[AK4497] = Preliminary = AK4497 Quality Oriented 32-Bit 2ch DAC 1. General Description The AK4497 is a new generation Premium 32-bit 2ch DAC with VELVET SOUNDTM technology, achieving industry’s leading level low distortion characteristics and wide dynamic range. The AK4497 integrates a newly developed switched capacitor filter “OSR Doubler”, making it capable of supporting wide range signals and achieving low out-of-band noise while realizing low power consumption. Moreover, the AK4497 has six types of 32-bit digital filters, realizing simple and flexible sound tuning in wide range of applications. The AK4497 accepts up to 768kHz PCM data and 22.4MHz DSD data, ideal for a high-resolution audio source playback that are becoming widespread in network audios, USB-DACs and Car Audio Systems. Application: AV Receivers, CD/SACD player, Network Audios, USB DACs, USB Headphones, Sound Plates/Bars, Measurement Equipment, Control Systems, Public Audios (PA), IC-Recorders, Bluetooth Headphones, HD Audio/Voice Conference Systems 2. Features THD+N: -115dB DR, S/N: 127dB (Mono Mode, 130dB) 256 Times Over Sampling Sampling Rate: 8kHz 768kHz 32-bit 8x Digital Filter - Short Delay Sharp Roll-off, GD=6.0/fs, Ripple: 0.005dB, Attenuation: 100dB - Short Delay Slow Roll-off, GD=5.0/fs - Sharp Roll-off - Slow Roll-off - Low-dispersion Short Delay Filter - Super Slow Roll-off 2.8MHz, 5.6MHz, 11.2MHz, 22.4MHz DSD Input Support - Filter1 (fc=39kHz, 2.8MHz mode), Filter2 (fc=76kHz, 2.8MHz mode) Digital De-emphasis for 32, 44.1, 48kHz sampling Soft Mute Digital Attenuator (255 levels and 0.5dB step) Mono Mode External Digital Filter Interface Audio I/F Format: 24/32 bit MSB justified, 16/20/24/32 bit LSB justified, I2S, DSD Master Clock 8kHz ~ 32kHz: 1152fs 8kHz ~ 54kHz: 512fs or 768fs 8kHz ~ 108kHz: 256fs or 384fs 108kHz ~ 216kHz: 128fs or 192fs ~ 384kHz: 64fs or 128fs ~ 768kHz: 64fs Power Supply: TVDD=AVDD= 3.3 3.6V (by Internal LDO), TVDD=AVDD= 1.7 3.6V, DVDD=1.7 1.98V (by external supply), VDDL/R= 4.75 5.25V Digital Input Level: CMOS Package: 64-pin TQFP Rev. 0.1 2015/11 -1- [AK4497] 3. Table of Contents General Description ........................................................................................................................ 1 Features .......................................................................................................................................... 1 Table of Contents............................................................................................................................ 2 Block Diagram ................................................................................................................................. 4 Pin Configurations and Functions ................................................................................................... 5 ■ Pin Configurations .............................................................................................................................. 5 ■ Pin Functions ..................................................................................................................................... 6 ■ Handling of Unused Pin ..................................................................................................................... 8 6. Absolute Maximum Ratings ............................................................................................................ 9 7. Recommended Operating Conditions ............................................................................................ 9 8. Electrical Characteristics .............................................................................................................. 10 ■ Analog Characteristics ..................................................................................................................... 10 ■ DSD mode ........................................................................................................................................ 11 ■ Sharp Roll-Off Filter Characteristics (fs = 44.1kHz) ........................................................................ 12 ■ Short Delay Sharp Roll-Off Filter Characteristics (fs = 44.1kHz) .................................................... 14 ■ Slow Roll-Off Filter Characteristics (fs = 44.1kHz) .......................................................................... 16 ■ Short Delay Slow Roll-Off Filter Characteristics (fs = 44.1kHz) ...................................................... 18 ■ Low-dispersion Short Delay Filter Characteristics (fs = 44.1kHz) ................................................... 20 ■ DSD Filter Characteristics ................................................................................................................ 21 ■ DC Characteristics ........................................................................................................................... 22 ■ Switching Characteristics ................................................................................................................. 23 ■ Timing Diagram ................................................................................................................................ 28 9. Functional Descriptions................................................................................................................. 33 ■ D/A Conversion Mode ...................................................................................................................... 35 ■ D/A Conversion Mode Switching Timing ......................................................................................... 35 ■ System Clock ................................................................................................................................... 37 ■ Power ON/OFF Sequence in FS Auto Detect Mode (LDOE pin = “H”) ........................................... 42 ■ Audio Interface Format .................................................................................................................... 45 ■ Digital Filter ...................................................................................................................................... 57 ■ De-emphasis Filter (PCM) ............................................................................................................... 58 ■ Output Volume (PCM, DSD, EXDF) ................................................................................................ 58 ■ Gain Adjustment Function (PCM, DSD, EXDF)............................................................................... 59 ■ Zero Detection (PCM, DSD, EXDF)................................................................................................. 60 ■ L/R Channel Output Signal Select, Phase Inversion Function (PCM, DSD, EXDF) ....................... 61 ■ Sound Quality (PCM, DSD, EXDF).................................................................................................. 62 ■ DSD Signal Full Scale (FS) Detection ............................................................................................. 63 ■ Soft Mute Operation (PCM, DSD, EXDF) ........................................................................................ 64 ■ LDO .................................................................................................................................................. 65 ■ Shutdown Switch.............................................................................................................................. 65 ■ Over Current Protection for Analog Output Pins ............................................................................. 65 ■ Power Up/Down Function ................................................................................................................ 66 ■ Synchronize Function (PCM, EXDF) ............................................................................................... 73 ■ Register Control Interface ................................................................................................................ 75 ■ Register Map .................................................................................................................................... 79 ■ Register Definitions .......................................................................................................................... 81 10. Recommended External Circuits .................................................................................................. 91 11. Package ........................................................................................................................................ 95 ■Outline Dimensions ........................................................................................................................... 95 ■ Material & Lead Finish ..................................................................................................................... 96 ■ Marking............................................................................................................................................. 96 12. Ordering Guide ............................................................................................................................. 97 1. 2. 3. 4. 5. Rev. 0.1 2015/11 -2- [AK4497] ■ Ordering Guide................................................................................................................................. 97 IMPORTANT NOTICE............................................................................................................................. 98 Rev. 0.1 2015/11 -3- [AK4497] 4. Block Diagram TVDD DVDD DVSS LDOE PDN BICK/BCK/DCLK SDATA/DINL/DSDL LRCK/DINR/DSDR TDMO AVDD AVSS LDO VSSL VDDL PCM Data Interface De-emphasis & Interpolator External DF Interface SCF AOUTLP Modulator DATT Soft Mute Vref Normal path DSDD bit “0” DSD Data Interface VCML VREFHL VREFLL VREFLR VREFHR VCMR SSLOW/WCK TDM0/DCLK DEM0/DSDL GAIN/DSDR AOUTLN DSD Filter SCF AOUTRP AOUTRN Volume bypass DSDD bit “1” VDDR VSSR MCLK停止検出 SMUTE/CSN SD/ CCLK/SCL SLOW/CDTI/SDA Control Register Clock Divider Oscillator IREF PSN DIF0/ DIF1/ DIF2/ TDM1 DCHAIN INVR ACKS/ TESTE HLOAD /I2C CAD1 DZFL DZFR CAD0 MCLK EXTR Block Diagram Rev. 0.1 2015/11 -4- [AK4497] 5. Pin Configurations and Functions ■ Pin Configurations Rev. 0.1 2015/11 -5- [AK4497] ■ Pin Functions No. Pin Name 1 LDOE 2 PDN I 3 BICK BCK DCLK I I I Function Internal LDO Enable Pin. “L”: Disable, “H”: Enable Power-Down Mode Pin When at “L”, the AK4497 is in power-down mode and is held in reset. The AK4497 must always be reset upon power-up. Audio Serial Data Clock Pin in PCM Mode Audio Serial Data Clock Pin DSD Clock Pin in DSD Mode (DSDPATH bit = “1”) SDATA I Audio Serial Data Input Pin in PCM Mode DINL DSDL LRCK DINR DSDR SSLOW WCK TDMO I I I I I I I O SMUTE I CSN SD CCLK SCL SLOW CDTI SDA DIF0 DZFL DIF1 DZFR DIF2 CAD0 I I I I I I I/O I O I O I I Lch Audio Serial Data Input Pin DSD Lch Data Input Pin in DSD Mode(DSDPATH bit = “1”) L/R Clock Pin in PCM Mode Rch Audio Serial Data Input Pin DSD Rch Data Input Pin in DSD Mode(DSDPATH bit = “1”) Digital Filter Select Pin in Parallel Control Mode Word Clock input pin Audio Serial Data Onput in Daisy Chain mode (Internal pull-down pin) When this pin is changed to “H”, soft mute cycle is initiated. When returning “L”, the output mute releases. Chip Select Pin in Serial Control Mode Digital Filter Select Pin in Parallel Control Mode Control Data Clock Pin in Serial Control Mode I2C=”H”: Control Data Clock Input Pin Digital Filter Select Pin in Parallel Control Mode Control Data Input Pin in Serial Control Mode I2C=”H”: Control Data Input Pin Digital Input Format 0 Pin in Parallel Control Mode Lch Zero Input Detect Pin in Serial Control Mode (Internal pull-down pin) Digital Input Format 1 Pin in Parallel Control Mode Rch Zero Input Detect Pin in Serial Control Mode (Internal pull-down pin) Digital Input Format 2 Pin in Parallel Control Mode Chip Address 0 Pin in Serial Control Mode Parallel or Serial Select Pin (Internal pull-up pin) “L”: Serial Control Mode, “H”: Parallel Control Mode 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 I/O I PSN I HLOAD I I2C Heavy Load Mode Enable Pin in Parallel Control Mode. Resister Control Interface Pin in Serial Control Mode. DEM0 I De-emphasis Enable 0 Pin in Parallel Control Mode DSDL I DSD Lch Data Input Pin in DSD Mode (DSDPATH bit =”0”) GAIN I Output Gain Control Pin in Parallel control mode (+2.5dB) DSDR I ACKS I CAD1 I DSD Rch Input Pin in DSD Mode (DSDPATH bit =”0”) Auto Setting Mode Select Pin in Parallel control mode “L”: Manual Setting Mode, “H”: Auto Setting Mode Chip Address 1 Pin in Serial Control Mode Rev. 0.1 2015/11 -6- [AK4497] No. 20 21 22 23 Pin Name TDM0 DCLK TDM1 DCHAIN INVR TESTE I/O I I I I I I 24-26 VREFHR I Rch High Level Voltage Reference Input Pin 27-29 VREFLR I VCMR I AOUTRN AOUTRP VDDR VSSR VSSL VDDL AOUTLP AOUTLN O O O O VCML - VREFLL VREFHL I I 58 EXTR I 59 AVDD Rch Low Level Voltage Reference Input Pin Right channel Common Voltage Pin, Normally connected to VREFLR with a 10uF electrolytic cap. Rch Negative Analog Output Pin Rch Positive Analog Output Pin Rch Analog Power Supply Pin Analog Ground Pin Analog Ground Pin Lch Analog Power Supply Pin . Lch Positive Analog Output Pin Lch Negative Analog Output Pin Left channel Common Voltage Pin Normally connected to VREFLL with a 10uF electrolytic cap. Lch Low Level Voltage Reference Input Pin Lch High Level Voltage Reference Input Pin External Resistor Connect Pin Rext=33kΩ(±1%) toAVSS (LDOE pin = “H”) Analog Power Supply Pin, 3.0 3.6V (LDOE pin = “L”) Analog Power Supply Pin, 1.7 3.6V Analog Ground Pin Master Clock Input Pin (LDOE pin = “H”) LDO Output Pin, This pin should be connected to DVSS with 1.0µF. (LDOE pin = “L”) Digital Power Supply Pin, 1.7 1.98V 19 30 31,32 33,34 35-37 38-40 41-43 44-46 47,48 49,50 51 52-54 55-57 60 61 AVSS MCLK 62 DVDD I O - 63 DVSS - Function TDM Mode select pin in Parallel control mode. DSD clock Pin in DSD Mode (DSDPATH bit = “0”) TDM Mode select pin in Parallel control mode. Daisy Chain Mode select pin in Parallel control mode. Rch output data invert enable pin in Parallel control mode. Testmode Enable pin. (Internal pull-down pin) Digital Ground Pin (LDOE pin = “H”) Digital Power Supply Pin, 3.0 3.6V TVDD 64 (LDOE pin = “L”) Digital Power Supply Pin, 1.7 3.6V Note 1. All input pins except internal pull-up/down pins must not be left floating. Note 2. The AK4497 must be reset by PDN pin after changing Parallel/Serial mode by the PSN pin. Note 3. PCM mode, DSD mode and EXDF mode are controlled by register settings. - Rev. 0.1 2015/11 -7- [AK4497] ■ Handling of Unused Pin Unused I/O pins must be connected appropriately. (1) Parallel Mode (PCM mode only) Classification Pin Name AOUTLP, AOUTLN Analog AOUTRP, AOUTRN Digital I2C, TESTE Setting Open Open Connect to DVSS (2) Serial Mode 1. PCM Mode Classification Analog Digital Pin Name AOUTLP, AOUTLN AOUTRP, AOUTRN TESTE Setting Open Open Connect to DVSS 2. DSD Mode Classification Pin Name AOUTLP, AOUTLN Analog AOUTRP, AOUTRN BICK, SDATA, LRCK, WCK, TDM1, Digital DCHAIN, INVR, TESTE Pull-up and Pull-down pins List Classification pull-up pin (typ=100kΩ) pull-down pin (typ=100kΩ) Setting Open Open Connect to DVSS Pin Name PSN TDMO, DZFL, DZFR, TESTE Rev. 0.1 Setting Connect to TVDD Connect to DVSS 2015/11 -8- [AK4497] 6. Absolute Maximum Ratings (AVSS=DVSS=VSSL=VSSR=VREFLL=VREFLR=0V; Note 4) Parameter Symbol Min. Max. 0.3 4.0 Digital I/O TVDD 0.3 2.5 Digital Core DVDD Power Analog AVDD 0.3 4.0 Supplies: Analog VDDL/R 0.3 6.0 |AVSS DVSS| (Note 5) GND 0.3 Input Current, Any Pin Except Supplies IIN 10 Digital Input Voltage VIND 0.3 TVDD+0.3 Ambient Temperature (Power applied) Ta 40 85 Storage Temperature Tstg 65 150 Note 4. All voltages with respect to ground. Note 5. AVSS, DVSS, VSSL and VSSR must be connected to the same analog ground plane. Unit V V V V V mA V C C WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. 7. Recommended Operating Conditions (AVSS=DVSS=VSSL=VSSR=VREFLL=VREFLR=0V; Note 4) Parameter Symbol Min. Typ. Max. ■ LDOE pin= “L” Digital I/O TVDD DVDD 1.8 3.6 Analog AVDD DVDD 1.8 3.6 Digital Core DVDD 1.7 1.8 1.98 Power Supplies Analog VDDL/R 4.75 5.0 5.25 ■ LDOE pin= “H” Digital I/O TVDD 3.0 3.3 3.6 Analog AVDD 3.0 3.3 3.6 Analog VDDL/R 4.75 5.0 5.25 Voltage Reference “H” voltage reference VREFHL/R VDDL/R-0.5 VDDL/R (Note 7) “L” voltage reference VREFLL/R VSSL/R Note 4. All voltages with respect to ground. Note 6. The power-up sequence between AVDD, VDDL/R and DVDD is not critical. Note 7. The analog output voltage scales with the voltage of (VREFH VREFL). AOUT (typ.@0dB) = (AOUT+) (AOUT) = 2.8Vpp (VREFHL/R VREFLL/R)/5. * TVDD must be powered up befor or at the same time of DVDD when the LDOE pin = “L”. Unit V V V V V V V V V * The internal LDO outputs DVDD (1.8V) when the LDOE pin = “H”. The power-up sequence between VDDL/R and TVDD or VDDL/R and AVDD is not critical. * AKM assumes no responsibility for the usage beyond the conditions in this data sheet. Rev. 0.1 2015/11 -9- [AK4497] 8. Electrical Characteristics ■ Analog Characteristics (Ta=25C; LDOE=L, AVDD=TVDD=DVDD=3.3V; AVSS=DVSS=VSSL/R=0V; VREFHL/R=VDDL/R=5.0V, VREFLL/R= 0V; Input data = 24bit; RL 1k; BICK=64fs; Signal Frequency = 1kHz; Sampling Frequency = 44.1kHz; Measurement bandwidth = 20Hz ~ 20kHz; External Circuit: Figure 72; unless otherwise specified.) Parameter Min. Typ. Max. Unit Resolution 32 Bits Dynamic Characteristics (Note 8) 0dBFS fs=44.1kHz -115 TBD dB THD+N BW=20kHz -64 TBD dB 60dBFS 0dBFS fs=96kHz -113 TBD dB BW=40kHz -61 TBD dB 60dBFS 0dBFS fs=192kHz -110 TBD dB BW=40kHz 60dBFS -61 TBD dB -58 TBD dB BW=80kHz 60dBFS Dynamic Range (60dBFS with A-weighted)(Note 9, Note 11) 122 127 dB S/N (A-weighted) (Note 10, Note 11) 122 127 dB S/N (Mono mode, A-weighted) (Note 11) 125 130 dB Interchannel Isolation (1kHz) 110 120 dB DC Accuracy Interchannel Gain Mismatch 0.15 0.3 dB Gain Drift (Note 12) - 20 ppm/ C Output Voltage (Note 13) 2.65 2.8 2.95 Vpp Output Voltage (GC[2:0]=000) 3.55 3.75 3.95 Load Resistance (HLOAD=L) (Note 14) k Load Resistance (HLOAD=H) 120 Load Capacitance (Note 14) 25 pF Note 8. Measured by Audio Precision System Two. Averaging mode. Note 9. Figure 72 External LPF Circuit Example. 101dB at 16bit data and 118dB at 20bit data. Note 10. Figure 72 External LPF Circuit Example. S/N does not depend on the input data size. Note 11. SC[1:0] bits = “00” or “01” Note 12. The voltage on (VREFH VREFL) is held +5V externally. Note 13. Full scale voltage(0dB). Output voltage scales with the voltage of (VREFHL/R VREFLL/R). AOUT (typ.@0dB) = (AOUT+) (AOUT) = 2.8Vpp (VREFHL/R VREFLL/R)/5. Note 14. Regarding Load Resistance, AC load is 1k (min) with a DC cut capacitor. DC load is 1.5k ohm (min) without a DC cut capacitor. The load resistance value is with respect to ground. Analog characteristics are sensitive to capacitive load that is connected to the output pin. Therefore the capacitive load must be minimized. Rev. 0.1 2015/11 - 10 - [AK4497] (Ta=25C; AVDD=TVDD=3.3V, DVDD=1.8V(@LDOE= “L”), AVSS=DVSS=VSSL/R=0V; VREFHL/R=VDDL/R=5.0V, VREFLL/R= 0V; Input data = 24bit; BICK=64fs; Signal Frequency = 1kHz; Sampling Frequency = 44.1kHz; Internal OPAMP GBW=30MHz (SC[1:0] bit=”00”); 2Vrms output mode (GC[2:0] bit= “000” or GAIN= “L”); Heavy load drive mode=off(HLOAD bit= “0” or HLOAD= “L”); unless otherwise specified.) Power Supplies Min. Typ. Max. Unit Parameter Power Supply Current Normal operation (PDN pin = “H”) VDDL/R(total) 64 mA VREFHL/R 1 mA AVDD 1 mA TVDD fs= 44.1kHz 8 mA LDOE= “H” fs= 96kHz 13 mA fs = 192kHz 20 mA LDOE= “L” 1 mA DVDD fs= 44.1kHz 8 mA LDOE= “L” fs= 96kHz 13 mA fs = 192kHz 20 mA Total Idd per channel (HLOAD= “H”) 45 mA/ch ・fs=44.1kHz Power down (PDN pin = “L”) (Note 15) TVDD+AVDD+VDDL/R+DVDD 10 A Note 15. In the power down mode. The PSN, DEM0 pin = DVDD, and all other digital input pins including clock pins (MCLK, BICK and LRCK) are held to DVSS. Note 16. The DVDD pin becomes an output pin when the LDOE pin = “H”. ■ DSD mode (Ta=25C; LDOE=L, AVDD=TVDD=3.3V, DVDD=1.8V; AVSS=DVSS=VSSL/R=0V; VREFHL/R=VDDL/R=5.0V, VREFLL/R= 0V; Signal Frequency = 1kHz; Measurement bandwidth = 20Hz ~ 20kHz; External Circuit; unless otherwise specified.) Min. Typ. Max. Unit Parameter Resolution 32 Bits Dynamic Characteristics THD+N DSD dataStream: 2.8224MHz 0dBFS -115 dB (Note 17) DSD dataStream: 5.6448MHz 0dBFS -115 dB DSD dataStream: 11.2896MHz 0dBFS -115 dB S/N DSD dataStream: 2.8224MHz Digital“0” 127 dB (A-weighted, DSD dataStream: 5.6448MHz Digital“0” 127 dB Normal path) Digital“0” DSD dataStream: 11.2896MHz 127 dB (Note 17) DC Accuracy Output Voltage (Normal path) (Note 13) 2.65 2.8 2.95 Vpp Output Voltage (Volume Bypass) (Note 13) 2.6 2.5 2.63 Vpp Note 17. Analog characteristics are not guaranteed when the DSD dataStream is 22.5782MHz. Rev. 0.1 2015/11 - 11 - [AK4497] ■ Sharp Roll-Off Filter Characteristics (fs = 44.1kHz) (Ta=-40~85C; VDDL/R=4.75 5.25V, AVDD= TVDD=3.0 3.6V, DVDD=1.7~1.98V; Normal Speed Mode; DEM=OFF; SD bit=“0”, SLOW bit=“0”) Parameter Symbol Min. Typ. Max. Unit Digital Filter Frequency Response 0.01dB PB 0 20.0 kHz (Note 18) 6.0dB 22.05 kHz Passband (Note 19) PB 0 20.0 kHz Stopband (Note 19) SB 24.1 kHz Passband Ripple (Note 20) PR 0.005 dB Stopband Attenuation (Note 19) SA 100 dB Group Delay GD 29.2 1/fs Digital Filter + SCF (Note 18) Frequency Response: 0 20.0kHz +0.1/-0.2 dB Sharp Roll-Off Filter Characteristics (fs=96kHz) (Ta=-40~85C; VDDL/R=4.75 5.25V, AVDD= TVDD=3.0 3.6V, DVDD=1.7~1.98V; Double Speed Mode; DEM=OFF; SD bit=“0”, SLOW bit=“0”) Parameter Symbol Min. Typ. Max. Unit Digital Filter Frequency Response 0.01dB PB 0 43.5 kHz (Note 18) 6.0dB 48.0 kHz Passband (Note 19) PB 0 43.5 kHz Stopband (Note 19) SB 52.5 kHz Passband Ripple (Note 20) PR 0.005 dB Stopband Attenuation (Note 19) SA 100 dB Group Delay GD 29.2 1/fs Digital Filter + SCF (Note 18) Frequency Response: 0 40.0kHz +0.1/-0.6 dB Sharp Roll-Off Filter Characteristics (fs=192kHz) (Ta=-40~85C; VDDL/R=4.75 5.25V, AVDD= TVDD=3.0 3.6V, DVDD=1.7~1.98V; Quad Speed Mode; DEM=OFF; SD bit=“0”, SLOW bit=“0”) Parameter Symbol Min. Typ. Max. Unit Digital Filter Frequency Response 0.01dB 0 87.0 kHz (Note 18) 6.0dB 96.0 kHz Passband (Note 19) PB 0 87.0 kHz Stopband (Note 19) SB 105 kHz Passband Ripple (Note 20) PR 0.005 dB Stopband Attenuation (Note 19) SA 100 dB Group Delay GD 29.2 1/fs Digital Filter + SCF (Note 18) Frequency Response: 0 80.0kHz +0.1/-2.0 dB Note 18. Frequency response refers to the output level (0dB) of a 1kHz, 0dB sine wave input. Note 19. The passband and stopband frequencies scale with fs. For example, PB=0.4535×fs (@0.01dB), SB=0.546×fs. Note 20. The first step of the Interpolator. This is a passband gain amplitude of the 4 times oversampling filter. Note 21. The calculating delay time which occurred by digital filtering. This time is from setting the 16/20/24/32 bit data of both channels to the output of analog signal. Rev. 0.1 2015/11 - 12 - [AK4497] Figure 1. Sharp Roll-off Filter Frequency Response Figure 2. Sharp Roll-off Filter Passband Ripple Rev. 0.1 2015/11 - 13 - [AK4497] ■ Short Delay Sharp Roll-Off Filter Characteristics (fs = 44.1kHz) (Ta=-40~85C; VDDL/R=4.75 5.25V, AVDD= TVDD=3.0 3.6V, DVDD=1.7~1.98V; Normal Speed Mode; DEM=OFF; SD bit=“1”, SLOW bit=“0”) Parameter Symbol Min. Typ. Max. Unit Digital Filter Frequency Response 0.01dB 0 20.0 kHz (Note 18) 6.0dB 22.05 kHz Passband (Note 22) PB 0 20.0 kHz Stopband (Note 22) SB 24.1 kHz Passband Ripple (Note 20) PR 0.005 dB Stopband Attenuation (Note 19) SA 100 dB Group Delay GD 6.25 1/fs Digital Filter + SCF (Note 18) Frequency Response: 0 20.0kHz +0.1/ TBD dB Short Delay Sharp Roll-Off Filter Characteristics (fs = 96kHz) (Ta=-40~85C; VDDL/R=4.75 5.25V, AVDD= TVDD=3.0 3.6V, DVDD=1.7~1.98V; Double Speed Mode; DEM=OFF; SD bit=“1”, SLOW bit=“0”) Parameter Symbol Min. Typ. Max. Unit Digital Filter Frequency Response 0.01dB 0 43.5 kHz (Note 18) 6.0dB 48.0 kHz Passband (Note 22) PB 0 43.5 kHz Stopband (Note 22) SB 52.5 kHz Passband Ripple (Note 20) PR 0.005 dB Stopband Attenuation (Note 19) SA 100 dB Group Delay GD 6.25 1/fs Digital Filter + SCF (Note 18) Frequency Response: 0 40.0kHz +0.1/ TBD dB Short Delay Sharp Roll-Off Filter Characteristics (fs = 192kHz) (Ta=-40~85C; VDDL/R=4.75 5.25V, AVDD= TVDD=3.0 3.6V, DVDD=1.7~1.98V; Quad Speed Mode; DEM=OFF; SD bit=“1”, SLOW bit=“0”) Parameter Symbol Min. Typ. Max. Unit Digital Filter Frequency Response 0.01dB 0 87.0 kHz (Note 18) 6.0dB 96.0 kHz Passband (Note 22) PB 0 87.0 kHz Stopband (Note 22) SB 105 kHz Passband Ripple (Note 20) PR 0.005 dB Stopband Attenuation (Note 19) SA 100 dB Group Delay GD 6.25 1/fs Digital Filter + SCF (Note 18) Frequency Response: 0 80.0kHz +0.1/ TBD dB Note 22. The passband and stopband frequencies scale with fs. For example, PB=0.4535×fs (@0.01dB), SB=0.546×fs. Rev. 0.1 2015/11 - 14 - [AK4497] Figure 3. Short delay Sharp Roll-off Filter Frequency Response Figure 4. Short delay Sharp Roll-off Filter Passband Ripple Rev. 0.1 2015/11 - 15 - [AK4497] ■ Slow Roll-Off Filter Characteristics (fs = 44.1kHz) (Ta=-40~85C; VDDL/R=4.75 5.25V, AVDD= TVDD=3.0 3.6V, DVDD=1.7~1.98V; Normal Speed Mode; DEM=OFF; SD bit=“0”, SLOW bit=“1”) Parameter Symbol Min. Typ. Max. Unit Digital Filter Frequency Response 0.01dB PB 0 4.4 kHz (Note 18) 6.0dB 18.2 kHz Passband (Note 23) PB 0 4.4 kHz Stopband (Note 23) SB 39.1 kHz Passband Ripple (Note 20) PR 0.005 dB Stopband Attenuation (Note 19) SA 94 dB Group Delay GD 6.63 1/fs Digital Filter + SCF (Note 18) Frequency Response: 0 20.0kHz +0.1/TBD dB Slow Roll-Off Filter Characteristics (fs = 96kHz) (Ta=-40~85C; VDDL/R=4.75 5.25V, AVDD= TVDD=3.0 3.6V, DVDD=1.7~1.98V; Double Speed Mode; DEM=OFF; SD bit=“0”, SLOW bit=“1”) Parameter Symbol Min. Typ. Max. Unit Digital Filter Frequency Response 0.01dB PB 0 9.5 kHz (Note 18) 6.0dB 39.6 kHz Passband (Note 23) PB 0 9.5 kHz Stopband (Note 23) SB 85.0 kHz Passband Ripple (Note 20) PR 0.005 dB Stopband Attenuation (Note 19) SA 94 dB Group Delay GD 6.63 1/fs Digital Filter + SCF (Note 18) Frequency Response: 0 40.0kHz +0.1/ TBD dB Slow Roll-Off Filter Characteristics (fs = 192kHz) (Ta=-40~85C; VDDL/R=4.75 5.25V, AVDD= TVDD=3.0 3.6V, DVDD=1.7~1.98V; Quad Speed Mode; DEM=OFF; SD bit=“0”, SLOW bit=“1”) Parameter Symbol Min. Typ. Max. Unit Digital Filter Frequency Response 0.01dB 0 19.1 kHz (Note 18) 6.0dB 79.2 kHz Passband (Note 23) PB 0 19.1 kHz Stopband (Note 23) SB 171 kHz Passband Ripple (Note 20) PR 0.005 dB Stopband Attenuation (Note 19) SA 94 dB Group Delay GD 6.63 1/fs Digital Filter + SCF (Note 18) Frequency Response: 0 80.0kHz +0.1/ TBD dB Note 23. The passband and stopband frequencies scale with fs. For example, PB = 0.1836 × fs (@0.01dB), SB = 0.8889 × fs. Rev. 0.1 2015/11 - 16 - [AK4497] Figure 5. Slow Roll-off Filter Frequency Response Figure 6. Slow Roll-off Filter Passband Ripple Rev. 0.1 2015/11 - 17 - [AK4497] ■ Short Delay Slow Roll-Off Filter Characteristics (fs = 44.1kHz) (Ta=-40~85C; VDDL/R=4.75 5.25V, AVDD= TVDD=3.0 3.6V, DVDD=1.7~1.98V; Normal Speed Mode; DEM=OFF; SD bit=“1”, SLOW bit=“0”) Parameter Symbol Min. Typ. Max. Unit Digital Filter Frequency Response 0.01dB 0 20.0 kHz (Note 18) 6.0dB 22.05 kHz Passband (Note 22) PB 0 20.0 kHz Stopband (Note 22) SB 24.1 kHz Passband Ripple (Note 20) PR 0.005 dB Stopband Attenuation (Note 19) SA 100 dB Group Delay GD 6.25 1/fs Digital Filter + SCF (Note 18) Frequency Response: 0 20.0kHz +0.1/ TBD dB Short Delay Slow Roll-Off Filter Characteristics (fs = 96kHz) (Ta=-40~85C; VDDL/R=4.75 5.25V, AVDD= TVDD=3.0 3.6V, DVDD=1.7~1.98V; Double Speed Mode; DEM=OFF; SD bit=“1”, SLOW bit=“0”) Parameter Symbol Min. Typ. Max. Unit Digital Filter Frequency Response 0.01dB 0 43.5 kHz (Note 18) 6.0dB 48.0 kHz Passband (Note 22) PB 0 43.5 kHz Stopband (Note 22) SB 52.5 kHz Passband Ripple (Note 20) PR 0.005 dB Stopband Attenuation (Note 19) SA 100 dB Group Delay GD 6.25 1/fs Digital Filter + SCF (Note 18) Frequency Response: 0 40.0kHz +0.1/ TBD dB Short Delay Slow Roll-Off Filter Characteristics (fs = 192kHz) (Ta=-40~85C; VDDL/R=4.75 5.25V, AVDD= TVDD=3.0 3.6V, DVDD=1.7~1.98V; Quad Speed Mode; DEM=OFF; SD bit=“1”, SLOW bit=“0”) Parameter Symbol Min. Typ. Max. Unit Digital Filter Frequency Response 0.01dB 0 87.0 kHz (Note 18) 6.0dB 96.0 kHz Passband (Note 22) PB 0 87.0 kHz Stopband (Note 22) SB 105 kHz Passband Ripple (Note 20) PR 0.005 dB Stopband Attenuation (Note 19) SA 100 dB Group Delay GD 6.25 1/fs Digital Filter + SCF (Note 18) Frequency Response: 0 80.0kHz +0.1/ TBD dB Note 24. The passband and stopband frequencies scale with fs. For example, PB = 0.4535 × fs (@0.01dB), SB = 0.546 × fs. Rev. 0.1 2015/11 - 18 - [AK4497] Figure 7. Short Delay Slow Roll-off Filter Frequency Response Figure 8. Short Delay Slow Roll-off Filter Passband Ripple Rev. 0.1 2015/11 - 19 - [AK4497] ■ Low-dispersion Short Delay Filter Characteristics (fs = 44.1kHz) (Ta=-40~85C; VDDL/R=4.755.25V, AVDD=TVDD=3.03.6V, DVDD=1.7~1.98V; Normal Speed Mode DEM=OFF; SD bit pr SD pin =“1”, SLOW bit or SLOW pin=“0”, SSLOW bit or SSLOW pin =”0”) Min. Typ. Max. Unit Parameter Symbol Digital Filter Frequency Response 0.05dB PB 0 18.4 kHz (Note 18) 6.0dB 22.5 kHz Passband (Note 19) PB 0 18.4 kHz Stopband (Note 19) SB 25.7 kHz Passband Ripple (Note 20) PR 0.05 dB Stopband Attenuation (Note 19) SA 80 dB Group Delay GD 10.0 1/fs Group Delay Distortion ΔGD ±0.035 1/fs Digital Filter + SCF (Note 18) Frequency Response: 0 20.0kHz +0.1/-0.2 dB Low-dispersion Short Delay Filter Characteristics (fs = 96kHz) (Ta=-40~85C; VDDL/R=4.755.25V, AVDD=TVDD=3.03.6V, DVDD=1.7~1.98V; Double Speed Mode; DEM=OFF; SD bit=“0”, SLOW bit=“0”) Parameter Symbol Min. Typ. Max. Unit Digital Filter Frequency Response 0.05dB PB 0 40.1 kHz (Note 18) 6.0dB 49.0 kHz Passband (Note 19) PB 0 40.1 kHz Stopband (Note 19) SB 55.9 kHz Passband Ripple (Note 20) PR 0.05 dB Stopband Attenuation (Note 19) SA 80 dB Group Delay GD 10.0 1/fs Group Delay Distortion ΔGD ±0.035 1/fs Digital Filter + SCF (Note 18) Frequency Response: 0 40.0kHz +0.1/ -0.6 dB Low-dispersion Short Delay Filter Characteristics (fs = 192kHz) (Ta=-40~85C; VDDL/R=4.755.25V, AVDD=TVDD=3.03.6V, DVDD=1.7~1.98V; Quad Speed Mode; DEM=OFF; SD bit=“0”, SLOW bit=“0”) Parameter Symbol Min. Typ. Max. Unit Digital Filter Frequency Response 0.05dB 0 80.2 kHz (Note 18) 6.0dB 98.0 kHz Passband (Note 19) PB 0 87.0 kHz Stopband (Note 19) SB 112 kHz Passband Ripple (Note 20) PR 0.05 dB Stopband Attenuation (Note 19) SA 80 dB Group Delay GD 10.0 1/fs Group Delay Distortion ΔGD ±0.035 1/fs Digital Filter + SCF (Note 18) Frequency Response: 0 80.0kHz +0.1/ -2.0 dB Rev. 0.1 2015/11 - 20 - [AK4497] ■ DSD Filter Characteristics (Ta=-40~85C; VDDL/R=4.755.25V, AVDD=TVDD=3.03.6V, DVDD=1.7~1.98V; fs=44.1kHz; D/P bit=“1”, DSDF bit = “0”, DSDSEL[1:0] bits = “00” (Note 26)) Parameter Min. Typ. Max. Unit Digital Filter Response Frequency Response 20kHz -0.77 dB (Note 27) 50kHz -5.25 dB 100kHz -18.80 dB (Ta=-40~85C; VDDL/R=4.755.25V, AVDD=TVDD=3.03.6V, DVDD=1.7~1.98V; fs=44.1kHz; D/P bit=“1”, DSDF bit=“1” DSDD bit=“1”, DSDSEL[1:0]= “00” (Note 26)) Parameter Min. Typ. Max. Unit Digital Filter Response Frequency Response 20kHz -0.19 dB (Note 27) 100kHz -5.29 dB 150kHz -18.91 dB Note 25. The peak level of DSD signal should be in the range of 25% ~ 75% duty according to the SACD format book (Scarlet Book). Note 26. The frequency response refers to the output level of 0dB when a 1kHz 25%~75% duty sine wave is input. Note 27. The frequency (20k, 100k and 200kHz) will be doubled when the sampling speed is 128fs (DSDSEL[1:0] bits = “01”) and it will be quadrupled when the sampling speed is 256fs (DSDSEL[1:0] bits = “10”). Rev. 0.1 2015/11 - 21 - [AK4497] ■ DC Characteristics (Ta=-40~85C; VDDL/R=4.755.25V, AVDD=TVDD=3.03.6V, DVDD=1.7~1.98V) Parameter Symbol Min. Typ. Max. Unit TVDD=1.7 3.0V High-Level Input Voltage VIH 80%TVDD V Low-Level Input Voltage VIL 20%TVDD V TVDD=3.0V 3.6V High-Level Input Voltage VIH 70%TVDD V Low-Level Input Voltage VIL 30%TVDD V High-Level Output Voltage VOH TVDD0.5 V (TDMO, DZFL, DZFR pins: Iout=-100µA) Low-Level Output Voltage (except SDA pin: Iout= 100µA) VOL 0.5 V (SDA pin, 2.0V TVDD 3.6V: Iout= 3mA) VOL 0.4 V (SDA pin, 1.7V TVDD 2.0V: Iout= 3mA) VOL 20%TVDD V Input Leakage Current Iin 10 A Note 28. The TESTE pin has internal pull-down and the PSN pin has internal pull-up devices. Therefore the TESTE and PSN pins are not included in this specification. Rev. 0.1 2015/11 - 22 - [AK4497] ■ Switching Characteristics (Ta=-40~85C; VDDL/R=4.755.25V, TVDD=AVDD=1.73.6V, DVDD=1.7~1.98V, CL=20pF) Parameter Symbol Min. Typ. Max. Master Clock Timing Frequency fCLK 2.048 49.152 Duty Cycle dCLK 40 60 Minimum Pulse Width tCLKH 9.155 tCLKL 9.155 Unit MHz % nsec nsec LRCK Clock Timing (Note 29) Normal Mode (TDM[1:0] bits = “00”) Normal Speed Mode fsn 8 54 kHz Double Speed Mode fsd 54 108 kHz Quad Speed Mode fsq 108 216 kHz Oct speed mode fso 384 kHz Hex speed mode fsh 768 kHz Duty Cycle Duty 45 55 % TDM128 mode (TDM[1:0] bits = “01”) Normal Speed Mode fsn 8 54 kHz Double Speed Mode fsd 54 108 kHz Quad Speed Mode fsq 108 216 kHz High time tLRH 1/128fs nsec Low time tLRL 1/128fs nsec TDM256 mode (TDM[1:0] bits = “10”) Normal Speed Mode High time fsn 8 54 kHz Double Speed Mode fsd 54 108 kHz High time tLRH 1/256fs nsec Low time tLRL 1/256fs nsec TDM512 mode (TDM[1:0] bits = “11”) Normal Speed Mode fsn 8 54 kHz High time tLRH 1/512fs nsec Low time tLRL 1/512fs nsec Note 29. The MCLK frequency must be changed while the AK4497 is in reset state by setting the PDN pin = “L” or RSTN bit = “0”. Rev. 0.1 2015/11 - 23 - [AK4497] (Ta=-40~85C; VDDL/R=4.755.25V, TVDD=AVDD=1.73.6V, DVDD=1.7~1.98V, CL=20pF, PSNpin=L, AFSDbit= "1") Parameter Symbol Min. Typ. Max. Unit Master Clock Timing (FS Auto Detect Mode) Frequency fCLK 7.68 MHz 49.152 Duty Cycle dCLK 40 % 60 Minimum Pulse Width tCLKH 9.155 nsec tCLKL 9.155 nsec LRCK Clock Timing (FS Auto Detect Mode) (Note 30) Normal Mode (TDM[1:0] bits = “00”) Normal Speed Mode fsn 30 54 kHz Double Speed Mode fsd 88.2 108 kHz Quad Speed Mode fsq 176.4 216 kHz Oct speed mode fso 384 kHz Hex speed mode fsh 768 kHz Duty Cycle Duty 45 55 % TDM128 mode (TDM[1:0] bits = “01”) Normal Speed Mode fsn 30 54 kHz Double Speed Mode fsd 88.2 108 kHz Quad Speed Mode fsq 176.4 216 kHz High time tLRH 1/128fs nsec Low time tLRL 1/128fs ns TDM256 mode (TDM[1:0] bits = “10”) Normal Speed Mode High time fsn 30 54 kHz Double Speed Mode fsd 108 kHz High time tLRH 1/256fs nsec Low time tLRL 1/256fs nsec TDM512 mode (TDM[1:0] bits = “11”) Normal Speed Mode fsn 30 54 kHz High time tLRH 1/512fs nsec Low time tLRL 1/512fs nsec Note 30. Normal operation is not guaranteed if a frequency not shown above is input to the LRCK when the AK4497 is in Sampling Frequency Auto Detect Mode. Rev. 0.1 2015/11 - 24 - [AK4497] Parameter Symbol Min. Typ. PCM Audio Interface Timing Normal Mode (TDM[1:0] bits = “00”) BICK Period Normal Speed Mode tBCK 1/256fsn Double Speed Mode tBCK 1/128fsd Quad Speed Mode tBCK 1/64fsq Oct speed mode tBCK 1/64fso Hex speed mode tBCK 1/64fsh BICK Pulse Width Low tBCKL 9 BICK Pulse Width High tBCKH 9 BICK “” to LRCK Edge (Note 31) tBLR 5 tLRB 5 LRCK Edge to BICK “” (Note 31) tSDH 5 SDATA Hold Time tSDS 5 SDATA Setup Time TDM128 mode (TDM[1:0] bits = “01”) BICK Period Normal Speed Mode tBCK 1/128fsn Double Speed Mode tBCK 1/128fsd Quad Speed Mode tBCK 1/128fsq BICK Pulse Width Low tBCKL 14 BICK Pulse Width High tBCKH 14 tBLR 14 BICK “” to LRCK Edge (Note 31) tLRB 14 LRCK Edge to BICK “” (Note 31) tSDH 5 SDATA Hold Time tSDS 5 SDATA Setup Time TDM256 mode (TDM[1:0] bits = “10”) BICK Period Normal Speed Mode tBCK 1/256fsn Double Speed Mode (Note 32) tBCK 1/256fsd BICK Pulse Width Low tBCKL 14 BICK Pulse Width High tBCKH 14 BICK “” to LRCK Edge (Note 31) tBLR 14 tLRB 14 LRCK Edge to BICK “” (Note 31) tBSS 5 TDMO Setup time BICK “” tBSH 5 TDMO Hold time BICK “” (Note 34) tSDH 5 SDATA Hold Time tSDS 5 SDATA Setup Time TDM512 mode (TDM[1:0] bits = “11”) BICK Period Normal Speed Mode (Note 33) tBCK 1/512fsn BICK Pulse Width Low tBCKL 14 BICK Pulse Width High tBCKH 14 BICK “” to LRCK Edge (Note 31) tBLR 14 LRCK Edge to BICK “” (Note 31) tLRB 14 tBSS 5 TDMO Setup time BICK “” tBSH 5 TDMO Hold time BICK “” (Note 34) tSDH 5 SDATA Hold Time tSDS 5 SDATA Setup Time Note 31. BICK rising edge must not occur at the same time as LRCK edge. Note 32. Daisy Chain Mode, fsd (max) = 96 kHz if “TVDD < 3.0V”. Note 33. Daisy Chain Mode, fsn (max) = 48 kHz if “TVDD < 3.0V”. Note 34. LDOE pin = “L”, tBSH (min) = 4 nsec if “TVDD > 2.6V”. Rev. 0.1 Max. Unit nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec 2015/11 - 25 - [AK4497] Parameter Symbol Min. Typ. Max. Unit PCM Audio Interface Timing External Digital Filter Mode BCK Period tB 27 nsec BCK Pulse Width Low tBL 10 nsec BCK Pulse Width High tBH 10 nsec BCK “” to WCK Edge tBW 5 nsec WCK Period tWCK 1.3 usec tWB 5 nsec WCK Edge to BCK “” tWCKL 54 nsec WCK Pulse Width Low tWCKH 54 nsec WCK Pulse Width High tDH 5 nsec DINL/R Hold Time tDS 5 nsec DINL/R Setup Time DSD Audio Interface Timing Sampling Frequency fs 30 48 kHz (64fs mode, DSDSEL [1:0] bits = “00”) tDCK 1/64fs nsec DCLK Period 144 tDCKL nsec DCLK Pulse Width Low 144 tDCKH nsec DCLK Pulse Width High tDDD 20 nsec 20 DCLK Edge to DSDL/R (Note 35) (128fs mode, DSDSEL [1:0] bits = “01”) DCLK Period tDCK 1/128fs nsec 72 DCLK Pulse Width Low tDCKL nsec 72 DCLK Pulse Width High tDCKH nsec DCLK Edge to DSDL/R (Note 35) tDDD 10 nsec 10 (256fs mode, DSDSEL [1:0] bits = “10”) DCLK Period tDCK 1/256fs nsec 36 DCLK Pulse Width Low tDCKL nsec 36 DCLK Pulse Width High tDCKH nsec DCLK Edge to DSDL/R (Note 35) tDDD 5 nsec 5 (512fs mode, DSDSEL [1:0] bit = “11”) DCLK Period tDCK 1/512fs nsec DCLK Pulse Width Low tDCKL 18 nsec DCLK Pulse Width High tDCKH 18 nsec DSDL/R Setup Time tDDS 5 nsec DSDL/R Hold Time tDDH 5 nsec Note 35. DSD data transmitting device must meet this time. “tDDD” is defined from DCLK “↓” until DSDL/R edge when DCKB bit = “0” (default), “tDDD” is defined from DCLK “↑” until DSDL/R edge when DCKB bit = “1”. If the audio data format is in phase modulation mode, “tDDD” is defined from DCLK edge “↓” or “↑” until DSDL/R edge regardless of DCKB bit setting. Note 36. The AK4497 does not support Phase Modulation Mode in DSD512fs Mode. Rev. 0.1 2015/11 - 26 - [AK4497] Parameter Symbol Min. Typ. Max. Control Interface Timing (3-wire IF mode): CCLK Period 200 tCCK CCLK Pulse Width Low 80 tCCKL Pulse Width High 80 tCCKH CDTI Setup Time 40 tCDS CDTI Hold Time 40 tCDH CSN “H” Time 150 tCSW 50 tCSS CSN “” to CCLK “” 50 tCSH CCLK “” to CSN “” 2 Control Interface Timing (I C Bus mode): SCL Clock Frequency fSCL 400 Bus Free Time Between Transmissions tBUF 1.3 Start Condition Hold Time (prior to first clock pulse) tHD:STA 0.6 Clock Low Time tLOW 1.3 Clock High Time tHIGH 0.6 Setup Time for Repeated Start Condition tSU:STA 0.6 SDA Hold Time from SCL Falling (Note 37) tHD:DAT 0 SDA Setup Time from SCL Rising tSU:DAT 0.1 Rise Time of Both SDA and SCL Lines tR 1.0 Fall Time of Both SDA and SCL Lines tF 0.3 Setup Time for Stop Condition tSU:STO 0.6 Pulse Width of Spike Noise Suppressed by Input Filter tSP 0 50 Capacitive load on bus Cb 400 Power-down & Reset Timing (Note 38) PDN Accept Pulse Width tAPD 150 PDN Reject Pulse Width tRPD 30 Note 37. Data must be held for sufficient time to bridge the 300 ns transition time of SCL. Note 38. The AK4497 can be reset by bringing the PDN pin “L” to “H” upon power-up. Note 39. I2C -bus is a trademark of NXP B.V. Rev. 0.1 Unit nsec nsec nsec nsec nsec nsec nsec nsec kHz usec usec usec usec usec usec usec usec usec usec nsec pF nsec nsec 2015/11 - 27 - [AK4497] ■ Timing Diagram 1/fCLK VIH MCLK VIL tCLKH tCLKL dCLK=tCLKH x fCLK, tCLKL x fCLK 1/fs VIH VIL LRCK tLRH tLRL tBCK VIH BICK VIL tBCKH tBCKL tWCK VIH WCK VIL tWCKH tWCKL tB VIH BCK VIL tBH tBL Figure 9. Clock Timing Rev. 0.1 2015/11 - 28 - [AK4497] VIH LRCK VIL tBLR tLRB VIH BICK VIL tBSH tBSS TDMO 50%TVDD tSDS tSDH VIH SDATA VIL Figure 10. Audio Interface Timing (PCM Mode) VIH WCK VIL tBW tWB VIH BCK VIL tDS tDH VIH DINL DINR VIL Figure 11. Audio Interface Timing (External Digital Filter I/F Mode) Rev. 0.1 2015/11 - 29 - [AK4497] tDCK tDCKL tDCKH VIH DCLK VIL tDDD VIH DSDL DSDR VIL tDDD VIH DSDL DSDR VIL DSD Audio Interface Timing (DSD64fs, 128fs, 256fs Mode) tDCK tDCKL tDCKH VIH DCLK VIL tDDS tDDH VIH DSDL DSDR VIL DSD Audio Interface Timing (DSD512fs Mode) Figure 12. Audio Interface Timing (DSD Normal Mode, DCKB bit = “0”) tDCK tDCKL tDCKH VIH DCLK VIL tDDD tDDD VIH DSDL DSDR VIL tDDD tDDD VIH DSDL DSDR VIL Figure 13. Audio Interface Timing (DSD Phase Modulation Mode, DCKB bit = “0”) Rev. 0.1 2015/11 - 30 - [AK4497] VIH CSN VIL tCSS tCCK tCCKL tCCKH VIH CCLK VIL tCDS CDTI C1 tCDH C0 R/W VIH A4 VIL Figure 14. WRITE Command Input Timing tCSW VIH CSN VIL tCSH VIH CCLK CDTI VIL D3 D2 D1 D0 VIH VIL Figure 15. WRITE Data Input Timing Rev. 0.1 2015/11 - 31 - [AK4497] VIH SDA VIL tBUF tLOW tR tHIGH tF tSP VIH SCL VIL tHD:STA Stop tHD:DAT tSU:DAT Start tSU:STA tSU:STO Start Stop Figure 16. I2C Bus Mode Timing tAPD tRPD PDN VIL Figure 17. Power Down & Reset Timing Rev. 0.1 2015/11 - 32 - [AK4497] 9. Functional Descriptions Each function of the AK4497 is controlled by Pins (pin control mode) and Registers (register control mode) (Table 1). Select the control mode by setting the PSN pin. The AK4497 must be powered down when changing the PSN pin setting. There is a possibility of malfunction if the device is not powered down when changing the control mode since the previous setting is not initialized. Register settings are invalid in pin control mode, and pin settings are invalid in register control mode. Table 2 shows available functions of each control mode and Table 3 shows available functions in PCM/DSD/EXDF mode. Table 1. Pin/Register Control Mode Select PSN pin Control Mode L Register Control Mode H Pin Control Mode Table 2. Function List @Pin/Register Control Mode Register Control Function Pin Control Mode Mode DSD/EXDF Mode Select Y System Clock Setting Select Y Y Audio Format Select Y Y TDM Mode Y Y Digital Filter Select Y Y De-emphasis Filter Select Y Y Digital Attenuator Y Zero Detection Y Mono Mode Y Output signal select Y (Monaural, Channel select) Output signal polarity select Y Y (Invert) Sound Color Select Y DSD Full Scale Detect Y Soft Mute Y Y Register Reset Y Clock Synchronization Function Y Resistor Control Y Gain Control Y Y Heavy Load Mode Y Y (Y: Available, -: Not available) Rev. 0.1 2015/11 - 33 - [AK4497] Table 3. Function List of PCM/EXDF/DSD mode @Register Control Mode Function Default Add Bit PCM EXDF 00H EXDF PCM/DSD/EXDF Mode Select PCM mode Y Y 02H DP System clock setting @DSD mode 512fs 02H DCKS System clock setting @EXDF mode 16fs(fs=44.1kHz) 00H ECS Y Digital Filter select @DSD mode Digital Filter select @PCM mode De-emphasis Response Path select @ DSD mode Audio Data Interface Format @ PCM Mode Audio Data Interface Format @ EXDF Mode TDM Interface Format Daisy Chain Attenuation Level Data Zero Detect Enable Inverting Enable of DZF Mono/Stereo mode select Data Invert mode select The data selection of L channel and R channel Sound Color Select DSD Mute Function @ Full scale Detected Soft Mute Enable RSTN Clock Synchronization Function (Y: Available, N/A: Not available) 39kHz filter Short delay sharp roll off filter OFF Normal Path 09H DSDF DSD Y Y - - - Y Y - - Y - - Y 01H 06H SD SLOW SSLOW DEM[1:0] DSDD 32bit MSB 00H DIF[2:0] Y - - 32bit LSB 00H DIF[2:0] - Y - Normal Mode Normal Mode 0dB Disable “H” active Stereo OFF 0AH 0BH 03-04H 01H 02H 02H 05H TDM[1:0] DCHAIN ATT[7:0] DZFE DZFB MONO INVL/R Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y R channel 02H SELLR Y Y Y Off 08H SC[2:0] Y Y Y Disable 06H DDM - - Y 01H SMUTE Y Y Y 00H 07H RSTN SYNCE Y Y Y Y Y - Normal Operation RST Enable Rev. 0.1 01-02-05H 2015/11 - 34 - [AK4497] ■ D/A Conversion Mode The AK4497 can perform D/A conversion for either PCM data or DSD data. The DP bit controls PCM/DSD mode. When DSD mode, DSD data can be input from the #16, #17 and #19 pins if DSDPATH bit = “0” and DSD data can be input from the #3, #4, and #5 pins if DSDPATH bit = “1”. The AK4497 must be reset by setting RSTN bit = “0” when PSM/DSD mode is changed by DP bit or when DSD signal input pins are changed by DSDPATH bit. It takes about 2 ~ 3/fs to change the mode. Wait 4/fs or more to change DP or DSDPATH bit setting after setting RSTN bit = “0”. When the AK4497 is in pin control mode, PCM mode is only available. External digital filter I/F can be selected by setting DP bit = “0” and EXDF bit = “1”. When using an external digital filter (EXDF I/F mode), data is input to each MCLK, BCK, WCK, DINL and DINR pin. EXDF bit controls the modes. When switching internal and external digital filters by EXDF bit, the AK4497 must be reset by RSTN bit. A Digital filter switching takes 2~3k/fs. The AK4497 is in DSD mode when DP bit = “1” and EXDF bit “1”. DP bit EXDF bit 0 (default) 0 (default) 1 * 1 * 0 1 (*: Do not care) Table 4. PCM/DSD/EXDF Mode Control Pin Assignment DSDPATH D/A Conv. bit Mode #3 pin #4 pin #5 pin #16 pin #17 pin #19 pin * PCM BICK SDATA LRCK Not Use Not Use Not Use DSD Not Use Not Use Not Use DCLK DSDL DSDR DSD EXDF DCLK BCK DSDL DINL DSDR DINR Not Use Not Use Not Use Not Use Not Use Not Use 0 (default) 1 * ■ D/A Conversion Mode Switching Timing Figure 18 and Figure 19 show switching timing of PCM/EXDF and DSD modes. To prevent noise caused by excessive input, DSD signal should be input 4/fs after setting RSTN bit = “0” until the device is completely reset internally when the conversion mode is changed to DSD mode from PCM/ESDF mode. DSD signal should be stopped 4/fs after setting RSTN bit = “0”until the device is completely reset internally when the conversion mode is changed to PCM/EXDE from DSD mode. RSTN bit 4/fs D/A Mode PCM or EXDF Mode DSD Mode 0 D/A Data PCM or EXDF Data DSD Data Figure 18. D/A Mode Switching Timing (PCM or EXDF to DSD) Rev. 0.1 2015/11 - 35 - [AK4497] RSTN bit 0 D/A Mode DSD Mode PCM or EXDF Mode 4/fs D/A Data PCM Data DSD Data Figure 19. D/A Mode Switching Timing (DSD to PCM or EXDF) Figure 20 shows switching timing of PCM and EXDF modes. Set EXDF bit 4/fs after setting RSTN bit = “0” until the device is completely reset internally when changing the conversion mode. RSTN bit 4/fs D/A Mode D/A Data PCM or EXDF Mode 0 PCM or EXDF Mode PCM or EXDF Data PCM or EXDF Data Figure 20. D/A Mode Switching Timing (PCM ⇔ EXDF) Rev. 0.1 2015/11 - 36 - [AK4497] ■ System Clock [1] PCM Mode The external clocks, which are required to operate the AK4497, are MCLK, BICK and LRCK. MCLK should be synchronized with LRCK but the phase is not critical. The MCLK is used to operate the digital interpolation filter, the delta-sigma modulator and SCF. There are Manual Setting Mode, Auto Setting Mode and Fs Auto Detection mode for MCLK frequency setting. In manual setting mode, MCLK frequency is set automatically but the sampling speed (LRCK frequency) is set by DFS[2:0] bits (Table 6). Sampling frequency is fixed to normal speed mode in pin control mode (PSN pin = “H”), and it is set by DFS[2:0] bits in register control mode (PSN pin = “L”). In register control mode, the AK4497 is in manual setting mode when power-down is released (PDN pin = “”). In auto setting mode (ACKS pin = “H” or ACKS bit=“1”), sampling speed and MCLK frequency are detected automatically (Table 7, Table 10) and then the initial master clock is set to the appropriate frequency (Table 8, Table 14, Table 15). In FS auto detect mode (AFSD bit= “1”), sampling speed is automatically detected (Table 7, Table 10) and the initial master clock is set to the appropriate frequency. In this mode, ACKS bit and DFS[2:0] bits settings are invalid. Fs auto detect mode is not supported by pin control mode. The AK4497 is automatically placed in power-down state when MCLK is stopped for more than 1us during a normal operation (PDN pin =“H”), and the analog output becomes Hi-z state. When MCLK is input again, the AK4497 exits power-down state and starts operation. The AK4497 is in power-down mode until MCLK BICK and LRCK are supplied and the analog output is floating state. Table 5. System Clock Setting Mode @Register Control Mode AFSD bit ACKS bit Mode 0 0 Manual setting Mode (default) 0 1 Auto setting Mode 1 FS Auto Detect Mode Rev. 0.1 2015/11 - 37 - [AK4497] (1) Pin Control Mode (PSN pin = “H”) 1-1. Manual Setting Mode (ACKS pin = “L”) The MCLK frequency corresponding to each sampling speed should be provided externally (Table 6). DFS1-0 bit is fixed to “00”. In this mode, quad speed and double speed modes are not available. Table 6. System Clock Example (Manual Setting Mode @Pin Control Mode)(N/A: Not available) LRCK MCLK (MHz) BICK fs 128fs 192fs 256fs 384fs 512fs 768fs 1152fs 64fs 32.0kHz N/A N/A 8.1920 12.2880 16.3840 24.5760 36.8640 2.0480MHz 44.1kHz N/A N/A 11.2896 16.9344 22.5792 33.8688 N/A 2.8224MHz 48.0kHz N/A N/A 12.2880 18.4320 24.5760 36.8640 N/A 3.0720MHz 1-2. Auto Setting Mode (ACKS pin = “H”) In auto setting mode, MCLK frequency and sampling frequency are detected automatically (Table 7). MCLK of corresponded frequency to each sampling speed mode should be input externally (Table 8). Table 7. Sampling Speed (Auto Setting Mode @Pin Control Mode) MCLK Sampling Speed 1152fs Normal (fs32kHz) 512fs/256fs 768fs/384fs Normal 256fs 384fs Double 128fs 192fs Quad 64fs 96fs Oct 32fs 48fs Hex Table 8. System Clock Example (Auto Setting Mode @Pin Control Mode) (N/A: Not available) LRCK fs 32.0kHz 44.1kHz 48.0kHz 88.2kHz 96.0kHz 176.4kHz 192.0kHz 384kHz 768kHz 32fs N/A N/A N/A N/A N/A N/A N/A N/A 24.576 48fs N/A N/A N/A N/A N/A N/A N/A N/A 36.864 64fs N/A N/A N/A N/A N/A N/A N/A 24.576 N/A 96fs N/A N/A N/A N/A N/A N/A N/A 36.864 N/A 128fs N/A N/A N/A N/A N/A 22.5792 24.5760 N/A N/A MCLK(MHz) 192fs 256fs N/A 8.1920 N/A 11.2896 N/A 12.2880 N/A 22.5792 N/A 24.5760 33.8688 N/A 36.8640 N/A N/A N/A N/A N/A 384fs 12.2880 16.9344 18.4320 33.8688 36.8640 N/A N/A N/A N/A 512fs 16.3840 22.5792 24.5760 N/A N/A N/A N/A N/A N/A 768fs 24.5760 33.8688 36.8640 N/A N/A N/A N/A N/A N/A 1024fs 32.7680 N/A N/A N/A N/A N/A N/A N/A N/A 1152fs 36.8640 N/A N/A N/A N/A N/A N/A N/A N/A Sampling Speed Normal Double Quad Quad Oct Hex When MCLK= 256fs/384fs, auto setting mode supports sampling rate of 8kHz~96kHz (Table 9). However, the DR and S/N performances will degrade approximately 3dB as compared to when MCLK = 256fs/384fs for DR and MCLK= 512fs/768fs for S/N, respectively if the sampling rate is under 54kHz. Table 9. DR and S/N Relationship with MCLK Frequency (fs = 44.1kHz) ACKS pin MCLK DR,S/N L 256fs/384fs/512fs/768fs 127dB H 256fs/384fs 124dB H 512fs/768fs 127dB Rev. 0.1 2015/11 - 38 - [AK4497] (2) Register Control Mode (PSN pin = “L”) 1-1. Manual Setting Mode (AFSD bit=”0”, ACKS bit = “0”) MCLK frequency is detected automatically and the sampling speed is set by DFS[2:0] bits (Table 10). The MCLK frequency corresponding to each sampling speed that should be provided externally (Table 11). The AK4497 is set to Manual Setting Mode at power-up (PDN pin = “L” →“H”). When DFS2-0 bits are changed, the AK4497 should be reset by RSTN bit. Table 10. Sampling Speed (Manual Setting Mode @Register Control Mode) DFS2 DFS1 DFS0 Sampling Rate (fs) 0 0 0 Normal Speed Mode (default) 8kHz 54kHz 0 0 1 Double Speed Mode 54kHz 108kHz 0 1 0 Quad Speed Mode 120kHz 216kHz 0 1 1 Quad Speed Mode 120kHz 216kHz 1 0 0 Oct Speed Mode 384kHz 1 0 1 Hex Speed Mode 768kHz 384kHz 1 1 0 Oct Speed Mode 768kHz 1 1 1 Hex Speed Mode Table 11. System Clock Example (Manual Setting Mode @Register Control Mode) Sampling MCLK(MHz) LRCK Speed Fs 32.0kHz 44.1kHz 48.0kHz 88.2kHz 96.0kHz 176.4kHz 192.0kHz 384kHz 768kHz 16fs 32fs 48fs 64fs 96fs 128fs N/A N/A N/A N/A N/A N/A N/A N/A 12.288 N/A N/A N/A N/A N/A N/A N/A 12.288 24.576 N/A N/A N/A N/A N/A N/A N/A 18.432 36.864 N/A N/A N/A N/A N/A N/A N/A 24.576 49.152 N/A N/A N/A N/A N/A N/A N/A 36.864 N/A N/A N/A N/A N/A N/A 22.5792 24.5760 N/A N/A Normal Double Quad Quad Oct Hex Table 12. System Clock Example (Manual Setting Mode @Register Control Mode) Sampling LRCK MCLK(MHz) Speed fs 32.0kHz 44.1kHz 48.0kHz 88.2kHz 96.0kHz 176.4kHz 192.0kHz 384kHz 768kHz 192fs 256fs 384fs 512fs 768fs 1024fs 1152fs N/A N/A N/A N/A N/A 33.8688 36.8640 N/A N/A 8.1920 11.2896 12.2880 22.5792 24.5760 45.1584 49.152 N/A N/A 12.2880 16.9344 18.4320 33.8688 36.8640 N/A N/A N/A N/A 16.3840 22.5792 24.5760 45.1584 49.152 N/A N/A N/A N/A 24.5760 33.8688 36.8640 N/A N/A N/A N/A N/A N/A 32.7680 N/A N/A N/A N/A N/A N/A N/A N/A 36.8640 N/A N/A N/A N/A N/A N/A N/A N/A Rev. 0.1 Normal Double Quad Quad Oct Hex 2015/11 - 39 - [AK4497] 1-2. Auto Setting Mode (AFSD bit= “0”, ACKS bit = “1”) MCLK frequency and the sampling speed are detected automatically (Table 13) and DFS[2:0] bits are ignored. The MCLK frequency corresponding to each sampling speed should be provided externally (Table 14, Table 15). Table 13. Sampling Speed (Auto Setting Mode) MCLK Sampling Speed 1152fs Normal (fs32kHz) 512fs/256fs 768fs/384fs Normal 256fs 384fs Double 128fs 192fs Quad 64fs 96fs Oct 32fs 48fs Hex Table 14. System Clock Example (Auto Setting Mode) Sampling MCLK(MHz) LRCK Speed fs 32.0kHz 44.1kHz 48.0kHz 88.2kHz 96.0kHz 176.4kHz 192.0kHz 384kHz 768kHz LRCK fs 32.0kHz 44.1kHz 48.0kHz 88.2kHz 96.0kHz 176.4kHz 192.0kHz 384kHz 768kHz 32fs 48fs 64fs 96fs 128fs N/A N/A N/A N/A N/A N/A N/A N/A 24.576 N/A N/A N/A N/A N/A N/A N/A N/A 36.864 N/A N/A N/A N/A N/A N/A N/A 24.576 N/A N/A N/A N/A N/A N/A N/A N/A 36.864 N/A N/A N/A N/A N/A N/A 22.5792 24.5760 N/A N/A Normal Double Quad Quad Oct Hex Table 15. System Clock Example (Auto Setting Mode) MCLK(MHz) 192fs 256fs 384fs 512fs 768fs 1152fs N/A N/A N/A N/A N/A 33.8688 36.8640 N/A N/A 8.1920 11.2896 12.2880 22.5792 24.5760 N/A N/A N/A N/A 12.2880 16.9344 18.4320 33.8688 36.8640 N/A N/A N/A N/A 16.3840 22.5792 24.5760 N/A N/A N/A N/A N/A N/A 24.5760 33.8688 36.8640 N/A N/A N/A N/A N/A N/A 36.8640 N/A N/A N/A N/A N/A N/A N/A N/A Sampling Speed Normal Double Quad Quad Oct Hex When MCLK= 256fs/384fs, auto setting mode supports sampling rate from 8kHz to 96kHz (Table 13). However, the DR and S/N performances will degrade approximately 3dB as compared to when MCLK = 256fs/384fs for DR and MCLK= 512fs/768fs for S/N, respectively if the sampling rate is under 54kHz. Table 16. DR and S/N Relationship with MCLK Frequency (fs = 44.1kHz) ACKS bit MCLK DR,S/N 0 256fs/384fs/512fs/768fs 127dB 1 256fs/384fs 124dB 1 512fs/768fs 127dB Rev. 0.1 2015/11 - 40 - [AK4497] 1-3. Sampling Frequency (FS) Auto Detect Mode (AFSD bit=”1”) MCLK frequency and the sampling rate is detected automatically (Table 13). In this mode, DFS[2:0] bits and ACKS bit settings are invalid. The MCLK frequency corresponding to each sampling speed should be provided externally (Table 17, Table 18). Internal operation sequence in FS auto detect mode is shown in Figure 21. LRCK Fs 32.0kHz 44.1kHz 48.0kHz 88.2kHz 96.0kHz 176.4kHz 192.0kHz 384kHz 768kHz 16fs 32fs 48fs 64fs 96fs 128fs N/A N/A N/A N/A N/A N/A N/A N/A 12.288 N/A N/A N/A N/A N/A N/A N/A 12.288 24.576 N/A N/A N/A N/A N/A N/A N/A 18.432 36.864 N/A N/A N/A N/A N/A N/A N/A 24.576 49.152 N/A N/A N/A N/A N/A N/A N/A 36.864 N/A N/A N/A N/A N/A N/A 22.5792 24.5760 N/A N/A Sampling Speed Normal Double Quad Quad Oct Hex Table 18. System Clock Example @PCM Mode MCLK(MHz) LRCK fs 32.0kHz 44.1kHz 48.0kHz 88.2kHz 96.0kHz 176.4kHz 192.0kHz 384kHz 768kHz Table 17. System Clock Example @PCM Mode MCLK(MHz) Sampling Speed 192fs 256fs 384fs 512fs 768fs 1024fs 1152fs N/A N/A N/A N/A N/A 33.8688 36.8640 N/A N/A 8.1920 11.2896 12.2880 22.5792 24.5760 45.1584 49.152 N/A N/A 12.2880 16.9344 18.4320 33.8688 36.8640 N/A N/A N/A N/A 16.3840 22.5792 24.5760 45.1584 49.152 N/A N/A N/A N/A 24.5760 33.8688 36.8640 N/A N/A N/A N/A N/A N/A 32.768 N/A N/A N/A N/A N/A N/A N/A N/A 36.8640 N/A N/A N/A N/A N/A N/A N/A N/A Rev. 0.1 Normal Double Quad Quad Oct Hex 2015/11 - 41 - [AK4497] ■ Power ON/OFF Sequence in FS Auto Detect Mode (LDOE pin = “H”) Power PDN pin (1) DVDD pin (2) Internal PDN Internal State Normal Operation (Register Write and DAC Operation are Available) AFSD bit AFSD bit = “0” AFSD bit = “1” AFSD bit = “0” (3) Power up Internal OSC Clock In Don’t care LRCK Internal FS Auto Detect Circuit (4) FS Auto Detect mode Enable Note: (1) Power-up AVDD and TVDD and the PDN pin should be “L” for more than 150ns. (2) The internal LOD is powered up upon power-up of the AK4497 if the LDOE pin= “H”. The internal circuit will be powered up in 2ms (max.) after the shutdown switch is ON following internal oscillator count up. When LDOE pin = “L”, shutdown switch is ON after the AK4497 is powered up. The internal circuit will be powered up in 1us (max.) (3) The internal oscillator starts operation by setting AFSD bit= “1”. It takes 10us (max.) until the internal oscillator is stabilized. (4) FS auto detect mode starts in 8/fs ~ 9/fs after setting AFSD bit= “1”. (5) FS auto detect mode ends by setting AFSD bit = “0” and the internal oscillator will stop operation. Figure 21. Power-down/up Sequence in FS AutoDetect Mode Rev. 0.1 2015/11 - 42 - [AK4497] [1] DSD Mode The AK4497 has a DSD playback function. The external clocks that are required in DSD mode are MCLK and DCLK. MCLK should be synchronized with DCLK but the phase is not critical. The frequency of MCLK is set by DCKS bit (Table 19). The AK4497 is automatically placed in power-down state when MCLK is stopped during a normal operation (PDN pin =“H”), and the analog output becomes Hi-z state. When the reset is released (PDN pin = “L” → “H”), the AK4497 is in power-down state until MCLK and DCLK are input. Table 19. System Clock (DSD Mode, fs=32kHz, 44.1kHz, 48kHz) DCKS bit MCLK Frequency DCLK Frequency 0 512fs 64fs/128fs/256fs (default) 1 768fs 64fs/128fs/256fs The AK4497 supports DSD data stream of 2.8224MHz (64fs), 5.6448MHz (128fs) and 11.2896MHz (256fs). The data sampling speed is selected by DSDSEL[1:0] bits (Table 20). DSDSEL1 DSDSEL0 0 0 1 1 0 1 0 1 Table 20. DSD data stream select DSD data stream fs=32kHz fs=44.1kHz 2.048MHz 2.8224MHz 4.096MHz 5.6448MHz 8.192MHz 11.2896MHz 16.284MHz 22.5792MHz fs=48kHz 3.072MHz 6.144MHz 12.288MHz 24.576MHz (default) The AK4497 has a Volume bypass function for play backing DSD signal. Two modes are selectable by DSDD bit (Table 21). When setting DSDD bit = “1”, the output volume control and zero detect functions are not available. Table 21. DSD Play Back Path Select DSDD Mode 0 Normal Path (default) 1 Volume Bypass Rev. 0.1 2015/11 - 43 - [AK4497] [2] External Digital Filter Mode (EXDF mode) The external clocks that are required in EXDF mode are MCLK, BCK and WCK. The BCK and MCLK clocks must be the same frequency and must not burst. BCK and MCLK frequencies for each sampling speed are shown in Table 22. ECS bit selects WCK frequency from 384kHz and 768kHz. DW indicates the number of BCK in one WCK cycle. All circuits except the internal LDO are automatically placed in power-down state when MCLK edge is not detected for more than 1us during a normal operation (PDN pin =“H”), and the analog output becomes Hi-Z state. The power-down state is released and the AK4497 starts operation by inputting MCLK again. In this case, register settings are not initialized. When the reset is released (PDN pin = “L” → “H”), the AK4497 is in power-down state until MCLK, BCK and WCK are input. Table 22. System Clock Example (EXDF mode) Sampling Speed[kHz] 44.1(30~48) 44.1(30~48) 96(54~96) 96(54~96) 192(108~192) 192(108~192) MCLK&BCK [MHz] 128fs N/A N/A N/A 12.28 8 32 192fs N/A N/A N/A 18.432 256fs N/A 384fs N/A 512fs 768fs 22.5792 33.8688 48 11.2896 32 16.9344 32 N/A 33.8688 24.576 36.864 N/A 96 N/A 32 48 N/A 36.864 N/A N/A N/A 96 N/A N/A N/A N/A N/A N/A N/A 48 24.576 36.864 32 N/A 48 36.864 WCK 48 96 Rev. 0.1 16fs DW 8fs DW 8fs DW 4fs DW 4fs DW 2fs DW ECS 0 (default) 1 0 1 0 1 2015/11 - 44 - [AK4497] ■ Audio Interface Format [1] PCM mode (i) Input Data Format Data is shifted in via the SDATA pin using BICK and LRCK inputs. Eight data formats are supported and selected by the DIF2-0 pins (Pin control mode) or DIF[2:0] bits (Register control mode) as shown in Table 23. In all formats the serial data is MSB first, 2's compliment format and is latched on the rising edge of BICK. Mode 2 can be used for 20-bit and 16-bit MSB justified formats by zeroing the unused LSBs. Normal Mode (TDM[1:0] bits = “00” or TDM1-0 pins = “LL”) 2ch Data is shifted in via the SDATA pin using BICK and LRCK inputs. Eight data formats are supported and selected by the DIF2-0 pins (Pin control mode) or DIF[2:0] bits (Register control mode) as shown in Table 23. In all formats the serial data is MSB first, 2's compliment format and is latched on the rising edge of BICK. Mode 6 can be used for 24-bit, 20-bit and 16-bit MSB justified formats by zeroing the unused LSBs. TDM128 Mode (TDM[1:0] bits = “01” or TDM1-0 pins = “LH”) 4ch Data is shifted in via the SDATA pin using BICK and LRCK inputs. Data slot can be selected by SDS[2:0] bits (Table 24). BICK is fixed to 128fs. Six data formats are supported and selected by the DIF2-0 pins (Pin control mode) or DIF[2:0] bits (Register control mode) as shown in Table 23. In all formats the serial data is MSB first, 2's compliment format and is latched on the rising edge of BICK. TDM256 Mode (TDM[1:0] bits =“10” or TDM1-0 pins =“HL”) 8ch Data is shifted in via the SDATA pin using BICK and LRCK inputs. Data slot can be selected by SDS[2:0] bits (Table 24). BICK is fixed to 256fs. Six data formats are supported and selected by the DIF2-0 pins (Pin control mode) or DIF[2:0] bits (Register control mode) as shown in Table 23. In all formats the serial data is MSB first, 2's compliment format and is latched on the rising edge of BICK. TDM512 Mode (TDM[1:0] bits = “11” or TDM1-0 pins = “HH”) 16ch Data is shifted in via the SDATA pin using BICK and LRCK inputs. Data slot can be selected by SDS[2:0] bits (Table 24). BICK is fixed to 512fs. Six data formats are supported and selected by the DIF2-0 pins (Pin control mode) or DIF[2:0] bits (Register control mode) as shown in Table 23. In all formats the serial data is MSB first, 2's compliment format and is latched on the rising edge of BICK. Rev. 0.1 2015/11 - 45 - [AK4497] Table 23. Audio Interface Format TDM1 TDM0 DIF2 DIF1 DIF0 SDATA Format LRCK BICK 0 0 0 0 16-bit LSB justified H/L 32fs 1 0 0 1 20-bit LSB justified H/L 40fs 2 0 1 0 24-bit MSB justified H/L 48fs 16-bit I2S Compatible L/H 32fs 3 0 1 1 2 Normal 24-bit I S Compatible L/H 0 0 48fs (Note 45) 4 1 0 0 24-bit LSB justified H/L 48fs 5 1 0 1 32-bit LSB justified H/L 64fs 6 1 1 0 32-bit MSB justified H/L 64fs 7 1 1 1 32-bit I2S Compatible L/H 64fs 0 0 0 (16-bit LSB justified) H/L 128fs 0 0 1 (20-bit LSB justified) H/L 128fs 8 0 1 0 24-bit MSB justified H/L 128fs 9 0 1 1 24-bit I2S Compatible L/H 128fs TDM128 0 1 10 1 0 0 24-bit LSB justified H/L 128fs 11 1 0 1 32-bit LSB justified H/L 128fs 12 1 1 0 32-bit MSB justified H/L 128fs 13 1 1 1 32-bit I2S Compatible L/H 128fs 0 0 0 (16-bit LSB justified) H/L 256fs 0 0 1 (20-bit LSB justified) H/L 256fs 14 0 1 0 24-bit MSB justified H/L 256fs 15 0 1 1 24-bit I2S Compatible L/H 256fs TDM256 1 0 16 1 0 0 24-bit LSB justified H/L 256fs 17 1 0 1 32-bit LSB justified H/L 256fs 18 1 1 0 32-bit MSB justified H/L 256fs 19 1 1 1 32-bit I2S Compatible L/H 256fs 0 0 0 (16-bit LSB justified) H/L 512fs 0 0 1 (20-bit LSB justified) H/L 512fs 20 0 1 0 24-bit MSB justified H/L 512fs 21 0 1 1 24-bit I2S Compatible L/H 512fs TDM512 1 1 22 1 0 0 24-bit LSB justified H/L 512fs 23 1 0 1 32-bit LSB justified H/L 512fs 24 1 1 0 32-bit MSB justified H/L 512fs 2 25 1 1 1 32-bit I S Compatible L/H 512fs Note 40. BICK more than setting bit must be input to each channel. In the LRCK column, “H/L” indicates that L channel data can be input when LRCK is “H” and R channel data can be input when LRCK is “L”. “L/H” indicates L channel data can be input when LRCK is “L” and R channel data can be input when LRCK is “H”. Mode Rev. 0.1 2015/11 - 46 - [AK4497] LRCK 0 1 10 11 12 13 14 15 0 1 10 11 12 13 14 15 0 1 BICK (32fs) SDATA Mode 0 15 14 6 1 0 5 14 4 15 3 16 2 1 17 0 31 15 0 14 6 5 14 1 4 15 3 16 2 1 17 0 31 15 14 0 1 0 1 0 1 BICK (64fs) SDATA Mode 0 Don’t care 15 14 Don’t care 0 15 14 0 15:MSB, 0:LSB Lch Data Rch Data Figure 22. Mode 0 Timing LRCK 0 1 8 9 10 11 12 31 0 1 8 9 10 11 12 31 BICK (64fs) SDATA Mode 1 Don’t care 19 0 Don’t care 19 0 Don’t care 19 0 19 0 19:MSB, 0:LSB SDATA Mode 4 Don’t care 23 22 21 20 23 22 20 21 23:MSB, 0:LSB Lch Data Rch Data Figure 23. Mode 1, 4 Timing LRCK 0 1 2 22 23 24 30 31 0 1 2 22 23 24 30 31 BICK (64fs) SDATA 23 22 1 0 Don’t care 23 22 1 0 Don’t care 23 22 23:MSB, 0:LSB Lch Data Rch Data Figure 24. Mode 2 Timing Rev. 0.1 2015/11 - 47 - [AK4497] LRCK 0 1 2 3 23 24 25 31 0 1 2 3 23 24 25 31 0 1 BICK (64fs) SDATA 23 0 1 22 Don’t care 23 22 0 1 23 Don’t care 23:MSB, 0:LSB Lch Data Rch Data Figure 25. Mode 3 Timing LRCK 0 1 2 20 21 22 32 33 63 0 1 2 20 21 22 32 33 63 0 1 BICK(128fs) SDATA 31 0 1 2 12 13 14 23 1 24 0 31 31 0 1 2 12 13 14 23 1 24 0 31 0 1 BICK(64fs) SDATA 31 30 20 19 18 8 9 0 1 31 30 20 19 18 Lch Data 8 9 0 1 31 Rch Data 31: MSB, 0:LSB Figure 26. Mode 5 Timing LRCK 0 1 2 20 21 22 32 33 63 0 1 2 20 21 22 32 33 63 0 1 BICK(128fs) SDATA 31 30 0 1 12 11 10 2 12 13 0 14 31 30 23 24 31 0 1 12 2 11 10 12 13 0 14 31 23 24 31 0 1 BICK(64fs) SDATA 31 30 20 19 18 9 8 1 0 31 30 Lch Data 20 19 18 9 8 1 0 31 Rch Data 31: MSB, 0:LSB Figure 27. Mode 6 Timing Rev. 0.1 2015/11 - 48 - [AK4497] LRCK 0 1 2 20 21 22 33 34 63 0 1 2 20 21 22 33 34 63 24 25 31 0 1 BICK(128fs) SDATA 31 0 1 13 12 11 2 12 13 0 14 31 24 25 31 0 1 13 2 12 11 12 0 13 14 0 1 BICK(64fs) SDATA 0 31 21 20 19 9 8 1 2 0 31 21 20 19 Lch Data 9 8 2 1 0 Rch Data 31: MSB, 0:LSB Figure 28. Mode 7 Timing 128 BICK LRCK BICK(128fs) SDATA Mode8 23 22 SDATA Mode11,12 31 30 0 23 22 0 0 31 30 23 22 0 L1 R1 32 BICK 32 BICK 31 30 32 BICK 32 BICK Figure 29. Mode 8/11/12 Timing 128 BICK LRCK BICK(128fs) SDATA Mode9 23 22 SDATA Mode13 31 30 0 0 23 22 0 31 30 23 31 30 0 L1 R1 32 BICK 32 BICK 32 BICK 32 BICK Figure 30. Mode 9/13 Timing Rev. 0.1 2015/11 - 49 - [AK4497] 128 BICK LRCK BICK(128fs) SDATA 23 22 0 23 22 0 L1 R1 32 BICK 32 BICK 23 32 BICK 32 BICK Figure 31. Mode 10 Timing 256 BICK LRCK BICK (256fs) SDATA Mode14 SDATA Mode17,18 23 22 0 31 30 23 22 0 23 22 0 31 30 0 L1 R1 32 BICK 32 BICK 31 30 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK Figure 32. Mode 14/17/18 Timing 256 BICK LRCK BICK (256fs) SDATA Mode15 SDATA Mode19 23 0 23 31 30 0 23 0 31 30 0 L1 R1 32 BICK 32 BICK 31 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK Figure 33. Mode 15/19 Timing 256 BICK LRCK BICK(256fs) SDATA 23 22 0 23 22 L1 R1 32 BICK 32 BICK 0 23 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK Figure 34. Mode 16 Timing Rev. 0.1 2015/11 - 50 - [AK4497] 512BICK LRCK BICK(512fs) SDATA Mode8 SDATA Mode11,12 23 22 0 23 22 23 0 2 31 22 0 31 22 31 0 R1 L1 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK Figure 35. Mode 20/23/24 Timing 512BICK LRCK BICK(512fs) SDATA Mode21 SDATA Mode25 23 22 0 23 22 23 0 2 31 22 0 31 22 31 0 R1 L1 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK Figure 36. Mode 21/25 Timing 512BICK LRCK BICK(512fs) SDATA Mode22 23 22 L1 0 23 22 23 0 2 R1 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK Figure 37. Mode 22 Timing Rev. 0.1 2015/11 - 51 - [AK4497] (ii) Data Slot Selection Function Data slot of 1cycle LRCK for each audio data format is defined as Figure 38~ Figure 41. DAC output data can be selected by SDS[2:0] bits as shown in Table 24. LRCK L1 SDATA R1 Figure 38. Data Slot in Normal Mode 128 BICK LRCK L1 SDATA R1 L2 R2 Figure 39. Data Slot in TDM128 Mode 256 BICK LRCK SDATA L1 R1 L2 R2 L3 R3 L4 R4 Figure 40. Data Slot in TDM256 Mode 512 BICK LRCK SDATA L1 R1 L2 R2 L3 R3 L4 R4 L5 R5 L6 R6 L7 R7 L8 R8 Figure 41. Data Slot in TDM512 Mode Rev. 0.1 2015/11 - 52 - [AK4497] SDS2 Normal * Table 24. Data Select DAC SDS1 SDS0 Lch Rch * * L1 R1 * * 0 L1 R1 * * 1 L2 R2 * * * * 0 0 1 1 0 1 0 1 L1 L2 L3 L4 R1 R2 R3 R4 0 0 0 0 0 1 L1 L2 R1 R2 0 0 1 1 1 1 0 0 0 1 0 1 L3 L4 L5 L6 R3 R4 R5 R6 1 1 (*: Do not care) 1 1 0 1 L7 L8 R7 R8 TDM128 TDM256 TDM512 Rev. 0.1 2015/11 - 53 - [AK4497] (iii) Daisy Chain The AK4497 supports cascading of multiple devices by daisy chain connection in TDM512/256 mode (TDM[1:0] bits = “10”, “11”). DCHAIN bit or DCHAIN pin controls Daisy Chain mode (Table 25). SDS[2:0] bits setting will be invalid in Daisy Chain mode. Table 25 Daisy Chain Control DCHAIN bit DCHAIN pin 0 1 Mode TDMO Normal Daisy Chain “L” Data output (default) (1) TDM512 Mode Figure 42 shows daisy chain connection in TDM512 mode (TDM[1:0] bits = “11”). 16ch data is input to the SDATA pin of the second AK4497 and the TDMO pin of the second AK4497 is connected to the SDATA pin of the first AK4497. Figure 43 shows data input/output example of daisy chain in TDM512 mode. The second AK4497 receives L8 and R8 data as DAC inputs and outputs the data by shifting 2ch from the TDMO pin. The first AK4497 receives L7 and R7 data as DAC input. Settings of DIF[2:0] bits of the first and second AK4497’s must be the same. TDMO SDATA TDMO First AK4497 SDATA DSP Second AK4497 Figure 42. Daisy Chain (TDM512 Mode) 512 BICK LRCK SDATA L1 R1 L2 R2 L3 R3 L4 R4 L5 R5 L6 R6 L7 R7 L8 R8 Second AK4497 TDMO L8 R8 L1 R1 L2 R2 L3 R3 L4 R4 L5 R5 L6 R6 L7 R7 First AK4497 Figure 43. Daisy Chain (TDM512 Mode) Rev. 0.1 2015/11 - 54 - [AK4497] (2) TDM256 Mode Figure 42 shows daisy chain connection in TDM256 mode (TDM[1:0] bits = “10”). 8ch data is input to the SDATA pin of the second AK4497 and the TDMO pin of the second AK4497 is connected to the SDATA pin of the first AK4497. Figure 44 shows data input/output example of daisy chain in TDM256 mode. The second AK4497 receives L4 and R4 data as DAC inputs and outputs the data from the TDMO pin by shifting 2ch. The first AK4497 receives L3 and R3 data as DAC input. Settings of DIF[2:0] bits of the first and second AK4497’s must be the same. 256 BICK LRCK SDATA L1 R1 L2 R2 L3 R3 L4 R4 Second AK4497 TDMO L4 R4 L1 R1 L2 L3 R2 R3 First AK4497 Figure 44. Daisy Chain (TDM256 Mode) [2] DSD Mode In DSD mode, L channel data and R channel data must be input to the DSDL pin and the DSDR pin, respectively by synchronizing to DCLK. Input pins can be selected by DSDPATH bit. When DSDPATH bit = “0”, the TDM0 pin, the DEM pin and the GAIN pin become DCLK, DSDL and DSDR input pins, respectively. When DSDPATH bit = “1”, the BICK pin, the SDATA pin and the LRCK pin become DCLK, DSDL and DSDR input pins, respectively. In case of DSD mode, the settings of DIF2-0 pins and DIF[2:0] bits are ignored. The frequency of DCLK is selected between 64fs, 128fs and 256fs by DSDSEL[1:0] bits. Phase modulation function is not available in 512fs mode (DSDSEL[1:0] bits = “11”). DCLK (64fs,128fs,256fs,512fs) DCKB bit=”1” DCLK (64fs,128fs,256fs,512fs) DCKB bit=”0” DSDL,DSDR Normal D0 DSDL,DSDR Phase Modulation D0 D1 D1 D2 D1 D2 D3 D2 D3 Figure 45. DSD Mode Timing Rev. 0.1 2015/11 - 55 - [AK4497] [3] External Digital Filter Mode (EXDF mode) The audio data is input by BCK and WCK from the DINL and DINR pins. Three formats are available (Table 26) by DIF2-0 bits setting. The data is latched on the rising edge of BCK. The BCK and MCLK clocks must not burst. Table 26. Audio Interface Format (EXDF mode) (N/A: Not available) Mode DIF2 DIF1 DIF0 Input Format 0 0 0 0 16-bit LSB justified 1 0 0 1 N/A 2 0 1 0 16-bit LSB justified 3 0 1 1 N/A 4 1 0 0 24-bit LSB justified 5 1 0 1 32-bit LSB justified 6 1 1 0 24-bit LSB justified (default) 7 1 1 1 32-bit LSB justified 1/16fs or 1/8fs or 1/4fs or 1/2fs WCK 0 1 8 9 10 11 16 17 26 27 28 29 30 31 0 1 BCK DINL or DINR 31 0 30 1 24 23 5 22 6 21 7 20 8 17 16 47 15 48 14 6 5 65 49 4 3 92 2 93 1 94 0 95 0 1 BCK DINL or DINR Don’t care 0 1 Don’t care 13 14 15 Don’t care 16 23 24 31 25 2 3 44 45 1 46 0 Don’t care 47 0 1 BCK DINL or DINR Don’t care Don’t care 31 3 2 1 0 Don’t care Figure 46. EXDF Mode Timing Rev. 0.1 2015/11 - 56 - [AK4497] ■ Digital Filter Six types of digital filter in PCM mode and two types of digital filter in DSD mode are available in the AK4497 for sound color selection of music playback. In PCM mode, digital filter can be selected by the SD, SLOW and SSLOW pins if the AK4497 is in pin control mode, and digital filter can be selected by SD, SLOW and SSLOW bits in register control mode (Table 27). In register control mode, programmable digital filter can be available by setting SSLOW bit = “1” and SD bit = “1”. In this case, Low dispersion short delay filter is available if SLOW bit = “0” and the coefficient can be changed if SLOW bit = “1”. Table 27. Digital Filter Setting SSLOW SD SLOW Mode 0 0 0 Sharp roll-off filter 0 0 1 Slow roll-off filter 0 1 0 Short delay sharp roll off filter (default) 0 1 1 Short delay slow roll off filter 1 0 0 Super Slow roll Off filter 1 0 1 Super Slow roll Off filter Low dispersion Shot delay filter / 1 1 X (Note 41) Programmable FIR filter Note 41. SSLOW=1, SD=1, SLOW=0: Low dispersion Short delay filter SSLOW=1, SD=1, SLOW=1: Programmable FIR filter (only for register control mode) In DSD mode, the cutoff frequency of digital filter can be switched by DSDF bit. Table 28 shows the cutoff frequency of fs = 44.1kHz. The cutoff frequency tracks the sampling frequency (fs). Do not set GS[2:0] bits to “100” when DSDD bit = “0” and DSDF bit = “1”. Otherwise a pop noise may occur. DSDF bit 0 1 Table 28. DSD Filter Select Cut Off Frequency @fs=44.1kHz DSD64fs 39kHz 76kHz DSD128fs DSD256fs DSD512fs 78kHz 156kHz 312kHz (default) 152kHz 304kHz 608kHz Rev. 0.1 2015/11 - 57 - [AK4497] ■ De-emphasis Filter (PCM) A digital de-emphasis filter is available for 32kHz, 44.1kHz or 48kHz sampling rates (tc = 50/15µs) and is enabled or disabled by DEM1-0 pins or DEM1-0 bits. When DSD mode or EXDF mode, DEM1-0 bits are ignored. The setting value is held even if PCM, DSD and EXDF mode is switched. Table 29. De-emphasis Control DEM1 DEM0 Mode 0 0 44.1kHz 0 1 OFF (default) 1 0 48kHz 1 1 32kHz ■ Output Volume (PCM, DSD, EXDF) The AK4497 includes channel independent digital output volumes (ATTL/R) with 256 levels at 0.5dB step including MUTE. When changing output levels, it is executed in soft transition thus no switching noise occurs during these transitions. It can attenuate the input data from 0dB to -127dB and mute when assuming the output signal level is 0dB when ATTL/R[7:0] bits = FFH. Table 30. Attenuation level of Digital Attenuator ATTL/R[7:0]bits Attenuation Level (register 03-04H) FFH +0dB (default) FEH -0.5dB FDH -1.0dB : : : : 02H -126.5dB 01H -127.0dB 00H MUTE (-∞) The transition time of digital output volume is set by ATS[1:0] bits (Table 31). When changing output levels between Mode0-3, it is executed in soft transition thus no switching noise occurs during these transitions. Register setting values will be kept even switching the PCM and DSD modes. Mode 0 1 2 3 Table 31. Transition Time between Set Values of ATT[7:0] bits ATS1 ATS0 ATT speed EXDF bit=”0”, EXDF bit=”1” DP bit=”1” DP bit=”0” DP bit=”0” 0 0 4080/fs 4080*WCK Cycle 4080/(2*fs) 0 1 2040/fs 2040*WCK Cycle 2040/(2*fs) 1 0 510/fs 510*WCK Cycle 510/(2*fs) 1 1 255/fs 255*WCK Cycle 255/(2*fs) (default) It takes 4080/fs (92.5ms@fs=44.1kHz) from FFH (0dB) to 00H (MUTE) in Mode 0. The attenuation level is initialized to FFH (0dB) by setting the PDN pin = “L”. If the volume is changed during reset period, the output volume will become a setting value after releasing the reset. It will change to a setting value immediately if the volume is changed within 5/fs after releasing reset. Rev. 0.1 2015/11 - 58 - [AK4497] ■ Gain Adjustment Function (PCM, DSD, EXDF) The AK4497 has the gain adjustment function. The analog output amplitude can be adjusted by GC[2:0] bits or the GAIN pin. GC[2] 0 0 0 0 1 1 1 1 Table 32. Output Level between Set Values of GC[2:0] bits AOUTLP/LN/RP/RN Output Level DSD: GC[1] GC[0] DSD: PCM Volume Normal Path Bypass 0 0 2.8Vpp 2.8Vpp 2.5Vpp 0 1 2.8Vpp 2.5Vpp 2.5Vpp 1 0 2.5Vpp 2.5Vpp 2.5Vpp 1 1 2.5Vpp 2.5Vpp 2.5Vpp 0 0 3.75Vpp 3.75Vpp 2.5Vpp 0 1 3.75Vpp 2.5Vpp 2.5Vpp 1 0 2.5Vpp 2.5Vpp 2.5Vpp 1 1 2.5Vpp 2.5Vpp 2.5Vpp (default) Table 33. Output Level between Set Values of GAIN pin AOUTLP/LN/RP/RN GAIN Output Level 0 2.8Vpp 1 3.75Vpp Note 42. DSDF bit must be set to “0” if GC[2:0] bits are set to “100” when using DSD Normal Path. Click noise may occur if DSDF bit is set to “0”. Rev. 0.1 2015/11 - 59 - [AK4497] ■ Zero Detection (PCM, DSD, EXDF) The AK4497 has a channel-independent zeros detect function. When the input data at each channel is continuously zeros for 8192 LRCK cycles, the DZF pin of each channel outputs zero detection flag independently. The DZFL/R pin outputs zero detection flag if the input data is continuously zeros for 16384 LRCK cycles in DSD 512fs mode (DP bit = “1” and DSDSEL[1:0] bits = “11”). Polarity of the detection flag of the DZFL/R pin can be selected by DZFB bit. The DZFL/R pin goes “H” for zero detection when DZFB bit = “0”, the DZFL/R pin goes “L” when DZFB bit = “1”. When DZFB bit = “0”, the DZFL/R pin immediately returns to “L” if the input data of each channel is not zero after going to “H”. If the RSTN bit is “0”, the DZF pins of both L and R channels go to “H”. The DZFL/R pin returns to “L” in 4 ~ 5/fs after the input data of each channel becomes “1” when RSTN bit is set to “1”. If DZFM bit is set to “1” while DZFB bit = “0”, the DZF pins of both L and R channels go to “H” only when the input data for both channels are continuously zeros for 8192 LRCK cycles (16384 LRCK cycles in DSD 512fs mode). The zero detect function can be disabled by setting the DZFE bit. In this case, DZF pins of both channels are always “L”. The zero detect function is also disabled when Volume Bypass is selected in DSD mode (refer to p42). DZFE 0 Table 34. Zero Detect Select. DZFB RSTN Data 0 1 0 1 0 not zero zero detect not zero zero detect 1 0 1 1 Rev. 0.1 DZF-pin L H H L H L H L 2015/11 - 60 - [AK4497] ■ L/R Channel Output Signal Select, Phase Inversion Function (PCM, DSD, EXDF) In register control mode, input and output combination of the AK4497 can be changed by MONO bit and SELLR bit. In addition, the output signal phase can be inverted by INVL bit and INVR bit. These functions are available on all audio formats. In pin control mode, the phase of R channel output can be inverted by setting the INVR pin. Table 35. Output Select (Register Control) MONO bit SELLR bit INVL bit 0 0 1 1 INVR bit Lch Out Rch Out 0 0 0 1 1 0 1 0 1 Lch In Lch In Lch In Invert Lch In Invert Rch In Rch In Invert Rch In Rch In Invert 1 0 0 1 1 0 1 0 1 Rch In Rch In Rch In Invert Rch In Invert Lch In Lch In Invert Lch In Lch In Invert 0 0 0 1 1 0 1 0 1 Lch In Lch In Lch In Invert Lch In Invert Lch In Lch In Invert Lch In Lch In Invert 1 0 0 1 1 0 1 0 1 Rch In Rch In Rch In Invert Rch In Invert Rch In Rch In Invert Rch In Rch In Invert Table 36. Output Select (Pin Control) INVR pin Lch Out Rch Out 0 1 Lch In Lch In Rch In Rch In Invert Rev. 0.1 2015/11 - 61 - [AK4497] ■ Sound Quality (PCM, DSD, EXDF) Sound quality of the AK4497 can be selected by SC[2:0] bits. Table 37. Sound Quality Select Mode SC0 Sound 0 Sound Setting 1 1 Sound Setting 2 0 Sound Setting 3 1 Sound Setting 2 SC1 0 0 1 1 SC2 0 1 Table 38. Sound Quality Select Mode Sound Sound Setting 4 Sound Setting 5 Rev. 0.1 (default) (default) 2015/11 - 62 - [AK4497] ■ DSD Signal Full Scale (FS) Detection The AK4497 has independent full scale detection function for each channel for DSD mode. The AK4497 detects full scale signal when the DSDL/R input data is continuously “0” (-FS) or “1” (+FS) for 2048 cycles and the detection flag for corresponding channel (DML or DMR bit) becomes “1”. DML and DMR bits can be read out at the register address 06H. When the AK4497 detects full scale signal while DDM bit = “1”, the analog output is muted in ATT transition period set by ATS[2:0] bits. This transition is executed by soft transition when DSDD bit = “0”. The analog output is muted immediately when DSDD bit = “1”. These settings (ATS[2:0] bits and DSDD bits) are also valid when the AK4497 returns to normal status from full scale detection status. The recovery timing from full scale detection status is controlled by DMC bit when DDM bit = “1”. When DMC bit = “0”, the AK4497 is automatically recovered and transitions to normal operation by a normal signal input. When DMC bit = “1”, the AK4497 transitions to normal operation by setting DMRE bit = “1” while normal signal is input. DMRE bit automatically returns to “0” when the transition is finished. When DDM bit = “1”, full scale signal can be detected but the AK4497 does not change to mute status. RSTN bit must be set to “0” when changing DDM bit setting. Table 39. DSD Mode and Device Status after Full-Scale Detection (DDM bit= “1”) DSDD Mode Full Scale Detection Status Analog Output 0 Normal Path DSD Mute VCML/R 1 Volume Bypass Digital Reset VCM/L/R DSD Data DSD Data DSD Error (DML or DMRbit) DSD Data (FS or -FS ) (default) DSD Data 2048fs ATT Transition Period ATT Transition Period AOUT (DSDD bit= “0”) AOUT (DSDD bit= “1”) Figure 47. Analog Output Waveform in DSD FS Detection (DMC bit= “0”) DSD Data DSD Error (DML or DMRbit) DSD Data DSD Data (FS or -FS ) DSD Data 2048fs DMRE bit ATT Transition Period ATT Transition Period AOUT (DSDD bit= “0”) AOUT (DSDD bit= “1”) Figure 48. Analog Output Waveform in DSD FS Detection (DMC bit= “1”) Rev. 0.1 2015/11 - 63 - [AK4497] ■ Soft Mute Operation (PCM, DSD, EXDF) The soft mute operation is performed at digital domain. When the SMUTE pin goes to “H” or the SMUTE bit set to “1”, the output signal is attenuated by during ATT_DATA ATT transition time from the current ATT level. When the SMUTE pin is returned to “L” or the SMUTE bit is returned to “0”, the mute is cancelled and the output attenuation gradually changes to the ATT level during ATT_DATA ATT transition time. If the soft mute is cancelled before attenuating after starting the operation, the attenuation is discontinued and returned to ATT level by the same cycle. The soft mute is effective for changing the signal source without stopping the signal transmission. SMUTE pin or SMUTE bit (1) (1) ATT_Level (3) Attenuation - (2) GD (2) GD AOUTL/R DZFL/R pin (4) 8192/fs Notes: (1) ATT_DATA ATT transition time. For example, this time is 4080LRCK cycles (1020/fs) at ATT_DATA=255 in PCM Normal Speed Mode. (2) The analog output corresponding to the digital input has group delay (GD). (3) If the soft mute is cancelled before attenuating after starting the operation, the attenuation is discontinued and returned to ATT level by the same cycle. (4) When the input data for each channel is continuously zeros for 8192 LRCK cycles (16384 LRCK cycles in DSD 512fs mode), the DZF pin for each channel goes to “H”. The DZF pin immediately returns to “L” if input data are not zero. Figure 49. Soft Mute Function Rev. 0.1 2015/11 - 64 - [AK4497] ■ LDO When TVDD = 3.0 ~3.6V, the power for digital core circuit (DVDD) is supplied by the internal LDO by setting the LDOE pin to “H”. Table 40 shows the DVDD pin statuses with the PDN and LDOE pins setting. The internal LDO is powered up by setting the PDN pin from “L” to “H” (power-down release) and it starts supping 1.8V DVDD. It takes 0.1ms (max.) to power-up the internal LDO. PDN LDOE L L TVDD 1.7~3.6V L H H H L H 3.0~3.6V 1.7~3.6V 3.0~3.6V Table 40. LDO Select Mode DVDD Hi-z 500ohm Pull Down LDO OFF: Supply 1.7 ~ 1.98V to the DVDD pin externally LDO ON: LDO outputs 1.8V. The AK4497 has error detect function as shown in Table 41 for LDO operation (LDOE pin = “H”). The internal LDO will be powered down and stop supplying the power to the digital core when an error is detected. In this case, the analog signal output becomes Hi-z state. The AK4497 must be reset by setting the PDN pin = “L” → “H” to recover from the error detection status. No 1 2 3 Table 41. Error Detection Error Error Detection Condition Internal Reference Voltage Error Internal reference voltage does not rise. LDO Over Voltage Detection LDO voltage exceeds 2.2V. LDO Over Current Detection LDO current is 40mA or less, or 110mA or more. ■ Shutdown Switch A shutdown switch is placed between the DVSS pin and VSS for the digital core to prevent SIDD leak of DVDD digital power supply. The on-resistance is maximum 1Ω and the DVDD leak current will be 2uA at the maximum. When using LDO (LDOE pin = “H”), the shutdown switch is ON after counting by internal oscillator following a power-down release (PDN pin “L” → “H”). It takes 2ms (max.) for the shutdown switch power-up. When not using LDO (LDOE pin = “L”), the shutdown switch is ON immediately after a power-down release (PDN pin “L” → “H”). It takes 1us (max.) for the shutdown switch power-up. ■ Over Current Protection for Analog Output Pins The AK4497 has channel independent over current detection function for analog output pins (AOUTLP/LN and AOUTRP/RN pins). This function limits the current not to exceed 120mA when an excessive current over 120mA (min) is detected. It is valid when the AK4497 is in power-on state. Rev. 0.1 2015/11 - 65 - [AK4497] ■ Power Up/Down Function The AK4497 is powered down by setting the PDN pin to “L”. In power-down state, all circuits stop operation and initialized, and the analog output becomes floating (Hi-z) state. The PDN pin must held “L” for more than 150ns for a certain reset. There is a possibility of malfunctions with the “L” pulse less than 150ns. Power-down is released by setting the PDN pin to “H” from “L”. In this time IREF and LDO (if LDOE pin = “H”) are powered up and the analog output becomes floating (Hi-z) state. (a) Pin Control Mode (PSN pin = “H”) All circuits will be powered up by inputting MCLK, LRCK and BICK clocks after the PDN pin = “H”. The analog circuit starts operation just after supplying all necessary clocks (MCLK, LRCK and BICK) and the digital circuit starts operation about 4/fs after the clock supply. Figure 50 shows system timing example of power down/up when using the internal LDO (LDOE pin “H”). When power up the AK4497 with the LDOE pin = “H”, 3.3V power supplies (AVDD and TVDD) should be powered up before or at the same time of 5V power supplies (VDDL/R and VREFHL/R). Power (TVDD,AVDD) Power (VDDL/R,VREFHL/R) PDN pin (1) DVDD pin (2) Internal PDN Internal State Normal Operation (DAC Input Available) DAC In (Digital) “0”data “0”data GD DAC Out (Analog) Clock In (4) (5) (3) GD (5) Don’t care (4) Don’t care MCLK,LRCK,BICK External Mute Reset (6) Mute ON Mute ON Figure 50. Power-down/up Sequence Example (Pin Control Mode, LDOE pin= “H”) Notes: (1) The PDN pin must be held “L” for more than 150ns after supplying AVDD, TVDD and VDDL/R. (2) Internal LDO is powered up after the PDN pin = “H” when the LDOE pin= “H”. The internal circuit will starts operation after the shutdown switch is ON (max. 2ms) following the internal oscillator count up. (3) The analog output corresponding to the digital input has group delay (GD). (4) Analog outputs are floating (Hi-Z) in power down mode. (5) Click noise occurs at the edge of PDN signal. This noise is output even if “0” data is input. (6) Mute the analog output externally if click noise (5) adversely affect system performance. The timing example when not using LDO (LODE pin = “L”) is shown in Figure 51. When the LDOE pin= “L”, 1.8V (DVDD), 3.3V (AVDD, TVDD) and 5V (VDDL, VDDR, VREFHL, VREFHR) power supplies should be powered up at the same time, otherwise power up the 3.3V power supplies Rev. 0.1 2015/11 - 66 - [AK4497] (AVDD, TVDD) first, 1.8V power supply (DVDD) next and 5V power supplies (VDDL/R, VREFHL/R) last. Power (TVDD,AVDD) Power (DVDD) Power (VDDL/R,VREFHL/R) (1) PDN pin (2) Internal PDN Internal State Normal Operation (DAC Input Available) DAC In (Digital) “0”data “0”data GD (4) DAC Out (Analog) Clock In (5) (3) GD (5) Don’t care (4) Don’t care MCLK,LRCK,BICK External Mute Reset (6) Mute ON Mute ON Figure 51. Power-down/up Sequence Example (Pin Control Mode, LDOE pin= “L”) Notes: (1) The PDN pin must be held “L” for more than 150ns after supplying AVDD, TVDD, DVDD and VDDL/R. (2) Internal shutdown switch is powered up after the PDN pin = “H” when the LDOE pin= “L”. The internal circuit will start operation after the shutdown switch is ON (max. 1us). (3) The analog output corresponding to the digital input has group delay (GD). (4) Analog outputs are floating (Hi-Z) in power down mode. (5) Click noise occurs at the edge of PDN signal. This noise is output even if “0” data is input. (6) Mute the analog output externally if click noise (5) adversely affect system performance. Rev. 0.1 2015/11 - 67 - [AK4497] (b) Register Control Mode (PSN pin= “L”) A register access becomes available after the PDN pin = “H”. The analog circuit starts operation by supplying necessary clocks (MCLK, LRCK and BICK for PCM mode, MCLK and DCLK for DSD mode, MCLK, BCK and WCK for EXDF mode) and the clock divider is powered up about after 4/fs. The analog output pins output analog common voltages (VCML, VCMR) in this time. Then the AK4497 transitions to normal operation by setting RSTN bit = “1”. When power up the AK4497 with the LDOE pin = “H”, 3.3V power supplies (AVDD and TVDD) should be powered up before or at the same time of 5V power supplies (VDDL/R and VREFHL/R). Power (TVDD,AVDD) Power (VDDL/R,VREFHL/R) PDN pin (1) DVDD pin Internal PDN (2) RSTN bit (8) Internal State (Resister (Clock devider) Normal Operation Power Off Power Off (9) Internal State (Digital Core) Power Off DAC In (Digital) (9) “0”data “0”data GD DAC Out (Analog) Clock In Power Off Normal Operation (4) (5) (3) GD (5) Don’t care (4) Don’t care MCLK,LRCK,BICK (7) DZFL/R Figure 52. Power-down/up Sequence Example (Resister Control Mode, LDOE pin= “H”) Notes: (1) The PDN pin must be held “L” for more than 150ns after supplying AVDD, TVDD and VDDL/R. (2) Internal LDO is powered up after the PDN pin = “H” when the LDOE pin= “H”. The internal circuit will starts operation after the shutdown switch is ON (max. 2ms) following the internal oscillator count up. (3) The analog output corresponding to the digital input has group delay (GD). (4) Analog outputs are floating (Hi-Z) in power down mode. (5) Click noise occurs at the edge of PDN signal. This noise is output even if “0” data is input. (6) Mute the analog output externally if click noise (5) adversely affect system performance. (7) The DZFL/R pins are “L” in power-down mode (PDN pin = “L”). (8) The clock divider is powered up in about 4/fs after the internal PDN is released. Rev. 0.1 2015/11 - 68 - [AK4497] (9) It takes 3~4/fs until the internal RSTN is changed when changing RSTN bit to “0” and it takes 2~3/fs when changing RSTN bit to “1”. The system timing example of power up/down when not using LDO (LODE pin = “L”) is shown in Figure 53. When the LDOE pin= “L”, 1.8V (DVDD), 3.3V (AVDD, TVDD) and 5V (VDDL, VDDR, VREFHL, VREFHR) power supplies should be powered up at the same time, otherwise power up the 3.3V power supplies (AVDD, TVDD) first, 1.8V power supply (DVDD) next and 5V power supplies (VDDL/R, VREFHL/R) last. Power (TVDD,AVDD) Power (DVDD) Power (VDDL/R,VREFHL/R) PDN pin (1) Internal PDN RSTN bit (8) Internal State (Resister (Clock devider) Power Off (9) Internal State (Digital Core) Power Off DAC In (Digital) (9) “0”data GD DAC Out (Analog) Clock In Power Off Normal Operation “0”data (4) Power Off Normal Operation (5) GD (5) Don’t care (4) Don’t care MCLK,LRCK,BICK (7) DZFL/R Figure 53. Power-down/up Sequence Example (Resister Control Mode, LDOE pin= “H”) Notes: (1) The PDN pin must be held “L” for more than 150ns after supplying AVDD, TVDD and VDDL/R. (2) Internal shutdown switch is powered up after the PDN pin = “H” when the LDOE pin= “L”. The internal circuit will start operation after the shutdown switch is ON (max. 1us). (3) The analog output corresponding to the digital input has group delay (GD). (4) Analog outputs are floating (Hi-Z) in power down mode. (5) Click noise occurs at the edge of PDN signal. This noise is output even if “0” data is input. (6) Mute the analog output externally if click noise (5) adversely affect system performance. (7) The DZFL/R pins are “L” in power-down mode (PDN pin = “L”). (8) The clock divider is powered up in about 4/fs after the internal PDN is released. (9) It takes 3~4/fs until the internal RSTN is changed when changing RSTN bit to “0” and it takes 2~3/fs when changing RSTN bit to “1”. Rev. 0.1 2015/11 - 69 - [AK4497] ■ Power-OFF/Reset Function Power-off and Reset function of the AK4497 are controlled by PW bit, RSTN bit and MCLK (Table 42). Mode PDN Pin Power Down L H H H H MCLK Stop Power OFF Reset Normal Operation Table 42. Power Off, Reset Function MCLK PW RSTN DIGITAL ANALOG LDO Supply bit bit Block Block Register - No Yes Yes Yes - - 0 1 1 - - - 0 1 OFF OFF OFF OFF ON OFF OFF OFF ON ON OFF ON ON ON ON Analog Output Hi-Z Hi-Z Hi-Z VCML/R Signal Output (1) Power ON/OFF by MCLK Clock The AK4497 detects a clock stop and all circuits including MCLK stop detection circuit, control register and IREF (except LDO when the LDOE pin = “H”) stop operation if MCLK is not input for 1us (min.) during operation (PDN pin = “H”). In this case, the analog output goes floating state (Hi-Z). The AK4497 returns to normal operation if PW bit and RSTN bit are “1” after starting to supply MCLK again. The zero detect function is disabled when MCLK is stopped. (4) PDN pin Internal State Normal Operation Normal Operation Power-off Clock In MCLK Stop MCLK, D/A In (Digital) (3) (1) (1) (2) D/A Out (Analog) Hi-z Notes: (1) The AK4497 detects MCLK stop and becomes power off state when MCLK edge is not detected for 1us (min.) during operation. (2) The analog output goes to floating state (Hi-Z). (3) Click noise can be reduced by inputting “0” data when stopping and resuming MCLK supply. (4) Resume MCLK input to release the power-off state by MCLK. In this case, power-up sequence by the PDN pin or power-on sequence by PW bit are not necessary. Figure 54. Power ON/OFF by MCLK Clock Rev. 0.1 2015/11 - 70 - [AK4497] (2) Power ON/OFF by PW bit All circuits including control register and IREF (except LDO when the LDOE pin = “H”) stop operation by setting PW bit to “0”. In this case, control register access is available. The analog output goes to floating state (Hi-Z). Figure 55 shows power ON/OFF sequence by PW bit. PW bit RSTN bit Internal State DAC In (Digital) Normal Operation “0” data (1) GD DZFL/DZFR GD (3) (2) DAC Out (Analog) External MUTE Power-off Normal Operation Hi-z (3) (1) (4) (5) Mute ON Notes: (1) The analog output corresponding to the digital input has group delay (GD). (2) The analog output is floating (Hi-Z) state when PW bit = “0”. (3) Click noise occurs at the edge of PW bit. This noise is output even if “0” data is input. (4) The zero detect function is enable when the AK4497 is power off (PW bit= “0”). This figure shows the seuqnece when DZFE bit= “1”, DZFB bit = “0” and DZFM bit= “0”. (5) Mute the analog output externally if click noise (3) or Hi-z output (2) adversely affect system performance. Figure 55. Power ON/OFF Timing Example Rev. 0.1 2015/11 - 71 - [AK4497] (3) Reset by RSTN bit Digital circuits except control registers and clock divider are reset by setting RSTN bit to “0”. In this case, control register settings are held and the analog output becomes VCML/R voltage. Figure 56 shows power ON/OFF sequence by RSTN bit. RSTN bit 3~4/fs (5) 2~3/fs (5) Internal RSTN signal Internal State Normal Operation Digital Block Power-off DAC In (Digital) “0” data (1) DAC Out (Analog) Normal Operation GD GD (3) (2) (3) (1) 2/fs(4) DZFL/R (6) Notes: (1) The analog output corresponding to the digital input has group delay (GD). (2) The analog output is VCOM voltage when RSTN bit = “0”. (3) Click noise occurs at the edge of PW bit. This noise is output even if “0” data is input. (4) This figure shows the seuqnece when DZFE bit= “1”, DZFB bit = “0” and DZFM bit= “0”. The DZFL/R pin goes “H” on a falling edge of RSTN bit and goes “L” 2/fs after a rising edge of internal RSTN bit. (5) It takes 3~4/fs until the internal RSTN is changed when changing RSTN bit to “0” and it takes 2~3/fs when changing RSTN bit to “1”. (6) Mute the analog output externally if click noise (3) adversely affect system performance. Figure 56. Reset Timing Example Rev. 0.1 2015/11 - 72 - [AK4497] ■ Synchronize Function (PCM, EXDF) The AK4497 has a function that resets the internal counter to keep the timing of falling edge of the internal clock CLK1 and the external clock edge in a certain range. With this synchronize function, group delays between each device can be kept within 4/256fs when using multiple AK4497’s. Clock synchronize function becomes valid when input data of both L and R channels are “0” for 8192 times continuously in PCM mode or EXDF mode, when both L and R channels become “0” and kept for 8192 times continuously by attenuation or when RSTN bit = “0”. In PCM mode, the internal counter is synchronized with a rising edged of LRCK (falling edge of LRCK in I2C mode), and it is synchronized with a rising edge of WCK in EXDF mode. In this case, the analog output has the same voltage as VCML/R. This function is disabled by setting SYNCE bit = “0” in register control mode. Figure 57 shows a synchronizing sequence when the input data is “0” for 8192 times continuously. Figure 58 shows a synchronizing sequence by RSTN bit. D/A In (Digital) SMUTE (1) (1) ATT_Level Attenuation - GD GD (4) AOUT Both DZFL/R pin (2) 8192/fs (2) 8192/fs SYNC Operation (2) Internal Counter Reset Internal Data GD SYNC Operation (2) (5) 2~3/fs (3) Notes: (1) Regarding ATT Transition time, refer to “■ Output Volume (PCM, DSD, EXDF)”. (2) When both L and R channels data are “0” for 8192 times continuously, the DZFL and DZFR pins become “H” and the synchronize function is valid. (3) Internal data is fixed to “0” forcibly for 2 to 3/fs when internal counter is reset. (4) A click noise may occur when the internal counter is reset. This noise is output even if a “0” data is input. Mute the analog output externally if this click noise affects the system performance. (5) When the internal clock and external clock are in synchronization, the internal counter is not reset even if the synchronize function is valid. Figure 57. Synchronizing Sequenc by Continuous “0” Data Input for 8192 Times Rev. 0.1 2015/11 - 73 - [AK4497] If RSTN bit is set to “0”, the output signal of the DZFL/DZFR pin becomes “H”. Then, the DAC is reset 3 to 4/fs after the DZFL and the DZFR pins = “H” and the analog output becomes the same voltage as VCML/R. The synchronize function becomes valid when both of the DZFL and the DZFR pins output “H”. RSTN bit 3~4/fs (4) 2~3/fs (4) Internal RSTN bit Internal State Normal Operation D/A In (Digital) force”0” (2) (3) D/A Out (Analog) Normal Operation Digital Block Power-down GD GD (3) (5) (5) 2/fs(4) Both DZFL/R pin SYNC Operation (1) Internal Counter Reset Internal Data 2~3/fs (2) Note: (1) The DZFL and the DZFR pins become “H” by a falling edge of RSTN bit, and becomes “L” 2/fs after a rising edge of internal signal of RSTN bit. The synchronize function is valid During the DZFL/R pin = “H”. (2) Internal data is fixed to “0” forcibly for 2 to 3/fs when the internal counter is reset. (3) Since the analog output corresponding to digital input has group delay (GD), it is recommended to have a no-input period longer than the group delay before writing “0” to RSTN bit. (4) It takes 3 to 4/fs when falling to change the internal RSTN signal of the LSI after writing to RSTN bit. It also takes 2 to 3/fs when rising to change the internal RSTN signal of the LSI. The synchronize function becomes valid immediately when “0” is written to RSTN bit. Therefore, there is a case that the internal counter is reset before internal RSTN signal of the LSI is changed. (5) A click noise occurs on the rising or falling edge of the internal RSTN signal and when the internal counter is reset. This noise is output even if a “0” data is input. Mute the analog output externally if this click noise affects the system performance. Figure 58. Synchronizing Sequence by RSTN Bit Rev. 0.1 2015/11 - 74 - [AK4497] ■ Register Control Interface (1) 3-wire Serial Control Mode (I2C pin = “L”) Pins (pin control mode) or registers (register control mode) can control the functions of the AK4497. In pin control mode, the register setting is ignored, and in register control mode the pin settings are ignored. When the state of the PSN pin is changed, the AK4497 should be powered down by the PDN pin. Otherwise, malfunctions may occur since previous settings are not initialized. The register control interface is enabled by the PSN pin = “L”. Internal registers may be written to through 3-wire µP interface pins: CSN, CCLK and CDTI. The data on this interface consists of Chip address (2-bits, C1/0), Read/Write (1-bit; fixed to “1”, write only), Register address (MSB first, 5-bits) and Control data (MSB first, 8-bits). The data is output on a falling edge of CCLK and the data is received on a rising edge of CCLK. The writing of data is valid when CSN “”. The clock speed of CCLK is 5MHz (max). Setting the PDN pin to “L” resets the registers to their default values. In register control mode, the digital block except control registers and clock divider is reset by setting RSTN bit to “0”. In this case, the register values are not initialized. CSN 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CCLK CDTI C1 C0 R/W A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 C1-C0: R/W: A4-A0: D7-D0: Chip Address (C1 bit =CAD1 pin, C0 bit =CAD0 pin) READ/WRITE (Fixed to “1”, Write only) Register Address Control Data Figure 59. Control I/F Timing * The AK4497 does not support read commands in 3-wire serial control mode. * When the AK4497 is in power down mode (PDN pin = “L”), writing into control registers is prohibited. * The control data cannot be written when the CCLK rising edge is 15 times or less, or 17 times or more during CSN is “L”. Rev. 0.1 2015/11 - 75 - [AK4497] (2) I2C-bus Control Mode (I2C pin = “H”) The AK4497 supports the fast-mode I2C-bus (max: 400kHz, Ver 1.0). (2)-1. WRITE Operations Figure 60 shows the data transfer sequence for the I2C-bus mode. All commands are preceded by a START condition. A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition (Figure 66). After the START condition, a slave address is sent. This address is 7 bits long followed by the eighth bit that is a data direction bit (R/W). The most significant five bits of the slave address are fixed as “00100”. The next bits are CAD1 and CAD0 (device address bits). This bit identifies the specific device on the bus. The hard-wired input pin (CAD1pins, CAD0 pin) sets these device address bits (Figure 61). If the slave address matches that of the AK4497, the AK4497 generates an acknowledge and the operation is executed. The master must generate the acknowledge-related clock pulse and release the SDA line (HIGH) during the acknowledge clock pulse (Figure 67). A R/W bit value of “1” indicates that the read operation is to be executed, and “0” indicates that the write operation is to be executed. The second byte consists of the control register address of the AK4497 and the format is MSB first. (Figure 62). The data after the second byte contains control data. The format is MSB first, 8bits (Figure 63). The AK4497 generates an acknowledge after each byte is received. Data transfer is always terminated by a STOP condition generated by the master. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition (Figure 66). The AK4497 can perform more than one byte write operation per sequence. After receipt of the third byte the AK4497 generates an acknowledge and awaits the next data. The master can transmit more than one byte instead of terminating the write cycle after the first data byte is transferred. After receiving each data packet the internal address counter is incremented by one, and the next data is automatically taken into the next address. If the address exceeds “15H” prior to generating a stop condition, the address counter will “roll over” to “00H” and the previous data will be overwritten. The data on the SDA line must remain stable during the HIGH period of the clock. HIGH or LOW state of the data line can only be changed when the clock signal on the SCL line is LOW (Figure 68) except for the START and STOP conditions. S T A R T SDA S S T O P R/W= “0” Slave Address Sub Address(n) A C K Data(n) Data(n+1) A C K A C K Data(n+x) A C K A C K P A C K Figure 60. Data Transfer Sequence at I2C Bus Mode 0 0 1 0 0 CAD1 CAD0 R/W (CAD0 is set by the pin) Figure 61. The First Byte 0 0 0 A4 A3 A2 A1 A0 D1 D0 Figure 62. The Second Byte D7 D6 D5 D4 D3 D2 Figure 63. The Third Byte and After The Third Byte Rev. 0.1 2015/11 - 76 - [AK4497] (2)-2. READ Operation Set the R/W bit = “1” for the READ operation of the AK4497. After transmission of data, the master can read the next address’s data by generating an acknowledge instead of terminating the write cycle after the receipt of the first data word. After receiving each data packet the internal address counter is incremented by one, and the next data is automatically taken into the next address. If the address exceeds “15H” prior to generating stop condition, the address counter will “roll over” to “00H” and the data of “00H” will be read out. The AK4497 supports two basic read operations: Current Address Read and Random Address Read. (2)-2-1. Current Address Read The AK4497 has an internal address counter that maintains the address of the last accessed word incremented by one. Therefore, if the last access (either a read or write) were to address “n”, the next CURRENT READ operation would access data from the address “n+1”. After receipt of the slave address with R/W bit “1”, the AK4497 generates an acknowledge, transmits 1-byte of data to the address set by the internal address counter and increments the internal address counter by 1. If the master does not generate an acknowledge but generates a stop condition instead, the AK4497 ceases the transmission. S T A R T SDA S S T O P R/W= “1” Slave Address Data(n) A C K Data(n+1) A C K Data(n+2) A C K Data(n+x) A C K A C K P A C K Figure 64. Current Address Read (2)-2-2. Random Address Read The random read operation allows the master to access any memory location at random. Prior to issuing the slave address with the R/W bit “1”, the master must first perform a “dummy” write operation. The master issues a start request, a slave address (R/W bit = “0”) and then the register address to read. After the register address is acknowledged, the master immediately reissues the start request and the slave address with the R/W bit “1”. The AK4497 then generates an acknowledge, 1 byte of data and increments the internal address counter by 1. If the master does not generate an acknowledge but generates a stop condition instead, the AK4497 ceases the transmission. S T A R T SDA S S T A R T R/W= “0” Slave Address Sub Address(n) A C K S A C K S T O P R/W= “1” Slave Address Data(n) A C K Data(n+1) A C K Data(n+x) A C K A C K P A C K Figure 65. Random Address Read Rev. 0.1 2015/11 - 77 - [AK4497] SDA SCL S P start condition stop condition Figure 66. Start Condition and Stop Condition DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge SCL FROM MASTER 2 1 8 9 S clock pulse for acknowledgement START CONDITION Figure 67. Acknowledge (I2C Bus) SDA SCL data line stable; data valid change of data allowed Figure 68. Bit Transfer (I2C Bus) Rev. 0.1 2015/11 - 78 - [AK4497] ■ Register Map Addr 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H Register Name Control 1 Control 2 Control 3 Lch ATT Rch ATT Control4 DSD1 Control5 Sound Control DSD2 Control 7 Control 8 Control 9 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved DFS read D7 ACKS DZFE DP ATT7 ATT7 INVL DDM 0 0 0 TDM1 ATS1 0 D6 EXDF DZFM 0 ATT6 ATT6 INVR DML 0 0 0 TDM0 ATS0 0 D5 ECS SD DCKS ATT5 ATT5 0 DMR 0 0 0 SDS1 0 0 D4 AFSD DFS1 DCKB ATT4 ATT4 0 DMC 0 0 0 SDS2 SDS0 0 D3 DIF2 DFS0 MONO ATT3 ATT3 0 DMRE GC2 HLOAD 0 0 0 0 D2 DIF1 DEM1 DZFB ATT2 ATT2 RSTPG 0 GC1 SC2 DSDPATH PW 0 0 D1 DIF0 DEM0 SELLR ATT1 ATT1 DFS2 DSDD GC0 SC1 DSDF 0 DCHAIN 0 D0 RSTN SMUTE SLOW ATT0 ATT0 SSLOW DSDSEL0 SYNCE SC0 DSDSEL1 0 TEST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ADFS2 ADFS1 ADFS0 Notes: • In 3-wire serial control mode, the AK4497 does not support read commands. • The AK4497 supports read command in I2C-bus control mode. • If the address exceeds “15H”, the address counter will “roll over” to “00H” and the next write/read address will be “00H” by automatic increment function in I2C-Bus mode. • Data must not be written into 0 bits, TEST bit in “0BH” and registers from “16H” to “1FH”. Malfunctions may occur if data is written to these bits. • When the PDN pin goes to “L”, the registers are initialized to their default values. • When RSTN bit is set to “0”, the digital block except control registers and clock divider is reset, and the registers are not initialized to their default values. • When the state of the PSN pin is changed, the AK4497 should be reset by the PDN pin. (Note) The AK4497 is register compatible with the AK4490 and the AK4495. Rev. 0.1 2015/11 - 79 - [AK4497] (Reference) AK4490 Register Map Addr 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H Register Name Control 1 Control 2 Control 3 Lch ATT Rch ATT Control4 DSD1 Control5 Sound Control DSD2 D7 ACKS DZFE DP ATT7 ATT7 INVL DDM 0 0 0 D6 EXDF DZFM 0 ATT6 ATT6 INVR DML 0 0 0 D5 ECS SD DCKS ATT5 ATT5 0 DMR 0 0 0 D4 0 DFS1 DCKB ATT4 ATT4 0 DMC 0 0 0 D3 DIF2 DFS0 MONO ATT3 ATT3 0 DMRE 0 0 0 D2 DIF1 DEM1 DZFB ATT2 ATT2 0 0 0 0 0 D1 DIF0 DEM0 SELLR ATT1 ATT1 DFS2 DSDD 0 SC1 DSDF D6 EXDF DZFM 0 ATT6 ATT6 INVR DML 0 0 0 D5 ECS SD DCKS ATT5 ATT5 0 DMR 0 0 0 D4 0 DFS1 DCKB ATT4 ATT4 0 DMC 0 0 0 D3 DIF2 DFS0 MONO ATT3 ATT3 0 DMRE 0 0 0 D2 DIF1 DEM1 DZFB ATT2 ATT2 0 DSDD1 0 SC2 0 D1 DIF0 DEM0 SELLR ATT1 ATT1 DFS2 DSDD0 0 SC1 0 D0 RSTN SMUTE SLOW ATT0 ATT0 DFTHR DSDSEL0 SYNCE SC0 DSDSEL1 (Reference) AK4495 Register Map Addr 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H Register Name Control 1 Control 2 Control 3 Lch ATT Rch ATT Control4 Control5 Control6 Sound Control Reserved D7 ACKS DZFE DP ATT7 ATT7 INVL DDM 0 0 0 Rev. 0.1 D0 RSTN SMUTE SLOW ATT0 ATT0 DFTHR DSDSEL SYNCE SC0 0 2015/11 - 80 - [AK4497] ■ Register Definitions Addr Register Name 00H Control 1 R/W Default D7 ACKS R/W 0 D6 EXDF R/W 0 D5 ECS R/W 0 D4 AFSD R/W 0 D3 DIF2 R/W 1 D2 DIF1 R/W 1 D1 DIF0 R/W 0 D0 RSTN R/W 0 RSTN: Internal Timing Reset 0: Reset. All registers are not initialized. (default) 1: Normal Operation Writing “0” to this bit resets the internal timing circuit but register values are not initialized. DIF[2:0]: Audio Data Interface Modes (Table 23) Initial value is “110” (Mode 6: 32-bit MSB justified) AFSD: Sampling Frequency Auto Detect Mode Enable (PCM & EXDF mode only). (Table 5) 0: Disable: Manual or Auto Setting Mode (default) 1: Enable: Auto Detect Mode When AFSD bit = “1”, DFS[2:0] bits are ignored. ECS: EXDF mode clock setting (Table 22) 0: WCK=768kHz mode (default) 1: WCK=384kHz mode EXDF: External Digital Filter I/F Mode (Register Control mode only) 0: Disable: Internal Digital Filter mode (default) 1: Enable: External Digital Filter mode ACKS: Master Clock Frequency Auto Setting Mode Enable (PCM & EXDF mode only). (Table 13, Table 5) 0: Disable: Manual Setting Mode (default) 1: Enable: Auto Setting Mode Rev. 0.1 2015/11 - 81 - [AK4497] Addr Register Name 01H Control 2 R/W Default D7 DZFE R/W 0 D6 DZFM R/W 0 D5 SD R/W 1 D4 DFS1 R/W 0 D3 DFS0 R/W 0 D2 DEM1 R/W 0 D1 DEM0 R/W 1 D0 SMUTE R/W 0 SMUTE: Soft Mute Enable 0: Normal Operation (default) 1: DAC outputs soft-muted. DEM[1:0]: De-emphasis Filter Control (Table 29) Initial value is “01” (OFF). DFS[1:0]: Sampling Speed Control. (Table 7, Table 10) Initial value is “000” (Normal Speed). Click noise occurs when DFS1-0 bits are changed. SD: Minimum delay Filter Enable. (Table 27) 0: Traditional filter 1: Short delay filter (default) DZFM: Data Zero Detect Mode 0: Channel Separated Mode (default) 1: Channel ANDed Mode If the DZFM bit is set to “1”, the DZF pins of both L and R channels go to “H” only when the input data at both channels are continuously zeros for 8192 LRCK cycles. DZFE: Data Zero Detect Enable 0: Disable (default) 1: Enable Zero detect function can be disabled by DZFE bit “0”. In this case, the DZF pins of both channels are always “L”. Rev. 0.1 2015/11 - 82 - [AK4497] Addr Register Name 02H Control 3 R/W Default SLOW: D7 DP R/W 0 D6 0 R/W 0 D5 DCKS R/W 0 D4 DCKB R/W 0 D3 MONO R/W 0 D2 DZFB R/W 0 D1 SELLR R/W 0 D0 SLOW R/W 0 Slow Roll-off Filter Enable. (Table 27) 0: Slow roll-off filter disable (default) 1: Slow roll-off filter SELLR: The data selection of L channel and R channel, when MONO mode 0: All channel output L channel data, when MONO mode. (default) L channel output L channel data, Rchannel data output Rchannel data(default) 1: All channel output R channel data, when MONO mode. L channel output R channel data, Rchannel data output Lchannel data DZFB: Inverting Enable of DZF. (Table 34) 0: DZF pin goes “H” at Zero Detection (default) 1: DZF pin goes “L” at Zero Detection MONO: MONO mode Stereo mode select 0: Stereo mode (default) 1: MONO mode DCKB: Polarity of DCLK (DSD Only) 0: DSD data is output from DCLK falling edge. (default) 1: DSD data is output from DCLK rising edge. DCKS: Master Clock Frequency Select at DSD mode (DSD only) 0: 512fs (default) 1: 768fs DP: DSD/PCM Mode Select 0: PCM Mode (default) 1: DSD Mode When DP bit is changed, the AK4497 should be reset by RSTN bit. Rev. 0.1 2015/11 - 83 - [AK4497] Addr Register Name 03H Lch ATT 04H Rch ATT R/W Default D7 ATT7 ATT7 R/W 1 D6 ATT6 ATT6 R/W 1 D5 ATT5 ATT5 R/W 1 D4 ATT4 ATT4 R/W 1 D3 ATT3 ATT3 R/W 1 D2 ATT2 ATT2 R/W 1 D1 ATT1 ATT1 R/W 1 D0 ATT0 ATT0 R/W 1 D6 INVR R/W 0 D5 0 R/W 0 D4 0 R/W 0 D3 0 R/W 0 D2 RSTPG R/W 0 D1 DFS2 R/W 0 D0 SSLOW R/W 0 ATT[7:0]: Attenuation Level 255 levels 0.5dB step + mute Data FFH FEH FDH : : 02H 01H 00H Addr Register Name 05H Control 4 R/W Default Attenuation 0dB (default) -0.5dB -1.0dB : : -126.5dB -127.0dB MUTE (-) D7 INVL R/W 0 SSLOW: Super Slow Roll Off (Digital Filter bypass mode) Enable. (Table 27) 0: Disable (default) 1: Enable DFS2: Sampling Speed Control. (Table 10) RSTPG: Programmable Filter Coefficient Reset 0: Disable (default) 1: Reset Coefficient INVR: AOUTR Output Phase Inverting 0: Disable (default) 1: Enable INVL: AOUTL Output Phase Inverting 0: Disable (default) 1: Enable Rev. 0.1 2015/11 - 84 - [AK4497] Addr Register Name 06H Control 4 R/W Default D7 DDM R/W 0 D6 DML R 0 D5 DMR R 0 D4 DMC R/W 0 D3 DMRE R/W 0 D2 0 R/W 0 D1 DSDD R/W 0 D0 DSDSEL0 R/W 0 DSDSEL[1:0]: DSD sampling speed control 00: 2.8224MHz 01: 5.6448MHz 10: 11.2896MHz 11: 22.5792MHz DSDD: DSD play back path control 0: Normal Path (default) 1: Volume Bypass DMRE: DSD Mute Release This register is only valid when DDM bit = “1” and DMC bit = “1”. When the AK4497 mutes DSD data by DDM and DMC bits settings, the mute is released by setting DMRE bit to “1”. 0: Hold (default) 1: Mute Release DMC: DSD Mute Control This register is only valid when DDM bit = “1”. It selects the mute releasing mode of when the DSD data level becomes under full-scale after the AK4497 mutes DSD data by DDM bit setting. 0: Auto Return (default) 1: Mute Hold DMR/DML This register outputs detection flag when a full scale signal is detected at DSDR/L channel. (only in I2C mode) DDM: DSD Data Mute The AK4497 has an internal mute function that mutes the output when DSD audio data becomes all “1” or all “0” for 2048 Samples (1/fs). DDM bit controls this function. 0: Disable (default) 1: Enable Rev. 0.1 2015/11 - 85 - [AK4497] Addr Register Name 07H Control 5 R/W Default D7 0 R/W 0 D6 0 R/W 0 D5 0 R/W 0 D4 0 R/W 0 D3 GC2 R/W 0 D2 GC1 R/W 0 D1 GC0 R/W 0 D0 SYNCE R/W 1 SYNCE: SYNC Mode Enable 0: SYNC Mode Disable 1: SYNC Mode Enable (default) GC[2:0]: PCM, DSD mode Gain Control GC[2] 0 0 0 0 1 1 1 1 Addr Register Name 08H Sound Control R/W Default Table 32. Output Level between Set Values of GC[2:0] bit AOUTLP/LN/RP/RN Ouput Level DSD: GC[1] GC[0] DSD: PCM Volume Normal Path Bypass 0 0 2.8Vpp 2.8Vpp 2.5Vpp 0 1 2.8Vpp 2.5Vpp 2.5Vpp 1 0 2.5Vpp 2.5Vpp 2.5Vpp 1 1 2.5Vpp 2.5Vpp 2.5Vpp 0 0 3.75Vpp 3.75Vpp 2.5Vpp 0 1 3.75Vpp 2.5Vpp 2.5Vpp 1 0 2.5Vpp 2.5Vpp 2.5Vpp 1 1 2.5Vpp 2.5Vpp 2.5Vpp D7 0 R/W 0 D6 0 R/W 0 D5 0 R/W 0 D4 0 R/W 0 D3 HLOAD R/W 0 D2 SC2 R/W 0 (default) D1 SC1 R/W 0 D0 SC0 R/W 0 SC[2:0]: Sound Control. (Table 37, Table 38) HLOAD: Heavy Load Mode Enable 0: Heavy Load Mode Disable (default) 1: Heavy Load Mode Enable Rev. 0.1 2015/11 - 86 - [AK4497] Addr Register Name 09H DSD2 R/W Default D7 0 R 0 D6 0 R 0 D5 0 R 0 D4 0 R 0 D3 0 R 0 D2 DSDPATH R/W 0 D1 DSDF R/W 0 D0 DSDSEL1 R/W 0 DSDSEL1: DSD Sampling Speed Control. DSDF: Cut-off frequency of DSD Filter Control DSDPATH: DSD Data Input Pin Select 0: #16, 17, 19 (default) 1: #3, 4, 5 Pin Assignment DP bit EXDF bit DSDPATH bit D/A Conv. Mode #3 pin #4 pin #5 pin #16 pin #17 pin #19 pin 0 (default) 0 (default) * PCM BICK SDATA LRCK Not Use Not Use Not Use 1 * DSD Not Use Not Use Not Use DCLK DSDL DSDR 1 0 * 1 DSD EXDF DCLK BCK DSDL DINL DSDR DINR Not Use Not Use Not Use Not Use Not Use Not Use 0 (default) 1 * (*: Do not care) Rev. 0.1 2015/11 - 87 - [AK4497] Addr Register Name 0AH Control 7 R/W Default D7 TDM1 R/W 0 D6 TDM0 R/W 0 D5 SDS1 R/W 0 D4 SDS2 R/W 0 D3 0 R/W 0 D2 PW R/W 1 D1 0 R/W 0 D0 0 R/W 0 PW: Power ON/OFF Control 0: Power Off 1: Power On (default) SDS[2:0]: Output Data Slot Selection of Each Channel 0: Normal Operation 1: Changing Data Slot (Table 24) Default value is “000” TDM[1:0]: TDM Mode Select 00: Normal (default) 01: TDM128 10: TDM256 11: TDM512 Rev. 0.1 2015/11 - 88 - [AK4497] Addr Register Name 0BH Control 8 R/W Default D7 ATS1 R/W 0 D6 ATS0 R/W 0 D5 0 R/W 0 D4 SDS0 R/W 0 D3 0 R/W 0 D2 0 R/W 0 D1 DCHAIN R/W 0 D0 TEST R/W 0 D2 0 0 R/W 0 D1 0 0 R/W 0 D0 0 0 R/W 0 TEST: “0” data must be written to Test bit. Otherwise malfunctions may occur. DCHAIN: Daisy Chain Mode Enable 0: Daisy Chain Mode Disable (default) 1: Daisy Chain Mode Enable SDS[2:0]: Output Data Slot Selection of Each Channel 0: Normal Operation 1: Changing Data Slot (Table 24) Default value is “000”. ATS[1:0]: Transition Time between Set Values of ATT[7:0] bits (Table 31) Default value is “00”. Addr Register Name 0CH Reserved 0DH Reserved R/W Default D7 0 0 R/W 0 D6 0 0 R/W 0 D5 0 0 R/W 0 D4 0 0 R/W 0 D3 0 0 R/W 0 0CH: Reserved 0DH: Reserved Rev. 0.1 2015/11 - 89 - [AK4497] Addr 0EH 0FH 10H 11H Register Name Reserved Reserved Reserved Reserved R/W Default D7 0 0 0 0 R/W 0 D6 0 0 0 0 R/W 0 D5 0 0 0 0 R/W 0 D4 0 0 0 0 R/W 0 D3 0 0 0 0 R/W 0 D2 0 0 0 0 R/W 0 D1 0 0 0 0 R/W 0 D0 0 0 0 0 R/W 0 D7 0 0 0 R 0 D6 0 0 0 R 0 D5 0 0 0 R 0 D4 0 0 0 R 0 D3 0 0 0 R 0 D2 0 0 0 R 0 D1 0 0 0 R 0 D0 0 0 0 R 0 0EH: Reserved 0FH: Reserved 10H: Reserved 11H: Reserved Addr 12H 13H 14H Register Name Reserved Reserved Reserved R/W Default 12H: Reserved 13H: Reserved 14H: Reserved Addr Register Name 15H ADFS read R/W Default D7 0 R 0 D6 0 R 0 D5 0 R 0 D4 0 R 0 D3 0 R 0 D2 ADFS2 R 0 D1 ADFS1 R 0 D0 ADFS0 R 0 ADFS[2:0]: Mode Detection Result in FS Auto Detect Mode ADFS2 0 0 0 0 1 1 1 1 ADFS1 0 0 1 1 0 0 1 1 ADFS0 0 1 0 1 0 1 0 1 Rev. 0.1 Mode Normal Speed Mode Double Speed Mode Quad Speed Mode Quad Speed Mode Oct Speed Mode Hex Speed Mode Oct Speed Mode Hex Speed Mode 2015/11 - 90 - [AK4497] 10. Recommended External Circuits Digital 3.3V Digital 1.8V AVDD 3.3V AOUTLN 49 VCML 51 VREFLL 53 VREFLL 54 EXTR 58 AVDD 59 AVSS 60 MCLK 61 DVDD 62 Lch LPF 0.1u 10u AOUTLP 47 + VDDL 46 4 SDATA/DINL VDDL 45 5 LRCK/DINR VDDL 44 6 SSLOW/WCK 7 TDMO 8 SMUTE/CSN 9 SD/CCLK/SCL Lch Mute Lch Out AOUTLP 48 AK4497 + Electrolytic Capacitor 0.1u VSSL 43 + 10u Ceramic Capacitor Resistor VSSL 42 VSSL 41 VSSR 40 N N VSSR 39 11 DIF0/DZFL 12 DIF1/DZFR 13 DIF2/CAD0 14 PSN 15 HLOAD/I2C AOUTRP 34 16 DEM0/DSDL AOUTRP 33 VSSR 38 VDDR 37 0.1u + 10u VDDR 36 0.1u + 470u 32 AOUTRN 31 AOUTRN 30 VCMR 29 VREFLR 28 VREFLR 27 VREFLR 26 VREFHR 25 VREFHR 24 VREFHR 23 TESTE 22 INVR 21 DCHAIN VDDR 35 GAIN 17 /DSDR ACKS 18 /CAD1 19 TDM0/ DCLK 20 TDM1 Controller AOUTLN 50 BICK/BCK VREFHL 56 3 VREFHL 57 LDOE PDN DVSS 63 TVDD 64 1 2 10u + 0.1u 10 SLOW/CDTI/SDA Micro- 470u + 0.1u 0.1u DSP 33k VREFLL 52 10u + + 1u VREFHL 55 10u + Analog 5.0V + 10u Rch LPF Rch Mute Notes: - Chip Address = “00”. BICK = 64fs, LRCK = fs - Power lines of AVDD, TVDD, VDDL and VDDR should be distributed separately from the point with low impedance of regulator etc. - AVSS, DVSS, VSSL and VSSR must be connected to the same analog ground plane. (Analog ground should has low impedance as a solid pattern. THD+N characteristics will degrade if there are impedances between each VSS.) - THD+N characteristics will degrade by high frequency noise of MCLK. Connect a 51 Ω damping resistor to the MCLK pin. - When AOUT drives a capacitive load, some resistance should be connected in series between AOUT and the capacitive load. - All input pins except pull-down/pull-up pins should not be allowed to float. Figure 69. Typical Connection Diagram (AVDD=TVDD=3.3V, VDDL/R=5.0V, LDOE= “L”, Register Control Mode) Rev. 0.1 2015/11 - 91 - Rch Out [AK4497] 1. Grounding and Power Supply Decoupling To minimize coupling by digital noise, decoupling capacitors should be connected to AVDD, TVDD, DVDD, VDDL and VDDR. AVDD and VDDL/R are supplied from analog supply in system, and TVDD and DVDD are supplied from digital supply in system. Power lines of VDDL/R should be distributed separately from the point with low impedance of regulator etc. When not using LDO (LDOE pin = “L”), AVDD and TVDD should be powered up before or at the same time of DVDD. When using LDO (LDOE pin = “H”), power up sequence between AVDD/TVDD and VDDL/R are not critical. AVSS, DVSS, VSSL and VSSR must be connected to the same analog ground plane. Decoupling capacitors for high frequency should be placed as near as possible to the supply pin. 2. Voltage Reference The differential voltage between VREFHL/R and VREFLL/R sets the full scale of the analog output range. The VREFHL/R pin is normally connected to VDD, and the VREFLL/R pin is normally connected to VSS. VREFHL/R and VREFLL/R should be connected with a 0.1µF ceramic capacitor and a 2200uF electrolytic capacitor as near as possible to the pin to eliminate the effects of high frequency noise. The VREFH and VREFL pins should be treated to not have noises from other supply pins. If the analog characteristics cannot satisfy the specification by this noise, connect the VREFH to analog 5.0V via a 10 Ω resistor and connect the VREFL pin to the analog ground via a 10 Ω resistor. (A low-pass filter of fc=500Hz will be composed by a 2200uF capacitor and a 10Ω resistor. This low-pass filter removes signal frequency noise from other power supply pins.) VCML/R is a common voltage of this chip. No load current may be drawn from the VCML/R pin. All signals, especially clocks, should be kept away from the VREFHL/R and VREFLL/R pins in order to avoid unwanted noise coupling into the AK4497. 3. Analog Outputs The analog outputs are full differential outputs. The differential outputs are summed externally, VAOUT = (AOUT+) (AOUT) between AOUT+ and AOUT. If the summing gain is 1, the output range of the setting the GAIN pin = “L” or GC[2] bit = “0” is 2.8Vpp (typ, VREFHL/R VREFLL/R = 5V) centered around VCML and VCMR voltages. In this case, the output range after summing will be 5.6V (typ.). The output range of the setting the GAIN pin = “H” or GC[2] bit = “1” is 3.75Vpp (typ.) centered around VCML and VCMR voltages. In this case, the output range after summing will be 7.5Vpp (typ.). The bias voltage of the external summing circuit is supplied externally. The input data format is 2's complement. The output voltage (VAOUT) is a positive full scale for 7FFFFFFFH (@32bit) and a negative full scale for 80000000H (@32bit). The ideal VAOUT is 0V for 00000000H (@32bit). The internal switched-capacitor filters attenuate the noise generated by the delta-sigma modulator beyond the audio passband. Figure 70 and Figure 71 show examples of external LPF circuit summing the differential outputs by a single op-amp. Figure 72 shows an example of differential output circuit and external LPF circuit with two op-amps. Figure 73 shows an example of external LPF circuit with two op-amps when MONO bit = “1”. A resistor that has 0.1% or less absolute error must be used for external LPFs. AK4497 AOUT- 300 300 30 43n 6.8n +Vop 2 AOUT+ 100 10 7 6 Analog Out 3 4 130n 100 20n -Vop OPA1611 Figure 70. External LPF Circuit Example 1 (fc = 98kHz(typ), Q=0.667(typ)) Rev. 0.1 2015/11 - 92 - [AK4497] Table 43. Frequency Response of External LPF Circuit Example 1 Gain(1kHz,typ) 0 dB 20kHz -0.07 dB Frequency Response 40kHz -0.32 dB (ref:1kHz,typ) 80kHz -2.13 dB AK4497 215 AOUT- 590 33 39.2n 3.09n +Vop 7 2 33.2 AOUT+ 5.1 6 Analog Out 3 4 255n 90.9 20n -Vop OPA1611 Figure 71. External LPF Circuit Example 2 (fc = 104kHz(typ), Q=0.693(typ)) Table 44. Frequency Response of External LPF Circuit Example 2 Gain(1kHz,typ) +8.78 dB 20kHz -0.02 dB Frequency Response 40kHz -0.15 dB (ref:1kHz,typ) 80kHz -1.46 dB +15 27n + AK4497 22 8 3 2 + * 4 + 22 56n 10k AOUT- 100u -15 10u 0.1u 1 OPA1612 + 10u 0.1u Lch 200 400 27n + 100u 8 5 + 6 4 + 22 56n 10k AOUT+ 22 10u 0.1u 7 OPA1612 LME49710 10u 200 400 + 0.1u Figure 72. External LPF Circuit Example 3 (fc = 186kHz(typ), Q=0.67(typ)) Table 45. Frequency Response of External LPF Circuit Example 3 Gain(1kHz,typ) +9.54 dB 20kHz -0.01 dB Frequency Response 40kHz -0.06 dB (ref:1kHz,typ) 80kHz -0.32 dB Rev. 0.1 2015/11 - 93 - [AK4497] +15 27n + AK4497 100u 22 8 3 2 + * 4 + 44 56n 10k AOUTLP 0.1u 1 OPA1612 10k 44 27n + 100u 22 8 5 + 6 4 + 44 56n 10k AOUTRP 7 + 10u 0.1u 200 400 10u 0.1u OPA1612 LME49710 100u + 44 10k AOUTRN 10u 200 + AOUTLN + 0.1u 400 100u -15 10u Figure 73. External LPF Circuit Example for mono mode (fc = 186kHz(typ), Q=0.67(typ)) Rev. 0.1 2015/11 - 94 - [AK4497] 11. Package ■Outline Dimensions (HTQFP10×10-64) C 12.0 ± 0.20 64 49 1 12.0 ± 0.20 A 16 10.0 ± 0.20 48 33 32 17 0.50 0.22 ± 0.05 0.10 M S A C 0.09 ~ 0.2 1.00 ± 0.05 0.10 S 0.60 ± 0.15 (5.95) 0.05 ~ 0.15 S 1.2 MAX 10.0 ± 0.20 (5.95) Rev. 0.1 2015/11 - 95 - [AK4497] ■ Material & Lead Finish Package molding compound: Epoxy, Halogen (bromine and chlorine) free Lead frame material: EFTEC64 Lead frame surface treatment: Solder (Pb free) plate ■ Marking AK4497EQ XXXXXXX AKM 64 1 1) Pin #1 indication 2) AKM Logo 3) Date Code: XXXXXXX (7 digits) 4) Marking Code: AK4497EQ 5) Audio 4 pro Logo Rev. 0.1 2015/11 - 96 - [AK4497] 12. Ordering Guide ■ Ordering Guide AK4497 AKD4497 40 +85C (Assuming the exposed pad is connected to the printing board) 64-pin TQFP (0.5mm pitch) Evaluation Board for AK4497 Rev. 0.1 2015/11 - 97 - [AK4497] IMPORTANT NOTICE 0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document (“Product”), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products. 1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS. 2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing. 3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. 4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. 5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations. 6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM. 7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM. Rev. 0.1 2015/11 - 98 -