Infineon® LITIX™ Power 1.8A DC/DC Step-Down Converter TLD5085EJ Infineon® LITIX™ Power 1.8A DC/DC Step-Down Converter Data Sheet Revision 1.1 2015-03-10 Automotive Power Infineon® LITIX™ Power TLD5085EJ Table of Contents Confidential Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 4.1 4.2 4.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5 5.1 5.2 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 6 6.1 6.2 Enable, Thermal Shutdown and PWM Dimming Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Electrical Characteristics Enable, Bias, Thermal Shutdown and PWM Dimming . . . . . . . . . . . . . . . . 14 7 7.1 7.2 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Electrical Characteristics Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 8 8.1 8.2 8.3 8.3.1 8.3.2 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Frequency Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Compensating a Tantalum Buck Capacitor CBU1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Freewheeling Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Constant Output Voltage Mode for LED Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Constant Current Mode for LED Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 9 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Data Sheet 2 Revision 1.1 2015-03-10 Not for Customers Confidential TLD5085EJ 1 Infineon® LITIX™ Power Overview • Wide Input Voltage Range from 4.75V to 45V • Constant Current or Constant Voltage Regulation • Drives LEDs in Buck Topology • Very low shutdown current consumption (typ. 0.1µA) • 370 kHz switching frequency • PWM Dimming • Integrated power-switch (output current up to 1.8A) • Internal Soft-Start function • ± 2% output current tolerance (± 4% for full load current range) • Small thermally enhanced exposed heatslug package • Over Temperature Shutdown • AEC Qualified • Green Product (RoHS Compliant) PG-DSO-8 (e-Pad) Description The TLD5085EJ is a smart LED buck converter with an integrated power-switch, capable of driving up to 1.8A load current with excellent line and load regulation. The main function of this device is to step-down the input voltage and regulating a constant LED current. The constant current regulation is especially beneficial for LED color accuracy and longer lifetime. The TLD5085EJ also has a PWM input which can be used for LED dimming. The switching frequency of 370kHz allows to use small and inexpensive passive components. An Enable function is implemented to reduce the shut-down current consumption to typ. 0.1µA. This IC is suited for use in the harsh automotive environments and provides protection functions such as current limitation and overtemperature shutdown. The integrated soft-start feature avoids a current and voltage overshot at the output during start-up of the device. Application • Automotive Lighting (Reading Light, Dome Light, Dashboard Backlighting) • High LITIXTM PowerApplications • Constant Current and Voltage Source Type Package Marking TLD5085 PG-DSO-8 (e-Pad) TLD5085 Data Sheet 3 Revision 1.1, 2015-03-10 Infineon® LITIX™ Power TLD5085EJ Block Diagram 2 Confidential Block Diagram 7 EN 8 VS Enable Charge Pump Over Temperature Shutdown 5 BDS Feedforward COMP PWMI Buck Converter 3 6 BUO 1 Oscillator 4 Bandgap Reference FB Soft start ramp generator TLD5085 2 GND Figure 2-1 Data Sheet Block Diagram TLD5085EJ 4 Revision 1.1 2015-03-10 Infineon® LITIX™ Power TLD5085EJ Pin Configuration Confidential 3 Pin Configuration 3.1 Pin Assignment PWMI 1 GND COMP TLD5085 8 VS 2 7 EN 3 6 BUO 5 BDS EP FB 4 S08_Pinout _TLD5085 .vsd Figure 3-1 3.2 Table 3-1 Pin Configuration TLD5085EJ Pin Definitions and Functions Pin Definition and Function # Name 1 PWMI PWM Input for; Provides LED dimming option. If not used connect to VS. 2 GND Ground; Connect to system ground. 3 COMP Compensation Input; Frequency compensation for regulation loop stability. Connect R and C network to pin for stability. 4 FB Feedback Input; Connect a defined power resistor (RFB=0.6V/ILED) to get the needed LED output current. For adjustable output voltages connect this pin via a voltage divider in parallel to the output capacitor. 5 BDS Buck Driver Supply Input; Connect the bootstrap capacitor between this pin and pin BUO. Data Sheet Direction Type Function 5 Revision 1.1 2015-03-10 Infineon® LITIX™ Power TLD5085EJ Pin Configuration Table 3-1 Confidential Pin Definition and Function # Name 6 BUO Buck Switch Output; Source of the integrated power-switch. Connect directly to the cathode of external freewheeling diode and the buck circuit inductance. 7 EN Enable Input; Apply logic high signal to enable the device. A pull down resistor is integrated. 8 VS Supply Voltage Input; Connect to supply voltage source. 9 EP Exposed Pad; Connect to heatsink area and GND by low inductance wiring. Data Sheet Direction Type Function 6 Revision 1.1 2015-03-10 Infineon® LITIX™ Power TLD5085EJ General Product Characteristics Confidential 4 General Product Characteristics 4.1 Absolute Maximum Ratings Tj = -40°C to +150°C; all voltages with respect to ground (unless otherwise specified) Table 4-1 Absolute Maximum Ratings1) Parameter Symbol Values Min. Typ. Unit Max. Note or Number Test Condition Voltages PWMI (Pin1) PWM Input VPWMI -0.3 45 V P_4.1.1 COMP (Pin 3) Compensation Input VCOMP -0.3 5.5 V P_4.1.2 COMP (Pin 3) Compensation Input VCOMP -0.3 6.2 V FB (Pin 4) Feedback Input VFB -0.3 5.5 V P_4.1.4 BDS (Pin 5) Buck Driver Supply Input VBDS VBUO - 0.3 VBUO + 5.5 V P_4.1.5 BUO (Pin 6) Buck Switch Output VBUO -2.0 VVS + 0.3 V P_4.1.6 EN (Pin 7) Enable Input VEN -40 45 V P_4.1.7 VS (Pin 8) Supply Voltage Input VS -0.3 45 V P_4.1.8 Junction Temperature Tj -40 150 °C P_4.1.9 Storage Temperature Tstg -55 150 °C P_4.1.10 -2 2 kV t < 10s2) P_4.1.3 Temperatures ESD Susceptibility ESD Resistivity all Pins to GND VESD HBM3) P_4.1.11 1) Not subject to production test, specified by design. 2) Exposure to those absolute maximum ratings for extended periods of time (t > 10s) may affect device reliability 3) ESD susceptibility HBM according to EIA/JESD 22-A 114B (1.5kΩ,100pF). Note: 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet 7 Revision 1.1 2015-03-10 Infineon® LITIX™ Power TLD5085EJ General Product Characteristics 4.2 Confidential Functional Range Table 4-2 Functional Range Parameter Symbol Values Min. Typ. Unit Max. Note or Test Condition Number Supply Voltage VS 4.75 45 V Output Voltage adjust range VCC 0.60 16 V see Figure 8-2 External buck inductor LBU 18 56 µH see Figure 8-2 and P_4.2.3 Figure 8-3 External buck capacitor CBU1 33 120 µF see Figure 8-2 and P_4.2.4 Figure 8-3 External buck capacitor ESR ESRBU1 – 0.3 Ω 1) Junction Temperature Tj -40 150 °C P_4.2.1 P_4.2.2 P_4.2.5 P_4.2.6 1) See section Chapter 8 for loop compensation requirements. Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 4.3 Thermal Resistance Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Table 4-3 Thermal Resistance Parameter Symbol Values Min. Junction to Case RthJC Junction to Ambient (2s2p) RthJA Typ. Unit Note or Test Condition Number K/W 1)2) P_4.3.1 K/W 1)3) P_4.3.2 Max. 10 42 1) Not subject to production test, specified by design. 2) Specified RthJCe value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are fixed to ambient temperature). Ta=25°C, Power Switch and freewheeling diode are dissipating 1W. 3) Specified RthJA value is according to Jedec JESD51-2,-7 at natural convection on FR4 2s2p board; The Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu). According to JESD51-5 a thermal via array under the exposed pad contacted the first inner copper layer. Ta=25°C, Power Switch and freewheeling diode are dissipating 1W. Data Sheet 8 Revision 1.1 2015-03-10 Infineon® LITIX™ Power TLD5085EJ Electrical Characteristics 5 Confidential Electrical Characteristics Tj = -40°C to +150°C, all voltages with respect to ground (unless otherwise specified) 5.1 Description The gate of the power-switch is driven by the Gate driver which is supplied by the external capacitor connected to pin BDS (Buck Driver Supply) using the bootstrap principle. BDS is the supply pin for the integrated gate driver of the internal power-switch. The power-switch has to be in the RDSon region. If VGS is not high enough, the power-switch can not operate in the RDSON region, which means high power dissipation. An integrated under voltage lockout function (BDS UV-Comparator) supervising the ’bootstrap’ capacitor voltage ensures that the device is always driven with a sufficient bootstrap voltage in order to prevent from extensive heat up of the power-switch. An integrated charge pump supports the gate driver in case of low input supply voltage, small differential voltage between input supply and output voltage at low current and during startup. In order to minimize emission, the charge pump is switched off if the input voltage is sufficient for supplying the bootstrap. The soft start function generates a defined ramp of the reference voltage during the first 0.5 ms (typ.) after device initialization and if the Device is autorestarting after a thermal shutdown. This function is disabled during the dimming operation via the PWMI-pin. VS 8 Charge Pump Overcurrent Comp. COMP 3 BDS Charger 5 BDS 6 BUO Clock Feedback Error Amp. 4 Gate Driver + FB - PWM Comp. Power Switch Logic Soft Start Ramp Temp. Sensor Ramp Generator = Figure 5-1 Data Sheet BDS UV Comp. VREF=0.6 V 2 1 GND PWMI Block Diagram Buck Regulator 10 Revision 1.1 2015-03-10 Infineon® LITIX™ Power TLD5085EJ Electrical Characteristics 5.2 Table 5-1 Confidential Electrical Characteristics Electrical Characteristics: Buck Regulator Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number FB input voltage VFB 0.588 0.60 0.612 V VEN = VS; VS = 12V 0.1A < ICC < 1.0A P_5.2.1 FB input voltage VFB VFB 0.576 0.60 0.624 VEN = VS; VS = 12V 1mA < ICC < 1.8A P_5.2.2 FB input current IFB -1 -0.1 0 µA VFB = 0.6V P_5.2.3 Power-Switch onresistance RDS(ON) – – 500 mΩ ICC=300 mA; TJ = 150 °C max. P_5.2.4 Current transition rise/fall time tr – 50 – ns ICC=1 A 1) P_5.2.5 Buck peak over current limit IBUOC 2.2 – 3.6 A Bootstrap under voltage lockout, turn-off threshold VBDS,off VBUO +3.3 – – V Bootstrap voltage decreasing Charge pump current ICP 2 – – mA VS = 12V; P_5.2.8 VBUO = VBDS = GND Charge pump switch- VBDS -VBUO off threshold – – 5 V (VBDS - VBUO) increasing P_5.2.9 Maximum duty cycle Dmax – – 100 % 1)2) P_5.2.10 Soft start ramp 350 500 750 µs P_5.2.11 Input under voltage VS,off shutdown threshold 3.75 – – V P_5.2.12 Input voltage startup VS,on threshold – – 4.75 V P_5.2.13 Input under voltage VS,hyst shutdown hysteresis 150 – – mV P_5.2.14 tstart P_5.2.6 P_5.2.7 1) Not subject to production test; specified by design. 2) Consider “Chapter 4.2” Data Sheet 11 Revision 1.1 2015-03-10 Infineon® LITIX™ Power TLD5085EJ Enable, Thermal Shutdown and PWM Dimming Function Confidential 6 Enable, Thermal Shutdown and PWM Dimming Function 6.1 Description Enable Function With the enable pin (EN) the device can be set in off-state reducing the current consumption to typ. 0.1µA. The enable function features an integrated pull down resistor which ensures that the IC is shut down and the powerswitch is off in case the pin EN is not connected. Device Wake Up Behavior The device initialization is triggered either by the EN voltage level crossing the turn-on threshold, rising supply voltage (during EN=H), and also when the device restarts after a thermal shutdown. The softstart ramp starts after the BDS external capacitor is charged. Overtemperature Behaviour The integrated thermal shutdown function turns the power-switch off in case of overtemperature. The typ. junction shutdown temperature is 175°C, with a min. of 150°C. After cooling down the IC will automatically restart operation. The thermal shutdown is an integrated protection function designed to prevent IC destruction when operating under fault conditions. It must not be used for normal operation. PWM Dimming Function The PWMI signal directly controls the gate driver of the integrated power-switch by overriding the internal control signals. Data Sheet 13 Revision 1.1 2015-03-10 Infineon® LITIX™ Power TLD5085EJ Enable, Thermal Shutdown and PWM Dimming Function 6.2 Confidential Electrical Characteristics Enable, Bias, Thermal Shutdown and PWM Dimming Vs = 6 V to 40 V, Tj = -40°C to +150°C, all voltages with respect to ground (unless otherwise specified) Table 6-1 Electrical Characteristics: Enable, Bias, Thermal Shutdown and PWM Dimming Parameter Symbol Values Min. Typ. Max. – 0.1 2 Unit Note or Test Condition Number µA VEN = 0.8V; Tj < 105°C; VS = P_6.2.1 VEN = 5.0V; ICC = P_6.2.2 Current Consumption, shut down mode Iq,OFF Current Consumption, active mode Iq,ON Current Consumption, active mode Iq,ON – – 10 mA Enable high signal valid VEN,hi 3 – – V P_6.2.4 Enable low signal valid VEN,lo – – 0.8 V P_6.2.5 Enable hysteresis VEN,HY 50 200 400 mV 1) P_6.2.6 Enable high input current IEN,hi – – 30 µA VEN = 16V P_6.2.7 Enable low input current IEN,lo – 0.1 1 µA VEN = 0.5V P_6.2.8 PWMI high threshold VPWMI,hi 3 – – V PWMI low threshold – – 0.8 V 16V1) – – 7 mA 0mA; VS = 16V 2) VPWMI,lo PWMI turn-on delay tPWM,ON – – 5 µs PWMI turn-off delay tPWM,OFF – – 5 µs Over temperature shutdown Tj,sd Over temperature Tj,sd_hyst shutdown hysteresis VEN = 5.0V; ICC = 1.8A; VS = 16V1) P_6.2.3 P_6.2.9 P_6.2.10 3) P_6.2.11 P_6.2.12 150 175 190 °C 1) – 15 – K 1) P_6.2.13 P_6.2.14 1) Specified by design. Not subject to production test. 2) 3) At startup current flowing in CBU1, recommended max. PWM frequency 1kHz@370kHz fsw Data Sheet 14 Revision 1.1 2015-03-10 Infineon® LITIX™ Power TLD5085EJ Oscillator Confidential 7 Oscillator 7.1 Description The oscillator turns on the power-switch with a constant frequency while the buck regulating circuit turns the power-switch off in every cycle with an appropriate time gap depending on the output and input voltage. The internal sawtooth signal used for the PWM generation has an amplitude proportional to the input supply voltage (feedforward). 7.2 Electrical Characteristics Oscillator Vs = 6 V to 40 V, Tj = -40°C to +150°C, all voltages with respect to ground (unless otherwise specified) Table 7-1 Parameter Electrical Characteristics: Buck Regulator Symbol Oscillator Frequency fosc Data Sheet Values Unit Min. Typ. Max. 330 370 420 15 kHz Note or Test Condition Number P_7.2.1 Revision 1.1 2015-03-10 Infineon® LITIX™ Power TLD5085EJ Application Information 8 Confidential Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. 8.1 Frequency Compensation The stability of the output voltage can be achieved with a simple RC connected between pin COMP and GND. The standard configuration using the switching frequency of the internal oscillator is a ceramic capacitor CCOMP = 22nF and RCOMP = 22kW. By slight modifications to the compensation network the stability can be optimized for different types of buck capacitors (ceramic or tantalum). The compensation network is essential for the control loop stability. Leaving pin COMP open might lead to an instable operation. 8.2 Compensating a Tantalum Buck Capacitor CBU1 The TLD5085EJ control loop is optimized for ceramic buck capacitors CBU. In order to maintain stability also for tantalum capacitors with ESR up to 300mΩ, an additional compensation capacitance CCOMP2 at pin COMP to GND is required. Its value is calculated as follows: (8.1) C COMP 2 = C BU ⋅ ESR (C BU ) RCOMP whereby CCOMP2 needs to stay below 5nF. Application _C-COMP2.vsd COMP 3 TLD5085 CCOMP CCOMP2 2 RCOMP Figure 8-1 8.3 GND High-ESR Buck Capacitor Compensation Freewheeling Diode In order to minimize losses and for fast recovery, a Schottky freewheeling diode is required. Disconnecting the freewheeling diode during operation might lead to destruction of the IC. Data Sheet 16 Revision 1.1 2015-03-10 Infineon® LITIX™ Power TLD5085EJ Application Information 8.3.1 Confidential Constant Output Voltage Mode for LED Applications VBatt L1 DRV 8 VS TLD5085 CS C1 Cbootstrap C2 BDS 5 BUO 6 LBU Ignition Key Terminal 15 7 EN 1 PWMI R balance1 PWM Dimming DBU CBU1 R1 3 COMP FB 4 GND CCOMP VFB 2 R balance2 CBU2 VCC R2 RCOMP SPIDER-LS Optional Parts Figure 8-2 TLE7240 SL Application Diagram (constant voltage mode) Note: This is a very simplified example of an application circuit. The function must be verified in the real application The output voltage of the TLD5085EJ can be programmed by a voltage divider connected to the feedback pin FB. The divider cross current should be 300 µA at minimum, therefore the maximum R2 is calculated as follows: (8.2) R2 ≤ 0 . 6V V FB → R2 ≤ = 2 kΩ 300 µA IR2 For the desired output voltage level VCC, R1 is calculated thus (neglecting the small FB input current): (8.3) ⎛V ⎞ R1 = R2 ⎜⎜ CC − 1⎟⎟ ⎝ VFB ⎠ Data Sheet 17 Revision 1.1 2015-03-10 Infineon® LITIX™ Power TLD5085EJ Application Information 8.3.2 Confidential Constant Current Mode for LED Applications VBatt L1 DRV 8 TLD5085 VS CS C1 Cbootstrap C2 BDS 5 LBU Ignition Key Terminal 15 PWM Dimming 7 EN 1 PWMI BUO 6 DBU CBU1 2 x High Brightness White LEDs 3 COMP FB 4 GND CCOMP 2 RFB = RCOMP 0.6V I LED Optional Parts Figure 8-3 Application Diagram TLD5085 as LITIXTM Power(constant current mode) Note: This is a very simplified example of an application circuit. The function must be verified in the real application Data Sheet 18 Revision 1.1 2015-03-10 Infineon® LITIX™ Power TLD5085EJ Package Outlines 9 Confidential Package Outlines 0.35 x 45˚ 0.41±0.09 2) 0.2 M C A-B D 8x 0.64 ±0.25 D 0.2 6 ±0.2 8˚ MAX. 0.19 +0.06 0.08 C Seating Plane C 1.27 0.1 C D 2x 1.7 MAX. Stand Off (1.45) 0.1+0 -0.1 3.9 ±0.11) M D 8x Bottom View 8 1 5 1 4 8 4 5 2.65 ±0.2 3 ±0.2 A B 4.9 ±0.11) 0.1 C A-B 2x Index Marking 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Dambar protrusion shall be maximum 0.1 mm total in excess of lead width 3) JEDEC reference MS-012 variation BA Figure 9-1 PG-DSO-8-27-PO V01 Outline PG-DSO-8 (e-Pad) Green Product (RoHS Compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Data Sheet 19 Revision 1.1 2015-03-10 Infineon® LITIX™ Power TLD5085EJ Confidential Revision History Revision 1.1, 2015-03-10 Page or Item Subjects (major changes since previous revision) Rev1.1 Initial Data Sheet for TLD5085EJ Data Sheet Responsible Date 2009-12-16 20 Revision 1.1 2015-03-10 Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBLADE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, Infineon™, ISOFACE™, IsoPACK™, iWafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. ANSI™ of American National Standards Institute. AUTOSAR™ of AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. CIPURSE™ of OSPT Alliance. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. HYPERTERMINAL™ of Hilgraeve Incorporated. MCS™ of Intel Corp. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ of Openwave Systems Inc. RED HAT™ of Red Hat, Inc. RFMD™ of RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Trademarks Update 2014-11-12 www.infineon.com Edition 2015-03-10 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: [email protected] Document reference Doc_Number Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of noninfringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.