Click Here for Military Performance (JAN Class S) Datasheet - you will be directed to slash sheet at Defense Supply Center Columbus.

INCH-POUND
MIL-M-38510/135G
22 March 2010
SUPERSEDING
MIL-M-38510/135F
8 April 2008
MILITARY SPECIFICATION
MICROCIRCUITS, LINEAR, LOW OFFSET OPERATIONAL AMPLIFIERS, MONOLITHIC SILICON
Reactivated after 5 November 2003 and may be used for new and existing designs and acquisitions
This specification is approved for use by all Departments and Agencies of the Department of Defense.
The requirements for acquiring the product described herein shall consist of this specification sheet and
MIL-PRF-38535.
1. SCOPE
1.1 Scope. This specification covers the detail requirements for monolithic silicon, low offset operational
amplifiers. Two product assurance classes and a choice of case outlines and lead finishes are provided and are
reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by
MIL-PRF-38535 (see 6.4).
1.2 Part or Identifying Number (PIN). The PIN is in accordance with MIL-PRF-38535 and as specified herein.
1.2.1 Device types. Devices may be monolithic or they may consist of two separate independent die. The device
types are as follows:
Circuit
Device type
01
02
03
04
05
06
Single operational amplifier, ultra low offset, internally compensated.
Single operational amplifier, low offset, internally compensated.
Single operational amplifier, ultra low offset, internally compensated,
ultra low noise.
Dual operational amplifier, low offset, ultra low noise internally
compensated.
Single operational amplifier, ultra low offset, internally compensated,
ultra low noise, broadband.
Single operational amplifier, ultra low offset, internally compensated,
ultra low noise.
1.2.2 Device class. The device class is the product assurance level as defined in MIL-PRF-38535.
1.2.3 Case outline. The case outlines are as designated in MIL-STD-1835 and as follows:
Outline letter
C
G
P
2
Descriptive designator
GDIP1-T14 or CDIP2-T14
MACY1-X8
GDIP1-T8 or CDIP2-T8
CQCC1-N20
Terminals
14
8
8
20
Package style
Dual-in-line
Can
Dual-in-line
Square leadless chip carrier
Comments, suggestions, or questions on this document should be addressed to: Defense Supply Center
Columbus, ATTN: DSCC-VAS, P.O. Box 3990, Columbus, OH 43218-3990, or emailed to [email protected].
Since contact information can change, you may want to verify the currency of this address information using
the ASSIST Online database at https://assist.daps.dla.mil.
AMSC N/A
FSC 5962
MIL-M-38510/135G
1.3 Absolute maximum ratings.
Supply voltage (VCC) ....................................................................... 22 V
Input voltage (VIN) ...........................................................................
Differential input voltage range:
Device types 01 and 02 ................................................................
Device types 03, 04, 05, and 06 ...................................................
Output short-circuit duration .............................................................
Lead temperature (soldering, 60 seconds) ......................................
Storage temperature range ..............................................................
Junction temperature (TJ) ................................................................
VCC
30 V
0.7 V 1/
2/
+300C
-65C to +150C
+175C 3/
Maximum power dissipation (PD) ..................................................... 500 mW 4/
1.4 Recommended operating conditions.
Supply voltage range (VCC):
Device types 01 and 02 ................................................................ 4.5 V dc to 20.0 V
Device types 03, 04, 05, and 06 ................................................... 4.5 V dc to 18.0 V
Ambient operating temperature range (TA) ...................................... -55C to +125C
1.5
Power and thermal characteristics.
Case outlines
Maximum allowable power
dissipation
Maximum
Maximum
JC
JA
120C/W
C
400 mW at TA = +125C
28C/W
G
330 mW at TA = +125C
60C/W
150C/W
P
400 mW at TA = +125C
28C/W
120C/W
2
400 mW at TA = +125C
20C/W
120C/W
2. APPLICABLE DOCUMENTS
2.1 General. The documents listed in this section are specified in sections 3, 4, or 5 of this specification. This
section does not include documents cited in other sections of this specification or recommended for additional
information or as examples. While every effort has been made to ensure the completeness of this list, document
users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this
specification, whether or not they are listed.
______
1/ If the differential input voltage exceeds 0.7 V, the input current should be limited to 10 mA.
2/ Output may be shorted to ground indefinitely at VS = 15 volts, TA = 25C. Temperature and supply
voltages shall be limited to ensure dissipation rating is not exceeded.
3/ For short term test (in the specific burn-in and steady-state life test configuration when required and up to
168 hours maximum), TJ = 175C.
4/ Maximum power dissipation versus ambient temperature.
2
MIL-M-38510/135G
2.2 Government documents.
2.2.1 Specifications, standards, and handbooks. The following specifications, standards, and handbooks form a
part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are
those cited in the solicitation or contract.
DEPARTMENT OF DEFENSE SPECIFICATIONS
MIL-PRF-38535
- Integrated Circuits (Microcircuits) Manufacturing, General Specification for.
DEPARTMENT OF DEFENSE STANDARDS
MIL-STD-883
MIL-STD-1835
- Test Method Standard, Microcircuits.
- Electronic Component Case Outlines.
(Copies of these documents are available online at https://assist.daps.dla.mil/quicksearch/ or from the
Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)
2.3 Order of precedence. Unless otherwise noted herein or in contract, in the event of a conflict between the text
of this document and the references cited herein (except for related specification sheets), the text of this document
takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific
exemption has been obtained.
3. REQUIREMENTS
3.1 Qualification. Microcircuits furnished under this specification sheet shall be products that are manufactured by
a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before
contract award (see 4.3 and 6.3).
3.2 Item requirements. The individual item requirements shall be in accordance with MIL-PRF-38535 and as
specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the
QM plan shall not affect the form, fit, or function as described herein.
3.3 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as
specified in MIL-PRF-38535 and herein.
3.3.1 Circuit diagram and terminal connections. The circuit diagram and terminal connections shall be as specified
on figure 1.
3.3.2 Schematic circuits. The schematic circuits shall be maintained by the manufacturer and made available to
the qualifying activity and the preparing activity upon request.
3.3.3 Case outlines. The case outlines shall be as specified in 1.2.3.
3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
3.5 Electrical performance characteristics. The electrical performance characteristics are as specified in table I,
and unless otherwise specified, apply over the full recommended ambient operating temperature range for supply
voltages from 4.5 V dc to 20 V dc for device types 01 and 02 and for supply voltages from 4.5 V dc to 18 V dc for
device types 03, 04, 05, and 06. Unless otherwise specified, source resistance (RS) shall be 50 ohms for all tests.
3.5.1 Offset null circuits. The nulling inputs shall be capable of being nulled 0.5 mV beyond the specified offset
voltage limits for –55C  TA  125C using the circuit on figure 2.
3.5.2 Instability oscillations. The devices shall be free of oscillations when operated in the test circuits of this
specification sheet.
3
MIL-M-38510/135G
TABLE I. Electrical performance characteristics.
Test
Input offset voltage
Symbol
VIO
Conditions 1/
VCC = 15 V,
unnulled,
see figure 3 and reference
3.5 herein,
unless otherwise specified
2/ 3/ 4/
See figure 4, TA = 25C
2/ 3/
-55C  TA +125C
End-point limit 4/
Input offset voltage
temperature sensitivity
Input bias current
VIO /T
+IIB
TA = 25C 2/
-55C  TA +125C 2/
End-point limit 4/
See footnotes at end of table.
4
Device
type
Limits
Unit
Min
Max
01,03,
05,06
-25
25
02
-75
75
04
-80
80
01,03,
05,06
-60
60
02
-200
200
04
-180
180
01,03,
05,06
-100
100
02
-175
175
04
-180
180
01,03,
05,06
-0.6
0.6
02
-1.3
1.3
04
-1.0
1.0
01
-2
2
02
-3
3
03,04,
05,06
-40
40
01
-4
4
02
-6
6
03,04,
05,06
-60
60
01
-3
3
02
-4.5
4.5
03,04,
05,06
-50
50
V
V/C
nA
MIL-M-38510/135G
TABLE I. Electrical performance characteristics – Continued.
Test
Input bias current
Symbol
-IIB
Conditions 1/
VCC = 15 V,
unnulled,
see figure 3 and reference
3.5 herein,
unless otherwise specified
TA = 25C 2/
-55C  TA +125C 2/
End-point limit 4/
Input offset current
IIO
TA = 25C 2/
-55C  TA +125C 2/
Power supply rejection
ratio
+PSRR
+VCC = 20 V to 5 V,
-VCC = -15 V, TA = 25C
+VCC = 18 V to 5 V,
-VCC = -15 V, TA = 25C
-PSRR
-VCC = -20 V to -5 V,
+VCC = 15 V, TA = 25C
-VCC = -18 V to -5 V,
+VCC = 15 V, TA = 25C
See footnotes at end of table.
5
Device
type
Limits
Unit
Min
Max
01
-2
2
02
-3
3
03,04,
05,06
-40
40
01
-4
4
02
-6
6
03,04,
05,06
-60
60
01
-3
3
02
-4.5
4.5
03,04,
05,06
-50
50
01
-2
2
02
-2.8
2.8
03,04,
05,06
-35
35
01
-4
4
02
-5.6
5.6
03,04,
05,06
-50
50
01,02
-10
10
03,04,
05,06
-10
10
01,02
-10
10
03,04,
05,06
-10
10
nA
nA
V/V
MIL-M-38510/135G
TABLE I. Electrical performance characteristics – Continued.
Test
Symbol
Conditions 1/
VCC = 15 V,
unnulled,
see figure 3 and reference
3.5 herein,
unless otherwise specified
Device
type
Limits
Unit
Min
Max
01,02
-20
20
03,04,
05,06
-16
16
01,02
-20
20
03,04,
05,06
-16
16
01,02
-10
10
03,04,
05,06
-10
10
01,02
-20
20
03,04,
05,06
-16
16
VCM = 13 V, TA +25C
01,02
110
VCM = 11 V, TA +25C
03,04,
05,06
114
01,02
106
03,04,
05,06
108
+VCC = 20 V to 5 V,
Power supply rejection
ratio
+PSRR
-VCC = -15 V,
V/V
-55C  TA +125C
+VCC = 18 V to 5 V,
-VCC = -15 V,
-55C  TA +125C
-VCC = -20 V to -5 V,
-PSRR
+VCC = 15 V,
-55C  TA +125C
-VCC = -18 V to -5 V,
+VCC = 15 V,
-55C  TA +125C
PSRR
VCC = 4.5 V to 20 V,
TA +25C
VCC = 4.5 V to 18 V,
TA +25C
VCC = 4.5 V to 20 V,
-55C  TA +125C
VCC = 4.5 V to 18 V,
-55C  TA +125C
Common mode rejection
mode
CMRR
VCM = 13 V,
-55C  TA +125C
VCM = 10 V,
-55C  TA +125C
See footnotes at end of table.
6
dB
MIL-M-38510/135G
TABLE I. Electrical performance characteristics – Continued.
Test
Adjustment for input offset
Symbol
VIO
Adj(+)
Conditions 1/
VCC = 15 V,
unnulled,
see figure 3 and reference
3.5 herein,
unless otherwise specified
TA +25C 2/
Device
type
Limits
Min
All
t  25 ms 5/
-55C  TA +125C
t  25 ms 5/
TA = +25C, +125C
t  25 ms 5/
TA = -55C
IOS(-)
t  25 ms 5/
-55C  TA +125C
t  25 ms 5/
TA = +25C, +125C
t  25 ms 5/
TA = -55C
Supply current
ICC
TA = +25C 2/ 6/
-55C  TA +125C 2/ 6/
Output voltage swing
(minimum)
VOP
mV
-0.5
Adj(-)
IOS(+)
Max
0.5
VIO
Output short circuit
current
Unit
RL = 1 k,
03,05,
06
-70
04
-60
01,02
-65
01,02
-70
mA
03,04,
05,06
70
01,02
65
01,02
70
01,02
4
03,04,
05,06
5
01,02
5
03,04,
05,06
6
01,02
-10
10
03,04,
05,06
-10
10
RL = 2,000 ,
01,02
-12
12
-55C  TA +125C
03,04,
05,06
-11.5
11.5
-55C  TA +125C
RL = 600 ,
-55C  TA +125C
See footnotes at end of table.
7
mA
V
MIL-M-38510/135G
TABLE I. Electrical performance characteristics – Continued.
Test
Open loop voltage gain
(single ended)
Symbol
AVS
Conditions 1/
VCC = 15 V,
unnulled,
see figure 3 and reference
3.5 herein,
unless otherwise specified
TA = +25C 7/
-55C  TA +125C 7/
Slew rate
SR(+)
VIN = 5 V, AV = 1,
TA = +25C, see figure 5
and
SR(-)
VIN = 1 V, AV = 5,
TA = +25C, see figure 5
Input noise voltage density
En
Device
type
Limits
Min
01
300
02
200
03,04,
05,06
1,000
01
200
02
150
03,04,
05,06
600
01,02
.08
03,04,
06
1.7
05
11
Unit
Max
V/mV
V/s
fO = 10 Hz, TA = +25C,
01,02
18
nV /
see figure 6
03,05
5.5
Hz
06
8
04
6.0
01,02
14
03,05
4.0
06
5.0
04
5.0
01,02
12
03,05
3.8
06
4
04
3.9
fO = 100 Hz
fO = 1 kHz
See footnotes at end of table.
8
MIL-M-38510/135G
TABLE I. Electrical performance characteristics – Continued.
Test
Low frequency input
noise voltage
Input noise current density
Symbol
Enpp
In
Conditions 1/
VCC = 15 V,
unnulled,
see figure 3 and reference
3.5 herein,
unless otherwise specified
Device
type
Limits
Min
Unit
Max
fO = 0.1 Hz to 10 Hz,
01,02
TA = +25C,
03,05
0.18
see figure 7
06
0.375
04
0.20
03,04,
05
5.66
06
35
03,05
1.88
04
2.1
06
18
03,05
0.84
04
0.89
06
5
fO = 10 Hz, TA = +25C,
see figure 6
fO = 100 Hz, TA = +25C,
see figure 6
fO = 1 kHz, TA = +25C,
see figure 6
0.6
VPP
pA /
Hz
6/
For devices marked with the “Q” certification mark, the parameters listed herein shall be guaranteed if not
tested to the limits specified in accordance with the manufacturer’s QM plan.
Tested at VCM = 0 V, VCC = 15 V.
Due to the inherent warm-up drift of types 01, 03, 04, 05, and 06, testing shall occur no sooner than 5 minutes
after application of power.
Refer to table IV for end-point parameters.
Continuous short circuit limits are considerably less than the indicated test limits since maximum power
dissipation cannot be exceeded.
For device type 04, ICC is for each amplifier.
7/
VOUT = 0 to +10 for AVS(+) and VOUT = 0 to -10 for AVS(-). RL = 2,000 .
1/
2/
3/
4/
5/
3.6 Electrical test requirements. Electrical test requirements for each device class shall be the subgroups
specified in table II. The electrical tests for each subgroup are described in table III.
3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
3.8 Microcircuit group assignment. The devices covered by this specification sheet shall be in microcircuit group
number 49 (see MIL-PRF-38535, appendix A).
9
MIL-M-38510/135G
TABLE II. Electrical test requirements.
Subgroups (see table III)
Class S
Class B
devices
devices
MIL-PRF-38535
test requirements
Interim electrical parameters
Final electrical test parameters 1/
Group A test requirements 2/
Group B electrical test parameters when
using the method 5005 QCI option
Group C end-point electrical 3/
parameters
Group D end-point electrical
parameters
3/
1
1
1, 2, 3, 4, 7
1, 2, 3, 4, 7
1, 2, 3, 4, 5,
6, 7, 9
1, 2, 3 and table IV
delta limits
1, 2, 3 and table IV
delta limits
1, 2, 3 and
table IV
end-point limits
1, 2, 3, 4, 5,
6, 7, 9
N/A
1 and table IV
delta limits
1 and table IV
end-point limits
1/ Percent defective allowable (PDA) applies to subgroup 1.
2/ Subgroup 9 shall have a sample size series number of 5 for class S and class B devices.
3/ Table IV end-point parameters shall be used for VIO and IIB for class S and class B devices.
4. VERIFICATION
4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or
as modified in the device manufacturer’s Quality Management (QM) plan. The modification in the QM plan shall not
affect the form, fit, or function as described herein.
4.2 Screening. Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior
to qualification and quality conformance inspection. The following additional criteria shall apply:
a.
The burn-in test duration, test condition, and test temperature, or approved alternatives, shall be as specified
in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be
maintained under document control by the device manufacturer's Technology Review Board (TRB) in
accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon
request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in
accordance with the intent specified in method 1015 of MIL-STD-883.
b.
Interim and final electrical test parameters shall be as specified in table II, except interim electrical
parameters test prior to burn-in is optional at the discretion of the manufacturer.
c.
Additional screening for space level product shall be as specified in MIL-PRF-38535.
10
MIL-M-38510/135G
4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.
4.4 Technology Conformance inspection (TCI). Technology conformance inspection shall be in accordance with
MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as
follows:
a.
Tests shall be as specified in table II herein.
b.
Subgroups 8, 10, and 11 shall be omitted.
4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.
4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as
follows:
a.
End-point electrical parameters shall be as specified in table II herein. Delta limits shall apply to
group C inspection and shall consist of tests specified in table IV herein.
b.
The steady-state life test duration, test condition, and test temperature, or approved alternatives, shall be as
specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit
shall be maintained under document control by the device manufacturer's TRB in accordance with
MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test
circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the
intent specified in test method 1005 of MIL-STD-883.
4.4.4 Group D inspection. Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point
electrical parameters shall be as specified in table II herein.
4.5 Methods of inspection. Methods of inspection shall be specified and as follows.
4.5.1 Voltage and current. All voltage values given are referenced to the ground terminal of the device under test
(DUT). Current values given are for conventional current and are positive when flowing into the referenced terminal.
4.5.2 Life test cool down procedures. When devices are measured at +25C following application of the steadystate life or burn-in test condition, they shall be cooled to within 10C of their power stable condition at room
temperature prior to removal of the bias.
11
MIL-M-38510/135G
NOTE: For case outline G only, the –VCC pin is tied to the case of the can package.
FIGURE 1. Circuit diagram and terminal connections.
12
MIL-M-38510/135G
FIGURE 2. Offset null circuits.
13
MIL-M-38510/135G
FIGURE 3. Test circuit for static and slew rate tests.
14
MIL-M-38510/135G
NOTES:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
All resistors are 0.1% tolerance and all capacitors are 10% unless specified otherwise.
Precautions shall be taken to prevent damage to the DUT during insertion into socket and change of
relay state (example: disable voltage supplies and current limit VCC).
Compensation capacitors should be added as required for test circuit stability. Proper wiring procedures
shall be followed to prevent unwanted coupling and oscillations. Loop response and settling time
shall be consistent with the test rate such that any value has settled for at least five loop time constants
before the value is measured.
Adequate settling time should be allowed such that each parameter has settled to within five percent of its
final value.
All relays are shown in the normal de-energized state.
Saturation of the nulling amp is not allowed on tests where the pin 4 value is measured.
The load resistors 1,000  and 2,050  yield effective load resistance of 100  and 2,000  respectively.
Any oscillation greater than 300 mV pk-pk in amplitude shall be cause for device failure.
Device type 04 only, test both halves for all tests. The idle half of the dual amplifiers shall be maintained
in this configuration where V1 is midway between +VCC and –VCC, or the manufacturer has the option to
connect the idle half in a VID configuration such that the inputs are maintained at the same common mode
voltage as the DUT.
Circuit within dashed area used for devices 03, 04, 05, and 06 only.
For devices 01 and 02: R1 = 500 k .01%; R2 = 500 k .01%.
For device 03, 04, 05, and 06: R1 = 50 k .01%; R2 = 50 k .01%.
When using this test circuit for measuring slew rate, the oscillation detector shall be disabled.
For devices 01 and 02: R3 = 27 k, 5%, R4 = 100 k, 5%.
For devices 03, 04, 05, and 06: R3 = 0 , R4 = 10 k, 5%.
FIGURE 3. Test circuit for static and slew rate tests – Continued.
15
MIL-M-38510/135G
NOTES:
1. Same configuration used for both amplifiers of device 04.
2. Low thermal EMF sockets are recommended. The number of solder joints and dissimilar metal junctions
are to be minimized. The test circuit should contain a minimum number of components. All components
should have the lowest possible temperature coefficients.
3. The temperature of the test circuit should be equal to that of the DUT.
4. Resistors 16 k 10.0%, 32  10%, and 16 k 10.0% shall be used together or resistors
50 k 1.0%, 100  1%, and 50 k 1.0% shall be used together.
FIGURE 4. Voltage offset test circuit.
16
MIL-M-38510/135G
NOTES:
1. Resistors are 1.0% tolerance and capacitors are 10% tolerance.
2. This capacitance includes the actual measured value with stray and wire capacitance.
3. Precautions shall be taken to prevent damage to the DUT during insertion into socket and
in applying power.
4. Pulse input and output characteristics are shown on the next space.
5. Compensation capacitors should be added as required for test circuit stability. Proper wiring procedures
shall be followed to prevent unwanted coupling and oscillations. Loop response and settling time shall
be consistent with the test rate such that any value has settled for at least five loop time constants before the
value is measured.
6. For device type 05 only.
FIGURE 5. Test circuit for slew rate.
17
MIL-M-38510/135G
Parameter
symbol
SR(+)
SR(-)
Device
type
01, 02,
03, 04,
06
01, 02,
03, 04,
06
SR(+)
05
SR(-)
05
Input pulse signal at
tr  50 ns
Output pulse
signal
Equation
-5 V to +5 V step
(AV = 1)
Waveform 1
SR(+) = VO(+) / t(+)
+5 V to -5 V step
(AV = 1)
Waveform 2
SR(-) = VO(-) / t(-)
Waveform 1
SR(+) = VO(+) / t(+)
Waveform 2
SR(-) = VO(-) / t(-)
-1 V to +1 V step
(AV = 5)
+1 V to -1 V step
(AV = 5)
FIGURE 5. Test circuit for slew rate - Continued.
18
MIL-M-38510/135G
NOTES:
1. Input noise voltage density (En) test: R1 = 50 , R2 = 10 k.
Input noise current density (In) test: R1 = 105 k, R2 = 2 M.
2. All resistors are metal film and 1% tolerance. Capacitors are in microfarads and are 10% tolerance.
3. Quan-Tech model 2283 or equivalent.
4. Quan-Tech model 2181 or equivalent.
FIGURE 6. Noise density test circuit.
19
MIL-M-38510/135G
NOTES:
1. All capacitor values are for non polarized capacitors only.
2. Resistors values are 1.0%.
FIGURE 7. Low frequency test circuit.
20
TABLE III. Group A inspection for device types 01 and 02.
Subgroup
Symbol
MIL-STD883
Test no. Notes
method
1/
Limits
Adapter pin number
1
2
3
Energized
relays
Measured pin
Equation
Unit
Device
type
No. Value Units
Min
Max
+IIB
4001
“
1
2
15
15
-15
-15
0
0
None
K1
4
4
E1
E2
V
V
VIO = E1
+IIB = 2 (E1 – E2)
01
02
-2
-3
2
3
nA
“
TA =
+25C
-IIB
“
3
15
-15
0
K2
4
E3
V
-IIB = 2 (E3 – E1)
IIO
“
4
4003
5
+PSRR = 66 (E4 – E5)
-2
-3
-2
-2.8
-10
2
3
2
2.8
10
“
“
nA
+PSRR
01
02
01
02
01,02
V/V
-PSRR
4003
6
-PSRR = 66 (E6 – E7)
01,02
-10
10
V/V
PSRR
4003
7
PSRR = 32.25 x (E8 - E9)
01,02
-10
10
V/V
CMRR
4003
2/
IIO = 2 (2E1 – E2 –E3)
20
5
15
15
4.5
20
-15
-15
-20
-5
-4.5
-20
0
0
0
0
0
0
None
4
8
28
2
-2
-28
9
15
10
15
E4
E5
E6
E7
E8
E9
V
“
V
“
V
“
None
4
None
4
-13
13
None
4
E10
E11
V
“
CMRR = 20 log |26000/(E11 – E10)|
01,02
110
dB
-15
0
K5
4
E12
“
VIO ADJ(+) = E1 – E12
01,02
0.5
mV
-15
0
K5,K6
4
E13
“
VIO ADJ(-) = E1 – E13
01,02
3011
11
3/
15
-15
-10
None
5
I1
mA
IOS(+) = I1
01,02
IOS(-)
3011
12
3/
15
-15
10
None
5
I2
mA
IOS(-) = I2
01,02
65
mA
ICC
4005
13
15
-15
0
None
1
I3
mA
ICC = I3
01,02
4
mA
2
VIO
4001
14
15
-15
0
E14
V
VIO = E14/1000
TA =
+125C
+IIB
4001
“
16
17
15
15
-15
-15
0
0
None
K1
4
4
E15
E16
“
“
VIO = E15
+IIB = 2 (E15 – E16)
01
02
01
02
-60
-200
-4
-6
60
200
4
6
V
“
nA
“
-IIB
18
15
-15
0
K2
“
E17
“
IIO
“
“
“
-IIB = 2 (E17 – E15)
IIO = 2 (2E15 – E16 –E17)
“
20
4
4
-PSRR = 66(E20 – E21)
01,02
-20
20
V/V
PSRR
“
22
None
4
PSRR = 32.25 x (E22 – E23)
01,02
-20
20
V/V
CMRR
4003
23
None
4
V
V
V
V
V
V
V
“
V/V
None
E18
E19
E20
E21
E22
E23
E24
E25
+PSRR = 66(E18 – E19)
21
0
0
0
0
0
0
-13
13
None
“
-15
-15
-20
-5
-4.5
-20
-2
-28
4
6
4
5.6
20
-PSRR
20
5
15
15
4.5
20
28
2
-4
-6
-4
-5.6
-20
“
“
nA
+PSRR
01
02
01
02
01,02
CMRR = 20 log |26000/(E24 – E25)|
01,02
106
IOS(+)
3011
24
3/
15
-15
-10
None
5
I4
mA
IOS(+) = I4
01,02
-65
IOS(-)
3011
25
3/
15
-15
10
None
5
I5
mA
IOS(-) = I5
01,02
65
mA
ICC
4005
26
15
-15
0
None
1
I6
mA
ICC = I6
01,02
5
mA
21
VIO
ADJ(+)
VIO
ADJ(-)
IOS(+)
See footnotes at end of table.
19
See
fig. 4
2/
-0.5
-65
mV
mA
dB
mA
MIL-M-38510/135G
1
TABLE III. Group A inspection for device types 01 and 02 – Continued.
Subgroup
Symbol
3
VIO
TA =
-55C
+IIB
MIL-STD883
Test no.
method
4001
“
4001
“
Adapter pin number
Energized
relays
1/
1
2
3
Fig. 4
15
-15
0
29
30
15
15
-15
-15
0
0
None
K1
31
15
-15
0
K2
27
IIO
“
“
4001
32
+PSRR
4003
33
-PSRR
4003
34
PSRR
4003
35
CMRR
4003
36
-IIB
Notes
Measured pin
Equation
No. Value Units
-60
-200
-4
-6
60
200
4
6
V
“
nA
“
-4
-6
-4
-5.6
-20
4
6
4
5.6
20
“
“
nA
+PSRR = 66 (E30 – E31)
01
02
01
02
01,02
V/V
-PSRR = 66 (E32 – E33)
01,02
-20
20
V/V
PSRR = 32.25 x (E34 – E35)
01,02
-20
20
V/V
CMRR = 20 log |26000/(E36 – E37)|
01,02
106
IOS(+) = I7
01,02
-70
70
mA
5
mA
VIO = E26/1000
4
“
E27
E28
“
“
VIO = E27
+IIB = 2 (E27 – E28)
“
E29
“
-IIB = 2 (E29 – E27)
IOS(+)
3011
37
3/
20
5
15
15
4.5
20
28
2
15
4
None
5
E30
E31
E32
E33
E34
E35
E36
E37
I7
None
4
None
4
None
4
V
“
V
“
V
“
V
“
mA
IOS(-)
3011
38
3/
15
-15
10
None
5
I8
mA
IOS(-) = I8
01,02
39
15
-15
0
None
1
I9
mA
ICC
3005
ICC = I9
01,02
4
+VOP
4004
40
41
15
-15
-15
K3
K4
5
E38
E39
V
V
+VOP = E38
+VOP = E39
01,02
01,02
TA =
+25C
-VOP
4004
42
43
15
-15
15
K3
K4
5
E40
E41
V
V
-VOP = E40
-VOP = E41
01,02
01,02
AVS(+)
4004
44
15
-15
-10
K4
4
E42
V
AVS(+) = 10/(E1 – E42)
AVS(-)
4004
45
15
-15
10
K4
4
E43
V
AVS(-) = 10/(E43 – E1)
01
02
01
300
200
300
VIO
4001
46
5
+VOP
4004
200
-25
-75
10
12
TA =
+125C
-VOP
VIO/
See
fig. 4
15
-15
0
47
48
15
-15
-15
K3
K4
4004
49
50
15
-15
15
K3
K4
4001
15
E44
V
VIO = E44/1000
5
E45
E46
V
V
+VOP = E45
+VOP = E46
02
01
02
01,02
01,02
5
E47
E48
V
V
-VOP = E47
-VOP = E48
01,02
01,02
VIO / T = (E14 – E44)/100(1000)
01
See
fig. 4
4/
T
AVS(+)
4004
51
15
-15
-10
K4
4
E49
V
AVS(+) = 10/(E15 – E49)
AVS(-)
4004
52
15
-15
10
K4
4
E50
V
AVS(-) = 10/(E50 – E15)
See footnotes at end of table.
dB
mA
10
12
V
“
-10
-12
“
“
V/mV
V/mV
25
75
V
V
“
-10
-12
“
“
-0.6
0.6
V/C
02
01
02
01
-1.3
200
150
200
1.3
02
150
V/mV
V/mV
MIL-M-38510/135G
22
01
02
01
02
V
None
Unit
Max
IIO = 2 (2E27 – E28 –E29)
0
0
0
0
0
0
-13
13
-10
Limits
Min
E26
2/
-15
-15
-20
-5
-4.5
-20
-2
-28
-15
Device
type
TABLE III. Group A inspection for device types 01 and 02 – Continued.
Subgroup
6
TA =
-55C
Symbol
MIL-STD883
method
Test no.
4004
53
“
54
-VOP
4004
55
“
56
VIO/T
4001
28
AVS(+)
4004
57
+VOP
AVS(-)
4004
58
7
SR(+)
4002
59
TA =
+25C
SR(-)
4002
60
En
61
63
23
Enpp
See footnotes at end of table.
64
Adapter pin nunbers
1
2
3
15
-15
-15
Energized
relays
K3
Measured pin
-15
15
K3
Units
5
E51
V
+VOP = E51
01,02
10
E52
“
+VOP = E52
01,02
12
E53
V
-VOP = E53
01,02
E54
“
5
K4
5/
6/
5/
6/
fO =
10 Hz
fO =
100 Hz
fO =
1 kHz
See
fig. 5
See
fig, 6
-15
-10
K4
Limits
Value
See
fig. 4
4/
15
Device
type
No.
K4
15
Equation
4
E55
V
Min
Unit
Max
V
“
-10
V
-VOP = E54
01,02
VIO / T = (E26 – E44) / 80(1000)
01
02
-0.6
-1.3
-12
“
0.6
1.3
V/C
AVS(+) = 10 / (E27 – E55)
01
200
V/mV
150
200
“
V/mV
15
-15
10
K4
4
E56
V
AVS(-) = 10 / (E56 – E27)
02
01
15
-15
0
K4,K9
5
V / s
SR(+) = VO(+) / t(+)
02
01,02
150
.08
“
V/s
15
-15
0
K4, K9
5
VO(+),
t(+)
VO(-),
t(-)
E57
V / s
SR(-) = VO(-) / t(-)
01,02
.08
V/s
nV /
En = E57
01,02
18
Hz
Hz
E58
En = E58
14
E59
En = E59
12
E60
VPP
nV /
Enpp = E60 / 50000
01,02
0.6
VPP
MIL-M-38510/135G
62
Notes
TABLE III. Group A inspection for device types 03, 04, 05, and 06 - Continued.
Subgroup
Symbol
MIL-STD883
method
Test no.
Notes
Adapter pin number
1
2
3
Energized
relays
Measured pin
No.
Equation
Device
type
Value Units
Limits
Unit
Min
Max
+IIB
4001
“
1
2
15
15
-15
-15
0
0
None
K1
4
4
E1
E2
V
V
03,04,
05,06
-40
40
nA
“
TA =
+25C
VIO = E1
+IIB = 20 (E1 – E2)
+IIB = 2 (E1 – E2) - device type 05
-IIB
“
3
15
-15
0
K2
4
E3
V
-IIB = 20 (E3 – E1)
-IIB = 2 (E3 – E1) - device type 05
03,04,
05,06
-40
40
“
“
IIO
“
4
03,04,
05,06
-35
35
nA
+PSRR
4003
5
IIO = 20 (2E1 – E2 –E3)
IIO = 2 (2E1 – E2 –E3) – device type 05
+PSRR = 76.9 (E4 – E5)
-10
10
V/V
-PSRR
4003
6
-10
10
V/V
PSRR
4003
7
03,04,
05,06
03,04,
05,06
03,04,
05,06
-10
10
V/V
CMRR
4003
24
VIO
ADJ(+)
VIO
ADJ(-)
IOS(+)
3011
2/
18
5
15
15
4.5
18
-15
-15
-18
-5
-4.5
-18
0
0
0
0
0
0
8
26
4
-4
-26
9
15
10
11
IOS(-)
3011
12
ICC
4005
13
2
VIO
4001
14
TA =
+125C
+IIB
4001
“
-IIB
3/
3/
None
4
E4
E5
E6
E7
E8
E9
V
“
V
“
V
“
None
4
None
4
-11
11
None
4
E10
E11
V
“
CMRR = 20 log |22000/(E11 – E10)|
03,04,
05,06
114
dB
-15
0
K5
4
E12
“
VIO ADJ(+) = E1 – E12
0.5
mV
0
K5,K6
4
E13
“
VIO ADJ(-) = E1 – E13
-10
None
5
I1
mA
IOS(+) = I1
03,04,
05,06
03,04,
05,06
03,05,06
15
-15
15
-15
-PSRR = 76.9 (E6 – E7)
PSRR = 37.04 x (E8 - E9)
15
-15
10
None
5
I2
mA
IOS(-) = I2
15
-15
0
None
1
I3
mA
ICC = I3
15
-15
0
E14
V
VIO = E14/1000
16
17
15
15
-15
-15
0
0
None
K1
4
4
E15
E16
“
“
VIO = E15
+IIB = 20 (E15 – E16)
+IIB = 2 (E15 – E16) – device type 05
“
“
18
15
-15
0
K2
“
E17
“
-IIB = 20 (E17 – E15)
-IIB = 2 (E17 – E15) – device type 05
IIO
“
19
+PSRR
4003
20
IIO = 20 (2E15 – E16 –E17)
IIO = 2 (2E15 – E16 –E17) – device type 05
+PSRR = 76.9 (E18 – E19)
-PSRR
4003
21
PSRR
4003
22
CMRR
4003
23
See footnotes at end of table.
See
fig. 4
2/
18
5
15
15
4.5
18
-15
-15
-18
-5
-4.5
-18
0
0
0
0
0
0
25
5
-5
-25
-10
10
None
4
None
4
None
4
None
4
E18
E19
E20
E21
E22
E23
V
“
V
“
V
“
E24
E25
V
“
-PSRR = 76.9 (E20 – E21)
PSRR = 37.04 x (E22 – E23)
CMRR = 20 log |20000/(E24 – E25)|
04
03,04,05,
06
03,04,05,
06
03,05,06
04
03,04,
05,06
-0.5
-70
mV
mA
-60
70
mA
5
mA
-60
-180
-60
60
180
60
V
“
nA
“
03,04,
05,06
-60
60
“
“
03,04,
05,06
-50
50
nA
03,04,
05,06
03,04,
05,06
03,04,
05,06
-16
16
V/V
-16
16
V/V
-16
16
V/V
03,04,
05,06
108
dB
MIL-M-38510/135G
1
TABLE III. Group A inspection for device types 03, 04, 05, and 06 – Continued.
Subgroup
2
Symbol
IOS(+)
MIL-STD883
method
3011
Limits
Test
no.
24
TA =
+125C
IOS(-)
3011
25
ICC
4005
26
3
VIO
27
TA =
-55C
+IIB
4001
“
4001
“
Notes
Adapter pin number
1/
1
2
3
3/
15
-15
-10
3/
Energized
relays
Measured pin
Equation
No. Value Units
None
5
I4
mA
Min
IOS(+) = I4
-15
10
None
5
I5
mA
IOS(-) = I5
15
-15
0
None
1
I6
mA
ICC = I6
15
-15
0
E26
V
VIO = E26/1000
29
30
15
15
-15
-15
0
0
None
K1
4
“
E27
E28
“
“
VIO = E27
+IIB = 20 (E27 – E28)
+IIB = 2 (E27 – E28) – device type 05
15
-15
0
K2
“
E29
“
-IIB = 20 (E29 – E27)
-IIB = 2 (E29 – E27) – device type 05
IIO = 20 (2E27 – E28 –E29)
IIO = 2 (2E27 – E28 –E29) – device type 05
+PSRR = 76.9 (E30 – E31)
-IIB
“
“
31
IIO
4001
32
+PSRR
4003
33
-PSRR
4003
34
PSRR
4003
35
CMRR
4003
36
IOS(+)
3011
37
See
fig. 4
2/
3/
18
5
15
15
4.5
18
25
5
15
-15
-15
-18
-5
-4.5
-18
-5
-25
-15
0
0
0
0
0
0
-10
10
-10
None
4
None
4
None
4
None
4
None
5
E30
E31
E32
E33
E34
E35
E36
E37
I7
V
“
V
“
V
“
V
“
mA
-PSRR = 76.9 (E32 – E33)
PSRR = 37.04 x (E34 – E35)
CMRR = 20 log |20000/(E36 – E37)|
IOS(+) = I7
03,05,06
-70
04
03,04,05,
06
03,04,05,
06
03,05,06
04
03,04,
05,06
-60
Max
mA
70
mA
6
mA
-60
-180
-60
60
180
60
V
“
nA
“
03,04,
05,06
-60
60
“
“
03,04,
05,06
-50
50
nA
03,04,
05,06
03,04,
05,06
03,04,
05,06
03,04,
05,06
03,05,06
-16
16
V/V
-16
16
V/V
-16
16
V/V
108
dB
-70
mA
15
-15
10
None
5
I8
mA
IOS(-) = I8
39
15
-15
0
None
1
I9
mA
ICC = I9
4004
40
41
15
-15
-15
K7
K4
5
E38
E39
V
V
+VOP = E38
+VOP = E39
04
03,04,05,
06
03,04,05,
06
03,04,06
05
-VOP
4004
42
43
15
-15
15
K7
K4
5
E40
E41
V
V
-VOP = E40
-VOP = E41
03,04,06
05
AVS(+)
4004
44
15
-15
-10
K4
4
E42
V
AVS(+) = 10/(E1 – E42)
1000
V/mV
AVS(-)
4004
45
15
-15
10
K4
4
E43
V
AVS(-) = 10/(E43 – E2)
03,04,
05,06
03,04,
1000
V/mV
VIO
4001
46
5
+VOP
4004
-25
-80
10
11.5
TA =
+125C
-VOP
4004
IOS(-)
3011
38
ICC
3005
4
+VOP
TA =
+25C
See footnotes at end of table.
3/
See
fig. 4
15
-15
0
47
48
15
-15
-15
K7
K4
49
50
15
-15
15
K7
K4
E44
V
VIO = E44/1000
5
E45
E46
V
V
+VOP = E45
+VOP = E46
05,06
03,05,06
04
03,04,06
05
5
E47
E48
V
V
-VOP = E47
-VOP = E48
03,04,06
05
-60
70
mA
6
mA
10
11.5
V
“
-10
-11.5
25
80
“
“
V
V
“
-10
-11.5
“
“
MIL-M-38510/135G
25
15
Unit
Device
type
TABLE III. Group A inspection for device types 03, 04, 05, and 06 – Continued.
Subgroup
5
Symbol
VIO/T
MILSTD883
method
4001
Test
no.
15
Notes
1/
See
fig. 4
4/
Adapter pin number Energized
Measured pin
relays
1
2
3
No. Value
Units
Device
type
Equation
VIO / T = (E14 – E44)/100(1000)
Limits
Min
Max
03,05,06
-0.6
0.6
04
03,04,
05,06
03,04,
-1.0
600
1.0
AVS(+)
4004
51
15
-15
-10
K4
4
E49
V
AVS(+) = 10/(E15 – E49)
AVS(-)
4004
52
15
-15
10
K4
4
E50
V
AVS(-) = 10/(E50 – E15)
6
+VOP
4004
53
54
15
-15
-15
K7
K4
5
E51
E52
V
V
+VOP = E51
+VOP = E52
05,06
03,04,06 10
05
11.5
TA =
-55C
-VOP
4004
55
56
15
-15
15
K7
K4
5
E53
E54
V
V
-VOP = E53
-VOP = E54
03,04,06
05
VIO/T
4001
28
VIO / T = (E26 – E44) / 100(1000)
03,05,06
04
03,04,
05,06
03,04,
TA =
+125C
See
fig. 4
4/
4004
57
15
-15
-10
K4
4
E55
V
AVS(+) = 10/(E27 – E55)
AVS(-)
4004
58
15
-15
10
K4
4
E56
V
AVS(-) = 10/(E56 – E27)
7
SR(+)
4002
59
TA =
+25C
SR(-)
4002
60
En
61
0
15
-15
0
K4,K9,
K10
K4,K9,
K10
5
5
VO(+),
t(+)
VO(-),
t(-)
E57
V / s
SR(+) = VO(+) / t(+)
V / s
SR(-) = VO(-) / t(-)
nV /
En = E57
Hz
fO =
100 Hz
fO =
1 kHz
see
fig. 6
See
fig. 7
E59
En = E59
E60
VPP
fO =
10 Hz
E61
pA /
66
fO =
100 Hz
E62
In = {[(E62) – (E58) – (1.64 x 10
67
fO =
1 kHz
see
fig. 6
E63
In = {[(E63) – (E59) – (1.64 x 10
Enpp
64
In
65
See footnotes at end of table.
-15
En = E58
63
TA =
+25C
fO =
10 Hz
15
E58
62
9
5/ 6/,
7/
5/ 6/,
7/
05,06
03,04,06
05
03,04,06
05
03,05
04
06
03,05
04,06
03,05
04
06
Hz
Enpp = E60 / 50000
03,05
04
06
2
2
-15
-10
In = {[(E61) – (E57) – (1.64 x 10 )] 10 } 0.5 03,04,05
06
2
2
-15
2
2
-15
)] 10
)] 10
-10
-10
} 0.5
} 0.5
03,05
04
06
03,05
04
06
V/C
V/mV
600
V/mV
V
“
-10
-11.5
“
“
-0.6
0.6
V/C
-1.0
600
1.0
V/mV
600
V/mV
1.7
11
1.7
11
V/s
V/s
5.5
6.0
8
4.0
5.0
3.8
3.9
4
nV /
.18
.20
.375
5.66
35
VPP
1.88
2.1
18
0.84
0.89
5
Hz
pA /
Hz
MIL-M-38510/135G
26
AVS(+)
Unit
TABLE III. Group A inspection for device types 03, 04, 05, and 06 – Continued.
1/ All tests apply to figure 3, unless otherwise specified. For devices marked with the “Q” certification mark, the parameters listed herein may be guaranteed
if not tested to the limits specified in accordance with the manufacturer’s QM plan.
2/ IIO is calculated using data from previous tests.
3/ IOS(+) and IOS(-) are measured with the output shorted to ground for less than 25 milliseconds.
4/ ΔVIO/Δt is calculated using data from previous tests.
5/ Slew rate can be measured using figure 5. All test signals for figure 3 are shown on figure 5.
6/ The oscillation detector will be disconnected during slew rate tests.
7/ Slew rate: For device types 03, 04, and 06 energize relays K4 and K9. For device type 05 energize relays K4, K9, and K10.
MIL-M-38510/135G
27
MIL-M-38510/135G
TABLE IV. Group C end-point and group B, class S, electrical parameters.
VCM = 0, VCC = 15 V for all device types.
TA = 25C for Group C end-point limits, -55C  TA  +125C for group B, class S, end-point limits.
Device 01
Test
Limit
Device 02
Delta
Limit
Delta
Units
Min
Max
Min
Max
Min
Max
Min
Max
VIO
-135
135
-75
75
-300
300
-100
100
V
+IIB
-5
5
-1
1
-7.5
7.5
-1.5
1.5
nA
-IIB
-5
5
-1
1
-7.5
7.5
-1.5
1.5
nA
Devices 03, 05, and 06
Test
Limit
Device 04
Delta
Limit
Delta
Units
Min
Max
Min
Max
Min
Max
Min
Max
VIO
-135
135
-75
75
-280
280
-100
100
V
+IIB
-70
70
-10
10
-70
70
-10
10
nA
-IIB
-70
70
-10
10
-70
70
-10
10
nA
5. PACKAGING
5.1 Packaging requirements. For acquisition purposes, the packaging requirements shall be as specified in the contract or
order (see 6.2). When packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need
to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by
the Inventory Control Point's packaging activity within the Military Service or Defense Agency, or within the military service’s
system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's
automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.
28
MIL-M-38510/135G
6. NOTES
(This section contains information of a general or explanatory nature that may be helpful, but it is not mandatory.)
6.1 Intended use. Microcircuits conforming to this specification are intended for logistic support of existing equipment.
6.2 Acquisition requirements. Acquisition documents should specify the following:
a.
Title, number, and date of the specification.
b.
PIN and compliance identifier, if applicable (see 1.2).
c.
Requirements for delivery of one copy of the conformance inspection data pertinent to the device inspection lot to be
supplied with each shipment by the device manufacturer, if applicable.
d.
Requirements for certificate of compliance, if applicable.
e.
Requirements for notification of change of product or process to contracting activity in addition to notification to the
qualifying activity, if applicable.
f.
Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective
action, and reporting of results, if applicable.
g.
Requirements for product assurance options.
h.
Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect
the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct
shipment to the Government.
i.
Requirements for "JAN" marking.
j.
Packaging requirements (see 5.1).
6.3 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the
time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have
actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are
urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that
they may be eligible to be awarded contracts or orders for the products covered by this specification. Information pertaining to
qualification of products may be obtained from DSCC-VQ, P.O. Box 3990, Columbus, Ohio 43128-3990. An online listing of
products qualified to this specification may be found in the Qualified Products Database (QPD) at https://assist.daps.dla.mil.
6.4 Superseding information. The requirements of MIL-M-38510 have been superseded to take advantage of the
available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in
this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this
specification sheet and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid
adversely impacting existing Government logistics systems and contractor’s parts lists.
6.5 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in
MIL-PRF-38535, and MIL-HDBK-1331.
6.6 Logistic support. Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits
acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4).
Longer length leads and lead forming should not affect the part number.
29
MIL-M-38510/135G
6.7 Substitutability. The cross-reference information below is presented for the convenience of users. Microcircuits covered
by this specification sheet will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not
have equivalent operational performance characteristics across military or Government temperature ranges or reliability factors
equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this
information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of
any of the provisions of MIL-PRF-38535.
Military device type
Generic-industry type
01
OP-07A
02
OP-07, 714
03
OP-27A
04
OP-227A
05
OP-37A
06
OP-27A
6.8 Changes from previous issue. Marginal notations are not used in this revision to identify changes with respect to the
previous issue due to the extent of the changes.
Custodians:
Army - CR
Navy - EC
Air Force - 85
NASA - NA
DLA - CC
Preparing activity:
DLA - CC
(Project 5962-2010-005)
Review activities:
Army - MI, SM
Navy - AS, CG, MC, SH, TD
Air Force - 03, 19, 99
NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and
responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at
https://assist.daps.dla.mil.
30