MC14532B D

MC14532B
8-Bit Priority Encoder
The MC14532B is constructed with complementary MOS (CMOS)
enhancement mode devices. The primary function of a priority
encoder is to provide a binary address for the active input with the
highest priority. Eight data inputs (D0 thru D7) and an enable input
(Ein) are provided. Five outputs are available, three are address outputs
(Q0 thru Q2), one group select (GS) and one enable output (Eout).
http://onsemi.com
Features
• Diode Protection on All Inputs
• Supply Voltage Range = 3.0 Vdc to 18 Vdc
• Capable of Driving Two Low−Power TTL Loads or One Low−Power
•
•
Schottky TTL Load over the Rated Temperature Range
NLV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q100
Qualified and PPAP Capable
This Device is Pb−Free and is RoHS Compliant
PIN ASSIGNMENT
MAXIMUM RATINGS (Voltages Referenced to VSS)
Symbol
Rating
Value
Unit
DC Supply Voltage Range
VDD
−0.5 to +18.0
V
Input or Output Voltage Range
(DC or Transient)
Vin,
Vout
−0.5 to VDD + 0.5
V
Input or Output Current
(DC or Transient) per Pin
±10
Iin, Iout
mA
Power Dissipation, per Package (Note 1)
PD
500
mW
Ambient Temperature Range
TA
−55 to +125
°C
Storage Temperature Range
Tstg
−65 to +150
°C
Lead Temperature (8 Sec Soldering)
TL
260
°C
Stresses exceeding those listed in the Maximum Ratings table may damage the
device. If any of these limits are exceeded, device functionality should not be
assumed, damage may occur and reliability may be affected.
1. Temperature Derating: “D/DW” Package: –7.0 mW/_C From 65_C To 125_C
This device contains protection circuitry to guard against damage due to high
static voltages or electric fields. However, precautions must be taken to avoid
applications of any voltage higher than maximum rated voltages to this
high−impedance circuit. For proper operation, Vin and Vout should be constrained
to the range VSS ≤ (Vin or Vout) ≤ VDD.
Unused inputs must always be tied to an appropriate logic voltage level
(e.g., either VSS or VDD). Unused outputs must be left open.
TRUTH TABLE
Input
Output
Ein
D7
D6
D5
D4
D3
D2
D1
D0
GS
Q2
Q1
Q0
Eout
0
1
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
X
1
0
0
X
X
1
0
X
X
X
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
1
1
1
1
1
1
1
1
1
0
0
1
0
1
0
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
X = Don’t Care
0
0
0
0
0
0
0
0
1
0
0
0
X
1
0
0
X
X
1
0
X
X
X
1
1
1
1
1
0
0
0
0
1
1
0
0
1
0
1
0
0
0
0
0
© Semiconductor Components Industries, LLC, 2014
July, 2014 − Rev. 9
1
1
SOIC−16
D SUFFIX
CASE 751B
D4
1
16
VDD
D5
2
15
Eout
D6
3
14
GS
D7
4
13
D3
Ein
5
12
D2
Q2
6
11
D1
Q1
7
10
D0
VSS
8
9
Q0
MARKING DIAGRAM
14532BG
AWLYWW
1
A
WL
YY, Y
WW
G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 2 of this data sheet.
Publication Order Number:
MC14532B/D
MC14532B
ORDERING INFORMATION
Package
Shipping†
MC14532BDG
SOIC−16
(Pb−Free)
48 Units / Rail
MC14532BDR2G
SOIC−16
(Pb−Free)
2500 / Tape & Reel
NLV14532BDR2G*
SOIC−16
(Pb−Free)
2500 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP
Capable.
ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)
− 55_C
25_C
VDD
125_C
Symbol
Vdc
Min
Max
Min
Typ
(Note 2)
Max
Min
Max
Unit
“0” Level
VOL
5.0
10
15
−
−
−
0.05
0.05
0.05
−
−
−
0
0
0
0.05
0.05
0.05
−
−
−
0.05
0.05
0.05
Vdc
“1” Level
VOH
5.0
10
15
4.95
9.95
14.95
−
−
−
4.95
9.95
14.95
5.0
10
15
−
−
−
4.95
9.95
14.95
−
−
−
Vdc
Input Voltage
“0” Level
(VO = 4.5 or 0.5 Vdc)
(VO = 9.0 or 1.0 Vdc)
(VO = 13.5 or 1.5 Vdc)
VIL
5.0
10
15
−
−
−
1.5
3.0
4.0
−
−
−
2.25
4.50
6.75
1.5
3.0
4.0
−
−
−
1.5
3.0
4.0
“1” Level
VIH
5.0
10
15
3.5
7.0
11
−
−
−
3.5
7.0
11
2.75
5.50
8.25
−
−
−
3.5
7.0
11
−
−
−
5.0
5.0
10
15
–3.0
–0.64
–1.6
–4.2
−
−
−
−
–2.4
– 0.51
–1.3
–3.4
–4.2
–0.88
–2.25
–8.8
−
−
−
−
–1.7
–0.36
–0.9
–2.4
−
−
−
−
IOL
5.0
10
15
0.64
1.6
4.2
−
−
−
0.51
1.3
3.4
0.88
2.25
8.8
−
−
−
0.36
0.9
2.4
−
−
−
mAdc
Input Current
Iin
15
−
±0.1
−
±0.00001
±0.1
−
±1.0
mAdc
Input Capacitance
(Vin = 0)
Cin
−
−
−
−
5.0
7.5
−
−
pF
Quiescent Current
(Per Package)
IDD
5.0
10
15
−
−
−
5.0
10
20
−
−
−
0.005
0.010
0.015
5.0
10
20
−
−
−
150
300
600
mAdc
IT
5.0
10
15
Characteristic
Output Voltage
Vin = VDD or 0
Vin = 0 or VDD
(VO = 0.5 or 4.5 Vdc)
(VO = 1.0 or 9.0 Vdc)
(VO = 1.5 or 13.5 Vdc)
Output Drive Current
(VOH = 2.5 Vdc)
(VOH = 4.6 Vdc)
(VOH = 9.5 Vdc)
(VOH = 13.5 Vdc)
(VOL = 0.4 Vdc)
(VOL = 0.5 Vdc)
(VOL = 1.5 Vdc)
Vdc
Vdc
IOH
Source
Sink
Total Supply Current (Notes 3, 4)
(Dynamic plus Quiescent,
Per Package)
(CL = 50 pF on all outputs, all
buffers switching)
mAdc
IT = (1.74 mA/kHz) f + IDD
IT = (3.65 mA/kHz) f + IDD
IT = (5.73 mA/kHz) f + IDD
mAdc
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
3. The formulas given are for the typical characteristics only at 25_C.
4. To calculate total supply current at loads other than 50 pF:
IT(CL) = IT(50 pF) + (CL – 50) Vfk
where: IT is in mA (per package), CL in pF, V = (VDD – VSS) in volts, f in kHz is input frequency, and k = 0.005.
http://onsemi.com
2
MC14532B
SWITCHING CHARACTERISTICS (CL = 50 pF, TA = 25_C) (Note 5)
Characteristic
Symbol
Output Rise and Fall Time
tTLH, tTHL = (1.5 ns/pF) CL + 25 ns
tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns
tTLH, tTHL = (0.55 ns/pF) CL + 9.5 ns
tTLH,
tTHL
Propagation Delay Time — Ein to Eout
tPLH, tPHL = (1.7 ns/pF) CL + 120 ns
tPLH, tPHL = (0.66 ns/pF) CL + 77 ns
tPLH, tPHL = (0.5 ns/pF) CL + 55 ns
tPLH,
tPHL
Propagation Delay Time — Ein to GS
tPLH, tPHL = (1.7 ns/pF) CL + 90 ns
tPLH, tPHL = (0.66 ns/pF) CL 57 ns
tPLH, tPHL = (0.5 ns/pF) CL + 40 ns
tPLH,
tPHL
Propagation Delay Time — Ein to Qn
tPLH, tPHL = (1.7 ns/pF) CL + 195 ns
tPLH, tPHL = (0.66 ns/pF) CL + 107 ns
tPLH, tPHL = (0.5 ns/pF) CL + 75 ns
tPHL,
tPLH
Propagation Delay Time — Dn to Qn
tPLH, tPHL = (1.7 ns/pF) CL + 265 ns
tPLH, tPHL = (0.66 ns/pF) CL + 137 ns
tPLH, tPHL = (0.5 ns/pF) CL + 85 ns
tPLH,
tPHL
Propagation Delay Time — Dn to GS
tPLH, tPHL = (1.7 ns/pF) CL + 195 ns
tPLH, tPHL = (0.66 ns/pF) CL + 107 ns
tPLH, tPHL = (0.5 ns/pF) CL + 75 ns
tPLH,
tPHL
VDD
Min
Typ
(Note 6)
Max
5.0
10
15
−
−
−
100
50
40
200
100
80
5.0
10
15
−
−
−
205
110
80
410
220
160
5.0
10
15
−
−
−
175
90
65
350
180
130
5.0
10
15
−
−
−
280
140
100
560
280
200
5.0
10
15
−
−
−
300
170
110
600
340
220
5.0
10
15
−
−
−
280
140
100
560
280
200
Unit
ns
ns
ns
ns
ns
ns
5. The formulas given are for the typical characteristics only at 25_C.
6. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
Vout
Ein
SWITCH
MATRIX
D0
D1
Eout
D2
D3
Q0
Q1
D4
D5
Q2
VDD
ID
GS
D6
500 mF
0.01 mF
ID
D7
EXTERNAL
POWER
SUPPLY
VGS = VDD
VDS = Vout
Sink Current
VGS = – VDD
VDS = Vout – VDD
Source Current
Ein
Eout
D0
D1
Q0
CL
CL
D2
D3
Output
Under
Test
D0 thru D7
Ein
D0 thru D6
D7
Ein
Eout
Q0
Q1
Q2
GS
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
Q1
CL
D4
D5
PULSE
GENERATOR
(fo)
Figure 1. Typical Sink and Source
Current Characteristics
Q2
CL
D6
GS
D7
VSS
CL
Figure 2. Typical Power Dissipation Test Circuit
http://onsemi.com
3
MC14532B
VDD
PROGRAMMABLE
PULSE
GENERATOR
Ein
Eout
D0
D1
Q0
D2
D3
Q1
D4
D5
Q2
CL
CL
CL
D6
CL
GS
D7
VSS
CL
NOTE: Input rise and fall times are 20 ns
PIN
NO.
D0
10
D1
11
D2
12
D3
13
D4
1
D5
2
D6
3
D7
4
Ein
5
50%
50%
50%
50%
50%
50%
Eout
15
50%
50%
50%
tPLH
tPHL
90%
50%
10%
tTHL
tPLH
tTLH
GS
Q0
14
9
tTLH
tPLH
tPHL
tPLH
tPLH
tPHL
tPLH
tPHL
tPLH
tPHL
tPLH
tPHL
Q1
7
tPLH
Q2
6
tTLH
Figure 3. AC Test Circuit and Waveforms
http://onsemi.com
4
tTLH
tTLH
90%
50%
10%
tTHL
tPHL
90%
50%
10%
tTHL
tPHL
90%
50%
10%
tTHL
tPHL
90%
50%
10%
tTHL
MC14532B
LOGIC EQUATIONS
Eout = Ein D0 D1 D2 D3 D4 D5 D6 D7
Q0 = Ein (D1 D2 D4 D6 + D3 D4 D6 + D5 D6 + D7)
Q1 = Ein (D2 D4 D5 + D3 D4 D5 + D6 + D7)
10
Q2 = Ein (D4 + D5 + D6 + D7)
D0
GS = Ein (D0 + D1 + D2 + D3 + D4 + 05 + D6 + D7)
11
9
D1
Q0
12
D2
13
D3
1
D4
7
Q1
2
D5
3
D6
4
D7
6
Q2
5
Ein
14
GS
15
Eout
Figure 4. Logic Diagram
(Positive Logic)
http://onsemi.com
5
MC14532B
D15 D14 D13 D12 D11 D10
D7
VDD
D6
D5
D4
D3
D2
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
Eout
Ein
Ein
GS
Q2 Q1
Eout = “1"
WITH Din = “0"
Eout
Q0
Q2 Q1
Q0
3/4 MC14071B
Q3
Q2
Q1
Q0
Figure 5. Two MC14532B’s Cascaded for 4−Bit Output
VDD
VSS
CLOCK
INPUT
C
E
R
C
E
1/2 MC14520B
DIGITAL TO ANALOG CONVERSION
Q1
The digital eight−bit word to be converted is applied to the
inputs of the MC14512 with the most significant bit at X7
and the least significant bit at X0. A clock input of up to
2.5 MHz (at VDD = 10 V) is applied to the MC14520B.
A compromise between Ibias for the MC1710 and DR
between N and P−channel outputs gives a value of R of
33 kW. In order to filter out the switching frequencies, RC
should be about 1.0 ms (if R = 33 kW, C [ 0.03 mF). The
analog 3.0 dB bandwidth would then be dc to 1.0 kHz.
Q2
Q3
R
1/2 MC14520B
Q4
Q1
Q2
Q3
Q4
DIGITAL INPUT/OUTPUT
D0 D1 D2 D3 D4 D5 D6 D7
VDD
ANALOG TO DIGITAL CONVERSION
An analog signal is applied to the analog input of the
MC1710. A digital eight−bit word known to represent a digitized level less than the analog input is applied to the
MC14512 as in the D to A conversion. The word is incremented at rates sufficient to allow steady state to be reached
between incrementations (i.e. 3.0 ms). The output of the
MC1710 will change when the digital input represents the
first digitized level above the analog input. This word is the
digital representation of the analog word.
8-BIT WORD
TO BE CONVERTED
Ein
Q2 Q1 Q0
A
B
C
X7 X6 X5 X4 X3 X2 X1 X0
MC1710
http://onsemi.com
6
R
ANALOG
OUTPUT
STOP
WORD
INCREMENTATION
Figure 6. Digital to Analog and Analog to Digital Converter
MC14512
Z
C
ANALOG
INPUT
MC14532B
PACKAGE DIMENSIONS
SOIC−16
CASE 751B−05
ISSUE K
−A−
16
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D
DIMENSION AT MAXIMUM MATERIAL CONDITION.
9
−B−
1
P
8 PL
0.25 (0.010)
8
M
B
S
G
R
K
F
X 45 _
C
−T−
SEATING
PLANE
J
M
D
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.229
0.244
0.010
0.019
16 PL
0.25 (0.010)
M
T B
S
A
S
SOLDERING FOOTPRINT
8X
6.40
16X
1.12
1
16
16X
0.58
1.27
PITCH
8
9
DIMENSIONS: MILLIMETERS
ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).
ON Semiconductor and the
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable
copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
7
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC14532B/D