NLSX3013 8-Bit 100 Mb/s Configurable Dual-Supply Level Translator The NLSX3013 is a 8−bit configurable dual−supply bidirectional level translator without a direction control pin. The I/O VCC− and I/O VL−ports are designed to track two different power supply rails, VCC and VL respectively. The VCC supply rail is configurable from 1.3 V to 4.5 V while the VL supply rail is configurable from 0.9 V to (VCC − 0.4) V. This allows lower voltage logic signals on the VL side to be translated into higher voltage logic signals on the VCC side, and vice−versa. Both I/O ports are auto−sensing; thus, no direction pin is required. The Output Enable (EN) input, when Low, disables both I/O ports by putting them in 3−state. This significantly reduces the supply currents from both VCC and VL. The EN signal is designed to track VL. www.onsemi.com MARKING DIAGRAM for NLSX3013FCT1G 3013F AYWW G for NLSX3013BFCT1G A1 20 PIN FLIP−CHIP 3013B CASE 766AK AYWW G A Y WW G Features • Wide High−Side VCC Operating Range: 1.3 V to 4.5 V • • • • • • Wide Low−Side VL Operating Range: 0.9 V to (VCC − 0.4) V High−Speed with 100 Mb/s Guaranteed Date Rate for VL > 1.8 V Low Bit−to−Bit Skew Overvoltage Tolerant Enable and I/O Pins Non−preferential Powerup Sequencing Small packaging: 2.03 mm x 2.54 mm 20 Pin Flip−Chip These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS Compliant Typical Applications • Mobile Phones, PDAs, Other Portable Devices • PC and Laptops • ESD Protection for All Pins: Human Body Model (HBM) > 6000 V = Assembly Location = Year = Work Week = Pb−Free Package LOGIC DIAGRAM EN VL VCC GND I/O VL1 I/O VCC1 I/O VL2 I/O VCC2 I/O VL3 I/O VCC3 I/O VL4 I/O VCC4 I/O VL5 I/O VCC5 I/O VL6 I/O VCC6 I/O VL7 I/O VCC7 I/O VL8 I/O VCC8 ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet. © Semiconductor Components Industries, LLC, 2015 January, 2015 − Rev. 3 1 Publication Order Number: NLSX3013/D NLSX3013 P One−Shot VL +1.8V VCC +3.6V VL +1.8 V System VCC NLSX3013 N One−Shot +3.6 V System I/O VL I/O1 I/On GND EN I/O VL1 I/O VCC1 I/O1 I/O VLn I/O VCCn EN GND I/On I/O VCC P One−Shot GND N One−Shot Figure 1. Typical Application Circuit Figure 2. Simplified Functional Diagram (1 I/O Line) (EN = 1) PIN ASSIGNMENT Pins FUNCTION TABLE Description EN Operating Mode VCC VCC Input Voltage L Hi−Z VL VL Input Voltage H I/O Buses Connected GND Ground EN Output Enable I/O VCCn I/O Port, Referenced to VCC I/O VLn I/O Port, Referenced to VL www.onsemi.com 2 NLSX3013 1 2 3 4 5 I/O VL2 I/O VL4 VL EN I/O VL6 B I/O VL1 I/O VL3 I/O VL5 I/O VL7 I/O VL8 C I/O VCC1 I/O VCC3 I/O VCC5 I/O VCC7 I/O VCC8 I/O VCC2 I/O VCC4 VCC GND I/O VCC6 A D Figure 3. 20 Flip−Chip (2.54 mm x 2.03 mm) (Top View) PIN ASSIGNMENT Pin Name Description A1 I/O VL2 I/O Port 2, Referenced to VL A2 I/O VL4 I/O Port 4, Referenced to VL A3 VL VL Input Voltage A4 EN Output Enable A5 I/O VL6 I/O Port 6, Referenced to VL B1 I/O VL1 I/O Port 1, Referenced to VL B2 I/O VL3 I/O Port 3, Referenced to VL B3 I/O VL5 I/O Port 5, Referenced to VL B4 I/O VL7 I/O Port 7, Referenced to VL B5 I/O VL8 I/O Port 8, Referenced to VL C1 I/O VCC1 I/O Port 1, Referenced to VCC C2 I/O VCC3 I/O Port 3, Referenced to VCC C3 I/O VCC5 I/O Port 5, Referenced to VCC C4 I/O VCC7 I/O Port 7, Referenced to VCC C5 I/O VCC8 I/O Port 8, Referenced to VCC D1 I/O VCC2 I/O Port 2, Referenced to VCC D2 I/O VCC4 I/O Port 4, Referenced to VCC D3 VCC VCC Input Voltage D4 GND Ground D5 I/O VCC6 I/O Port 6, Referenced to VCC www.onsemi.com 3 NLSX3013 MAXIMUM RATINGS Symbol Parameter Value Condition Unit VCC VCC Supply Voltage −0.5 to +5.5 V VL VL Supply Voltage −0.5 to +5.5 V I/O VCC VCC−Referenced DC Input/Output Voltage −0.5 to (VCC + 0.3) V I/O VL VL−Referenced DC Input/Output Voltage −0.5 to (VL + 0.3) V VEN Enable Control Pin DC Input Voltage −0.5 to +5.5 V IIK Input Diode Clamp Current −50 VI < GND mA IOK Output Diode Clamp Current −50 VO < GND mA ICC DC Supply Current Through VCC $100 mA IL DC Supply Current Through VL $100 mA IGND DC Ground Current Through Ground Pin $100 mA TSTG Storage Temperature −65 to +150 °C Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. RECOMMENDED OPERATING CONDITIONS Symbol VCC VL Parameter Max Unit VCC Supply Voltage 1.3 4.5 V VL Supply Voltage 0.9 VCC − 0.4 V GND 4.5 V GND GND 4.5 4.5 V −40 +85 °C 0 10 ns VEN Enable Control Pin Voltage VIO Bus Input/Output Voltage TA Operating Temperature Range DI/DV Min I/O VCC I/O VL Input Transition Rise or Rate VI, VIO from 30% to 70% of VCC; VCC = 3.3 V $ 0.3 V Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. www.onsemi.com 4 NLSX3013 DC ELECTRICAL CHARACTERISTICS −405C to +855C Symbol Test Conditions (Note 1) Parameter VCC (V) (Note 2) VL (V) (Note 3) Min Typ (Note 4) Max Unit VIHC I/O VCC Input HIGH Voltage 1.3 to 4.5 0.9 to (VCC – 0.4) 0.8 * VCC − − V VILC I/O VCC Input LOW Voltage 1.3 to 4.5 0.9 to (VCC – 0.4) − − 0.2 * VCC V VIHL I/O VL Input HIGH Voltage 1.3 to 4.5 0.9 to (VCC – 0.4) 0.8 * VL − − V VILL I/O VL Input LOW Voltage 1.3 to 4.5 0.9 to (VCC – 0.4) − − 0.2 * VL V VIH Control Pin Input HIGH Voltage TA = +25°C 1.3 to 4.5 0.9 to (VCC – 0.4) 0.8 * VL − − V VIL Control Pin Input LOW Voltage TA = +25°C 1.3 to 4.5 0.9 to (VCC – 0.4) − − 0.2 * VL V VOHC I/O VCC Output HIGH Voltage I/O VCC Source Current = 20 mA 1.3 to 4.5 0.9 to (VCC – 0.4) 0.8 * VCC − − V VOLC I/O VCC Output LOW Voltage I/O VCC Sink Current = 20 mA 1.3 to 4.5 0.9 to (VCC – 0.4) − − 0.2 * VCC V VOHL I/O VL Output HIGH Voltage I/O VL Source Current = 20 mA 1.3 to 4.5 0.9 to (VCC – 0.4) 0.8 * VL − − V VOLL I/O VL Output LOW Voltage I/O VL Sink Current = 20 mA 1.3 to 4.5 0.9 to (VCC – 0.4) − − 0.2 * VL V Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 1. Normal test conditions are VEN = 0 V, CIOVCC = 15 pF and CIOVL = 15 pF, unless otherwise specified. 2. VCC is the supply voltage associated with the high voltage port, and VCC ranges from +1.3 V to 4.5 V under normal operating conditions. 3. VL is the supply voltage associated with the low voltage port. VL must be less than or equal to (VCC – 0.4) V during normal operation. However, during startup and shutdown conditions, VL can be greater than (VCC – 0.4) V. 4. Typical values are for VCC = +2.8 V, VL = +1.8 V and TA = +25°C. All units are production tested at TA = +25°C. Limits over the operating temperature range are guaranteed by design. POWER CONSUMPTION Test Conditions (Note 5) VCC (V) (Note 6) VL (V) (Note 7) −405C to +855C Min Typ Max Unit IQ−VCC Supply Current from EN = VL; I/O VCCn = 0 V, I/O VLn = 0 V, 1.3 to 3.6 0.9 to (VCC – 0.4) VCC I/O VCCn = VCC or I/O VLn = VL and Io = 0 − − 1.0 mA IQ−VL Supply Current from EN = VL; I/O VCCn = 0 V, I/O VLn = 0 V, 1.3 to 3.6 0.9 to (VCC – 0.4) VL I/O VCCn = VCC or I/O VLn = VL and Io = 0 − − 1.0 mA − − 2.0 Symbol Parameter EN = VL, I/O VCCn = 0 V, I/O VLn = 0 V, I/O VCCn = VCC or I/O VLn = (VCC − 0.2 V) and Io = 0 ITS−VCC ITS−VL IOZ IEN < (VCC – 0.2) VCC Tristate Output Mode Supply Current EN = 0 V 1.3 to 3.6 0.9 to (VCC – 0.4) − − 1.0 mA VL Tristate Output Mode Supply Current EN = 0 V 1.3 to 3.6 0.9 to (VCC – 0.4) − − 0.2 mA − − 2.0 I/O Tristate Output Mode Leakage Current EN = 0 V − − 0.15 − − 2.0 Output Enable Pin Input Current − − − 1.0 EN = 0 V VCC − 0.2 1.3 to 3.6 0.9 to (VCC – 0.4) EN = 0 V VCC – 0.2 1.3 to 3.6 0.9 to (VCC – 0.4) mA mA 5. Normal test conditions are VEN = 0 V, CIOVCC = 15 pF and CIOVL = 15 pF, unless otherwise specified. 6. VCC is the supply voltage associated with the high voltage port, and VCC ranges from +1.3 V to 4.5 V under normal operating conditions. 7. VL is the supply voltage associated with the low voltage port. VL must be less than or equal to (VCC – 0.4) V during normal operation. However, during startup and shutdown conditions, VL can be greater than (VCC – 0.4) V. www.onsemi.com 5 NLSX3013 TIMING CHARACTERISTICS −405C to +855C Symbol Parameter Test Conditions (Note 8) VCC (V) (Note 9) VL (V) (Note 10) Min Typ (Note 11) Max Unit tR−VCC I/O VCC Rise Time (Output = I/O_VCC) CIOVCC = 15 pF 1.3 to 4.5 0.9 to (VCC – 0.4) 0.7 2.4 ns tF−VCC I/O VCC Falltime (Output = I/O_VCC) CIOVCC = 15 pF 1.3 to 4.5 0.9 to (VCC – 0.4) 0.5 1.0 ns tR−VL I/O VL Risetime (Output = I/O_VL) CIOVL = 15 pF 1.3 to 4.5 0.9 to (VCC – 0.4) 1.0 3.8 ns tF−VL I/O VL Falltime (Output = I/O_VL) CIOVL = 15 pF 1.3 to 4.5 0.9 to (VCC – 0.4) 0.6 1.2 ns ZO−VCC I/O VCC One−Shot Output Impedance 1.3 to 4.5 0.9 to (VCC – 0.4) 30 W ZO−VL I/O VL One−Shot Output Impedance 1.3 to 4.5 0.9 to (VCC – 0.4) 30 W tPD_VL−VCC Propagation Delay (Output = I/O_VCC, tPHL, tPLH) CIOVCC = 15 pF 1.3 to 4.5 0.9 to (VCC – 0.4) 4.5 9.3 ns tPD_VCC−VL Propagation Delay (Output = I/O_VL, tPHL, tPLH) CIOVL = 15 pF 1.3 to 4.5 0.9 to (VCC – 0.4) 3.0 6.5 ns Channel−to−Channel Skew (Output = I/O_VCC) CIOVCC = 15 pF 1.3 to 4.5 0.9 to (VCC – 0.4) 0.2 0.3 nS tSK_VCC−VL Channel−to−Channel Skew (Output = I/O_VL) CIOVCC = 15 pF 1.3 to 4.5 0.9 to (VCC – 0.4) 0.2 0.3 nS (Output = I/O_VCC, CIOVCC = 15 pF) (Output = I/O_VL, CIOVL = 15 pF) 1.3 to 4.5 0.9 to (VCC – 0.4) 110 > 2.2 > 1.8 140 tSK VL−VCC Maximum Data Rate Mb/s 8. Normal test conditions are VEN = 0 V, CIOVCC = 15 pF and CIOVL = 15 pF, unless otherwise specified. 9. VCC is the supply voltage associated with the high voltage port, and VCC ranges from +1.3 V to 4.5 V under normal operating conditions. 10. VL is the supply voltage associated with the low voltage port. VL must be less than or equal to (VCC – 0.4) V during normal operation. However, during startup and shutdown conditions, VL can be greater than (VCC – 0.4) V. 11. Typical values are for VCC = +2.8 V, VL = +1.8 V and TA = +25°C. All units are production tested at TA = +25°C. Limits over the operating temperature range are guaranteed by design. www.onsemi.com 6 NLSX3013 ENABLE / DISABLE TIME MEASUREMENTS −405C to +855C tEN−VL Unit 0.9 to (VCC – 0.4) 130 180 ns 1.3 to 4.5 0.9 to (VCC – 0.4) 100 150 ns CIOVCC = 15 pF 1.3 to 4.5 0.9 to (VCC – 0.4) 95 185 ns CIOVL = 15 pF 1.3 to 4.5 0.9 to (VCC – 0.4) 70 110 ns CIOVCC = 15 pF 1.3 to 4.5 0.9 to (VCC – 0.4) 175 250 ns CIOVL = 15 pF 1.3 to 4.5 0.9 to (VCC – 0.4) 150 190 ns CIOVCC = 15 pF 1.3 to 4.5 0.9 to (VCC – 0.4) 180 250 ns CIOVL = 15 pF 1.3 to 4.5 0.9 to (VCC – 0.4) 160 220 ns VL (V) (Note 14) Turn−On Enable Time (Output = I/O_VCC, tpZH) CIOVCC = 15 pF 1.3 to 4.5 Turn−On Enable Time (Output = I/O_VCC, tpZL) CIOVL = 15 pF Turn−On Enable Time (Output = I/O_VL, tpZH) Turn−On Enable Time (Output = I/O_VL, tpZL) tDIS−VCC Turn−Off Disable Time (Output = I/O_VCC, tpHZ) Propagation Delay (Output = I/O_VCC, tPLZ) tDIS−VL Max VCC (V) (Note 13) Parameter tEN−VCC Typ (Note 15) Test Conditions (Note 12) Symbol Turn−Off Disable Time (Output = I/O_VL, tpHZ) Propagation Delay (Output = I/O_VL, tPLZ) Min 12. Normal test conditions are VEN = 0 V, CIOVCC = 15 pF and CIOVL = 15 pF, unless otherwise specified. 13. VCC is the supply voltage associated with the high voltage port, and VCC ranges from +1.3 V to 4.5 V under normal operating conditions. 14. VL is the supply voltage associated with the low voltage port. VL must be less than or equal to (VCC – 0.4) V during normal operation. However, during startup and shutdown conditions, VL can be greater than (VCC – 0.4) V. 15. Typical values are for VCC = +2.8 V, VL = +1.8 V and TA = +25 °C. All units are production tested at TA = +25 °C. Limits over the operating temperature range are guaranteed by design. NLSX3013 VL VCC NLSX3013 VL EN I/O VL EN I/O VL I/O VCC Source VCC I/O VCC CIOVL CIOVCC Source tRISE/FALL v 3 ns I/O VL 90% 50% 10% tPD_VL−VCC I/O VCC tRISE/FALL v 3 ns I/O VCC 90% 50% 10% tPD_VCC−VL I/O VL tPD_VL−VCC 90% 50% 10% tPD_VCC−VL 90% 50% 10% tF−VCC tR−VCC tF−VL Figure 4. Driving I/O VL Test Circuit and Timing tR−VL Figure 5. Driving I/O VCC Test Circuit and Timing www.onsemi.com 7 NLSX3013 VCC 2xVCC OPEN R1 PULSE GENERATOR DUT RT CL Test RL Switch tPZH, tPHZ Open tPZL, tPLZ 2 x VCC CL = 15 pF or equivalent (Includes jig and probe capacitance) RL = R1 = 50 kW or equivalent RT = ZOUT of pulse generator (typically 50 W) Figure 6. Test Circuit for Enable/Disable Time Measurement tR tF Input tPLH Output EN VCC 90% 50% 10% GND GND tPZL tPHL 90% 50% 10% tR VL 50% Output Output HIGH IMPEDANCE 50% tPZH tF tPLZ tPHZ 10% VOL 90% VOH 50% Figure 7. Timing Definitions for Propagation Delays and Enable/Disable Measurement www.onsemi.com 8 HIGH IMPEDANCE NLSX3013 IMPORTANT APPLICATIONS INFORMATION Level Translator Architecture Enable Input (EN) The NLSX3013 auto sense translator provides bi−directional voltage level shifting to transfer data in multiple supply voltage systems. This device has two supply voltages, VL and VCC, which set the logic levels on the input and output sides of the translator. When used to transfer data from the VL to the VCC ports, input signals referenced to the VL supply are translated to output signals with a logic level matched to VCC. In a similar manner, the VCC to VL translation shifts input signals with a logic level compatible to VCC to an output signal matched to VL. The NLSX3013 consists of four bi−directional channels that independently determine the direction of the data flow without requiring a directional pin. The one−shot circuits are used to detect the rising or falling input signals. In addition, the one shots decrease the rise and fall time of the output signal for high−to−low and low−to−high transitions. The NLSX3013 has an Enable pin (EN) that provides tri−state operation at the I/O pins. Driving the Enable pin to a low logic level minimizes the power consumption of the device and drives the I/O VCC and I/O VL pins to a high impedance state. Normal translation operation occurs when the EN pin is equal to a logic high signal. The EN pin is referenced to the VL supply and has Over−Voltage Tolerant (OVT) protection. Uni−Directional versus Bi−Directional Translation The NLSX3013 can function as a non−inverting uni−directional translator. One advantage of using the translator as a uni−directional device is that each I/O pin can be configured as either an input or output. The configurable input or output feature is especially useful in applications such as SPI that use multiple uni−directional I/O lines to send data to and from a device. The flexible I/O port of the auto sense translator simplifies the trace connections on the PCB. Input Driver Requirements Auto sense translators such as the NLSX3013 have a wide bandwidth, but a relatively small DC output current rating. The high bandwidth of the bi−directional I/O circuit is used to quickly transform from an input to an output driver and vice versa. The I/O ports have a modest DC current output specification so that the output driver can be over driven when data is sent to in the opposite direction. For proper operation, the input driver to the auto sense translator should be capable of driving 20 mA of peak output current with an output impedance less than 25 W. The bi−directional configuration of the translator results in both input stages being active for a very short time period. Although the peak current from the input signal circuit is relatively large, the average current is small and consistent with a standard CMOS input stage. Power Supply Guidelines During normal operation, supply voltage VL should be less than or equal to VCC. The sequencing of the power supplies will not damage the device during the power up operation. The enable pin should be used to enter the low current tri−state mode, rather than setting either the VL or VCC supplies to 0 V. The NLSX3013 will not be damaged if either VL or VCC is equal to 0 V while the other supply voltage is at a nominal operating value; however, the operation of the translator cannot be guaranteed during single supply operation. For optimal performance, 0.01 to 0.1 mF decoupling capacitors should be used on the VL and VCC power supply pins. Ceramic capacitors are a good design choice to filter and bypass any noise signals on the power supply voltage lines to the ground plane of the PCB. The noise immunity will be maximized by placing the capacitors as close as possible to the supply and ground pins, along with minimizing the PCB connection traces. Output Load Requirements The NLSX3013 is designed to drive CMOS inputs. Resistive pullup or pulldown loads of less than 50 kW should not be used with this device. The NLSX3373 or NLSX3378 open−drain auto sense translators are alternate translator options for an application such as the I2C bus that requires pullup resistors. ORDERING INFORMATION Device NLSX3013FCT1G NLSX3013BFCT1G Package Shipping† 20 Pin Flip−Chip (Pb−Free) 3000 / Tape & Reel 20 Pin Flip−Chip (Backside Laminate Coating) (Pb−Free) 3000 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. www.onsemi.com 9 NLSX3013 PACKAGE DIMENSIONS 20 PIN FLIP−CHIP CSP, 2.54x2.03, 0.5P CASE 766AK ISSUE A ÎÎ PIN A1 REFERENCE NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. COPLANARITY APPLIES TO SPHERICAL CROWNS OF SOLDER BALLS. A B D E 2X DIM A A1 A2 b D D1 E E1 e 0.10 C 0.10 C 2X TOP VIEW A1 0.10 C A2 A 0.05 C 20X C SIDE VIEW NOTE 3 RECOMMENDED SOLDERING FOOTPRINT* SEATING PLANE PACKAGE OUTLINE 20X 0.25 D1 20X 0.05 C A B 0.03 C A1 e b MILLIMETERS MIN MAX 0.66 --0.21 0.27 0.33 0.39 0.29 0.34 2.54 BSC 2.00 BSC 2.03 BSC 1.50 BSC 0.50 BSC 0.50 PITCH D C E1 B 0.50 PITCH A 1 2 3 4 5 e/2 DIMENSION: MILLIMETERS BOTTOM VIEW *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent− Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 www.onsemi.com 10 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NLSX3013/D