DC2290A - Demo Manual

DEMO MANUAL DC2290A
LTC2387/LTC2386/LTC2385
18-/16-Bit, 15Msps/10Msps/5Msps,
High Speed SAR ADCs
Description
Demonstration circuit 2290A features the LTC®2387 family.
With up to 15Msps, these differential input, single channel,
18-/16-Bit, serial, high speed successive approximation
register (SAR) ADCs are available in a 32-Pin QFN package.
The LTC2387 family has an internal 20ppm/°C reference
and a serial LVDS interface. The following text refers to
the LTC2387 but applies to all members of the family, the
only difference being the sample rate and the number of
bits. The DC2290A demonstrates the AC performance of
the LTC2387 in conjunction with the DC718 data collection
board. Differential amplifier demo boards are available
separately that provide amplification of low level differential signals if required (see Table 2). Alternatively, by
connecting the DC2290A into a customer application the
performance of the LTC2387 can be evaluated directly in
that circuit.
Design files for this circuit board are available at
http://www.linear.com/demo/DC2290A
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and PScope
is a trademark of Linear Technology Corporation. All other trademarks are the property of their
respective owners.
Board Photo
6VDC
POWER SUPPLY
CLOCK SIGNAL
FROM GENERATOR
SIGNAL
GENERATOR
TO DC718
Figure 1. DC2290A Connection Diagram
dc2290afb
1
DEMO MANUAL DC2290A
DC718 Quick Start Procedure
Connect the DC2290A to a DC718 USB High Speed Data
Collection Board using edge connector J1. Connect the
DC718 to a host PC with a standard USB A/B cable. Apply
a low noise differential signal to J6 (AIN+) and J5 (AIN–).
Note that the DC2290A requires a differential input signal
of approximately 8.192V peak-to-peak to reach 0dBFS. If a
differential signal source of this amplitude is not available
use one of the recommended differential amplifier demo
boards available to increase the signal level. For a clock
source, apply a low jitter 10dBm sine wave or square wave
to connector J4. See Table 1 for maximum clock frequen-
cies. Note that J4 has a 50Ω termination resistor to ground.
Run the PScope™ software (Pscope.exe version K73 or
later) supplied with DC718 or download it from www.
linear.com/software. Complete software documentation is
available from the Help menu. Updates can be downloaded
from the Tools menu. Check for updates periodically as
new features may be added. The PScope software should
recognize the DC2290A and configure itself automatically.
Click the Collect button (Figure 2) to begin acquiring data.
The Collect button then changes to Pause, which can be
used to stop data acquisition.
Table 1. DC2290A Assembly Options
U1 PART NUMBER
MAX CONVERSION RATE
# OF BITS
MAX CLOCK FREQUENCY
DC2290A-A
VERSION
LTC2387CUH-18#PBF
15Msps
18
15MHz
DC2290A-B
LTC2387CUH-16#PBF
15Msps
16
15MHz
DC2290A-C
LTC2386CUH-18#PBF
10Msps
18
10MHz
DC2290A-D
LTC2386CUH-16#PBF
10Msps
16
10MHz
DC2290A-E
LTC2385CUH-18#PBF
5Msps
18
5MHz
DC2290A-F
LTC2385CUH-16#PBF
5Msps
16
5MHz
Hardware Setup
SIGNAL CONNECTIONS
JUMPERS
J2: JTAG. Factory use only.
JP1: EEPROM. Factory use only.
J3: FPGA Program. Factory use only.
JP2: Lanes. Use this jumper to select either single lane or
two lane data output mode from the LTC2387. The default
setting is 1. The 1 setting clocks out all data on pin DA of
the LTC2387. The 2 setting clocks out data alternately on
pins DA and DB of the LTC2387.
J4: CLK IN. This input has a 50Ω termination resistor,
and is intended to be driven by a low jitter, 10dBm sine
or square wave. To achieve full AC performance of this
part, the clock jitter should be kept under 2psRMS. This
input is capacitively coupled so that the input clock can
be either 0V to 3.3V or ±1.65V. This eliminates the need
for level shifting. To run at the maximum conversion rate,
apply the frequency specified in Table 1.
J5: AIN– Input. This is the negative signal input.
J6: AIN+ Input. This is the positive signal input.
2
JP3: Test Pattern. Use this jumper to deliver a fixed repeating test pattern from the LTC2387. The default setting is
OFF. The output data will be –97796 if the jumper is in
the ON position in 1 lane mode, and will be –52996 in 2
lane mode.
JP4: ADC ON. Use this jumper to enable or disable the
ADC. The default setting is ON.
dc2290afb
DEMO MANUAL DC2290A
Hardware Setup
Figure 2. DC2290A PScope Screenshot
Table 2. DC2290A (LTC2387 Family) Driver Board
INPUT FREQUENCY
DRIVE BOARD
AMPLIFIER
Up to 10kHz
DC2402
LT6237
Up to 1MHz
DC2403
LT6200
Contact Factory
Contact Factory
> 1MHz
dc2290afb
3
DEMO MANUAL DC2290A
Parts List
ITEM
QTY
REFERENCE
PART DESCRIPTION
MANUFACTURER/PART NUMBER
DC2290A
Required Circuit Components
1
3
C7, C41, C42
CAP., X5R, 0.022µF, 25V, 10%, 0402
2
4
C9, C13, C16, C21
CAP., NPO, 10pF, 50V, 5%, 0402
AVX, 04023A100KAT2A
3
7
C32, C37, C47, C59, C64, C68, C77
CAP., X7R, 10µF, 6.3V, 10%, 0805
AVX, 08056C106KAT2A
4
5
C31, C51, C66, C69, C71
CAP., X7R, 1µF, 10V, 10%, 0603
AVX, 0603ZC105KAT2A
5
1
C40
CAP., X5R, 3.3µF, 10V, 10%, 06035
C1608X5R1A335K
6
2
C5, C97
CAP., X5R, 47µF, 6.3V, 20%, 0805
TAIYO YUDEN, JMK212BJ476MG-T
7
1
C90
CAP., X5R, 22µF, 16V, 20%, 1210
AVX, 1210YD226MAT2A
8
1
C8
CAP., X5R, 0.0047µF, 25V, 10%, 0402
AVX, 04023D472KAT2A
9
33
C1, C2, C3, C4, C12, C14, C15, C17,
C18, C19, C20, C22, C24, C26, C27,
C28, C29, C30, C33, C34, C35, C36,
C38, C43, C44, C45, C46, C49, C55,
C56, C57, C58, C98
CAP., X5R, 0.1µF, 10V, 10%, 0402
AVX, 0402ZD104KAT2A
10
5
C23, C54, C63, C67, C87
CAP., X7R, 0.1µF, 16V, 10%, 0603
NIC, NMC0603X7R104K16TRPF
11
4
C25, C48, C65, C70
CAP., X7R, 0.01µF, 6.3V, 10%, 0603
MURATA, GRM188R70J103KA01D
12
2
C10, C11
CAP., X5R, 0.01µF, 25V, 10%, 0402
AVX, 04023D103MAT2A
13
0
C74
CAP, DNI, 0603
14
1
C76
CAP., X7R, 2.2µF, 10V, 10%, 0603
15
1
C95
CAP., X7R, 0.0022µF, 50V, 10%, 0402
16
7
C6, C52, C53, C60, C80, C96, C99
CAP., X5R, 4.7µF, 10V, 10%, 0603
AVX 0603ZD475KAT2A
17
2
C73, C75
CAP., NPO, 82pF, 25V, 10%, 0603
AVX, 06033A820KAT2A
18
8
E1, E2, E3, E4, E5, E6, E7, E8
TEST POINT, TURRET, .064"
MILL MAX, 2308-2-00-80-00-00-07-0
19
2
E9, E10
TEST POINT, TURRET, .094"
MILL-MAX, 2501-2-00-80-00-00-07-0
AVX, 0603ZC225KAT2A
20
1
J1
HEADER, 20 × 2, 0.1IN, STRAIGHT_PINS
SAMTEC, TSW-120-07-L-D
21
2
J2, J3
HEADER, 2 × 5, 0.100"
SAMTEC, TSW-105-07-L-D
22
2
J5, J6
CONN, SMA, 50Ω, EDGE-LAUNCH, FEMALE
E.F. JOHNSON, 142-0701-851
23
1
J4
CONN BNC FEM JACK PC MNT STRGHT
AMPHENOL CONNEX, 112404
24
4
JP1, JP2, JP3, JP4
HEADER, 1 × 3, 0.100"
SAMTEC, TSW-103-07-L-S
25
4
L1, L2, L3, L5
FERRITE BEAD, 33Ω, 0603
MURATA, BLM18PG330SN1L
26
1
R44
RES., 0Ω, 1/10W, 0603
PANASONIC, ERJ-3GEY0R00V
27
1
R71
RES., 0Ω, 1/10W, 0402
PANASONIC, ERJ-2GEY0R00V
28
0
R38, R45, R46, R55, R57, R72
RES, DNI, 0603
29
19
R1, R2, R3, R4, R5, R7, R8, R14,
R15,R16, R17, R18, R19, R20, R21,
R23, R25, R68, R69
RES., 33Ω, 1/10W, 5%, 0402
YAGEO, RC0402JR-0733RL
30
3
R32, R36, R37
RES., 33Ω, 1/10W, 5%, 0603
YAGEO, RC0603JR-0733RL
31
4
R29, R30, R31, R35
RES., 100Ω, 1/10W, 1%, 0201
YAGEO, RC201FR-07101L
32
2
R49, R50
RES., 10.0Ω, 1/10W, 1%, 0603
PANASONIC, ERJ-3EKF10R0V
33
1
R41
RES., 49.9Ω, 1/10W, 1%, 1206
PANASONIC, ERJ-8ENF49R9V
34
7
R6, R9, R10, R12, R13, R53, R54, R70
RES., 10k, 1/10W, 5%, 0402
PANASONIC, ERJ-2GEYJ103V
35
3
R22, R24, R26
RES., 4.99k, 1/10W, 5%, 0603
PANASONIC, ERJ-3GEYJ4991V
36
3
R27, R39, R40
RES.,1.00k, 1/10W, 5%, 0603
PANASONIC, ERJ-3GEYJ102V
4
dc2290afb
DEMO MANUAL DC2290A
Parts List
ITEM
QTY
REFERENCE
PART DESCRIPTION
MANUFACTURER/PART NUMBER
37
1
R11
RES.,1.00k, 1/10W, 5%, 0402
PANASONIC, ERJ-2GEYJ102V
38
1
R28
RES.,1.43k, 1/10W, 1%, 0603
PANASONIC, ERJ-3EKF1431V
39
1
D1, D2, D3, D4
DIODE, SCHOTTKY 30V, 200MW, SOD323
DIODE INC., BAT54WS-7-F
40
1
U1
IC, CONFIG DEVICE 4MBIT, SO8
ALTERA, EPCS4SI8N
41
1
U2
IC, EEPROM 2KBIT 400kHz, TSSOP8
MICROCHIP, 24LC024-I/ST
42
1
U3
IC, CYCLONE III FPGA 5k, EQFP144
ALTERA, EP3C5E144C7N
43
1
U4
IC, MICROPOWER REGULATOR, SO8
LINEAR TECH., LT1763CS8#PBF
44
1
U5
IC, LINEAR REGULATOR, SO8
LINEAR TECH., LT3021ES8-1.2#PBF
45
1
U11
IC, INVERTER UHS SINGLE SC70-5
FAIRCHILD, NC7SZ04P5X
46
2
U8, U12
IC, MICROPOWER REGULATOR, SO8
LINEAR TECH., LT1763CS8-2.5#PBF
47
1
U9
IC, FLIP FLOP D-TYPE LOG, US8
ON SEMI., NL17SZ74USG
48
1
U13
IC, MICROPOWER REGULATOR, SO8
LINEAR TECH., LT1763CS8-5#PBF
49
1
U14
IC, VOLTAGE REFERENCE, MSOP8
LINEAR TECH., LTC6655BHMS8-4.096#PBF
50
1
U17
IC, OP-AMP, TSOT23-5
LINEAR TECH., LT6202CS5#PBF
51
6
SHOWN ON ASSY DWG
SHUNT, 0.100
SAMTEC, SNT-100-BK-G
52
4
MH1-MH4
STANDOFF, NYLON 0.25"
KEYSTONE, 8831 (SNAP ON)
0
R34
RES, DNI, 0402
DC2290A-A
1
2
1
R33
RES.,1.00k, 1/10W, 5%, 0402
PANASONIC, ERJ-2GEYJ102V
3
1
U10
I.C., SAR ADC, QFN32UH-5×5
LINEAR TECH., LTC2387CUH-18#PBF
PANASONIC, ERJ-2GEYJ102V
DC2290A-B
1
1
R34
RES.,1.00k, 1/10W, 5%, 0402
2
0
R33
RES.,DNI, 0402
3
1
U10
I.C., SAR ADC, QFN32UH-5×5
1
0
R34
RES, DNI, 0402
2
1
R33
RES.,1.00k, 1/10W, 5%, 0402
PANASONIC, ERJ-2GEYJ102V
3
1
U10
I.C., SAR ADC, QFN32UH-5×5
LINEAR TECH., LTC2386CUH-18#PBF
1
1
R34
RES.,1.00k, 1/10W, 5%, 0402
PANASONIC, ERJ-2GEYJ102V
2
0
R33
RES.,DNI, 0402
3
1
U10
I.C., SAR ADC, QFN32UH-5×5
1
0
R34
RES, DNI, 0402
2
1
R33
RES.,1.00k, 1/10W, 5%, 0402
PANASONIC, ERJ-2GEYJ102V
3
1
U10
I.C., SAR ADC, QFN32UH-5×5
LINEAR TECH., LTC2385CUH-18#PBF
1
1
R34
RES.,1.00k, 1/10W, 5%, 0402
PANASONIC, ERJ-2GEYJ102V
2
0
R33
RES.,DNI, 0402
3
1
U10
I.C., SAR ADC, QFN32UH-5×5
LINEAR TECH., LTC2387CUH-16#PBF
DC2290A-C
DC2290A-D
LINEAR TECH., LTC2386CUH-16#PBF
DC2290A-E
DC2290A-F
LINEAR TECH., LTC2385CUH-16#PBF
dc2290afb
5
A
B
C
TP18
TP17
TP16
TP14


E10
TP19



E9
TP15
+6V
C90
47uF
1210
C40
3.3uF
C66
1uF
C51
1uF
C31
1uF
C71
1uF
5
8
5
8
5
8
5
8
5
8
SHDN
IN
U5
LT3021ES8-1.2
SHDN
IN
U12
LT1763CS8-2.5
SHDN
IN
U8
LT1763CS8-2.5
SHDN
IN
U4
LT1763CS8
SHDN
IN
U13
LT1763CS8-5
GND
GND
GND
3
6
7
GND
GND
GND
3
6
7
GND
GND
GND
Powers the voltage reference IC.
2
*
SEN
OUT
BYP
SEN
OUT
BYP
SEN
OUT
BYP
SEN
OUT
BYP
SEN
OUT







3
2
4
2
1
4
2
1
4
2
1
4
2
1
R27
1k
R28
1.43k
C68
10uF
0805
E6

Powers the ADC.
+3V
C32
10uF
0805

E2
E4
E3
+2.5V
L2
33 Ohm FB
L1
33 Ohm FB

L3
33 Ohm FB
C37
10uF
0805








L5
33 Ohm FB







VCC_1.2V







Powers the CPLD VCCINT.
C59
10uF
0805
VDDL
Powers the ADC.
C47
10uF
0805
OVDD
Powers the CPLD VCCIO.
Powers the CPLD VCCA.

Powers the CPLD VCCPLL.
Powers the ADC I/O.
VCCA_2.5V
VCCIO_2.5V
VCCPLL_1.2V







TP3
TP5
TP1
TP2
Powers the logic inverters (3PL), flip-flop.
E1
Powers the CPLD mamory device.







C65
0.01uF
C48
0.01uF
C25
0.01uF
C70
0.01uF
VDD
VCMMN
J6
J5
TP10
1
U17
LT6202CS5
-
+
C87
+6V
0.1uF
R50
10
R49
10
4
3
C74
DNI
R54
10K
0402
R53
10K
0402
VREF
C75
82pF
C73
82pF
C80
4.7uF
TP8
R44
0
TP7
VCM
C76
2.2uF
C60
4.7uF
5
6
7
8
REFIN
E5

C57
0.1uF
0402

C77
10uF
0805
R38
DNI
C64
10uF
0805
REFBUF
VDD
C53
4.7uF
R41
49.9
1206
C67
0.1uF


GND
GND
VIN
SHDN

GND
VOUT_S
VOUT_F
GND
4
3
2
1
U14
LTC6655BHMS8-4.096


+6V
JP2
JP4
JP3
C69
1uF
3
2
1
3
2
1
3
2
1
2

4
C63
0.1uF
OVDD
R36
33
DB+
DB-
VDDL
OVDD
DA+
DA-
CLK+
CLK-
CNV+
CNV-
CLR
DA+
DA-
DCO+
DCO-
DB+
DB-
C49
0.1uF
0402
R37
33
PR
VCC



CLK+
CLK-
R35
100
0201
1


Thursday, December 03, 2015



B
C
D

1

2




 

 A
TP6
0.1uF
C54
CLKIN



8
7
+2.5V
TP13


R32
33



GND
2_LANE
18
17
24
23
28
27
20
19
16
15
C99
4.7uF
DCO+
DCO-
6
4
CLK
U9
NL17SZ74
U11
NC7SZ04P5X
+2.5V

VDDL
C58
0.1uF
0402
R39
1K
R40
1K
+2.5V


REFIN
VCM
REFBUF
REFBUF
IN+
IN-
C56
0.1uF
0402
9
32
7
8
2
3
C55
0.1uF
0402
TP4
U10
LTC238X-XX
C52
4.7uF
J4
1


TECHNOLOGY
  

   





E7




TP9
CNV_EN



This circuit conditions the edges of the CNV pulse as follows:
The rising edge of CNV is driven by a rising edge of CLKIN.
The falling edge of CNV is driven by a falling edge of CNV_EN, so it is wider than 'N' clock cycles.
The circuit serves to eliminate jitter on the CNV pulse due to CPLD jitter.
The risiing edge of the CNV pulse is thus driven by CLKIN, not CNV_EN.
12
11
VDD
VDD
3
6
7
GND
GND
GND
3
6
7
GND
6
AGND
4
GND
GND
GND
GND
GND
GND
GND
1
4
10
21
26
29
33
5
3
OVDD
31
30
REFGND
REFGND
5
6
VDDL
VDDL
TESTPAT
14
D
5
2
TWOLANES
25
22
~PD
13
2
D
Q
1
CP
Q
3
6
5
2
DEMO MANUAL DC2290A
Schematic Diagram
dc2290afb
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
A
B
19
27
36
41
48
57
63
82
95
108
118
123
131
140
145
C23
0.1uF
R24
4.99K
40
38
36
34
32
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
R22
4.99K
39
37
35
33
31
29
27
25
23
21
19
17
15
13
11
9
7
5
3
1
1
2
3
DB8
DB7
DB6
DB5
DB4
DB3
DB2
JP1
CLK2
CLK3
IO1
IO2
IO3_VREF2
IO4_RUP1
IO5_RDN1
IO6

CYCLONE3-EP3C5E144
U3C



R26
4.99K
0402
0402
0402
0402
0402
0402
0402
J1
PCB EDGE CONN.
R8
33
R7
33
R5
33
R4
33
R3
33
R2
33
R1
33
24
25
28
30
31
32
33
34
VCCD_PLL1
VCCD_PLL2
VCCA1
VCCA2
VCCIO8
VCCIO8
VCCIO7
VCCIO7
VCCIO6
VCCIO5
VCCIO4
VCCIO4
VCCIO3
VCCIO3
VCCIO2
VCCIO1
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
37
109
35
107
130
139
117
122
93
81
56
62
40
47
26
17
5
29
45
61
78
102
116
134
+
C97
47uF
0805
C27
0.1uF
0402
C96
4.7uF
C24
0.1uF
0402
C11
0.01uF
0402
C26
0.1uF
0402
C20
0.1uF
0402
C10
0.01uF
0402
C38
0.1uF
0402
C7
22nF
0402
VCCA_2.5V
C15
0.1uF
0402
2


38
39
42
43
44
46
49
50
51
52
53
C8
4.7nF
0402
VCCPLL_1.2V
C95
2.2nF
0402
C19
0.1uF
0402
+3V
CYCLONE3-EP3C5E144
C4
0.1uF
0402
C35
0.1uF
0402
C42
22nF
0402
C44
0.1uF
0402

IO1_DIFFIOB1P
IO2_DIFFIOB1N
IO3
IO4
IO5
IO6_VREF3
IO7_DIFFIOB9P
IO8_DIFFIOB9N
IO9
IO10_DIFFIOB11P
IO11_DIFFIOB11N
U3D
VCC_1.2V
DB14
DB13
DB12
DB11
DB10
DB9
C3
0.1uF
0402
C1
0.1uF
0402
0402
0402
0402
0402
0402
0402
C36
0.1uF
0402
C41
22nF
0402
C45
0.1uF
0402
C2
0.1uF
0402
C18
0.1uF
0402
C33
0.1uF
0402
C6
4.7uF
C28
0.1uF
0402
C14
0.1uF
0402
C29
0.1uF
0402
C34
0.1uF
0402
C5
47uF
0805
C30
0.1uF
0402
C22
0.1uF
0402
C46
0.1uF
0402
R19
33
R18
33
R17
33
R16
33
R15
33
R14
33

VCCIO_2.5V
C98
0.1uF
0402
Note that only the VCCIO rails may be changed.
6
5
7
3
2
1
CYCLONE3-EP3C5E144
GND
GND
GNDA1
GND
GND
GND
GND
GND
GND
GNDA2
GND
GND
GND
GND
GND

SCL
SDA
WP
A2
A1
A0
U2
24LC024-I /ST
U3A
1
2
3
4
7
10
11
22
23
OUTPUT_LATCH
DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7
DB8
DB9
DB10
DB11
DB12
DB13
DB14
DB15

C
VCC
GND
4
DB17
DB16

8
CYCLONE3-EP3C5E144
IO1
IO2
IO3
IO4
IO5_VREF1
IO6_DIFFL4P
IO7_DIFFL4N
CLK0
CLK1



CYCLONE3-EP3C5E144
IO1_DIFFIOB12P
IO2_DIFFIOB12N
IO3
IO4_DIFFIOB16P
IO5_DIFFIOB16N
IO6
IO7_VREF4
IO8_RUP2
IO9_RDN2
IO10
IO11
IO12_DIFFIOB21P
IO13_DIFFIOB21N
IO14
U3E
54
55
58
59
60
64
65
66
67
68
69
70
71
72
CNV_EN

CYCLONE3-EP3C5E144
IO1
IO2
IO3
IO4_RUP3
IO4_RDN3
IO5
IO6_VREF5
IO7
IO8_DIFFIOR8N
IO9_DIFFIOR8P
CLK7_DIFFCLK3N
CLK6_DIFFCLK3P
U3F
73
74
75
76
77
79
80
83
84
85
88
89
6
8
9
12
13
14
15
16
18
20
21
86
87
92
94
96
97
98
99
101
103
DATA1
FLASH_nCE
nSTATUS
DCLK
DATA0
nCONFIG
TDI
TCK
TMS
TDO
NCE
+3V
R6
10K
DCO+
DB-
R29
100
0201
DB+
DA-
R30
100
0201
DA+
DCO-
R31
100
0201
R72
DNI
R71
0
R9
10K
R11
1K
R10
10K
R34
DNI
R33
1K
R13
10K
C16
10pF

+3V
C17
0.1uF
0402
EPCS4SI8
nCS
DATA
VCC
GND
U1
1
3
5
7
9
D2
BAT54WS
C13
10pF

IO1_DIFFIOT11N
IO2_DIFFIOT11P
IO3_DIFFIOT10N
IO4_DIFFIOT10P
IO5
IO6_VREF8
IO7
IO8
IO9
IO10
IO11_DIFFIOT01N
IO12_DIFFIOT01P
128
129
132
133
135
136
137
138
141
142
143
144
R21
33
R20
33
R69
33
R68
33
0402
0402
0402
0402

CYCLONE3-EP3C5E144
U3I



C21
10pF
D4
BAT54WS
TDI
110
111
112
113
114
115
119
120
121
124
125
126
127
+3V
CYCLONE3-EP3C5E144
TCK
TDO
TMS
8
7
6
5

IO1
IO2
IO3
IO4
IO5_RUP4
IO6_RDN4
IO7_VREF7
IO8_DIFFIOT16N
IO9_DIFFIOT16P
IO10
IO11
IO12_DIFFIOT12N
IO13_DIFFIOT12P
U3H
DB16
DB1
DB0
DB17




 
  




C9
10pF
+3V
VCC
VCC
DCLK
ASDI
J3
HD2X5-100
2
4
6
8
10


J2
HD2X5-100
D1
BAT54WS
+3V
1
2
3
4
+3V
2
4
6
8
10
1
3
5
7
9
CLKIN

90
91
100
104
105
106
VCCA_2.5V
CYCLONE3-EP3C5E144
CLK5_DIFFCLK2N
CLK4_DIFFCLK2P
IO1
IO2
IO3_VREF6
IO4
U3G
C12
0.1uF
0402
D3
BAT54WS
+3V
R12
10K
CLK-
CLK+
VCCIO_2.5V
2_LANE
MSEL[0,1,2] pins must be set as follows:
For VCCIO = 2.5V/3.0V: 1 1 0
For VCCIO = 3.3V: 0 1 0
C43
0.1uF
0402
VCCA_2.5V
CONF_DONE
R70
10K
VCCIO_2.5V
Be sure to disable the following pin options in Quartus:
DEV_OE, DEV_CLRn, INIT_DONE, CRC_ERROR ,CLK_USR, nCEO
OUTPUT_LATCH
DB15
ASDO
nCSO
nSTATUS
DCLK
IO3_DATA0
nCONFIG
TDI
TCK
TMS
TDO
nCE
IO4_DEV_OE
IO5_DEV_CLRn
CONF_DONE
MSEL0
MSEL1
MSEL2
IO6_INIT_DONE
IO7_CRC_ERROR
IO8_nCEO
IO9_CLKUSR
0402
0402
CYCLONE3-EP3C5E144
U3J
R25
33
R23
33
1
2
U3B
1
2
D
1
2
1
2
2
TECHNOLOGY
1


Wednesday, May 27, 2015

B
C
D

2

2




 

A




 
1
DEMO MANUAL DC2290A
Schematic Diagram
dc2290afb
7
DEMO MANUAL DC2290A
DEMONSTRATION BOARD IMPORTANT NOTICE
Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT
OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete
in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety
measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union
directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date
of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU
OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR
ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.
The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims
arising from the handling or use of the goods. Due to the open construction of the product, it is the user’s responsibility to take any and all
appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or
agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance,
customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and
observe good laboratory practice standards. Common sense is encouraged.
This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.
Mailing Address:
Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035
Copyright © 2004, Linear Technology Corporation
8
dc2290afb
Linear Technology Corporation
LT 0116 REV B • PRINTED IN USA
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900
●
FAX: (408) 434-0507 ● www.linear.com
 LINEAR TECHNOLOGY CORPORATION 2015