HI3246 Datasheet

HI3246
TM
Data Sheet
March 2000
File Number
4517.1
8-Bit, 120MSPS, Flash A/D Converter
Features
The HI3246 is an 8-bit, high-speed, flash analog-to-digital
converter optimized for high speed, low power, and ease of
use. With a 120MSPS encode rate capability and full-power
analog bandwidth of 200MHz, this component is ideal for
applications requiring the highest possible dynamic
performance.
• Differential Linearity Error. . . . . . . . . . . . . . . . . . ±0.5 LSB
• Integral Linearity Error . . . . . . . . . . . . . . . . . . . . ±0.5 LSB
• Integral Linearity Compensation Circuit
• Low Input Capacitance . . . . . . . . . . . . . . . . . . . . . . . 10pF
• Wide Analog Input Bandwidth . . . . . . . . . . . . . . . 250MHz
To minimize system cost and power dissipation, only a +5V
power supply is required. The HI3246 clock input interfaces
directly to TTL, ECL or PECL logic and will operate with singleended inputs. The user may select 16-bit demultiplexed output
or 8-bit single channel digital outputs. The demultiplexed mode
interleaves the data through two 8-bit channels at 1/2 the clock
rate. Operation in demultiplexed mode reduces the speed and
cost of external digital interfaces, while allowing the A/D
converter to be clocked to the full 120MSPS conversion rate.
• Low Power Consumption . . . . . . . . . . . . . . . . . . . 500mW
• 1:2 Demultiplexed Output Pin
• Internal 1/2 Frequency Divider Circuit (w/Reset Function)
• CLK/2 Clock Output
• Compatible with PECL, ECL and TTL Digital Input Levels
• Direct Replacement for Sony CXA3246Q
Fabricated with an advanced Bipolar process, the HI3246 is
provided in a space-saving 48-lead MQFP surface mount
plastic package and is specified over the -20oC to 75oC
temperature range.
Applications
Ordering Information
• Digital Oscilloscopes
PART
NUMBER
HI3246JCQ
• Digital Communications (QPSK, QAM)
TEMP. RANGE
(oC)
-20 to 75
• RGB Video (LCD, PDP)
PACKAGE
PKG. NO.
48 Ld MQFP
Q48.12x12-S
• Magnetic Recording (PRML)
Pinout
3-1
PBD4
PBD7
PBD6
PBD5
DVCC2
DGND2
CLKOUT
RESETN/T
PBD0
DGND2
DVCC2
30
29
DVCC1
6
7
8
9
10
28
27
PBD3
PBD1
DGND1
PAD7
PAD6
PAD5
PAD4
PAD3
PAD2
26
11
25
12
13 14 15 16 17 18 19 20 21 22 23 24
CLK/E
DGND3
33
32
31
DGND2
PAD0
PAD1
AGND
VRT
4
5
DVCC2
VRM3
PBD2
NC
AVCC
2
3
35
34
NC
AVCC
VIN
VRM2
48 47 46 45 44 43 42 41 40 39 38 37
36
CLK/T
NC
VRB
AGND
VRM1
1
CLKN/E
DVEE3
SELECT
INV
RESETN/E
RESET/E
HI3246 (MQFP)
TOP VIEW
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright © Intersil Corporation 2000
HI3246
Block Diagram
AVCC
5
8
INV
DVCC1
44
30
DVCC2
DGND3
19 31 42
12
VRT 11
R1
R/2
R/2
(MSB)
40 PBD7
1
R
39 PBD6
2
6 BITS
38 PBD5
9
(8 BITS)
R
64
37 PBD4
TTLOUT
63
VRM3
LATCHA
R
36 PBD3
R
35 PBD2
65
6 BITS
R
6-BIT LATCH AND ENCODER
34 PBD1
126
127
VRM2
7
VIN
6
R
128
ENCODER
R
R
129
33 P1D0
(LSB)
8 BITS
(MSB)
28 PAD7
6 BITS
R
27 PAD6
191
4
R
26 PAD5
LATCHB
192
R
193
TTLOUT
VRM1
25 PAD4
24 PAD3
6 BITS
R
23 PAD2
254
R
22 PAD1
255
R/2
VRB
2
CLK/T
15
CLK/E
13
21 PAD0
(LSB)
R/2
DELAY
16
17
NC
18
CLKN/E
14
D
Q
43 CLKOUT
SELECT
RESETN/T
46
RESETN/E
48
RESET/E
47
Q
3
10
AGND
3-2
45
29
SELECT DGND1
20
32
41
DGND2
1
DVEE3
HI3246
Absolute Maximum Ratings
TA = 25oC
Thermal Information
Supply Voltage (AVCC , DVCC1, DVCC2) . . . . . . . . . . -0.5V to +7.0V
(DGND3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to +7.0V
(DVEE3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -7.0V to +0.5V
(DGND3 - DVEE3) . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to +7.0V
Analog Input Voltage (VIN). . . . . . . . . . . . . . . . . VRT - 2.7V to AVCC
Reference Input Voltage (VRT). . . . . . . . . . . . . . . . . +2.7V to AVCC
(VRB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VIN - 2.7V to AVCC
(|VRT - VRB|) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +2.5V
Digital Input Voltage
PECL/ECL . . . . . . . . . . . . . . . . . . . DVEE3 - 0.5 to DGND3 + 0.5
TTL . . . . . . . . . . . . . . . . . . . . . . . . . DGND3 - 0.5 to DVCC1 + 0.5
VID (|***/E - ***N/E| (Note 2)) . . . . . . . . . . . . . . . . . . . . . . . . . 2.7V
Thermal Resistance (Typical, Note 1)
θJA (oC/W)
MQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . .
78
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . 150oC
Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300oC
(Lead Tips Only)
Recommended Operating Conditions
WITH A SINGLE POWER SUPPLY
MIN
TYP
MAX
Supply Voltage
DVCC1 , DVCC2 , AVCC . . . . . . . . . . . . . . . +4.75 +5.0 +5.25V
DGND1, DGND2, AGND . . . . . . . . . . . . . -0.05
0
+0.05V
DGND3. . . . . . . . . . . . . . . . . . . . . . . . . . . +4.75 +5.0 +5.25V
DVEE3 . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.05
0
+0.05V
Analog Input Voltage (VIN). . . . . . . . . . . . . . VRB
VRT
Reference Input Voltage
VRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +2.9
+4.1V
VRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +1.4
+2.6V
|VRT - VRB|. . . . . . . . . . . . . . . . . . . . . . . . +1.5
+2.1V
Digital Input Voltage
PECL (***/E) VIH . . . . . . . . . . . . . . DVEE3 + 1.5
DGND3
PECL (***/E) VIL . . . . . . . . . . . . . . . DVEE3 + 1.1
VIH - 0.4V
TTL (***/T, INV) VIH . . . . . . . . . . . . . . . . . +2.0V
TTL (***/T, INV) VIL . . . . . . . . . . . . . . . . .
+0.8V
Other (SELECT) VIH . . . . . . . . . . . . . . . .
DVCC1
Other (SELECT) VIL . . . . . . . . . . . . . . . . .
DGND1
VID (Note 2) (|***/E- ***N/E|) . . . . . . . . . . +0.4
+0.8
Max Conversion Rate (fC, Straight Mode) . . . 100
MSPS
Max Conversion Rate (fC, DMUX Mode) . . . . 120
MSPS
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . -20oC to 75oC
WITH DUAL POWER SUPPLIES
MIN
TYP
MAX
Supply Voltage
DVCC1 , DVCC2 , AVCC . . . . . . . . . . . . . . . +4.75 +5.0 +5.25V
DGND1, DGND2, AGND . . . . . . . . . . . . . -0.05
0
+0.05V
DGND3. . . . . . . . . . . . . . . . . . . . . . . . . . . -0.05
0
+0.05V
DVEE3 . . . . . . . . . . . . . . . . . . . . . . . . . . . -5.5
-5.0 -4.75V
Analog Input Voltage (VIN). . . . . . . . . . . . . . VRB
VRT
Reference Input Voltage
VRT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +2.9
+4.1V
VRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +1.4
+2.6V
|VRT - VRB|. . . . . . . . . . . . . . . . . . . . . . . . +1.5
+2.1V
Digital Input Voltage
PECL/ECL VIH . . . . . . . . . . . . . . . . . . . . . . . DVEE3 + 1.5 DGND3
PECL/ECL VIL . . . . . . . . . . . . . . . . . . . . . . . DVEE3 + 1.1 VIH - 0.4
TTL (***/T, INV) VIH . . . . . . . . . . . . . . . . . 2.0
TTL (***/T, INV) VIL . . . . . . . . . . . . . . . . .
+0.8V
Other (SELECT) VIH . . . . . . . . . . . . . . . .
DVCC1
Other (SELECT) VIL . . . . . . . . . . . . . . . . .
DGND1
VID (Note 2) (|***/E- ***N/E|) . . . . . . . . . . +0.4
0.8
Max Conversion Rate (fC, Straight Mode) . . . 100
MSPS
Max Conversion Rate (fC, DMUX Mode) . . . . 120
MSPS
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . -20oC to 75oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
2. VID : Input Voltage Differential.
Electrical Specifications
PARAMETER
DVCC1 , 2 , AVCC , DGND3 = +5V, DGND1, 2, AGND, DVEE3 = 0V, VRT = 4V, VRB = 2V,
TA = 25oC
TEST CONDITIONS
Resolution
MIN
TYP
MAX
UNITS
-
8
-
Bits
-
-
±0.5
LSB
-
-
±0.5
LSB
-
10
-
pF
DC CHARACTERISTICS
VIN = 2VP-P , fC = 5MSPS
Integral Linearity Error, INL
Differential Linearity Error, DNL
ANALOG INPUT
Analog Input Capacitance, CIN
VIN = +3.0V, +0.07VRMS
Analog Input Resistance, RIN
7
20
40
kΩ
Analog Input Current, IIN
0
100
285
µA
3-3
HI3246
Electrical Specifications
DVCC1 , 2 , AVCC , DGND3 = +5V, DGND1, 2, AGND, DVEE3 = 0V, VRT = 4V, VRB = 2V,
TA = 25oC (Continued)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Reference Resistance (Note 3), RREF
400
600
740
Ω
Reference Current (Note 4), IREF
REFERENCE INPUT
2.7
3.3
5.0
mA
Offset Voltage VRT Side, EOT
6
8
10
mV
Offset Voltage VRB Side, EOB
0
1.5
3
mV
Digital Input Voltage: High, VIH
DVEE3 + 1.5
-
DGND3
V
Digital Input Voltage: Low, VIL
DVEE3 + 1.1
-
VIH - 0.4
V
-
DGND3 - 1.2
-
V
DIGITAL INPUT (PECL/ECL)
Threshold Voltage, VTH
Digital Input Current: High, IIH
VIH = DGND3 - 0.8V
-50
-
+50
µA
Digital Input Current: Low, IIL
VIL = DGND3 - 1.6V
-75
-
0
µA
-
-
5
pF
Digital Input Voltage: High, VIH
2.0
-
-
V
Digital Input Voltage: Low, VIL
-
-
0.8
V
Digital Input Capacitance
DIGITAL INPUT (TTL)
-
1.5
-
V
Digital Input Current: High, IIH
VIH = 3.5V
-10
-
0
µA
Digital Input Current: Low, IIL
VIL = 0.2V
-20
-
0
µA
-
-
5
pF
Threshold Voltage, VTH
Digital Input Capacitance
DIGITAL OUTPUT (TTL)
Digital Output Voltage: High, VOH
IOH = -2mA
2.4
-
-
V
Digital Output Voltage: Low, VOL
IOL = 1mA
-
-
0.5
V
SWITCHING CHARACTERISTICS
Maximum Conversion Rate, fC
DMUX Mode
Aperture Jitter, tAJ
120
-
-
MSPS
-
10
-
ps
1.2
1.4
1.6
ns
Clock High Pulse Width, tPW1
CLK
3.0
-
-
ns
Clock Low Pulse Width, tPW0
CLK
4.5
-
-
ns
RESET Signal Setup Time, tRS
RESETN-CLK
1.0
-
-
ns
RESET Signal Hold Time, tRH
RESETN-CLK
-0.5
-
-
ns
CLKOUT Output Delay, tDCLK
CL = 5pF
3.0
4.5
7.0
ns
Data Output Delay (Note 5), tDO1
tDO2
DEMUX Mode
Output Rise Time, tr
Output Fall Time, tf
Sampling Delay, tDS
(CL = 5pF)
-
t + 0.5
-
ns
(CL = 5pF)
3.5
5.0
7.0
ns
0.8 to 2.0V
(CL = 5pF)
-
1
-
ns
0.8 to 2.0V
(CL = 5pF)
-
1
-
ns
DYNAMIC CHARACTERISTICS
Input Bandwidth
VIN = 2VP-P , -3dB
250
-
-
MHz
S/N Ratio
fC = 120MSPS, fIN = 1kHz Full Scale,
DMUX Mode
-
46
-
dB
fC = 120MSPS, fIN = 29.999MHz Full Scale,
DMUX Mode
-
42
-
dB
fC = 120MSPS, fIN = 1kHz Full Scale,
DMUX Mode, Error > 16 LSB
-
-
10-12
TPS
fC = 120MSPS, fIN = 29.999MHz Full Scale,
DMUX Mode, Error > 16 LSB
-
-
10-9
TPS
fC = 100MSPS, fIN = 24.999MHz Full Scale,
Straight Mode, Error > 16 LSB
-
-
10-9
TPS
Error Rate (Note 6)
3-4
HI3246
Electrical Specifications
DVCC1 , 2 , AVCC , DGND3 = +5V, DGND1, 2, AGND, DVEE3 = 0V, VRT = 4V, VRB = 2V,
TA = 25oC (Continued)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Supply Current, ICC + IEE
70
98
140
mA
AVCC Pin Supply Current, AICC
45
-
87
mA
DVCC1 Pin Supply Current, DICC1
20
-
36
mA
POWER SUPPLY
DVCC2 Pin Supply Current, DICC2
5
-
15
mA
DGND3 Pin Supply Current, IEE
0.5
-
1.5
mA
Power Consumption, PD*6
400
500
700
mW
NOTES:
3. RREF: Resistance value between VRT and VRB .
V RT – V RB
-.
4. I REF = ---------------------------R
REF
1
5. t = ----- .
fC
6. The unit of measure TPS: Times Per Sample.
( V RT – V RB ) 2
-.
7. P D = ( I CC + I EE ) • V CC + -----------------------------------V
REF
Timing Diagrams
N-1
N+2
VIN
N+3
tDS
N
N+1
t
CLK
tPW1
tD02
tPW0
2V
N-2
PAD0 TO D7
N
N+2
N+1
N+3
0.8V
PBD0 TO D7
2V
N-1
0.8V
tD01
tDCLK
t + 1ns
CLK OUT
2V
2V
0.8V
0.8V
RESET PULSE
tPWR
FIGURE 1. DEMUX MODE TIMING CHART (SELECT = VCC)
3-5
HI3246
Timing Diagrams
N+2
N-1
VIN
N+3
N+1
tDS
N
t
CLK
tPW1
tPW0
PAD0 TO D7
N-4
2.0V
0.8V
N-3
N-2
N-1
N
PBD0 TO D7
N-5
2.0V
0.8V
N-4
N-3
N-2
N-1
tD02
8ns
2.0V
CLK OUT
(CLK IS INVERTED AND OUTPUT)
0.8V
tDCLK
RESET PULSE
FIGURE 2. STRAIGHT MODE TIMING CHART (SELECT = GND)
DGND3
VIH (MAX)
VIL
VTH (DGND3 - 1.2V)
VID
VIH
VIL (MIN)
FIGURE 3. PECL SWITCHING LEVEL
Pin Descriptions
TYPICAL
VOLTAGE LEVEL
PIN NO
SYMBOL
I/O
3, 10
AGND
GND
Analog Ground. Separated from the
digital ground.
5, 8
AVCC
+5V (Typ)
Analog Power Supply. Separated
from the digital power supply.
20, 29
32, 41
DGND1
DGND2
GND
Digital Ground.
19, 30
31, 42
DVCC1
DVCC2
+5V (Typ)
Digital Power Supply.
12
DGND3
+5V (Typ) (With a Single Power
Supply)
Digital Power Supply. Apply -5V for
PECL and TTL input.
GND (With Dual Power Supplies)
3-6
EQUIVALENT CIRCUIT
DESCRIPTION
HI3246
Pin Descriptions
PIN NO
SYMBOL
1
DVEE3
(Continued)
TYPICAL
VOLTAGE LEVEL
I/O
EQUIVALENT CIRCUIT
DESCRIPTION
GND (With a Single Power
Supply)
Digital Power Supply. Apply -5V for
PECL and TTL input.
+5V (Typ) (With Dual Power
Supplies)
16, 17,
18
NC
No Connect pin. Not connected with
the internal circuits.
13
CLK/E
I
14
CLK/NE
I
PECL/ECL
Clock Input.
CLK/E Complementary Input. When
left open, this pin goes to the threshold
potential. Only CLK/E can be used for
operation, but complementary input is
recommended to attain fast and stable
operation.
DGND3
13 48
48
RESETN/E
I
47
RESET/E
I
15
CLK/T
I
46
RESETN/T
I
Reset Input. When the input is set to
low level, the built-in CLK frequency
divider circuit can be reset.
14 47
RESETN/E Complementary Input.
When left open, this pin goes to the
threshold voltage. Only RESETN/E
can be used for operation.
DVEE3
TTL
Clock input.
DVCC1
15 46
OR
44 , 45
Reset Input. When left open, this
input goes to high level. When the
input is set to low level, the built-in
CLK frequency divider circuit can be
reset.
1.5V
DGND1
DVEE3
44
INV
I
TTL
DVCC1
Data Output Polarity Inversion Input.
When left open, this input goes to high
level. (See Table 1; I/O
Correspondence Table).
44
DGND1
DVEE3
45
SELECT
VCC or Ground
DVCC1
45
DGND1
DVEE3
3-7
Data Output Mode Selection. (See
Table 2; Operating Mode Table).
HI3246
Pin Descriptions
PIN NO
SYMBOL
I/O
11
VRT
I
(Continued)
TYPICAL
VOLTAGE LEVEL
EQUIVALENT CIRCUIT
DESCRIPTION
4.0V (Typ)
Top Reference Voltage. Bypass to
AGND with a 1µF tantal capacitor and
a 0.1µF chip capacitor.
R1
11
9
VRM3
3
VRB + --- (VRT - VRB)
4
7
VRM2
2
VRB + --- (VRT - VRB)
4
4
VRM1
1
VRB + --- (VRT - VRB)
4
R/2
R
COMPARATOR 1
VRB
I
Reference Voltage Mid Point. Bypass
to AGND with a 0.1µF chip capacitor.
R
COMPARATOR 63
9
2
Reference Voltage Mid Point. Bypass
to AGND with a 0.1µF chip capacitor.
R
COMPARATOR 64
2.0V (Typ)
COMPARATOR 127
R
7
Reference Voltage Mid Point. Bypass
to AGND with a 0.1µF chip capacitor.
Bottom Reference Voltage. Bypass to
AGND with a 1µF tantal capacitor and
a 0.1µF chip capacitor.
COMPARATOR 128
COMPARATOR 191
4
R
COMPARATOR 192
R
COMPARATOR 255
R/2
2
R2
6
VIN
I
VRT to VRB
Analog Input.
COMPARATOR
AVCC
AVCC
VREF
6
AGND
DVEE3
33 to
40
PBD0 to
PBD7
O
TTL
Port 1 Side Data Output.
21 to
28
PAD0 to
PAD7
O
DVCC2
Port 2 Side Data Output.
43
CLKOUT
O
21 TO 28
Clock Output. (See Table 2;
Operating Mode Table).
DVCC1
33 TO 40
43
DGND2
DGND1
3-8
DVEE3
HI3246
TABLE 1. A/D CODE
INV
1
VIN
STEP
VRT
255
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
254
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1
•
•
•
VRM2
D0
D7
•
•
•
D0
•
•
•
128
1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
127
0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
•
•
•
VRB
D7
0
•
•
•
•
•
•
1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0
0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Notes on Operation
• The HI3246 is a high-speed A/D converter which is capable
of TTL, ECL and PECL level clock input. Characteristic
impedance should be properly matched to ensure optimum
performance during high-speed operation.
• The power supply and grounding have a profound influence
on converter performance. The power supply and
grounding method are particularly important during highspeed operation. General points for caution are as follows:
- The ground pattern should be as large as possible. It is
recommended to make the power supply and ground
patterns wider at an inner layer using a multi-layer
board.
- To prevent interference between AGND and DGND
and between AVCC and DVCC , make sure the
respective patterns are separated. To prevent a DC
offset in the power supply pattern, connect the AVCC
and DVCC lines at one point each, via a ferrite-bead
filter. Shorting the AGND and DGND patterns in one
place immediately under the A/D converter improves
A/D converter performance.
- Ground the power supply pins (AVCC , DVCC1 , DVCC2 ,
DVEE3) as close to each pin as possible with a 0.1µF
or larger ceramic chip capacitor. (Connect the AVCC
pin to the AGND pattern and the DVCC1 , DVCC2 ,
DVEE3 pins to the DGND pattern).
- The digital output wiring should be as short as
possible. If the digital output wiring is long, the wiring
capacitance will increase, deteriorating the output slew
rate and resulting in reflection to the output waveform
since the original output slew rate is quite fast.
• The analog input pin VIN has an input capacitance of
approximately 21pF. To drive the A/D converter with proper
frequency response, it is necessary to prevent performance
deterioration due to parasitic capacitance or parasitic
inductance by using a large capacity drive circuit; keeping
wiring as short as possible, and using chip parts for
resistors and capacitors, etc.
• The VRT and VRB pins must have adequate bypass to
protect them from high-frequency noise. Bypass them to
AGND with approximately 1µF tantal capacitor and, 0.1µF
capacitor. At this time, approximately DGND3 - 1.2V voltage
is generated. However, this is not recommended for use as
threshold voltage VBB as it is too weak.
When the digital input level is PECL level, ***/E pins should
be used and ***/T pins left open. When the digital input level
is TTL, ***/T pins should be used and III/E pins left open.
Test Circuits
+V
4V
1.95V
VRT
5V
5V
A ICC
A
AVCC
DVCC1
DVCC2
VIN
S2
-
IEE
VRB
-V
CLK/E
DGND2
DGND1
AGND
S1: ON WHEN A < B
S2: ON WHEN A > B
DGND3
A<B A>B
COMPARATOR
5MHz PECL
VIN
2V
S1
+
DVEE3
HI3246
8
“0”
A8
TO
A1
B8
TO
B1
A0
B0
CONTROLLER
3-9
BUFFER
“1”
DVM
FIGURE 4. CURRENT CONSUMPTION MEASUREMENT
CIRCUIT
8
000...00
TO
111..10
FIGURE 5. INTEGRAL LINEARITY ERROR/DIFFERENTIAL
LINEARITY ERROR MEASUREMENT CIRCUIT
HI3246
Test Circuits
(Continued)
A
SIGNAL
SOURCE
fC
4
HI3246
8
VIN
CLK
-1kHz
LATCH
B
CLK
COMPARATOR
A>B
PULSE
COUNTER
LATCH
+
2VP-P SINE WAVE
SIGNAL
SOURCE
1/
fC
16 LSB
8
FIGURE 6. ERROR RATE MEASUREMENT CIRCUIT
VRT
100MHz
VIN
VRM2
VRB
AMP
OSC1
φ: VARIABLE
fR
CLK
VIN
8
HI3246
LOGIC
ANALYZER
∆υ
129
∆t
128
127
VIN
σ
(LSB)
126
CLK
125
1024
SAMPLES
SAMPLING TIMING FLUCTUATION
(= APERTURE JITTER)
CLK
OSC2
NOTE: Where σ (LSB) is the deviation of the output codes when the
largest slew rate point is sampled at the clock which has exactly the
same frequency as the analog input signal, the aperture jitter tAJ is:
PECL
BUFFER
100MHz
∆υ
256
t AJ =  σ / ------- = σ/  ---------- x 2πf .

 2

∆t 
FIGURE 7. SAMPLING DELAY/APERTURE JITTER
MEASUREMENT CIRCUIT
FIGURE 8. APERTURE JITTER MEASUREMENT METHOD
Operating Modes
The HI3246 has two types of operating modes which are selected with Pin 45 (SELECT).
TABLE 2. OPERATING MODE
OPERATING
MODE
SELECT
MAXIMUM
CONVERSION RATE
DATA OUTPUT
CLOCK OUTPUT
DMUX Mode
VCC
120MSPS
Demultiplexed Output 60 MBPS
The input clock is 1/2 frequency divided and output at
Straight Mode
GND
100MSPS
Straight Output 100 MBPS
The input clock is inverted and output at 100MHz.
60MHz.
DMUX Mode (See Application Circuits,
Figures 18, 19)
Straight Mode (See Application Circuits, Figures
20, 21)
Set the SELECT pin to VCC for this mode. In this mode, the
clock frequency is divided by 2 in the IC, and the data is
output after being demultiplexed by this 1/2 frequency
divided clock. The 1/2 frequency divided clock, which has
adequate setup time and hold time for the output data, is
output from the CLKOUT pin.
Set the SELECT pin to GND for this mode. In this mode, data
output can be obtained in accordance with the clock frequency
applied to the A/D converter for applications which use the
clock applied to the A/D converter as the system clock.
When using multiple HI3246 units in parallel in this mode,
differences in the start timing of the 1/2 frequency divided clock
may cause operation as shown in Figure 9. As a
countermeasure, the HI3246 is equipped with a function which
resets the 1/2 frequency divided clock. When resetting this
clock, the RESET pulse must be input to the RESET pin. See
the Timing Charts for the RESET pulse input timing. The A/D
converter can operate at fC (Min) = 120MSPS in this mode.
3-10
The A/D converter can operate at fC (Min) = 100MSPS in
this mode.
Digital Input Level and Supply Voltage Settings
The logic input level for the HI3246 supports PECL and TTL
levels.
The power supplies (DVEE3 , DGND3) for the logic input
block must be set to match the logic input (CLK and RESET
signals) level.
HI3246
TABLE 3. LOGIC INPUT LEVEL AND POWER SUPPLY SETTINGS
DIGITAL INPUT LEVEL
DVEE3
DGND3
SUPPLY VOLTAGE
APPLICATION CIRCUITS
PECL
0V
+5V
+5V
Figures 18, 20
TTL
0V
+5V
+5V
Figures 19, 21
CLK
HI3246
CLK
CLK
CLKOUT
A
8 BITS
DATA
RESETN
HI3246
CLK
CLKOUT
B
8 BITS
DATA
RESETN
FIGURE 9. WHEN THE RESET PULSE IS NOT USED
CLK
RESET
PULSE
HI3246
CLK
CLK
CLKOUT
A
8 BITS
DATA
RESETN
HI3246
CLK
RESET PULSE
CLKOUT
B
8 BITS
DATA
RESETN
FIGURE 10. WHEN THE RESET PULSE IS USED
Typical Performance Curves
110
CURRENT CONSUMPTION (mA)
CURRENT CONSUMPTION (mA)
110
105
100
95
90
-25
25
TA , AMBIENT TEMPERATURE (oC)
FIGURE 11. CURRENT CONSUMPTION vs AMBIENT
TEMPERATURE CHARACTERISTICS
3-11
75
105
100
95
f
fIN = CLK -1kHz
4
DMUX MODE
CL = 5pF
90
0
60
fC , CONVERSION RATE (MSPS)
120
FIGURE 12. CURRENT CONSUMPTION vs CONVERSION
RATE CHARACTERISTICS RESPONSE
HI3246
(Continued)
VRT = 4V
VRB = 2V
4
REFERENCE CURRENT (mA)
ANALOG INPUT CURRENT (µA)
Typical Performance Curves
100
50
3
2
0
2
3
25
-25
4
75
TA , AMBIENT TEMPERATURE (oC)
ANALOG INPUT VOLTAGE (V)
FIGURE 13. ANALOG INPUT CURRENT vs ANALOG INPUT
VOLTAGE CHARACTERISTICS
FIGURE 14. REFERENCE CURRENT vs AMBIENT
TEMPERATURE CHARACTERISTICS
50
fC = 120MSPS
ERROR RATE (TPS)
10-6
30
fCLK
-1kHz
4
ERROR > 16 LSB
10-7
10-8
10-9
10-10
20
1
3
5
10
30
120
50
INPUT FREQUENCY (MHz)
170
140
fC , CONVERSION RATE (MSPS)
FIGURE 15. SNR vs INPUT FREQUENCY RESPONSE
fC , MAXIMUM CONVERSION (MSPS)
SNR (dB)
40
fIN =
fIN =
FIGURE 16. ERROR RATE vs CONVERSION RATE
CHARACTERISTICS
fCLK
-1kHz
4
ERROR > 16 LSB
ERROR RATE: 10-9 TPS
160
150
140
130
-25
25
75
TA , AMBIENT TEMPERATURE (Co)
FIGURE 17. MAXIMUM CONVERSION RATE vs AMBIENT TEMPERATURE CHARACTERISTICS
3-12
160
HI3246
Application Circuits
+5V (D)
DG
PECL RESET PULSE
48 47 46 45 44 43 42 41 40 39 38 37
DG
8-BIT DIGITAL DATA
2
36 P1D0 TO P1D7
35 8-BIT DIGITAL DATA
3
34
4
33
+5V (A)
5
32
AG
6
31
7
30
8
29
9
28
AG
10
27
AG
11
26 P2D0 TO P2D7
8-BIT DIGITAL DATA
25
1
DG
AG
2V
+5V (A)
+5V (D)
4V
12
LATCH
DG
+5V (D)
DG
8-BIT DIGITAL DATA
LATCH
13 14 15 16 17 18 19 20 21 22 23 24
PECL - CLK
DG
+5V (D)
FIGURE 18. DMUX PECL INPUT
+5V (D)
DG
TTL RESET PULSE
48 47 46 45 44 43 42 41 40 39 38 37
DG
8-BIT DIGITAL DATA
2
36 P1D0 TO P1D7
35 8-BIT DIGITAL DATA
3
34
4
33
+5V (A)
5
32
AG
6
31
7
30
8
29
9
28
AG
10
27
AG
11
26 P2D0 TO P2D7
8-BIT DIGITAL DATA
25
1
AG
AG
2V
+5V (A)
+5V (D)
4V
12
DG
+5V (D)
DG
13 14 15 16 17 18 19 20 21 22 23 24
TTL - CLK
DG
+5V (D)
FIGURE 19. DMUX TTL INPUT
3-13
LATCH
8-BIT DIGITAL DATA
LATCH
HI3246
Application Circuits
(Continued)
DG
+5V (D)
DG
48 47 46 45 44 43 42 41 40 39 38 37
DG
8-BIT DIGITAL DATA
2
36 P1D0 TO P1D7
35 8-BIT DIGITAL DATA
3
34
4
33
+5V (A)
5
32
AG
6
31
7
30
8
29
9
28
AG
10
27
AG
11
26
1
AG
AG
2V
+5V (A)
+5V(D)
4V
LATCH
DG
+5V (D)
DG
25
12
13 14 15 16 17 18 19 20 21 22 23 24
PECL - CLK
PECL - TTL
DG
+5V (D)
FIGURE 20. STRAIGHT PECL INPUT
DG
+5V (D)
DG
48 47 46 45 44 43 42 41 40 39 38 37
DG
8-BIT DIGITAL DATA
2
36 P1D0 TO P1D7
35 8-BIT DIGITAL DATA
3
34
4
33
+5V (A)
5
32
AG
6
31
7
30
8
29
9
28
AG
10
27
AG
11
26
AG
AG
1
2V
+5V (A)
+5V(D)
4V
DG
+5V (D)
DG
25
12
13 14 15 16 17 18 19 20 21 22 23 24
TTL - CLK
DG
+5V (D)
FIGURE 21. STRAIGHT TTL INPUT
3-14
LATCH
HI3246
Application Circuits
(Continued)
AG
ANALOG
INPUT
AG
+
-
+5V
(A)
+
1µF
+
DG
-
+
1µF
AG
10µF
12
11
10
9
8
7
6
5
4
3
2
DGND3
VRT
AGND
VRM3
AVCC
VRM2
VIN
AVCC
VRM1
AGND
VRB
1
RESETN/E 48
13
CLK/E
14
CLKN/E
15
CLK/T
16
NC
SELECT 45
17
NC
INV 44
18
NC
CLKOUT 43
19
DVCC2
DVCC2 42
20
DGND2
DGND2 41
21
P2D0
P1D7 40
22
P2D1
P1D6 39
23
P2D2
P1D5 38
24
P2D3
P1D4 37
RESET/E 47
P2D6
(MSB) P2D7
P1D3
P2D5
32
33
34
35
36
P1D3
31
P1D2
DVCC2
30
P1D2
DVCC1
29
P1D1
DGND1
28
P1D1
P2D7
27
P1D0
P2D6
26
(LSB) P1D0
P2D5
25
DGND2
P2D4
RESETN/T 46
P2D4
P2D2
P2D3
AG
10µF
SHORT
TTL CLK
(LSB) P2D0
P2D1
+
SHORT
P1D6
(MSB) P1D7
+
2V
-
P1D4
P1D5
(D)
AG
+
+5V
DVEE3
4V
SHORT THE ANALOG SYSTEM AND DIGITAL SYSTEM AT ONE POINT IMMEDIATELY
UNDER THE A/D CONVERTER. SEE THE NOTES ON OPERATION.
IS THE CHIP CAPACITOR OF 0.1µF.
FIGURE 22. STRAIGHT MODE TTL I/O (WHEN A SINGLE POWER SUPPLY IS USED)
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
3-15