NLAS325 Dual SPST Analog Switch, Low Voltage, Single Supply The NLAS325 is a dual SPST (Single Pole, Single Throw) switch, similar to 1/2 a standard 4066. The device permits the independent selection of 2 analog/digital signals. Available in the Ultra−Small 8 package. The use of advanced 0.6 CMOS process, improves the RON resistance considerably compared to older higher voltage technologies. www.onsemi.com MARKING DIAGRAM 8 Features • • • • • • • • • • On Resistance is 20 Typical at 5.0 V Matching is < 1.0 Between Sections 2.0−6.0 V Operating Range Ultra Low < 5.0 pC Charge Injection Ultra Low Leakage < 1.0 nA at 5.0 V, 25°C Wide Bandwidth > 200 MHz, −3.0 dB 2000 V ESD (HBM) RON Flatness "6.0 at 5.0 V Independent Enables; One Positive, One Negative These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS Compliant NO1 COM1 IN2 GND 1 8 2 7 3 6 4 5 VCC IN1 8 1 A9 M G G 1 A9 M G = Device Code = Date Code* = Pb−Free Package (Note: Microdot may be in either location) PIN ASSIGNMENT 1 NO1 2 COM1 3 IN2 4 GND 5 NC2 6 COM2 7 IN1 8 VCC FUNCTION TABLE COM2 NC2 US8 US SUFFIX CASE 493 On/Off Enable Input Analog Switch 1 Analog Switch 2 L H Off On On Off Figure 1. Pinout ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet. © Semiconductor Components Industries, LLC, 2015 July, 2015 − Rev. 7 1 Publication Order Number: NLAS325/D NLAS325 MAXIMUM RATINGS Value Unit VCC Symbol DC Supply Voltage Parameter *0.5 to )7.0 V VI DC Input Voltage *0.5 to )7.0 V VO DC Output Voltage *0.5 to )7.0 V IIK DC Input Diode Current VI < GND *50 mA IOK DC Output Diode Current VO < GND *50 mA IO DC Output Sink Current $50 mA ICC DC Supply Current per Supply Pin $100 mA IGND DC Ground Current per Ground Pin $100 mA TSTG Storage Temperature Range *65 to )150 °C TL Lead Temperature, 1.0 mm from Case for 10 Seconds 260 °C TJ Junction Temperature under Bias )150 °C JA Thermal Resistance (Note 1) 250 °C/W PD Power Dissipation in Still Air at 85°C 250 mW MSL Moisture Sensitivity FR Flammability Rating VESD ESD Withstand Voltage Level 1 Oxygen Index: 28 to 34 UL 94 V−0 @ 0.125 in Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4) > 2000 > 200 N/A V Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Measured with minimum pad spacing on an FR4 board, using 10 mm−by−1 inch, 2−ounce copper trace with no air flow. 2. Tested to EIA/JESD22−A114−A. 3. Tested to EIA/JESD22−A115−A. 4. Tested to JESD22−C101−A. RECOMMENDED OPERATING CONDITIONS Symbol Parameter Min Max Unit 2.0 5.5 V VCC DC Supply Voltage VIN Digital Select Input Voltage GND 5.5 V VIS Analog Input Voltage (NC, NO, COM) GND VCC V TA Operating Temperature Range *55 )125 °C tr, tf Input Rise or Fall Time, SELECT 0 0 100 20 ns/V VCC = 3.3 V $ 0.3 V VCC = 5.0 V $ 0.5 V Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 90 419,300 47.9 100 178,700 20.4 110 79,600 9.4 120 37,000 4.2 130 17,800 2.0 140 8,900 1.0 TJ = 80°C 117.8 TJ = 90°C 1,032,200 TJ = 100°C 80 TJ = 110°C Time, Years TJ = 120°C Time, Hours FAILURE RATE OF PLASTIC = CERAMIC UNTIL INTERMETALLICS OCCUR TJ = 130°C Junction Temperature °C NORMALIZED FAILURE RATE DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES 1 1 10 100 1000 TIME, YEARS Figure 2. Failure Rate vs. Time Junction Temperature www.onsemi.com 2 NLAS325 DC CHARACTERISTICS − Digital Section (Voltages Referenced to GND) Guaranteed Limit Symbol Parameter Condition VCC *555C to 255C t855C t1255C Unit VIH Minimum High−Level Input Voltage, Select Inputs 2.0 2.5 3.0 4.5 5.5 1.5 1.9 2.1 3.15 3.85 1.5 1.9 2.1 3.15 3.85 1.5 1.9 2.1 3.15 3.85 V VIL Maximum Low−Level Input Voltage, Select Inputs 2.0 2.5 3.0 4.5 5.5 0.5 0.6 0.9 1.35 1.65 0.5 0.6 0.9 1.35 1.65 0.5 0.6 0.9 1.35 1.65 V IIN Maximum Input Leakage Current, Select Inputs VIN = 5.5 V or GND 0 V to 5.5 V $0.2 $2.0 $2.0 A ICC Maximum Quiescent Supply Current Select and VIS = VCC or GND 5.5 4.0 4.0 8.0 A DC ELECTRICAL CHARACTERISTICS − Analog Section Guaranteed Limit Symbol Parameter Condition VCC *555C to 255C t855C t1255C Unit RON Maximum “ON” Resistance (Figures 16 − 22) VIN = VIL or VIH VIS = GND to VCC IINI v 10 mA 2.5 3.0 4.5 5.5 85 45 30 25 95 50 35 30 105 55 40 35 RFLAT(ON) ON Resistance Flatness (Figures 16 − 22) VIN = VIL or VIH IINI v 10 mA VIS = 1.0 V, 2.0 V, 3.5 V 4.5 4.0 4.0 5.0 INC(OFF) INO(OFF) NO or NC Off Leakage Current (Figure 8) VIN = VIL or VIH VNO or VNC = 1.0 VCOM 4.5 V 5.5 1.0 10 100 nA ICOM(ON) COM ON Leakage Current (Figure 8) VIN = VIL or VIH VNO 1.0 V or 4.5 V with VNC floating or VNO 1.0 V or 4.5 V with VNO floating VCOM = 1.0 V or 4.5 V 5.5 1.0 10 100 nA www.onsemi.com 3 NLAS325 AC ELECTRICAL CHARACTERISTICS (Input tr = tf = 3.0 ns) Guaranteed Maximum Limit Symbol Parameter *555C to 255C t855C t1255C VCC VIS Test Conditions (V) (V) Min Typ* Max Min Max Min Max Unit tON Turn−On Time (Figures 11 and 12) RL = 300 CL = 35 pF (Figures 4 and 5) 2.5 3.0 4.5 5.5 2.0 2.0 3.0 3.0 5.0 5.0 2.0 2.0 23 16 11 9.0 35 24 16 14 5.0 5.0 2.0 2.0 38 27 19 17 5.0 5.0 2.0 2.0 41 30 22 20 ns tOFF Turn−Off Time (Figures 11 and 12) RL = 300 CL = 35 pF (Figures 4 and 5) 2.5 3.0 4.5 5.5 2.0 2.0 3.0 3.0 1.0 1.0 1.0 1.0 7.0 5.0 4.0 3.0 12 10 6.0 5.0 1.0 1.0 1.0 1.0 15 13 9.0 8.0 1.0 1.0 1.0 1.0 18 16 12 11 ns tBBM Minimum Break−Before−Make Time VIS = 3.0 V (Figure 3) RL = 300 CL = 35 pF 2.5 3.0 4.5 5.5 2.0 2.0 3.0 3.0 1.0 1.0 1.0 1.0 12 11 6.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ns *Typical Characteristics are at 25°C. Typical @ 25, VCC = 5.0 V CIN CNO or CNC CCOM C(ON) Maximum Input Capacitance, Select Input Analog I/O (switch off) Common I/O (switch off) Feedthrough (switch on) 8.0 10 10 20 pF ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted) Symbol Parameter Condition VCC Typical (V) 25°C Unit BW Maximum On−Channel −3.0 dB Bandwidth or Minimum Frequency Response (Figure 10) VIN = 0 dBm VIN centered between VCC and GND (Figure 6) 3.0 4.5 5.5 145 170 175 MHz VONL Maximum Feedthrough On Loss VIN = 0 dBm @ 100 kHz to 50 MHz VIN centered between VCC and GND (Figure 6) 3.0 4.5 5.5 *2.0 *2.0 *2.0 dB VISO Off−Channel Isolation (Figure 9) f = 100 kHz; VIS = 1.0 V RMS VIN centered between VCC and GND (Figure 6) 3.0 4.5 5.5 *93 *93 *93 dB Q Charge Injection Select Input to Common I/O (Figure 14) VIN = VCC to GND, FIS = 20 kHz tr = tf = 3.0 ns RIS = 0 , CL = 1000 pF Q = CL * VOUT (Figure 7) 3.0 5.5 1.5 3.0 Total Harmonic Distortion THD + Noise (Figure 13) FIS = 20 Hz to 100 kHz, RL = Rgen = 600 , CL = 50 pF VIS = 5.0 VPP sine wave 5.5 0.1 Channel−to−Channel Crosstalk f = 100 kHz; VIS = 1.0 V RMS VIN centered between VCC and GND (Figure 6) 5.5 3.0 *90 *90 THD VCT www.onsemi.com 4 pC % dB NLAS325 VCC DUT VCC Input Output GND VOUT 0.1 F 300 tBMM 35 pF 90% of VOH 90% Output Switch Select Pin GND Figure 3. tBBM (Time Break−Before−Make) VCC DUT VCC 0.1 F 50% Input Output VOUT Open 50% 0V 300 VOH 90% 35 pF 90% Output VOL Input tON tOFF Figure 4. tON/tOFF VCC VCC 50% Input DUT Output 0V 300 VOUT Open 50% VOH 35 pF Output Input tOFF Figure 5. tON/tOFF www.onsemi.com 5 10% 10% VOL tON NLAS325 50 DUT Reference Transmitted Input Output 50 Generator 50 Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. VISO, Bandwidth and VONL are independent of the input signal direction. ǒVVOUT Ǔfor VIN at 100 kHz IN VOUT Ǔ for VIN at 100 kHz to 50 MHz VONL = On Channel Loss = 20 Log ǒ VIN VISO = Off Channel Isolation = 20 Log Bandwidth (BW) = the frequency 3.0 dB below VONL VCT = Use VISO setup and test to all other switch analog input/outputs terminated with 50 Figure 6. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/VONL DUT VCC VIN Output Open GND CL Output Off On VIN Figure 7. Charge Injection: (Q) 100 LEAKAGE (nA) 10 1 ICOM(ON) 0.1 ICOM(OFF) 0.01 VCC = 5.0 V INO(OFF) 0.001 −55 −20 25 70 85 TEMPERATURE (°C) Figure 8. Switch Leakage vs. Temperature www.onsemi.com 6 125 Off VOUT NLAS325 +15 0 1.0 2.0 −20 +10 Bandwidth (ON−RESPONSE) +5 3.0 0 PHASE SHIFT 4.0 −40 (dB) (dB) Off Isolation −60 VCC = 5.0 V TA = 25°C −80 −100 0.01 0.1 −10 6.0 −15 7.0 −20 8.0 −25 9.0 10.0 0.01 100 200 1 10 FREQUENCY (MHz) −5 5.0 PHASE (°) 0 VCC = 5.0 V TA = 25°C −30 0.1 1 −35 100 300 10 FREQUENCY (MHz) Figure 9. Off−Channel Isolation Figure 10. Typical Bandwidth and Phase Shift 30 30 25 25 20 20 TIME (ns) TIME (ns) VCC = 4.5 V 15 tON (ns) 10 tOFF (ns) 5 0 2.5 3 3.5 4 4.5 10 tON 5 tOFF 0 −55 5 −40 85 25 125 VCC (VOLTS) Temperature (°C) Figure 11. tON and tOFF vs. VCC at 255C Figure 12. tON and tOFF vs. Temp 1 3.0 VINpp = 3.0 V VCC = 3.6 V 2.5 2.0 Q (pC) THD + NOISE (%) 15 0.1 VINpp = 5.0 V VCC = 5.5 V VCC = 5 V 1.5 1.0 0.5 VCC = 3 V 0 −0.5 0.01 1 10 0 100 1 2 3 4 FREQUENCY (kHz) VCOM (V) Figure 13. Total Harmonic Distortion Plus Noise vs. Frequency Figure 14. Charge Injection vs. COM Voltage www.onsemi.com 7 5 NLAS325 100 100 VCC = 2.0 V 10 80 RON () ICC (nA) 1 0.1 0.01 60 VCC = 2.5 V 40 VCC = 3.0 V 0.001 VCC = 3.0 V VCC = 4.0 V 20 0.0001 VCC = 5.0 V 0.00001 −40 −20 0 20 60 VCC = 5.5 V 80 100 0 0.0 120 3.0 4.0 5.0 VIS (VDC) Figure 15. ICC vs. Temp, VCC = 3.0 V and 5.0 V Figure 16. RON vs. VCC, Temp = 255C 90 90 80 80 70 70 60 60 RON () 100 RON () 2.0 Temperature (°C) 100 50 40 125°C 30 40 25°C −55°C 10 85°C 0.5 50 20 −55°C 10 6.0 30 25°C 20 0 0.0 1.0 1.0 1.5 2.0 0 0.0 2.5 85°C 125°C 0.5 1.0 1.5 VIS (VDC) 2.0 2.5 3.0 VIS (VDC) Figure 17. RON vs Temp, VCC = 2.0 V Figure 18. RON vs. Temp, VCC = 2.5 V 50 30 45 25 40 20 30 RON () RON () 35 25 20 125°C 10 15 0 0.0 25°C 85°C 10 5 15 5 25°C 85°C 125°C −55°C −55°C 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 VIS (VDC) VIS (VDC) Figure 20. RON vs. Temp, VCC = 4.5 V Figure 19. RON vs. Temp, VCC = 3.0 V www.onsemi.com 8 4.5 NLAS325 25 25 125°C 20 20 RON () RON () 125°C 15 25°C 10 −55°C 85°C 25°C 10 85°C 5 0 0.0 15 −55°C 5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 5.0 VIS (VDC) VIS (VDC) Figure 21. RON vs. Temp, VCC = 5.0 V Figure 22. RON vs. Temp, VCC = 5.5 V ORDERING INFORMATION Device Order Number NLAS325USG Package Type US8 (Pb−Free) Tape and Reel Shippingize† 3000 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. www.onsemi.com 9 NLAS325 PACKAGE DIMENSIONS US8 US SUFFIX CASE 493−02 ISSUE D NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR. MOLD FLASH. PROTRUSION AND GATE BURR SHALL NOT EXCEED 0.14MM (0.0055”) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH AND PROTRUSION SHALL NOT EXCEED 0.14MM (0.0055”) PER SIDE. 5. LEAD FINISH IS SOLDER PLATING WITH THICKNESS OF 0.0076−0.0203MM (0.003−0.008”). 6. ALL TOLERANCE UNLESS OTHERWISE SPECIFIED ±0.0508MM (0.0002”). X Y A 8 J 5 DETAIL E B L 1 4 R S G P U C SEATING PLANE T D 0.10 (0.004) H 0.10 (0.004) T K M N R 0.10 TYP T X Y V M F DIM A B C D F G H J K L M N P R S U V MILLIMETERS MIN MAX 1.90 2.10 2.20 2.40 0.60 0.90 0.17 0.25 0.20 0.35 0.50 BSC 0.40 REF 0.10 0.18 0.00 0.10 3.00 3.20 0_ 6_ 0_ 10 _ 0.23 0.34 0.23 0.33 0.37 0.47 0.60 0.80 0.12 BSC INCHES MIN MAX 0.075 0.083 0.087 0.094 0.024 0.035 0.007 0.010 0.008 0.014 0.020 BSC 0.016 REF 0.004 0.007 0.000 0.004 0.118 0.128 0_ 6_ 0_ 10 _ 0.010 0.013 0.009 0.013 0.015 0.019 0.024 0.031 0.005 BSC DETAIL E RECOMMENDED SOLDERING FOOTPRINT* 8X 0.30 8X 0.68 3.40 1 0.50 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 www.onsemi.com 10 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NLAS325/D