
VBOOT
2
7
IN
DRV_HI
3
6
Bridge
GND
4
5
DRV_LO
NC
T1
D1
L1
C4
Out+
+
C3
Out−
D2
C6
GND
GND
Q2
GND
R1
D3
GND
U2
Figure 2. Typical Application Half Bridge Converter
VCC
VCC
VBOOT
UV
DETECT
PULSE
TRIGGER
IN
LEVEL
SHIFTER
GND
DEAD TIME
GENERATION
GND
S Q
R Q
UV
DETECT
DRV_HI
BRIDGE
VCC
DRV_LO
DELAY
GND
GND
Figure 3. Detailed Block Diagram
www.onsemi.com
2
NCP5111
PIN DESCRIPTIONS
Pin No.
Pin Name
Pin Function
1
VCC
2
IN
3
GND
4
DRV_LO
5
NC
6
BRIDGE
Bootstrap return or high side floating supply return
7
DRV_HI
High side gate drive output
8
VBOOT
Bootstrap power supply
Low side and main power supply
Logic Input
Ground
Low side gate drive output
Not Connected
MAXIMUM RATINGS
Rating
VCC
VCC_transient
Symbol
Main power supply voltage
Main transient power supply voltage:
IVCC_max = 5 mA during 10 ms
VBRIDGE
VHV: High Voltage BRIDGE pin
VBRIDGE
Allowable Negative Bridge Pin Voltage for IN_LO Signal Propagation to DRV_LO
Value
Unit
−0.3 to 20
V
23
V
−1 to 600
V
−10
V
VBOOT−VBRIDGE
VHV: Floating supply voltage
−0.3 to 20
V
VDRV_HI
VHV: High side output voltage
VBRIDGE − 0.3 to
VBOOT + 0.3
V
VDRV_LO
Low side output voltage
−0.3 to VCC + 0.3
V
50
V/ns
−1.0 to VCC + 0.3
V
2
kV
200
V
dVBRIDGE/dt
VIN
Allowable output slew rate
Inputs IN
ESD Capability:
− HBM model (all pins except pins 6−7−8)
− Machine model (all pins except pins 6−7−8)
Latchup capability per JEDEC JESD78
RqJA
TSTG
TJ_max
°C/W
Power dissipation and Thermal characteristics
PDIP−8: Thermal Resistance, Junction−to−Air
SO−8: Thermal Resistance, Junction−to−Air
100
178
Storage Temperature Range
Maximum Operating Junction Temperature
−55 to +150
°C
+150
°C
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
www.onsemi.com
3
NCP5111
ELECTRICAL CHARACTERISTIC (VCC = Vboot = 15 V, VGND = Vbridge, −40°C < TJ < 125°C, Outputs loaded with 1 nF)
TJ −40°C to 125°C
Symbol
Min
Typ
Max
Units
Output high short circuit pulsed current VDRV = 0 V, PW v 10 ms (Note 1)
IDRVsource
−
250
−
mA
Output low short circuit pulsed current VDRV = Vcc, PW v 10 ms (Note 1)
IDRVsink
−
500
−
mA
Output resistor (Typical value @ 25°C) Source
ROH
−
30
60
W
Output resistor (Typical value @ 25°C) Sink
ROL
−
10
20
W
High level output voltage, VBIAS−VDRV_XX @ IDRV_XX = 20 mA
VDRV_H
−
0.7
1.6
V
Low level output voltage VDRV_XX @ IDRV_XX = 20 mA
VDRV_L
−
0.2
0.6
V
Turn−on propagation delay (Vbridge = 0 V) (Note 2)
tON
−
750
1170
ns
Turn−off propagation delay (Vbridge = 0 V or 50 V) (Notes 2 and 3)
tOFF
−
100
170
ns
Output voltage rise time (from 10% to 90% @ Vcc = 15 V) with 1 nF load
tr
−
85
160
ns
Output voltage fall time (from 90% to 10% @VCC = 15 V) with 1 nF load
tf
−
35
75
ns
Propagation delay matching between the High side and the Low side
@ 25°C (Note 4)
Dt
−
30
60
ns
Internal fixed dead time (Note 5)
DT
400
650
1000
ns
Low level input voltage threshold
VIN
−
−
0.8
V
Input pull−down resistor (VIN < 0.5 V)
RIN
−
200
−
kW
High level input voltage threshold
VIN
2.3
−
−
V
Logic “1” input bias current @ VIN = 5 V @ 25°C
IIN+
−
5
25
mA
Logic “0” input bias current @ VIN = 0 V @ 25°C
IIN−
−
−
2.0
mA
Vcc_stup
8.0
8.9
9.9
V
Vcc_shtdwn
7.3
8.2
9.1
V
Vcc_hyst
0.3
0.7
−
V
Vboot_stup
8.0
8.9
9.9
V
Vboot UV Shut−down voltage threshold
Vboot_shtdwn
7.3
8.2
9.1
V
Hysteresis on Vboot
Vboot_shtdwn
0.3
0.7
−
V
IHV_LEAK
−
5
40
mA
Consumption in active mode (Vcc = Vboot, fsw = 100 kHz and 1 nF load on
both driver outputs)
ICC1
−
4
5
mA
Consumption in inhibition mode (Vcc = Vboot)
ICC2
−
250
400
mA
Vcc current consumption in inhibition mode
ICC3
−
200
−
mA
Vboot current consumption in inhibition mode
ICC4
−
50
−
mA
Rating
OUTPUT SECTION
DYNAMIC OUTPUT SECTION
INPUT SECTION
SUPPLY SECTION
Vcc UV Start−up voltage threshold
Vcc UV Shut−down voltage threshold
Hysteresis on Vcc
Vboot Start−up voltage threshold reference to bridge pin
(Vboot_stup = Vboot − Vbridge)
Leakage current on high voltage pins to GND
(VBOOT = VBRIDGE = DRV_HI = 600 V)
1. Parameter guaranteed by design.
2. TON = TOFF + DT.
3. Turn−off propagation delay @ Vbridge = 600 V is guaranteed by design.
4. See characterization curve for Dt parameters variation on the full range temperature.
5. Timing diagram definition see: Figure 5 and Figure 6.
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
www.onsemi.com
4
NCP5111
IN
DRV_HI
DRV_LO
Note: DRV_HI output is in phase with the input.
Figure 4. Input/Output Timing Diagram
IN
50%
50%
ton
tr
toff
90%
tf
90%
Dead Time
DRV_HI
10%
10%
toff
tf
Dead Time
tr
DRV_LO
90%
ton
90%
10%
ton = toff + DT
10%
Figure 5. Timing Definitions
IN
50%
50%
toff_HI
90%
Dead Time 1
DRV_HI
10%
toff_LO
Dead Time 2
DRV_LO
90%
Matching Delay 1 = toff_HI − toff_LO
Matching Delay 2 = (toff_LO + DT1) − (toff_HI + DT2)
Figure 6. Matching Propagation Delay
www.onsemi.com
5
10%
NCP5111
CHARACTERIZATION CURVES
900
850
TON, PROPAGATION DELAY (ns)
TON, PROPAGATION DELAY (ns)
900
TON High Side
800
750
700
650
600
TON Low Side
550
500
450
400
10
12
14
16
VCC, VOLTAGE (V)
18
850
TON Low Side
800
750
700
650
TON High Side
600
550
500
450
400
−40
20
Figure 7. Turn ON Propagation Delay vs.
Supply Voltage (VCC = VBOOT)
20
40
60
80
TEMPERATURE (°C)
100
120
160
120
TOFF, PROPAGATION DELAY (ns)
TOFF, PROPAGATION DELAY (ns)
0
Figure 8. Turn ON Propagation Delay vs.
Temperature
140
TOFF High Side
100
80
60
TOFF Low Side
40
20
0
10
12
14
16
18
140
120
100
80
TOFF Low & High Side
60
40
20
0
−40
20
−20
0
20
40
60
80
100
VCC, VOLTAGE (V)
TEMPERATURE (°C)
Figure 9. Turn OFF Propagation Delay vs.
Supply Voltage (VCC = VBOOT)
Figure 10. Turn OFF Propagation Delay vs.
Temperature
900
120
160
850
TOFF PROPAGATION DELAY (ns)
TON, PROPAGATION DELAY (ns)
−20
800
750
700
650
600
550
500
450
400
140
120
100
80
60
40
20
0
0
10
20
30
40
50
0
10
20
30
40
BRIDGE PIN VOLTAGE (V)
BRIDGE PIN VOLTAGE (V)
Figure 11. High Side Turn ON Propagation
Delay vs. VBRIDGE Voltage
Figure 12. High Side Turn OFF Propagation
Delay vs. VBRIDGE Voltage
www.onsemi.com
6
50
NCP5111
CHARACTERIZATION CURVES
160
160
120
140
tr High Side
TON, RISETIME (ns)
TON, RISETIME (ns)
140
100
80
60
40
120
100
tr High Side
80
60
tr Low Side
40
tr Low Side
20
20
0
10
12
14
16
VCC, VOLTAGE (V)
18
0
−40
20
Figure 13. Turn ON Risetime vs. Supply
Voltage (VCC = VBOOT)
TOFF, FALLTIME (ns)
TOFF, FALLTIME (ns)
100
120
50
60
tf Low Side
50
40
30
20
tf High Side
0
10
12
tf Low Side
40
30
20
tf High Side
10
14
16
VCC, VOLTAGE (V)
18
0
−40
20
Figure 15. Turn OFF Falltime vs. Supply
Voltage (VCC = VBOOT)
−20
0
20
40
60
80
TEMPERATURE (°C)
100
120
Figure 16. Turn OFF Falltime vs. Temperature
35
1000
30
900
25
DEAD TIME (ns)
PROPAGATION DELAY MATCHING (ns)
20
40
60
80
TEMPERATURE (°C)
60
70
20
15
10
800
700
600
500
5
0
−40
0
Figure 14. Turn ON Risetime vs. Temperature
80
10
−20
−20
0
20
40
60
80
100
400
−40
120
−20
0
20
40
60
80
100
TEMPERATURE (°C)
TEMPERATURE (°C)
Figure 17. Propagation Delay Matching
Between High Side and Low Side Driver vs.
Temperature
Figure 18. Dead Time vs. Temperature
www.onsemi.com
7
120
NCP5111
1.4
1.4
1.2
1.2
LOW LEVEL INPUT VOLTAGE
THRESHOLD (V)
LOW LEVEL INPUT VOLTAGE THRESHOLD (V)
CHARACTERIZATION CURVES
1
0.8
0.6
0.4
0.2
0
10
12
14
16
18
0.8
0.6
0.4
0.2
0.0
−40
20
VCC, VOLTAGE (V)
20
40
60
TEMPERATURE (°C)
Figure 19. Low Level Input Voltage Threshold
vs. Supply Voltage (VCC = VBOOT)
Figure 20. Low Level Input Voltage Threshold
vs. Temperature
2.5
2
1.5
1
0.5
0
10
0
80
100
120
12
14
16
VCC, VOLTAGE (V)
18
2.0
1.5
1.0
0.5
0.0
−40
20
Figure 21. High Level Input Voltage Threshold
vs. Supply Voltage (VCC = VBOOT)
−20
0
20
40
60
TEMPERATURE (°C)
80
100
120
Figure 22. High Level Input Voltage Threshold
vs. Temperature
6
LOGIC “0” INPUT CURRENT (mA)
4
LOGIC “0” INPUT CURRENT (mA)
−20
2.5
HIGH LEVEL INPUT VOLTAGE
THRESHOLD (V)
HIGH LEVEL INPUT VOLTAGE
THRESHOLD (V)
1.0
3.5
3
2.5
2
1.5
1
0.5
0
10
12
14
16
VCC, VOLTAGE (V)
18
5.5
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
−40
20
−20
0
20
40
60
TEMPERATURE (°C)
80
100
Figure 24. Logic “0” Input Current vs.
Temperature
Figure 23. Logic “0” Input Current vs. Supply
Voltage (VCC = VBOOT)
www.onsemi.com
8
120
NCP5111
CHARACTERIZATION CURVES
10
LOGIC “1” INPUT CURRENT (mA)
LOGIC “1” INPUT CURRENT (mA)
8
7
6
5
4
3
2
1
0
10
12
14
16
VCC, VOLTAGE (V)
18
8
6
4
2
0
−40
20
20
40
60
80
100
120
Figure 26. Logic “1” Input Current vs.
Temperature
1.0
LOW LEVEL OUTPUT VOLTAGE (V)
1
LOW LEVEL OUTPUT VOLTAGE
THRESHOLD (V)
0
TEMPERATURE (°C)
Figure 25. Logic “1” Input Current vs. Supply
Voltage (VCC = VBOOT)
0.8
0.6
0.4
0.2
0
10
12
14
16
VCC, VOLTAGE (V)
18
20
0.8
0.6
0.4
0.2
0.0
−40
Figure 27. Low Level Output Voltage vs.
Supply Voltage (VCC = VBOOT)
0
20
40
60
80
TEMPERATURE (°C)
100
120
1.6
HIGH LEVEL OUTPUT VOLTAGE (V)
1.2
0.8
0.4
0
10
−20
Figure 28. Low Level Output Voltage vs.
Temperature
1.6
HIGH LEVEL OUTPUT VOLTAGE
THRESHOLD (V)
−20
12
14
16
VCC, VOLTAGE (V)
18
20
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
−40
−20
0
20
40
60
TEMPERATURE (°C)
80
100
Figure 30. High Level Output Voltage vs.
Temperature
Figure 29. High Level Output Voltage vs.
Supply Voltage (VCC = VBOOT)
www.onsemi.com
9
120
NCP5111
CHARACTERIZATION CURVES
400
OUTPUT SOURCE CURRENT (mA)
OUTPUT SOURCE CURRENT (mA)
400
350
Isrc High Side
300
250
200
150
Isrc Low Side
100
50
0
10
12
14
16
VCC, VOLTAGE (V)
18
350
300
250
200
150
Isrc Low Side
100
50
0
−40
20
−20
0
40
60
80
100
120
Figure 32. Output Source Current vs.
Temperature
600
600
Isrc High Side
OUTPUT SINK CURRENT (mA)
Isrc High Side
500
400
Isrc Low Side
300
200
100
0
10
12
14
16
18
500
400
300
Isrc Low Side
200
100
0
−40
20
−20
0
VCC, VOLTAGE (V)
20
40
60
80
100
120
TEMPERATURE (°C)
Figure 33. Output Sink Current vs. Supply
Voltage (VCC = VBOOT)
Figure 34. Output Sink Current vs.
Temperature
20
0.2
LEAKAGE CURRENT ON HIGH
VOLTAGE PINS (600 V) to GND (mA)
HIGH SIDE LEAKAGE CURRENT ON
HV PINS TO GND (mA)
20
TEMPERATURE (°C)
Figure 31. Output Source Current vs. Supply
Voltage (VCC = VBOOT)
OUTPUT SINK CURRENT (mA)
Isrc High Side
0.16
15
0.12
10
0.08
0.04
0
0
100
200
300
400
500
600
5
0
−40
−20
0
20
40
60
80
100
TEMPERATURE (°C)
HV PINS VOLTAGE (V)
Figure 35. Leakage Current on High Voltage
Pins (600 V) to Ground vs. VBRIDGE Voltage
(VBRIGDE = VBOOT = VDRV_HI)
Figure 36. Leakage Current on High Voltage
Pins (600 V) to Ground vs. Temperature
(VBRIDGE = VBOOT = VDRV_HI = 600 V)
www.onsemi.com
10
120
NCP5111
CHARACTERIZATION CURVES
100
VBOOT CURRENT SUPPLY (mA)
VBOOT SUPPLY CURRENT (mA)
100
80
60
40
20
0
0
4
8
12
16
80
60
40
20
0
−40
20
−20
0
Figure 37. VBOOT Supply Current vs. Bootstrap
Supply Voltage
60
80
100
120
400
200
VCC CURRENT SUPPLY (mA)
VCC SUPPLY CURRENT (mA)
40
Figure 38. VBOOT Supply Current vs.
Temperature
240
160
120
80
40
0
0
4
8
12
16
300
200
100
0
−40
20
−20
0
VCC, VOLTAGE (V)
9.8
8.8
UVLO SHUTDOWN VOLTAGE (V)
9.0
VCC UVLO Startup
9.4
9.2
9.0
8.8
8.6
VBOOT UVLO Startup
8.4
8.2
8.0
−40
−20
0
20
40
60
40
60
80
100
120
Figure 40. VCC Supply Current vs. Temperature
10.0
9.6
20
TEMPERATURE (°C)
Figure 39. VCC Supply Current vs. VCC Supply
Voltage
UVLO STARTUP VOLTAGE (V)
20
TEMPERATURE (°C)
VBOOT, VOLTAGE (V)
80
100
120
VCC UVLO Shutdown
8.6
8.4
8.2
8.0
VBOOT UVLO Shutdown
7.8
7.6
7.4
7.2
7.0
−40
TEMPERATURE (°C)
−20
0
20
40
60
80
100
TEMPERATURE (°C)
Figure 41. UVLO Startup Voltage vs.
Temperature
Figure 42. UVLO Shutdown Voltage vs.
Temperature
www.onsemi.com
11
120
NCP5111
CHARACTERIZATION CURVES
35
ICC+ IBOOT CURRENT SUPPLY (mA)
ICC+ IBOOT CURRENT SUPPLY (mA)
25
CLOAD = 1 nF/Q = 15 nC
20
15
10
5
RGATE = 0 R to 22 R
0
0
100
200
300
400
500
25
RGATE = 10 R
20
RGATE = 22 R
15
10
5
0
0
600
100
SWITCHING FREQUENCY (kHz)
Figure 43. ICC1 Consumption vs. Switching
Frequency with 15 nC Load on Each Driver @
VCC = 15 V
CLOAD = 3.3 nF/Q = 50 nC
ICC+ IBOOT CURRENT SUPPLY (mA)
ICC+ IBOOT CURRENT SUPPLY (mA)
600
70
RGATE = 0 R
40
35
30
RGATE = 10 R
25
RGATE = 22 R
20
15
10
5
0
0
200
300
400
500
SWITCHING FREQUENCY (kHz)
Figure 44. ICC1 Consumption vs. Switching
Frequency with 33 nC Load on Each Driver @
VCC = 15 V
50
45
RGATE = 0 R
CLOAD = 2.2 nF/Q = 33 nC
30
CLOAD = 6.6 nF/Q = 100 nC
60
50
RGATE = 10 R
40
RGATE = 22 R
30
RGATE = 0 R
20
10
0
100
200
300
400
500
600
0
SWITCHING FREQUENCY (kHz)
Figure 45. ICC1 Consumption vs. Switching
Frequency with 50 nC Load on Each Driver @
VCC = 15 V
100
200
300
400
500
SWITCHING FREQUENCY (kHz)
600
Figure 46. ICC1 Consumption vs. Switching
Frequency with 100 nC Load on Each Driver @
VCC = 15 V
www.onsemi.com
12
NCP5111
PACKAGE DIMENSIONS
8 LEAD PDIP
CASE 626−05
ISSUE N
D
A
E
H
8
5
E1
1
4
NOTE 8
c
b2
B
END VIEW
WITH LEADS CONSTRAINED
TOP VIEW
NOTE 5
A2
A
e/2
NOTE 3
L
SEATING
PLANE
A1
C
M
D1
e
8X
SIDE VIEW
b
0.010
eB
END VIEW
M
C A
M
B
M
NOTE 6
www.onsemi.com
13
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCHES.
3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS−3.
4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH
OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT
TO EXCEED 0.10 INCH.
5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM
PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR
TO DATUM C.
6. DIMENSION E3 IS MEASURED AT THE LEAD TIPS WITH THE
LEADS UNCONSTRAINED.
7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE
LEADS, WHERE THE LEADS EXIT THE BODY.
8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE
CORNERS).
DIM
A
A1
A2
b
b2
C
D
D1
E
E1
e
eB
L
M
INCHES
MIN
MAX
−−−−
0.210
0.015
−−−−
0.115 0.195
0.014 0.022
0.060 TYP
0.008 0.014
0.355 0.400
0.005
−−−−
0.300 0.325
0.240 0.280
0.100 BSC
−−−−
0.430
0.115 0.150
−−−−
10 °
MILLIMETERS
MIN
MAX
−−−
5.33
0.38
−−−
2.92
4.95
0.35
0.56
1.52 TYP
0.20
0.36
9.02
10.16
0.13
−−−
7.62
8.26
6.10
7.11
2.54 BSC
−−−
10.92
2.92
3.81
−−−
10 °
NCP5111
PACKAGE DIMENSIONS
SOIC−8 NB
CASE 751−07
ISSUE AK
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW
STANDARD IS 751−07.
−X−
A
8
5
S
B
0.25 (0.010)
M
Y
M
1
4
K
−Y−
G
C
N
DIM
A
B
C
D
G
H
J
K
M
N
S
X 45 _
SEATING
PLANE
−Z−
0.10 (0.004)
H
M
D
0.25 (0.010)
M
Z Y
S
X
J
S
MILLIMETERS
MIN
MAX
4.80
5.00
3.80
4.00
1.35
1.75
0.33
0.51
1.27 BSC
0.10
0.25
0.19
0.25
0.40
1.27
0 _
8 _
0.25
0.50
5.80
6.20
INCHES
MIN
MAX
0.189
0.197
0.150
0.157
0.053
0.069
0.013
0.020
0.050 BSC
0.004
0.010
0.007
0.010
0.016
0.050
0 _
8 _
0.010
0.020
0.228
0.244
SOLDERING FOOTPRINT*
1.52
0.060
7.0
0.275
4.0
0.155
0.6
0.024
1.270
0.050
SCALE 6:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and the
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed
at www.onsemi.com/site/pdf/Patent− Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in
SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must
be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products
are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or
for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products
for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against
all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended
or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action
Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
www.onsemi.com
14
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NCP5111/D