NCP5104, NCV5104 High Voltage, Half Bridge Driver The NCP5104 is a High Voltage Power gate Driver providing two outputs for direct drive of 2 N−channel power MOSFETs or IGBTs arranged in a half−bridge configuration. It uses the bootstrap technique to insure a proper drive of the High−side power switch. www.onsemi.com Features • • • • • • • • • • • • • • High Voltage Range: up to 600 V dV/dt Immunity ±50 V/nsec Gate Drive Supply Range from 10 V to 20 V High and Low Drive Outputs Output Source / Sink Current Capability 250 mA / 500 mA 3.3 V and 5 V Input Logic Compatible Up to VCC Swing on Input Pins Extended Allowable Negative Bridge Pin Voltage Swing to −10 V for Signal Propagation Matched Propagation Delays between Both Channels 1 Input with Internal Fixed Dead Time (520 ns) Under VCC LockOut (UVLO) for Both Channels Pin to Pin Compatible with Industry Standards NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS Compliant MARKING DIAGRAMS 1 SOIC−8 D SUFFIX CASE 751 8 P5104 ALYW G 1 NCP5104 AWL YYWWG 1 PDIP−8 P SUFFIX CASE 626 NCP5104 A L or WL Y or YY W or WW G or G = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package PINOUT INFORMATION Typical Applications • Half−Bridge Power Converters VCC IN SD GND 1 2 3 4 VBOOT DRV_HI BRIDGE DRV_LO 8 7 6 5 8 Pin Package ORDERING INFORMATION Device Package Shipping† NCP5104PG PDIP−8 (Pb−Free) 50 Units / Rail NCP5104DR2G SOIC−8 (Pb−Free) 2500 / Tape & Reel NCV5104DR2G SOIC−8 (Pb−Free) 2500 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. © Semiconductor Components Industries, LLC, 2015 June, 2015 − Rev. 7 1 Publication Order Number: NCP5104/D NCP5104, NCV5104 Vbulk + C1 D4 GND Q1 Vcc T1 C3 U1 8 VBOOT Vcc 2 7 IN DRV_HI 3 6 SD Bridge 4 5 GND DRV_LO 1 GND NCP1395 L1 Out+ + C4 C3 Lf Out− D2 C6 Q2 NCP5104 GND D1 GND GND R1 D3 GND U2 Figure 1. Typical Application Resonant Converter (LLC type) Vbulk + C1 C5 D4 GND Q1 Vcc C3 GND T1 1 SG3526 MC34025 TL594 NCP1561 2 3 4 U1 8 VBOOT Vcc 7 IN DRV_HI 6 Bridge SD 5 GND DRV_LO L1 C4 Out+ + C3 Out− D2 C6 NCP5104 GND D1 Q2 GND GND R1 D3 GND U2 Figure 2. Typical Application Half Bridge Converter VCC VCC VBOOT UV DETECT IN DEAD TIME GENERATION PULSE TRIGGER S Q R Q LEVEL SHIFTER GND UV DETECT DRV_HI BRIDGE VCC GND SD DRV_LO DELAY GND GND GND Figure 3. Detailed Block Diagram www.onsemi.com 2 NCP5104, NCV5104 PIN DESCRIPTION ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Pin Name Description VCC Low Side and Main Power Supply IN Logic Input SD Logic Input for Shutdown GND Ground DRV_LO Low Side Gate Drive Output VBOOT Bootstrap Power Supply DRV_HI High Side Gate Drive Output BRIDGE Bootstrap Return or High Side Floating Supply Return MAXIMUM RATINGS Rating VCC VCC_transient Symbol Main power supply voltage Main transient power supply voltage: IVCC_max = 5 mA during 10 ms Value Unit −0.3 to 20 V 23 V VBOOT VHV: High Voltage BOOT Pin −1 to 620 V VBRIDGE VHV: High Voltage BRIDGE pin −1 to 600 V VBRIDGE Allowable Negative Bridge Pin Voltage for IN_LO Signal Propagation to DRV_LO (see characterization curves for detailed results) −10 V VBOOT−VBRIDGE VHV: Floating supply voltage −0.3 to 20 V VDRV_HI VHV: High side output voltage VBRIDGE − 0.3 to VBOOT + 0.3 V VDRV_LO Low side output voltage −0.3 to VCC + 0.3 V 50 V/ns −1.0 to VCC + 0.3 V 2 200 kV V dVBRIDGE/dt VIN, VSD Allowable output slew rate Inputs IN & SD ESD Capability: − HBM model (all pins except pins 6−7−8 in 8) − Machine model (all pins except pins 6−7−8) Latch up capability per JEDEC JESD78 RqJA TST TJ_max °C/W Power dissipation and Thermal characteristics PDIP−8: Thermal Resistance, Junction−to−Air SO−8: Thermal Resistance, Junction−to−Air 100 178 Storage Temperature Range Maximum Operating Junction Temperature −55 to +150 °C +150 °C Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. www.onsemi.com 3 NCP5104, NCV5104 ELECTRICAL CHARACTERISTIC (VCC = Vboot = 15 V, VGND = Vbridge, −40°C < TJ < 125°C, Outputs loaded with 1 nF) TJ −40°C to 125°C Symbol Min Typ Max Units Output high short circuit pulsed current VDRV = 0 V, PW v 10 ms (Note 1) IDRVsource − 250 − mA Output low short circuit pulsed current VDRV = Vcc, PW v 10 ms (Note 1) IDRVsink − 500 − mA Output resistor (Typical value @ 25°C) Source ROH − 30 60 W Output resistor (Typical value @ 25°C) Sink ROL − 10 20 W High level output voltage, VBIAS−VDRV_XX @ IDRV_XX = 20 mA VDRV_H − 0.7 1.6 V Low level output voltage VDRV_XX @ IDRV_XX = 20 mA VDRV_L − 0.2 0.6 V Turn−on propagation delay (Vbridge = 0 V) (Note 2) tON − 620 800 ns Turn−off propagation delay (Vbridge = 0 V or 50 V) (Note 3) tOFF − 100 170 ns Shutdown propagation delay, when Shutdown is enabled tsd_en − 100 170 ns Shutdown propagation delay, when Shutdown is disabled tsd_dis − 620 800 ns Output voltage rise time (from 10% to 90% @ VCC = 15 V) with 1 nF load tr − 85 160 ns Output voltage fall time (from 90% to 10% @ VCC = 15 V) with 1 nF load tf − 35 75 ns Propagation delay matching between the High side and the Low side @ 25°C (Note 4) Dt − 10 45 ns Internal fixed dead time (Note 5) DT 400 520 650 ns Low level input voltage threshold VIN − − 0.8 V Input pull−down resistor (VIN < 0.5 V) RIN − 200 − kW High level input voltage threshold VIN 2.3 − − V Logic “1” input bias current @ VIN = 5 V @ 25°C IIN+ − 5 25 mA Logic “0” input bias current @ VIN = 0 V @ 25°C IIN− − − 2.0 mA Vcc_stup 8.0 8.9 9.8 V Vcc_shtdwn 7.3 8.2 9.0 V Vcc_hyst 0.3 0.7 − V Vboot_stup 8.0 8.9 9.8 V Vboot UV Shut−down voltage threshold Vboot_shtdwn 7.3 8.2 9.0 V Hysteresis on Vboot Vboot_shtdwn 0.3 0.7 − V IHV_LEAK − 5 40 mA Consumption in active mode (Vcc = Vboot, fsw = 100 kHz and 1 nF load on both driver outputs) ICC1 − 4 5 mA Consumption in inhibition mode (Vcc = Vboot) ICC2 − 250 400 mA Vcc current consumption in inhibition mode ICC3 − 200 − mA Vboot current consumption in inhibition mode ICC4 − 50 − mA Rating OUTPUT SECTION DYNAMIC OUTPUT SECTION INPUT SECTION SUPPLY SECTION Vcc UV Start−up voltage threshold Vcc UV Shut−down voltage threshold Hysteresis on Vcc Vboot Start−up voltage threshold reference to bridge pin (Vboot_stup = Vboot − Vbridge) Leakage current on high voltage pins to GND (VBOOT = VBRIDGE = DRV_HI = 600 V) Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 1. Parameter guaranteed by design. 2. TON = TOFF + DT 3. Turn−off propagation delay @ Vbridge = 600 V is guaranteed by design. 4. See characterization curve for Dt parameters variation on the full range temperature. 5. Timing diagram definition see: Figure 4, Figure 5 and Figure 6. www.onsemi.com 4 NCP5104, NCV5104 IN SD DRV_HI DRV_LO Figure 4. Input/Output Timing Diagram Note: DRV_HI output is in phase with the input IN 50% 50% tr ton 90% Dead time DRV_HI 90% 10% toff tf toff 10% tf Dead time tr 90% 90% ton DRV_LO 10% Ton = Toff + DT Figure 5. Timing Definitions www.onsemi.com 5 10% NCP5104, NCV5104 IN 50% 50% toff_HI DeadTime1 90% DRV_HI 10% toff_LO DeadTime2 90% DRV_LO Matching Delay1=toff_HI−toff_LO Matching Delay 2=(toff_LO+DT1)−(toff_HI+DT2) 10% Figure 6. Matching Propagation Delay Definition 50% 50% SD tsd_en DRV_HI tsd_dis 90% 10% DRV_LO Figure 7. Shutdown Waveform Definition www.onsemi.com 6 NCP5104, NCV5104 CHARACTERIZATION CURVES 900 TON, PROPAGATION DELAY (ns) TON, PROPAGATION DELAY (ns) 800 750 700 TON Low Side 650 600 550 TON High Side 500 450 12 14 16 VCC, VOLTAGE (V) 18 800 750 TON Low Side 700 650 600 550 TON High Side 500 450 400 −40 400 10 850 20 Figure 8. Turn ON Propagation Delay vs. Supply Voltage (VCC = VBOOT) 20 40 60 80 TEMPERATURE (°C) 100 120 160 140 TOFF, PROPAGATION DELAY (ns) TOFF, PROPAGATION DELAY (ns) 0 Figure 9. Turn ON Propagation Delay vs. Temperature 160 TOFF High Side 120 100 80 TOFF Low Side 60 40 20 10 12 14 16 VCC, VOLTAGE (V) 18 140 TOFF High Side 120 TOFF Low Side 100 80 60 40 20 0 −40 0 20 Figure 10. Turn OFF Propagation Delay vs. Supply Voltage (VCC = VBOOT) −20 0 20 40 60 80 TEMPERATURE (°C) 100 120 Figure 11. Turn OFF Propagation Delay vs. Temperature 160 TOFF, PROPAGATION DELAY (ns) 800 TON, PROPAGATION DELAY (ns) −20 700 600 500 400 300 200 100 0 140 120 100 80 60 40 20 0 0 10 20 30 40 50 0 10 20 30 40 VBRIDGE VOLTAGE (V) VBRIDGE VOLTAGE (V) Figure 12. High Side Turn ON Propagation Delay vs. VBRIDGE Voltage (VCC = VBOOT) Figure 13. High Side Turn OFF Propagation Delay vs. VBRIDGE Voltage (VCC = VBOOT) www.onsemi.com 7 50 NCP5104, NCV5104 CHARACTERIZATION CURVES 160 160 TON, RISETIME (ns) 140 TON, RISETIME (ns) 120 100 80 tr High Side 60 40 120 100 0 10 80 60 40 12 14 16 VCC, VOLTAGE (V) 18 0 −40 20 Figure 14. Turn ON Risetime vs. Supply Voltage (VCC = VBOOT) −20 0 20 40 60 80 TEMPERATURE (°C) 100 120 Figure 15. Turn ON Risetime vs. Temperature 60 80 70 tf High Side 50 60 TOFF, FALLTIME (ns) TOFF, FALLTIME (ns) tr Low Side 20 20 50 tf Low Side 40 tf High Side 30 20 40 tf Low Side 30 20 10 10 0 −40 0 10 12 14 16 VCC, VOLTAGE (V) 18 20 Figure 16. Turn OFF Falltime vs. Supply Voltage (VCC = VBOOT) −20 0 20 40 60 80 TEMPERATURE (°C) 100 120 Figure 17. Turn OFF Falltime vs. Temperature 20 600 15 10 550 5 DEAD TIME (ns) PROPAGATION DELAY MATCHING (ns) tr High Side 140 tr Low Side Delay Matching 1 0 −5 −10 500 450 Delay Matching 2 −15 −20 −40 −20 0 20 40 60 80 100 400 −40 120 −20 0 20 40 60 80 100 TEMPERATURE (°C) TEMPERATURE (°C) Figure 18. Propagation Delay Matching Between High Side and Low Side Driver vs. Temperature Figure 19. Dead Time vs. Temperature www.onsemi.com 8 120 NCP5104, NCV5104 1.4 1.6 1.2 1.4 LOW LEVEL INPUT VOLTAGE THRESHOLD (V) LOW LEVEL INPUT VOLTAGE THRESHOLD (V) CHARACTERIZATION CURVES 1.0 0.8 0.6 0.4 0.2 0 10 12 14 16 18 1.2 1.0 0.8 0.6 0.4 0.2 0 −40 20 Figure 20. Low Level Input Voltage Threshold vs. Supply Voltage (VCC = VBOOT) 0 100 120 2.5 HIGH LEVEL INPUT VOLTAGE THRESHOLD (V) HIGH LEVEL INPUT VOLTAGE THRESHOLD (V) 20 40 60 80 TEMPERATURE (°C) Figure 21. Low Level Input Voltage Threshold vs. Temperature 2.5 2.0 1.5 1.0 0.5 0 10 12 14 16 VCC, VOLTAGE (V) 18 2.0 1.5 1.0 0.5 0 −40 20 Figure 22. High Level Input Voltage Threshold vs. Supply Voltage (VCC = VBOOT) −20 0 20 40 60 80 TEMPERATURE (°C) 100 120 Figure 23. High Level Input Voltage Threshold vs. Temperature 10 LOGIC “0” INPUT CURRENT (mA) 4.0 LOGIC “0” INPUT CURRENT (mA) −20 VCC, VOLTAGE (V) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 10 12 14 16 VCC, VOLTAGE (V) 18 8.0 6.0 4.0 2.0 0 −40 −20 20 0 20 40 60 80 100 TEMPERATURE (°C) Figure 25. Logic “0” Input Current vs. Temperature Figure 24. Logic “0” Input Current vs. Supply Voltage (VCC = VBOOT) www.onsemi.com 9 120 NCP5104, NCV5104 CHARACTERIZATION CURVES 10 LOGIC “1” INPUT CURRENT (mA) LOGIC “1” INPUT CURRENT (mA) 8 7 6 5 4 3 2 1 0 10 12 14 16 VCC, VOLTAGE (V) 18 8.0 6.0 4.0 2.0 0 −40 20 20 40 60 80 100 120 Figure 27. Logic “1” Input Current vs. Temperature 1.0 LOW LEVEL OUTPUT VOLTAGE (V) 1.0 LOW LEVEL OUTPUT VOLTAGE THRESHOLD (V) 0 TEMPERATURE (°C) Figure 26. Logic “1” Input Current vs. Supply Voltage (VCC = VBOOT) 0.8 0.6 0.4 0.2 0 10 12 14 16 VCC, VOLTAGE (V) 18 20 0.8 0.6 0.4 0.2 0 −40 Figure 28. Low Level Output Voltage vs. Supply Voltage (VCC = VBOOT) −20 0 20 40 60 80 TEMPERATURE (°C) 100 120 Figure 29. Low Level Output Voltage vs. Temperature 1.0 HIGH LEVEL OUTPUT VOLTAGE (V) 1.6 HIGH LEVEL OUTPUT VOLTAGE THRESHOLD (V) −20 1.2 0.8 0.4 0 10 12 14 16 VCC, VOLTAGE (V) 18 20 0.8 0.6 0.4 0.2 0 −40 −20 0 20 40 60 80 TEMPERATURE (°C) 100 Figure 31. High Level Output Voltage vs. Temperature Figure 30. High Level Output Voltage vs. Supply Voltage (VCC = VBOOT) www.onsemi.com 10 120 NCP5104, NCV5104 CHARACTERIZATION CURVES 400 OUTPUT SOURCE CURRENT (mA) OUTPUT SOURCE CURRENT (mA) 400 Isrc High Side 350 300 Isrc Low Side 250 200 150 100 50 300 250 200 12 14 16 VCC, VOLTAGE (V) 18 Isrc Low Side 150 100 50 0 10 Isrc High Side 350 0 −40 −20 20 40 60 80 100 120 Figure 33. Output Source Current vs. Temperature 600 600 Isink High Side OUTPUT SINK CURRENT (mA) Isink High Side 500 Isink Low Side 400 300 200 100 500 10 12 14 16 18 Isink Low Side 400 300 200 100 0 0 −40 −20 20 0 VCC, VOLTAGE (V) 20 40 60 80 100 120 TEMPERATURE (°C) Figure 34. Output Sink Current vs. Supply Voltage (VCC = VBOOT) Figure 35. Output Sink Current vs. Temperature 0.20 20 LEAKAGE CURRENT ON HIGH VOLTAGE PINS (600 V) to GND (mA) HIGH SIDE LEAKAGE CURRENT ON HV PINS TO GND (mA) 20 TEMPERATURE (°C) Figure 32. Output Source Current vs. Supply Voltage (VCC = VBOOT) OUTPUT SINK CURRENT (mA) 0 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0 0 100 200 300 400 500 600 15 10 5.0 0 −40 −20 0 20 40 60 80 100 120 TEMPERATURE (°C) HV PINS VOLTAGE (V) Figure 36. Leakage Current on High Voltage Pins (600 V) to Ground vs. VBRIDGE Voltage (VBRIDGE = VBOOT = VDRV_HI) Figure 37. Leakage Current on High Voltage Pins (600 V) to Ground vs. Temperature (VBRIDGE = VBOOT = VDRv_HI = 600 V) www.onsemi.com 11 NCP5104, NCV5104 CHARACTERIZATION CURVES 100 VBOOT CURRENT SUPPLY (mA) VBOOT SUPPLY CURRENT (mA) 100 80 60 40 20 0 0 4.0 8.0 12 16 80 60 40 20 0 −40 20 −20 0 60 80 100 120 Figure 39. VBOOT Supply Current vs. Temperature 400 VCC CURRENT SUPPLY (mA) 240 VCC SUPPLY CURRENT (mA) 40 TEMPERATURE (°C) VBOOT, VOLTAGE (V) Figure 38. VBOOT Supply Current vs. Bootstrap Supply Voltage (VCC = VBOOT) 200 160 120 80 40 0 4.0 8.0 12 16 350 300 250 200 150 100 50 0 −40 0 20 −20 0 VCC, VOLTAGE (V) 40 60 80 100 120 Figure 41. VCC Supply Current vs. Temperature 10 UVLO SHUTDOWN VOLTAGE (V) 9.0 9.8 9.6 9.4 9.2 VCC UVLO Startup 9.0 8.8 VBOOT UVLO Startup 8.6 8.4 8.2 8.0 −40 20 TEMPERATURE (°C) Figure 40. VCC Supply Current vs. VCC Supply Voltage (VCC = VBOOT) UVLO STARTUP VOLTAGE (V) 20 −20 0 20 40 60 80 100 120 8.8 8.6 VCC UVLO Shutdown 8.4 8.2 8.0 VBOOT UVLO Shutdown 7.8 7.6 7.4 7.2 7.0 −40 TEMPERATURE (°C) −20 0 20 40 60 80 100 TEMPERATURE (°C) Figure 42. UVLO Startup Voltage vs. Temperature Figure 43. UVLO Shutdown Voltage vs. Temperature www.onsemi.com 12 120 NCP5104, NCV5104 CHARACTERIZATION CURVES 40 ICC+ IBOOT CURRENT SUPPLY (mA) ICC+ IBOOT CURRENT SUPPLY (mA) 25 CLOAD = 1 nF/Q = 15 nC 20 15 10 5.0 RGATE = 0 R to 22 R 0 RGATE = 10 R 30 25 RGATE = 22 R 20 15 10 5.0 0 0 100 200 300 400 500 0 600 100 SWITCHING FREQUENCY (kHz) Figure 44. ICC1 Consumption vs. Switching Frequency with 15 nC Load on Each Driver @ VCC = 15 V 200 300 400 500 SWITCHING FREQUENCY (kHz) 600 Figure 45. ICC1 Consumption vs. Switching Frequency with 33 nC Load on Each Driver @ VCC = 15 V 80 CLOAD = 3.3 nF/Q = 50 nC ICC+ IBOOT CURRENT SUPPLY (mA) 60 RGATE = 0 R 50 RGATE = 10 R 40 RGATE = 22 R 30 20 10 0 CLOAD = 6.6 nF/Q = 100 nC 70 RGATE = 0 R 60 50 RGATE = 10 R 40 RGATE = 22 R 30 20 10 0 0 100 200 300 400 500 600 0 100 SWITCHING FREQUENCY (kHz) Figure 46. ICC1 Consumption vs. Switching Frequency with 50 nC Load on Each Driver @ VCC = 15 V 200 300 400 500 SWITCHING FREQUENCY (kHz) −5 −40°C −10 25°C −15 125°C −20 −25 −30 −35 0 100 200 600 Figure 47. ICC1 Consumption vs. Switching Frequency with 100 nC Load on Each Driver @ VCC = 15 V 0 NEGATIVE PULSE VOLTAGE (V) ICC+ IBOOT CURRENT SUPPLY (mA) RGATE = 0 R CLOAD = 2.2 nF/Q = 33 nC 35 300 400 500 600 NEGATIVE PULSE DURATION (ns) Figure 48. NCP5104, Negative Voltage Safe Operating Area on the Bridge Pin www.onsemi.com 13 NCP5104, NCV5104 PACKAGE DIMENSIONS 8 LEAD PDIP CASE 626−05 ISSUE N D A E H 8 5 1 4 E1 NOTE 8 c b2 B END VIEW WITH LEADS CONSTRAINED TOP VIEW NOTE 5 A2 A e/2 NOTE 3 L SEATING PLANE A1 C M D1 e 8X SIDE VIEW b 0.010 eB END VIEW M C A M B M NOTE 6 www.onsemi.com 14 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS−3. 4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH. 5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C. 6. DIMENSION E3 IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED. 7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY. 8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS). DIM A A1 A2 b b2 C D D1 E E1 e eB L M INCHES MIN MAX −−−− 0.210 0.015 −−−− 0.115 0.195 0.014 0.022 0.060 TYP 0.008 0.014 0.355 0.400 0.005 −−−− 0.300 0.325 0.240 0.280 0.100 BSC −−−− 0.430 0.115 0.150 −−−− 10 ° MILLIMETERS MIN MAX −−− 5.33 0.38 −−− 2.92 4.95 0.35 0.56 1.52 TYP 0.20 0.36 9.02 10.16 0.13 −−− 7.62 8.26 6.10 7.11 2.54 BSC −−− 10.92 2.92 3.81 −−− 10 ° NCP5104, NCV5104 PACKAGE DIMENSIONS SOIC−8 NB CASE 751−07 ISSUE AK −X− NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07. A 8 5 S B 0.25 (0.010) M Y M 1 4 K −Y− G C N DIM A B C D G H J K M N S X 45 _ SEATING PLANE −Z− 0.10 (0.004) H M D 0.25 (0.010) M Z Y S X J S MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0 _ 8 _ 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244 SOLDERING FOOTPRINT* 1.52 0.060 7.0 0.275 4.0 0.155 0.6 0.024 1.270 0.050 SCALE 6:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent− Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 www.onsemi.com 15 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NCP5104/D