MC74LVX157 D

MC74LVX157
Quad 2-Channel Multiplexer
With 5 V−Tolerant Inputs
The MC74LVX157 is an advanced high speed CMOS quad
2−channel multiplexer. The inputs tolerate voltages up to 7.0 V,
allowing the interface of 5.0 V systems to 3.0 V systems.
It consists of four 2−input digital multiplexers with common select
(S) and enable (E) inputs. When E is held High, selection of data is
inhibited and all the outputs go Low.
The select decoding determines whether the I0 n or I1 n inputs get
routed to the corresponding Z n outputs.
http://onsemi.com
SOIC−16
D SUFFIX
CASE 751B
Features
•
•
•
•
•
•
•
•
•
High Speed: tPD = 5.1 ns (Typ) at VCC = 3.3 V
Low Power Dissipation: ICC = 4 mA (Max) at TA = 25°C
Power Down Protection Provided on Inputs
Balanced Propagation Delays
Low Noise: VOLP = 0.5 V (Max)
Pin and Function Compatible with Other Standard Logic Families
Latchup Performance Exceeds 300 mA
ESD Performance:
Human Body Model > 2000 V;
Machine Model > 200 V
These Devices are Pb−Free and are RoHS Compliant
TSSOP−16
DT SUFFIX
CASE 948F
PIN ASSIGNMENT
VCC
E
I0c
I1c
Zc
I0d
I1d
Zd
16
15
14
13
12
11
10
9
7
8
1
2
3
4
5
6
S
I0a
I1a
Za
I0b
I1b
Zb GND
16−Lead (Top View)
MARKING DIAGRAMS
PIN NAMES
16
Pins
Function
I0n
I1n
E
S
Zn
Source 0 Data Inputs
Source 1 Data Inputs
Enable Input
Select Input
Outputs
16
LVX
157
ALYWG
G
LVX157G
AWLYWW
1
1
SOIC−16
TSSOP−16
TRUTH TABLE
INPUTS
LVX157
A
WL, L
Y
WW, W
G or G
OUTPUT
E
S
I0n
I1n
Zn
H
L
L
L
L
X
H
H
L
L
X
X
X
L
H
X
L
H
X
X
L
L
H
L
H
(Note: Microdot may be in either location)
ORDERING INFORMATION
H = High Voltage Level; L = Low Voltage Level; X = High or Low
Voltage Level ; For ICC Reasons DO NOT FLOAT Inputs
© Semiconductor Components Industries, LLC, 2014
August, 2014 − Rev. 4
= Specific Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
See detailed ordering and shipping information in the package
dimensions section on page 4 of this data sheet.
1
Publication Order Number:
MC74LVX157/D
MC74LVX157
S
E
I0a
I1a
I0b
I1b
I0c
I1c
I0d
I1d
1
15
2
4
Za
3
5
7
Zb
6
14
12
Zc
13
11
9
Zd
10
Figure 1. Logic Diagram
MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
VCC
DC Supply Voltage
–0.5 to +7.0
V
Vin
DC Input Voltage
–0.5 to +7.0
V
Vout
DC Output Voltage
–0.5 to VCC +0.5
V
IIK
Input Diode Current
−20
mA
IOK
Output Diode Current
±20
mA
Iout
DC Output Current, per Pin
±25
mA
ICC
DC Supply Current, VCC and GND Pins
±50
mA
PD
Power Dissipation
180
mW
Tstg
Storage Temperature
–65 to +150
_C
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Min
Max
Unit
2.0
3.6
V
VCC
DC Supply Voltage
Vin
DC Input Voltage
0
5.5
V
Vout
DC Output Voltage
0
VCC
V
−40
+85
_C
0
100
ns/V
TA
Dt/DV
Operating Temperature, All Package Types
Input Rise and Fall Time
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond
the Recommended Operating Ranges limits may affect device reliability.
http://onsemi.com
2
MC74LVX157
DC ELECTRICAL CHARACTERISTICS
VCC
V
TA = 25°C
TA = −40 to 85°C
Min
Typ
Max
Min
Max
Unit
VIH
High−Level Input Voltage
2.0
3.0
3.6
1.5
2.0
2.4
−
−
−
−
−
−
1.5
2.0
2.4
−
−
−
V
VIL
Low−Level Input Voltage
2.0
3.0
3.6
−
−
−
−
−
−
0.5
0.8
0.8
−
−
−
0.5
0.8
0.8
V
VOH
High−Level Output Voltage
(Vin = VIH or VIL)
IOH = −50mA
IOH = −50mA
IOH = −4mA
2.0
3.0
3.0
1.9
2.9
2.58
2.0
3.0
−
−
−
1.9
2.9
2.48
−
−
−
V
VOL
Low−Level Output Voltage
(Vin = VIH or VIL)
IOL = 50mA
IOL = 50mA
IOL = 4mA
2.0
3.0
3.0
−
−
−
0.0
0.0
−
0.1
0.1
0.36
−
−
−
0.1
0.1
0.44
V
Iin
Input Leakage Current
Vin = 5.5V or GND
3.6
−
−
±0.1
−
±1.0
mA
ICC
Quiescent Supply Current
Vin = VCC or GND
3.6
−
−
4.0
−
40.0
mA
Symbol
Parameter
Test Conditions
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
AC ELECTRICAL CHARACTERISTICS (Input tr = tf = 3.0ns)
TA = 25°C
Symbol
tPLH,
tPHL
tPLH,
tPHL
tPLH,
tPHL
tOSHL
tOSLH
Min
Typ
Max
Min
Max
Unit
VCC = 2.7V
CL = 15pF
CL = 50pF
−
−
6.6
9.1
12.5
16.0
1.0
1.0
15.5
19.0
ns
VCC = 3.3 ± 0.3V
CL = 15pF
CL = 50pF
−
−
5.1
7.6
7.9
11.4
1.0
1.0
9.5
13.0
VCC = 2.7V
CL = 15pF
CL = 50pF
−
−
8.9
11.4
16.9
20.4
1.0
1.0
20.5
24.0
VCC = 3.3 ± 0.3V
CL = 15pF
CL = 50pF
−
−
7.0
9.5
11.0
14.5
1.0
1.0
13.0
16.5
VCC = 2.7V
CL = 15pF
CL = 50pF
−
−
9.1
11.6
17.6
21.1
1.0
1.0
20.5
24.0
VCC = 3.3 ± 0.3V
CL = 15pF
CL = 50pF
−
−
7.2
9.7
11.5
15.0
1.0
1.0
13.5
17.0
VCC = 2.7V
VCC = 3.3 ± 0.3V
CL = 50pF
CL = 50pF
−
−
−
−
1.5
1.5
−
−
1.5
1.5
Parameter
Test Conditions
Propagation Delay, Input to
Output
Propagation Delay, S to Zn
Propagation Delay, E to Zn
Output−to−Output Skew (Note 1)
TA = −40 to 85°C
ns
ns
ns
1. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
The specification applies to any outputs switching in the same direction, either HIGH−to−LOW (tOSHL) or LOW−to−HIGH (tOSLH); parameter
guaranteed by design.
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
CAPACITIVE CHARACTERISTICS
TA = 25°C
Symbol
Min
Parameter
TA = −40 to 85°C
Typ
Max
Min
Max
Unit
Cin
Input Capacitance
−
4
10
−
10
pF
CPD
Power Dissipation Capacitance (Note 2)
−
20
−
−
−
pF
2. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC / 4 (per bit). CPD is used to determine the no−load
dynamic power consumption; PD = CPD VCC2 fin + ICC VCC.
http://onsemi.com
3
MC74LVX157
NOISE CHARACTERISTICS (Input tr = tf = 3.0ns, CL = 50pF, VCC = 3.3V, Measured in SOIC Package)
TA = 25°C
Characteristic
Symbol
Typ
Max
Unit
VOLP
Quiet Output Maximum Dynamic VOL
0.3
0.5
V
VOLV
Quiet Output Minimum Dynamic VOL
−0.3
−0.5
V
VIHD
Minimum High Level Dynamic Input Voltage
−
2.0
V
VILD
Maximum Low Level Dynamic Input Voltage
−
0.8
V
VCC
In or S
50%
GND
tPHL
tPLH
Zn
VCC
E
50%
GND
tPHL
50% VCC
Zn
Figure 2.
tPLH
50% VCC
Figure 3.
TEST POINT
OUTPUT
DEVICE
UNDER
TEST
CL*
*Includes all probe and jig capacitance
Figure 4. Propagation Delay Test Circuit
ORDERING INFORMATION
Package
Shipping†
MC74LVX157DR2G
SOIC−16
(Pb−Free)
2500 Tape & Reel
MC74LVX157DTR2G
TSSOP−16
(Pb−Free)
2500 Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
4
MC74LVX157
PACKAGE DIMENSIONS
TSSOP−16
CASE 948F
ISSUE B
16X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
S
V
S
S
K
ÉÉÉ
ÇÇÇ
ÇÇÇ
ÉÉÉ
K1
2X
L/2
16
9
J1
B
−U−
L
SECTION N−N
J
PIN 1
IDENT.
N
0.25 (0.010)
8
1
M
0.15 (0.006) T U
S
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH. PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
N
F
DETAIL E
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
H
D
DETAIL E
G
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
SOLDERING FOOTPRINT*
7.06
1
0.65
PITCH
16X
0.36
16X
1.26
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
5
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.18
0.28
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.193 0.200
0.169 0.177
−−− 0.047
0.002 0.006
0.020 0.030
0.026 BSC
0.007
0.011
0.004 0.008
0.004 0.006
0.007 0.012
0.007 0.010
0.252 BSC
0_
8_
MC74LVX157
PACKAGE DIMENSIONS
SOIC−16
CASE 751B−05
ISSUE K
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D
DIMENSION AT MAXIMUM MATERIAL CONDITION.
−A−
16
9
−B−
1
P
8 PL
0.25 (0.010)
8
M
B
S
DIM
A
B
C
D
F
G
J
K
M
P
R
G
R
K
F
X 45 _
C
−T−
SEATING
PLANE
J
M
D
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.229
0.244
0.010
0.019
16 PL
0.25 (0.010)
M
T B
S
A
S
SOLDERING FOOTPRINT*
8X
6.40
16X
1
1.12
16
16X
0.58
1.27
PITCH
8
9
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and the
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable
copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
6
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC74LVX157/D