TLF4949EJ Data Sheet (1.7 MB, EN)

TLF4949
5V Low Drop Out Linear Voltage Regulator
TLF4949SJ
TLF4949EJ
Data Sheet
Rev. 1.0, 2012-05-07
Automotive Power
TLF4949
Table of Contents
Table of Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
3.1
3.2
3.3
3.4
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Assignment PG-DSO-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Definitions and Functions PG-DSO-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Assignment PG-DSO-8 EP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Definitions and Functions PG-DSO-8 EP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
4.1
4.2
4.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.5
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Preregulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Typical Performance Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5
5.1
5.2
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Supply Voltage Transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Data Sheet
2
5
5
5
6
6
Rev. 1.0, 2012-05-07
5V Low Drop Out Linear Voltage Regulator
1
TLF4949
Overview
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
Operating DC Supply Voltage Range 5 V to 28 V
Transient Supply Voltage up to 40 V
Extremely low Quiescent Current in Standby Mode
High Precision Standby Output Voltage 5 V ±1%
Output Current Capability up to 100 mA
Very low Dropout Voltage less than 0.5 V
Reset Circuit sensing the Output Voltage
Programmable Reset Pulse Delay with External Capacitor
Voltage Sense Comparator
Thermal Shutdown and Short Circuit Protections
Suitable for Use in Automotive Electronics
Green Product (RoHS)
AEC Qualified
PG-DSO-8
Description
The TLF4949 is a monolithic integrated 5V voltage regulator with a very
low dropout output and additional functions as undervoltage reset with
power-on reset delay and input voltage sense. It is designed to supply
microcontroller controlled systems especially in automotive applications.
PG-DSO-8 Exposed Pad
Type
Package
Marking
TLF4949SJ
PG-DSO-8
TLF4949S
TLF4949EJ
PG-DSO-8 Exposed Pad
TLF4949E
Data Sheet
3
Rev. 1.0, 2012-05-07
TLF4949
Block Diagram
2
Block Diagram
Block_Diagram.vsd
Preregulator 5V
PRE
IN
OUT
RO
Reset
Bandgap
Reference
SO
SI
GND
Figure 1
Data Sheet
D
Block Diagram
4
Rev. 1.0, 2012-05-07
TLF4949
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment PG-DSO-8
IN
1
8
OUT
SI
2
7
SO
PRE
3
6
RO
D
4
5
GND
PG-DSO-8.vsd
Figure 2
Pin Configuration PG-DSO-8
3.2
Pin Definitions and Functions PG-DSO-8
Pin
Symbol
Function
1
IN
Input; block to GND directly at the IC with a ceramic capacitor.
2
SI
Sense Input; if not needed connect to OUT
3
PRE
Preregulator Output;
4
D
Reset Delay; to select delay time, connect to GND via capacitor.
5
GND
Ground
6
RO
Reset Output; open-collector output. Keep open, if not needed.
7
SO
Sense Output; open-collector output. Keep open, if not needed.
8
OUT
5-V Output; connect to GND with a capacitor ≥ 4.7μF, ESR < 10 Ω.1) 2)
1) For the usage of capacitors with very low ESR-values it is recommended to use a small 1Ω resistor in series.
2) Measured at f = 10kHz.
Data Sheet
5
Rev. 1.0, 2012-05-07
TLF4949
Pin Configuration
3.3
Pin Assignment PG-DSO-8 Exposed Pad
IN
1
8
OUT
SI
2
7
SO
PRE
3
6
RO
D
4
5
GND
PG-DSO-8-EP.vsd
Figure 3
Pin Configuration PG DSO-8 Exposed Pad
3.4
Pin Definitions and Functions PG-DSO-8 Exposed Pad
Pin
Symbol
Function
1
IN
Input; block to GND directly at the IC with a ceramic capacitor.
2
SI
Sense Input; if not needed connect to OUT.
3
PRE
Preregulator Output;
4
D
Reset Delay; to select delay time, connect to GND via capacitor.
5
GND
Ground
6
RO
Reset Output; open-collector output. Keep open, if not needed.
7
SO
Sense Output; open-collector output. Keep open, if not needed.
8
OUT
5-V Output; connect to GND with a capacitor ≥ 4.7μF, ESR < 10 Ω1) 2).
Exposed
Pad
PAD
Heat sink
connect to PCB heat sink area and GND
1) For the usage of capacitors with very low ESR-values it is recommended to use a small 1Ω resistor in series.
2) Measured at f = 10kHz.
Data Sheet
6
Rev. 1.0, 2012-05-07
TLF4949
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Absolute Maximum Ratings 1)
Tj = -40°C to +125°C; all voltages with respect to ground, direction of current as shown in Figure 4 “Application
Diagram” on Page 15 (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Max.
VIN
VIN_TR
VPRE
VOUT
VRO
VSI
VSO
VD
-0.3
28
V
–
–
45
V
2)
–
7
V
–
-0.3
20
V
–
-0.3
20
V
–
-30
40
V
–
-0.3
20
V
–
-0.3
7
V
–
IPRE
IRO
ISO
–
5
mA
–
–
5
mA
–
–
5
mA
–
Tj
Tstg
-40
150
°C
–
-50
150
°C
–
VESD
VESD
-4
4
kV
HBM3)
-1
1
kV
CDM4)
Voltage Rating
4.1.1
DC Operating Supply
4.1.2
Transient Supply Voltage
4.1.3
Preregulator Output
4.1.4
Voltage Regulator Output
4.1.5
Reset Output
4.1.6
Sense Input
4.1.7
Sense Output Voltage
4.1.8
Reset Delay
Current Rating
4.1.9
Preregulator Output
4.1.10
Reset Out
4.1.11
Sense Out
Temperatures
4.1.12
Junction Temperature
4.1.13
Storage Temperature
ESD Susceptibility
4.1.14
ESD Resistivity to GND
4.1.15
ESD Resistivity to GND
1)
2)
3)
4)
Not subject to production test, specified by design.
For transient durations of tTR < 1s.
ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS-001 (1.5 kΩ, 100 pF).
ESD susceptibility, Charged Device Model “CDM” ESDA STM5.3.1 or ANSI/ESD S.5.3.1.
Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
Data Sheet
7
Rev. 1.0, 2012-05-07
TLF4949
General Product Characteristics
4.2
Functional Range
Table 1
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Max.
4.2.1
Input Voltage Range for Normal
Operation
VIN
5.5
28
V
–
4.2.2
Extended Input Voltage Range
VIN
3.5
40
V
–1) 2)
1) The output voltage will follow the input voltage for input voltages below VOUT + VDR, i.e device is in tracking mode until
VOUT + VDR is reached.
2) Input voltages ranging from > 28 V up to 40 V may only be applied for transient periods tTR < 1s.
Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the Electrical Characteristics table.
4.3
Thermal Resistance
Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go
to www.jedec.org.
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Typ.
Max.
–
71
–
K/W
–
–
116
–
K/W
–2)
4.3.5
–
172
–
K/W
Footprint only3)
4.3.6
–
145
–
K/W
300 mm2 heatsink
area on PCB3)
4.3.7
–
139
–
K/W
600 mm2 heatsink
area on PCB3)
–
19
–
K/W
–
–
52
–
K/W
–4)
4.3.3
–
167
–
K/W
Footprint only3)
4.3.4
–
78
–
K/W
300 mm2 heatsink
area on PCB3)
4.3.5
–
66
–
K/W
600 mm2 heatsink
area on PCB3)
–
165
–
°C
1)
TLF4949SJ (PG-DSO-8)
4.3.3
4.3.4
Junction to Soldering Point1)
Junction to Ambient
1)
RthJSP
RthJA
TLF4949EJ (PG-DSO-8 Exposed Pad)
4.3.1
4.3.2
Junction to Case1)
Junction to Ambient
1)
RthJC
RthJA
Thermal Shutdown
4.3.6
Junction Temperature
TJSD
1) Not subject to production test, specified by design.
2) Specified RthJA value is according to Jedec JESD51-2,-7 at natural convection on FR4 2s2p board; The Product
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).
3) Specified RthJA value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 copper layer (1 x 70µm Cu).
4) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).
Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.
Data Sheet
8
Rev. 1.0, 2012-05-07
TLF4949
4.4
Electrical Characteristics
4.4.1
Voltage Regulator
Electrical Characteristics: Regulator
VIN = 14 V, Tj = -40°C to +125°C, all voltages with respect to ground, direction of current as shown in Figure 4
“Application Diagram” on Page 15 (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
TJ = 25°C; IOUT = 1mA
6V ≤ VIN ≤ 28V;
1mA ≤ IOUT ≤ 50mA
VIN = 40V1);
5mA ≤ IOUT ≤ 100mA
6V ≤ VIN ≤ 28V;
0mA ≤ IOUT ≤ 100mA
IOUT = 10mA
IOUT = 50mA
IOUT = 100mA
VIN = 3.5V;
IOUT = 35mA
Min.
Typ.
Max.
4.95
5
5.05
V
4.4.2
4.90
5
5.10
V
4.4.3
4.85
–
5.15
V
4.4.4
4.85
5
5.15
0.1
0.2
0.3
0.25
0.4
0.5
V
V
V
4.4.1
4.4.5
Output Voltage
Dropout Voltage
VDR = VIN - VOUT
VOUT
VDR
4.4.6
Input to Output Voltage
Difference in Undervoltage
Condition
VIO
–
0.17
0.4
V
4.4.7
Current Sink Capability from
Output to GND
Iouth2)
-30
-55
–
µA
VIN = 25V; VOUT = 5.5V
4.4.8
Line Regulation
ΔVOUT,line
–
1
15
mV
6V < VIN < 28V;
IOUT = 1mA
4.4.9
Load Regulation
ΔVOUT,load
IOUT,lim
–
4
20
mV
1mA ≤ IOUT ≤ 100mA
VOUT = 4.5V
VOUT = 0V 3)
4.4.11 Quiescent Current
IQSE
–
180
300
µA
IOUT = 0.3mA
4.4.12 Quiescent Current
IQ
–
–
3.6
mA
IOUT = 100mA
1) VIN = 40V may be only applied as transient supply voltage to the device for maximum period of tTR < 1s. Please note that
also for such transient conditions, especially under higher load conditions, the absolute maximum rating of TJ must be
respected at any time. If transient conditions up to VIN = 40V and elevated load currents are expected in the application a
4.4.10
Current Limit
120
240
180
400
mA
mA
sufficient cooling must be provided to meet the power dissipation. Testing this parameter for the maximum allowed period
of T = 1s is for thermal reasons not subject to production test but guaranteed by design.
2) The test of this parameter ensures that the output voltage will not exceed 5.5V in a corresponding “no load current”condition. A sufficiently high value for Iouth will allow the output to react in a fast manner in case of a sudden decrease of
load current (e.g. if load is switching to standby or powerdown mode) .
3) Foldback characteristic.
Data Sheet
9
Rev. 1.0, 2012-05-07
TLF4949
4.4.2
RESET
Electrical Characteristics: Reset
VIN = 14 V, Tj = -40°C to +125°C, all voltages with respect to ground, direction of current as shown in Figure 4
“Application Diagram” on Page 15 (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Typ.
Max.
4.4.13
Reset Threshold Voltage
4.25
4.5
4.4.14
Reset Threshold Hysteresis
50
4.4.15
Reset Pulse Delay
VRT
VRTH
tRD
4.75
V
–
100
200
mV
–
55
100
180
ms
Calculated Value:
CD = 100nF;
tR ≥ 100µs
4.4.16
Reset Output Low Voltage
VRL
–
–
0.4
V
Reset Output High Leakage
Current
IRH
–
–
1
µA
RRES ≥ 10kΩ to VOUT;
VIN ≥ 0V and
VOUT ≥ 1V1)
VRES = 5V
4.4.17
4.4.18
Delay Comparator Threshold
–
2
–
V
–
4.4.19
Delay Comparator Threshold
Hysteresis
VD,th
VD,th, hy
–
100
–
mV
–
4.4.20
Delay Capacitor charge current
ID,chg
–
2
–
µA
VD = 1V; current
flowing out of D pin
4.4.21
Delay Capacitor discharge current
ID,dchg
–
9
–
mA
VD = 1V; current
flowing into D pin
1) Device entering this condition by decreasing VIN from powered up and fully initialized operation state.
4.4.3
Sense
Electrical Characteristics: Sense
VIN = 14 V, Tj = -40°C to +125°C, all voltages with respect to ground, direction of current as shown in Figure 4
“Application Diagram” on Page 15 (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Typ.
Max.
VST
VSTH
VSL
1.16
1.23
1.35
V
–
20
100
200
mV
–
–
–
0.4
V
ISH
ISI
–
–
1
µA
-5
-1.5
0
µA
VSI ≤ 1.16V;
VIN ≥ 3.5V;
RSO ≥ 10KΩ to VOUT
VSO= 5V; VSI ≥ 1.5V
VSI = 0
Sense
4.4.22
Sense Low Threshold
4.4.23
Sense Threshold Hysteresis
4.4.24
Sense Output Low Voltage
4.4.25
Sense Output Leakage
4.4.26
Sense Input Current
Data Sheet
10
Rev. 1.0, 2012-05-07
TLF4949
4.4.4
Preregulator
Electrical Characteristics: Preregulator
VIN = 14 V, Tj = -40°C to +125°C, all voltages with respect to ground, direction of current as shown in Figure 4
“Application Diagram” on Page 15 (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Typ.
Max.
4.5
5
6
V
IPRE = 10 µA
–
–
10
µA
–
Preregulator
4.4.27
Preregulator Output Voltage
4.4.28
Preregulator Output Current
Data Sheet
VPRE
IPRE
11
Rev. 1.0, 2012-05-07
TLF4949
4.5
Typical Performance Graphs
Typical Performance Characteristics
Equivalent Series Resistance ESR(COUT) versus
Output Current IOUT
Output Voltage VOUT versus
Junction Temperature TJ
100
5,20
COUT = 4.7µF
TJ = 25°C
VIN = 6..28V
VIN = 14V
IOUT = 1mA
5,15
5,05
VOUT [V]
ESR(COUT) [Ω]
5,10
10
Stable
Region
1
5,00
4,95
4,90
4,85
0,1
0
4,80
10 20 30 40 50 60 70 80 90 100
-40
0
IOUT [mA]
40
80
120
TJ [°C]
Output Voltage VOUT versus
Input Voltage VIN
Dropout Voltage VDR versus
Output Current IOUT
6,00
0,4
TJ = 25°C
TJ = 25°C
0,35
5,00
0,3
VDR [V]
VOUT [V]
4,00
3,00
RL = 5kΩ
0,25
0,2
0,15
2,00
0,1
RL = 100Ω
1,00
0,05
0
0,00
0
2
4
6
8
0
10
50
75
100
IOUT [mA]
VIN [V]
Data Sheet
25
12
Rev. 1.0, 2012-05-07
TLF4949
Dropout Voltage VDR versus
Junction Temperature TJ
Quiescent Current IQ versus
Output Current IOUT
3
0,4
VIN = 14V
TJ = 25°C
IOUT = 100mA
2,5
0,3
2
IQ [mA]
VDR [V]
IOUT = 50mA
0,2
1,5
IOUT = 10mA
1
0,1
0,5
0
-40
0
40
80
0
120
0,1
1
10
TJ [°C]
100
IOUT [mA]
Quiescent Current IQSE versus
Junction Temperature TJ
Quiescent Current IQ
versus Input Voltage VIN
3
300
TJ = 25°C
VIN = 14V
IOUT= 0.3mA
2,5
250
IQ [mA]
IQSE [µA]
2
200
1,5
1
RLOAD = 5kΩ
150
0,5
RLOAD = 100Ω
0
100
-40
0
40
80
0
120
10
15
20
25
30
35
40
VIN [V]
TJ [°C]
Data Sheet
5
13
Rev. 1.0, 2012-05-07
TLF4949
Reset Thresholds VRT versus
Junction Temperature TJ
6
4,8
5
4,7
4
4,6
VRT [V]
VRO [V]
Reset Output Voltage VRO versus
Regulator Output Voltage VOUT
3
4,5
2
4,4
1
4,3
4,2
0
4
4,2
4,4
4,6
4,8
-40
5
0
40
Sense Thresholds VST versus
Junction Temperature TJ
6
1,4
5
1,35
4
1,3
VST [V]
VSO [V]
Sense Output Voltage VSO versus
Sense Input Voltage VSI
3
1,25
2
1,2
1
1,15
0
1,1
1,2
1,3
1,4
1,1
1,5
-40
VSI [V]
Data Sheet
120
TJ [°C]
VOUT [V]
1
80
0
40
80
120
TJ [°C]
14
Rev. 1.0, 2012-05-07
TLF4949
Application Information
5
Application Information
Note: The following information is given as a hint for the implementation of the device only and shall not be
regarded as a description or warranty of a certain functionality, condition or quality of the device.
Application_diagram .vsd
PRE
Preregulator 5V
VBatt
IN
OUT
RO
Reset
Bandgap
Reference
SO
SI
GND
Figure 4
D
Application Diagram
Note: This is a very simplified example of an application circuit. The function must be verified in the real application
5.1
Supply Voltage Transients
For many other voltage regulators fast supply voltage transients can often be the cause of unwanted reset output
signal perturbations. In contrast the TLF4949 shows a very high immunity of its reset output against such supply
voltage transients. Already starting from input voltages as low as 5.5 V the TLF4949 shows an immunity of the
reset output against supply transients of more than 100 V/µs even without an additional external capacitor at the
PRE pin1) 2).
5.2
Functional Description
Description
The TLF4949 is a monolithic integrated low dropout voltage regulator. Several outstanding features and auxiliary
functions are implemented to meet the requirements of supplying microprocessor systems in automotive
applications. Nevertheless, it is suitable also in other applications where the present functions are required. The
modular approach of this device allows to get easily also other features and functions when required.
1) Please note that also for the case of such input transients the absolute maximum ratings must not be violated.
2) The PRE pin of the IFX4949 offers the possibility to connect a bypass capacitor to GND to stabilize PRE output and to
optimize the transient behaviour. See also section “Preregulator ” on Page 17.
Data Sheet
15
Rev. 1.0, 2012-05-07
TLF4949
Application Information
Voltage Regulator
The voltage regulator uses a PNP transistor as a regulation element. With this structure a very low dropout voltage
at currents of up to 100mA is obtained.
The dropout operation of the standby regulator is maintained down to 3.5V input supply voltage. The output
voltage is regulated up to a transient input supply voltage of 40V. With this feature no functional interruption due
to over voltage pulses is generated. The typical curve showing the standby output voltage as a function of the input
supply voltage VS is shown in Figure 5 “Output Voltage vs. Input Voltage” on Page 16.Typical values of the
current consumption of this device at small loads (quiescent current) are less than 200µA.
TJj ==25
25°C
V
VOUT [V]
5,00
0,00
0
5
10
15
40
VIN [V]
Figure 5
Output Voltage vs. Input Voltage
To reduce the quiescent current peak in the undervoltage region and to improve the transient response in this
region, the dropout voltage is controlled. The quiescent current as a function of the supply input voltage is shown
for two different load conditions in Figure 6 “Quiescent Current vs. Supply Voltage” on Page 16.
3
TJ = 25 °C
2,5
IQ [mA]
2
1,5
1
RLOAD = 5 kΩ
0,5
RLOAD = 100 Ω
0
0
5
10
15
20
25
30
35
40
VIN [V]
Figure 6
Quiescent Current vs. Supply Voltage
Short Circuit Protection
The maximum output current of the device is internally limited. In case of short circuit, the output current is foldback
limited as described in Figure 7 “Foldback Characteristics of VOUT” on Page 17.
Data Sheet
16
Rev. 1.0, 2012-05-07
TLF4949
Application Information
6,00
TJ = 25 V
5,00
VOUT [V]
4,00
3,00
2,00
1,00
0,00
0
0,05
0,1
0,15
0,2
0,25
0,3
IOUT [A]
Figure 7
Foldback Characteristics of VOUT
Preregulator
To improve the transient immunity a preregulator stabilizes the internal supply voltage to 5V. This internal voltage
is also present at the PRE pin (Pin 3). This voltage should not be used as an output because the output capability
is very small (≤ 10 µA).
This output at the PRE pin may be used as an option when an improved transient behavior for supply voltages
less than 8V is desired. In this case a capacitor (100nF -1µF) can be connected between the PRE pin and GND.
At the same time the usage of such a bypass capacitor is suitable to reduce output noise at the OUT pin. If this
feature is not used the PRE pin must be left open.
Reset Circuit
The block circuit diagram of the reset circuit is shown in Figure 8 “Reset Circuit” on Page 18. The reset circuit
supervises the output voltage. The reset threshold of 4.5V is defined by the internal reference voltage and standby
output divider. The reset pulse delay time tRD, is defined by the charge time of an external capacitor CD:
C D × 2.0 V
t RD = -------------------------2.0 µA
The reaction time of the reset circuit originates from the discharge time limitation of the reset capacitor CD and is
proportional to the value of CD.
Data Sheet
17
Rev. 1.0, 2012-05-07
TLF4949
Application Information
Reset .vsd
2uA
Ref 1,23V
22K
Reset
D
OUT
2.0V
VReg
Figure 8
Reset Circuit
The reaction time of the reset circuit corresponds to its noise immunity. Standby output voltage drops below the
reset threshold that are only marginally longer than the reaction time will result in a shorter reset delay times.
The nominal reset delay time will be generated for standby output voltage drops longer than approximately 50µs.
The typical reset output waveforms are shown in Figure 9 “Typical Reset Output Waveforms” on Page 18.
Reset _diagram.vsd
OUT
40V
VIN
VOUT
5.0V
VRT + 0.1V
VRT
1.5V
t
tR
Reset
tRD
Switch on
Figure 9
Data Sheet
tRR
tRD
Input drop
Dump
Output overload
Switch off
Typical Reset Output Waveforms
18
Rev. 1.0, 2012-05-07
TLF4949
Application Information
Sense Comparator
The sense comparator compares an input signal with the internal voltage reference of typical 1.23V. The use of
an external voltage divider makes this comparator very flexible in the application.
It can be used to supervise the input voltage either before or after a protection diode and to give additional
informations to the microprocessor like low voltage warnings.
Data Sheet
19
Rev. 1.0, 2012-05-07
TLF4949
Package Outlines
6
Package Outlines
0.1
2)
0.41+0.1
-0.06
0.2
8
5
1
4
5 -0.2 1)
M
B
0.19 +0.06
C
8 MAX.
1.27
4 -0.21)
1.75 MAX.
0.175 ±0.07
(1.45)
0.35 x 45˚
0.64 ±0.25
6 ±0.2
A B 8x
0.2
M
C 8x
A
Index Marking
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Lead width can be 0.61 max. in dambar area
GPS01181
Figure 10
Data Sheet
PG-DSO-8
20
Rev. 1.0, 2012-05-07
TLF4949
Package Outlines
0.35 x 45˚
1.27
0.41±0.09 2)
0.2
M
0.19 +0.06
0.08 C
Seating Plane
C A-B D 8x
0.64 ±0.25
D
0.2
6 ±0.2
8˚ MAX.
C
0.1 C D 2x
1.7 MAX.
Stand Off
(1.45)
0.1+0
-0.1
3.9 ±0.11)
M
D 8x
Bottom View
8
1
5
1
4
8
4
5
2.65 ±0.2
3 ±0.2
A
B
4.9 ±0.11)
0.1 C A-B 2x
Index Marking
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Dambar protrusion shall be maximum 0.1 mm total in excess of lead width
3) JEDEC reference MS-012 variation BA
Figure 11
PG-DSO-8-27-PO V01
PG-DSO-8 Exposed Pad
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
For further information on packages, please visit our website:
http://www.infineon.com/packages.
Data Sheet
21
Dimensions in mm
Rev. 1.0, 2012-05-07
TLF4949
Revision History
7
Revision History
Revision
Date
Changes
1.0
2012-05-07
Data Sheet – Initial Release.
Data Sheet
22
Rev. 1.0, 2012-05-07
Edition 2012-05-07
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2012 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.