MC14022B D

MC14022B
Octal Counter
The MC14022B is a four−stage Johnson octal counter with built−in
code converter. High−speed operation and spike−free outputs are
obtained by use of a Johnson octal counter design. The eight decoded
outputs are normally low, and go high only at their appropriate octal
time period. The output changes occur on the positive−going edge of
the clock pulse. This part can be used in frequency division
applications as well as octal counter or octal decode display
applications.
http://onsemi.com
Features
•
•
•
•
•
•
•
•
•
Fully Static Operation
DC Clock Input Circuit Allows Slow Rise Times
Carry Out Output for Cascading
Supply Voltage Range = 3.0 Vdc to 18 Vdc
Capable of Driving Two Low−Power TTL Loads or One Low−Power
Schottky TTL Load Over the Rated Temperature Range
Pin−for−Pin Replacement for CD4022B
Triple Diode Protection on All Inputs
NLV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q100
Qualified and PPAP Capable
This Device is Pb−Free and is RoHS Compliant
MAXIMUM RATINGS (Voltages Referenced to VSS)
Symbol
VDD
Vin, Vout
Parameter
DC Supply Voltage Range
Input or Output Voltage Range
(DC or Transient)
PIN ASSIGNMENT
Q1
1
16
VDD
Q0
2
15
R
Q2
3
14
C
Q5
4
13
CE
Q6
5
12
Cout
NC
6
11
Q4
Q3
7
10
Q7
VSS
8
9
NC
NC = NO CONNECTION
Value
Unit
−0.5 to +18.0
V
−0.5 to VDD + 0.5
V
MARKING DIAGRAM
16
Input or Output Current
(DC or Transient) per Pin
±10
mA
PD
Power Dissipation, per Package
(Note 1)
500
mW
TA
Ambient Temperature Range
−55 to +125
°C
Tstg
Storage Temperature Range
−65 to +150
°C
TL
Lead Temperature
(8−Second Soldering)
260
°C
Iin, Iout
SOIC−16
D SUFFIX
CASE 751B
Stresses exceeding those listed in the Maximum Ratings table may damage the
device. If any of these limits are exceeded, device functionality should not be
assumed, damage may occur and reliability may be affected.
1. Temperature Derating: “D/DW” Packages: –7.0 mW/_C From 65_C To 125_C
14022BG
AWLYWW
1
A
WL
YY, Y
WW
G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Indicator
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 6 of this data sheet.
This device contains protection circuitry to guard against damage due to high
static voltages or electric fields. However, precautions must be taken to avoid
applications of any voltage higher than maximum rated voltages to this
high−impedance circuit. For proper operation, Vin and Vout should be constrained
to the range VSS ≤ (Vin or Vout) ≤ VDD.
Unused inputs must always be tied to an appropriate logic voltage level
(e.g., either VSS or VDD). Unused outputs must be left open.
© Semiconductor Components Industries, LLC, 2014
August, 2014 − Rev. 8
1
Publication Order Number:
MC14022B/D
MC14022B
BLOCK DIAGRAM
CLOCK
14
CLOCK
ENABLE
13
RESET
15
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Cout
VDD = PIN 16
VSS = PIN 8
2
1
3
7
11
4
5
10
12
NC = PIN 6, 9
FUNCTIONAL TRUTH TABLE
(Positive Logic)
Clock
Clock
Enable
0
X
Reset
Output=n
0
0
0
0
0
0
1
n
n
n+1
n
n+1
n
Q0
X
1
0
X
1
X
X
X
X = Don’t Care. If n < 4 Carry = 1,
Otherwise = 0.
LOGIC DIAGRAM
11
1
Q4
5
Q1
7
Q6
Q3
CLOCK
14
13
CLOCK
ENABLE
15
RESET
VDD
VSS
C Q
C
D RQ
C Q
C
D RQ
Q0
2
Q5
4
http://onsemi.com
2
C Q
C
D RQ
C Q
C
D RQ
Q2
3
Q7
10
CARRY
12
MC14022B
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)
−55_C
Characteristic
Output Voltage
Vin = VDD or 0
Symbol
25_C
VDD
Vdc
Min
Max
Min
Typ
(Note 2)
125_C
Max
Min
Max
Unit
“0” Level
VOL
5.0
10
15
−
−
−
0.05
0.05
0.05
−
−
−
0
0
0
0.05
0.05
0.05
−
−
−
0.05
0.05
0.05
Vdc
“1” Level
VOH
5.0
10
15
4.95
9.95
14.95
−
−
−
4.95
9.95
14.95
5.0
10
15
−
−
−
4.95
9.95
14.95
−
−
−
Vdc
“0” Level
VIL
5.0
10
15
−
−
−
1.5
3.0
4.0
−
−
−
2.25
4.50
6.75
1.5
3.0
4.0
−
−
−
1.5
3.0
4.0
5.0
10
15
3.5
7.0
11
−
−
−
3.5
7.0
11
2.75
5.50
8.25
−
−
−
3.5
7.0
11
−
−
−
5.0
5.0
10
15
–3.0
–0.64
–1.6
–4.2
−
−
−
−
–2.4
–0.51
–1.3
–3.4
–4.2
–0.88
–2.25
–8.8
−
−
−
−
–1.7
–0.36
–0.9
–2.4
−
−
−
−
IOL
5.0
10
15
0.64
1.6
4.2
−
−
−
0.51
1.3
3.4
0.88
2.25
8.8
−
−
−
0.36
0.9
2.4
−
−
−
mAdc
Input Current
Iin
15
−
±0.1
−
±0.00001
±0.1
−
±1.0
mAdc
Input Capacitance
(Vin = 0)
Cin
−
−
−
−
5.0
7.5
−
−
pF
Quiescent Current
(Per Package)
IDD
5.0
10
15
−
−
−
5.0
10
20
−
−
−
0.005
0.010
0.015
5.0
10
20
−
−
−
150
300
600
mAdc
IT
5.0
10
15
Vin = 0 or VDD
Input Voltage
(VO = 4.5 or 0.5 Vdc)
(VO = 9.0 or 1.0 Vdc)
(VO = 13.5 or 1.5 Vdc)
“1” Level
VIH
(VO = 0.5 or 4.5 Vdc)
(VO = 1.0 or 9.0 Vdc)
(VO = 1.5 or 13.5 Vdc)
Output Drive Current
(VOH = 2.5 Vdc)
(VOH = 4.6 Vdc)
(VOH = 9.5 Vdc)
(VOH = 13.5 Vdc)
(VOL = 0.4 Vdc)
(VOL = 0.5 Vdc)
(VOL = 1.5 Vdc)
Vdc
Vdc
IOH
Source
Sink
Total Supply Current (Notes 3 & 4)
(Dynamic plus Quiescent,
Per Package)
(CL = 50 pF on all outputs, all
buffers switching)
mAdc
IT = (0.28 mA/kHz)f + IDD
IT = (0.56 mA/kHz)f + IDD
IT = (0.85 mA/kHz)f + IDD
mAdc
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
3. The formulas given are for the typical characteristics only at 25_C.
4. To calculate total supply current at loads other than 50 pF:
IT(CL) = IT(50 pF) + (CL – 50) Vfk
where: IT is in mA (per package), CL in pF, V = (VDD – VSS) in volts, f in kHz is input frequency, and k = 0.00125.
http://onsemi.com
3
MC14022B
SWITCHING CHARACTERISTICS (Note 5) (CL = 50 pF, TA = 25_C)
Characteristic
Symbol
Output Rise and Fall Time
tTLH, tTHL = (1.5 ns/pF) CL + 25 ns
tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns
tTLH, tTHL = (0.55 ns/pF) CL + 9.5 ns
tTLH,
tTHL
Propagation Delay Time
Reset to Decode Output
tPLH, tPHL = (1.7 ns/pF) CL + 415 ns
tPLH, tPHL = (0.66 ns/pF) CL + 197 ns
tPLH, tPHL = (0.5 ns/pF) CL + 150 ns
tPLH,
tPHL
Propagation Delay Time
Clock to Cout
tPLH, tPHL = (1.7 ns/pF) CL + 315 ns
tPLH, tPHL = (0.66 ns/pF) CL + 142 ns
tPLH, tPHL = (0.5 ns/pF) CL + 100 ns
tPLH,
tPHL
Propagation Delay Time
Clock to Decode Output
tPLH, tPHL = (1.7 ns/pF) CL + 415 ns
tPLH, tPHL = (0.66 ns/pF) CL + 197 ns
tPLH, tPHL = (0.5 ns/pF) CL + 150 ns
tPLH,
tPHL
Turn−Off Delay Time
Reset to Cout
tPLH = (1.7 ns/pF) CL + 315 ns
tPLH = (0.66 ns/pF) CL + 142 ns
tPLH = (0.5 ns/pF) CL + 100 ns
tPLH
Clock Pulse Width
VDD
Vdc
Min
Typ
(Note 6)
Max
5.0
10
15
−
−
−
100
50
40
200
100
80
Unit
ns
ns
5.0
10
15
−
−
−
500
230
175
1000
460
350
ns
5.0
10
15
−
−
−
400
175
125
800
350
250
ns
5.0
10
15
−
−
−
275
125
95
1000
460
350
ns
5.0
10
15
−
−
−
400
175
125
800
350
250
tWH
5.0
10
15
250
100
75
125
50
35
−
−
−
ns
fcl
5.0
10
15
−
−
−
5.0
12
16
2.0
5.0
6.7
MHz
Reset Pulse Width
tWH
5.0
10
15
500
250
190
250
125
95
−
−
−
ns
Reset Removal Time
trem
5.0
10
15
750
275
210
375
135
105
−
−
−
ns
tTLH, tTHL
5.0
10
15
Clock Frequency
Clock Input Rise and Fall Time
−
No Limit
Clock Enable Setup Time
tsu
5.0
10
15
350
150
115
175
75
52
−
−
−
ns
Clock Enable Removal Time
trem
5.0
10
15
420
200
140
260
100
70
−
−
−
ns
5. The formulas given are for the typical characteristics only at 25_C.
6. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
http://onsemi.com
4
MC14022B
VDD
VSS
VDD
VSS
A
S1
B
Output
Sink Drive
Output
Source Drive
Outputs
(S1 to A)
Clock to desired
Output
(S1 to B)
Carry
Clock to Q5
thru Q7
(S1 to B)
VGS =
VDD
− VDD
VDS =
Vout
Vout − VDD
Vout
CLOCK Q0
ENABLE Q1
Q2
Q3
RESET
Q4
Q5
Q6
Q7
CLOCK C
out
ID
EXTERNAL
POWER
SUPPLY
VSS
S1 to A
Figure 1. Typical Output Source and Output Sink Characteristics Test Circuit
VDD
500 mF
0.01 mF
CERAMIC
ID
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Cout
CLOCK
ENABLE
RESET
PULSE
GENERATOR
fc
CLOCK
CL
VSS
CL
CL
CL
CL
CL
CL
CL
CL
Figure 2. Typical Power Dissipation Test Circuit
APPLICATIONS INFORMATION
Figure 3 shows a technique for extending the number of decoded output states for the MC14022B. Decoded outputs are
sequential within each stage and from stage to stage, with no dead time (except propagation delay).
C
R
CE MC14022B
Q0 Q1 • • • Q6 Q7
7 DECODED
OUTPUTS
C
R
CE MC14022B
Q0 Q1 • • • Q6 Q7
6 DECODED
OUTPUTS
C
R
CE MC14022B
Q1 • • • Q6 Q7
6 DECODED
OUTPUTS
CLOCK
FIRST STAGE
INTERMEDIATE STAGES
Figure 3. Counter Expansion
http://onsemi.com
5
LAST STAGE
MC14022B
tWH
tWL
90%
CLOCK
trel
CLOCK
ENABLE
tsu
20 ns
trem
10%
20 ns
20 ns
20 ns
VDD
20 ns
VSS
tPLH
tPHL
tPLH
50%
tPLH
tPHL
tTHL
90%
Q1
VSS
VDD
RESET
Q0
VDD
50%
VSS
tPLH
tPHL
VOH
VOL
VOH
50%
10%
VOL
tTLH
VOH
Q2
tPLH
tPHL
VOL
tTLH
VOH
Q3
tPLH
tPHL
VOL
tTLH
VOH
Q4
tPLH
Q5
tTLH
tPHL
tPLH
VOL
tPHL
VOH
tTLH
tTHL
VOL
tTHL
VOH
tTLH
tPHL
Q6
VOL
tPLH
tPHL
VOH
Q7
tPHL
Cout
tTLH
tPLH
tTHL
VOL
VOH
tPHL
VOL
tTLH
tTHL
Figure 4. AC Measurement Definition and Functional Waveforms
ORDERING INFORMATION
Package
Shipping†
MC14022BDG
SOIC−16
(Pb−Free)
48 Units / Rail
MC14022BDR2G
SOIC−16
(Pb−Free)
2500 Units / Tape & Reel
NLV14022BDR2G*
SOIC−16
(Pb−Free)
2500 Units / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP
Capable.
http://onsemi.com
6
MC14022B
PACKAGE DIMENSIONS
SOIC−16
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751B−05
ISSUE K
−A−
16
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D
DIMENSION AT MAXIMUM MATERIAL CONDITION.
9
−B−
1
P
8 PL
0.25 (0.010)
8
M
B
S
DIM
A
B
C
D
F
G
J
K
M
P
R
G
R
K
F
X 45 _
C
−T−
SEATING
PLANE
J
M
D
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.229
0.244
0.010
0.019
16 PL
0.25 (0.010)
M
T B
S
A
S
SOLDERING FOOTPRINT*
8X
6.40
16X
1
1.12
16
16X
0.58
1.27
PITCH
8
9
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and the
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable
copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
7
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC14022B/D