TLD5085EJ DataSheet

Infineon® LITIX™ Power
1.8A DC/DC Step-Down Converter
TLD5085EJ
Infineon® LITIX™ Power
1.8A DC/DC Step-Down Converter
Data Sheet
Revision 1.1
2015-03-10
Automotive Power
Infineon® LITIX™ Power
TLD5085EJ
Table of Contents
Confidential
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
3.1
3.2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
4.1
4.2
4.3
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5
5.1
5.2
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6
6.1
6.2
Enable, Thermal Shutdown and PWM Dimming Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Electrical Characteristics Enable, Bias, Thermal Shutdown and PWM Dimming . . . . . . . . . . . . . . . . 14
7
7.1
7.2
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Electrical Characteristics Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8
8.1
8.2
8.3
8.3.1
8.3.2
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Frequency Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Compensating a Tantalum Buck Capacitor CBU1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Freewheeling Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Constant Output Voltage Mode for LED Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Constant Current Mode for LED Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Data Sheet
2
Revision 1.1 2015-03-10
Not for Customers
Confidential
TLD5085EJ
1
Infineon® LITIX™ Power
Overview
•
Wide Input Voltage Range from 4.75V to 45V
•
Constant Current or Constant Voltage Regulation
•
Drives LEDs in Buck Topology
•
Very low shutdown current consumption (typ. 0.1µA)
•
370 kHz switching frequency
•
PWM Dimming
•
Integrated power-switch (output current up to 1.8A)
•
Internal Soft-Start function
•
± 2% output current tolerance (± 4% for full load current range)
•
Small thermally enhanced exposed heatslug package
•
Over Temperature Shutdown
•
AEC Qualified
•
Green Product (RoHS Compliant)
PG-DSO-8 (e-Pad)
Description
The TLD5085EJ is a smart LED buck converter with an integrated power-switch, capable of driving up to 1.8A load
current with excellent line and load regulation. The main function of this device is to step-down the input voltage
and regulating a constant LED current. The constant current regulation is especially beneficial for LED color
accuracy and longer lifetime. The TLD5085EJ also has a PWM input which can be used for LED dimming. The
switching frequency of 370kHz allows to use small and inexpensive passive components. An Enable function is
implemented to reduce the shut-down current consumption to typ. 0.1µA. This IC is suited for use in the harsh
automotive environments and provides protection functions such as current limitation and overtemperature
shutdown. The integrated soft-start feature avoids a current and voltage overshot at the output during start-up of
the device.
Application
•
Automotive Lighting (Reading Light, Dome Light, Dashboard Backlighting)
•
High LITIXTM PowerApplications
•
Constant Current and Voltage Source
Type
Package
Marking
TLD5085
PG-DSO-8 (e-Pad)
TLD5085
Data Sheet
3
Revision 1.1, 2015-03-10
Infineon® LITIX™ Power
TLD5085EJ
Block Diagram
2
Confidential
Block Diagram
7
EN
8
VS
Enable
Charge Pump
Over
Temperature
Shutdown
5
BDS
Feedforward
COMP
PWMI
Buck
Converter
3
6
BUO
1
Oscillator
4
Bandgap
Reference
FB
Soft start ramp
generator
TLD5085
2
GND
Figure 2-1
Data Sheet
Block Diagram TLD5085EJ
4
Revision 1.1
2015-03-10
Infineon® LITIX™ Power
TLD5085EJ
Pin Configuration
Confidential
3
Pin Configuration
3.1
Pin Assignment
PWMI
1
GND
COMP
TLD5085
8
VS
2
7
EN
3
6
BUO
5
BDS
EP
FB
4
S08_Pinout _TLD5085 .vsd
Figure 3-1
3.2
Table 3-1
Pin Configuration TLD5085EJ
Pin Definitions and Functions
Pin Definition and Function
#
Name
1
PWMI
PWM Input for;
Provides LED dimming option. If not used connect to VS.
2
GND
Ground;
Connect to system ground.
3
COMP
Compensation Input;
Frequency compensation for regulation loop stability.
Connect R and C network to pin for stability.
4
FB
Feedback Input;
Connect a defined power resistor (RFB=0.6V/ILED) to get
the needed LED output current.
For adjustable output voltages connect this pin via a
voltage divider in parallel to the output capacitor.
5
BDS
Buck Driver Supply Input;
Connect the bootstrap capacitor between this pin and pin
BUO.
Data Sheet
Direction
Type
Function
5
Revision 1.1
2015-03-10
Infineon® LITIX™ Power
TLD5085EJ
Pin Configuration
Table 3-1
Confidential
Pin Definition and Function
#
Name
6
BUO
Buck Switch Output;
Source of the integrated power-switch. Connect directly
to the cathode of external freewheeling diode and the
buck circuit inductance.
7
EN
Enable Input;
Apply logic high signal to enable the device. A pull down
resistor is integrated.
8
VS
Supply Voltage Input;
Connect to supply voltage source.
9
EP
Exposed Pad;
Connect to heatsink area and GND by low inductance
wiring.
Data Sheet
Direction
Type
Function
6
Revision 1.1
2015-03-10
Infineon® LITIX™ Power
TLD5085EJ
General Product Characteristics
Confidential
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Tj = -40°C to +150°C; all voltages with respect to ground (unless otherwise specified)
Table 4-1
Absolute Maximum Ratings1)
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Note or
Number
Test Condition
Voltages
PWMI (Pin1)
PWM Input
VPWMI
-0.3
45
V
P_4.1.1
COMP (Pin 3)
Compensation Input
VCOMP
-0.3
5.5
V
P_4.1.2
COMP (Pin 3)
Compensation Input
VCOMP
-0.3
6.2
V
FB (Pin 4)
Feedback Input
VFB
-0.3
5.5
V
P_4.1.4
BDS (Pin 5)
Buck Driver Supply Input
VBDS
VBUO
- 0.3
VBUO
+ 5.5
V
P_4.1.5
BUO (Pin 6)
Buck Switch Output
VBUO
-2.0
VVS + 0.3 V
P_4.1.6
EN (Pin 7)
Enable Input
VEN
-40
45
V
P_4.1.7
VS (Pin 8)
Supply Voltage Input
VS
-0.3
45
V
P_4.1.8
Junction Temperature
Tj
-40
150
°C
P_4.1.9
Storage Temperature
Tstg
-55
150
°C
P_4.1.10
-2
2
kV
t < 10s2)
P_4.1.3
Temperatures
ESD Susceptibility
ESD Resistivity all Pins to GND VESD
HBM3)
P_4.1.11
1) Not subject to production test, specified by design.
2) Exposure to those absolute maximum ratings for extended periods of time (t > 10s) may affect device reliability
3) ESD susceptibility HBM according to EIA/JESD 22-A 114B (1.5kΩ,100pF).
Note:
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
Data Sheet
7
Revision 1.1
2015-03-10
Infineon® LITIX™ Power
TLD5085EJ
General Product Characteristics
4.2
Confidential
Functional Range
Table 4-2
Functional Range
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Note or
Test Condition
Number
Supply Voltage
VS
4.75
45
V
Output Voltage
adjust range
VCC
0.60
16
V
see Figure 8-2
External buck
inductor
LBU
18
56
µH
see Figure 8-2 and P_4.2.3
Figure 8-3
External buck
capacitor
CBU1
33
120
µF
see Figure 8-2 and P_4.2.4
Figure 8-3
External buck
capacitor ESR
ESRBU1
–
0.3
Ω
1)
Junction
Temperature
Tj
-40
150
°C
P_4.2.1
P_4.2.2
P_4.2.5
P_4.2.6
1) See section Chapter 8 for loop compensation requirements.
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
4.3
Thermal Resistance
Note: This thermal data was generated in accordance with JEDEC JESD51 standards.
For more information, go to www.jedec.org.
Table 4-3
Thermal Resistance
Parameter
Symbol
Values
Min.
Junction to Case
RthJC
Junction to Ambient
(2s2p)
RthJA
Typ.
Unit
Note or
Test Condition
Number
K/W
1)2)
P_4.3.1
K/W
1)3)
P_4.3.2
Max.
10
42
1) Not subject to production test, specified by design.
2) Specified RthJCe value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are fixed to
ambient temperature). Ta=25°C, Power Switch and freewheeling diode are dissipating 1W.
3) Specified RthJA value is according to Jedec JESD51-2,-7 at natural convection on FR4 2s2p board; The Product
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).
According to JESD51-5 a thermal via array under the exposed pad contacted the first inner copper layer. Ta=25°C, Power
Switch and freewheeling diode are dissipating 1W.
Data Sheet
8
Revision 1.1
2015-03-10
Infineon® LITIX™ Power
TLD5085EJ
Electrical Characteristics
5
Confidential
Electrical Characteristics
Tj = -40°C to +150°C, all voltages with respect to ground (unless otherwise specified)
5.1
Description
The gate of the power-switch is driven by the Gate driver which is supplied by the external capacitor connected to
pin BDS (Buck Driver Supply) using the bootstrap principle.
BDS is the supply pin for the integrated gate driver of the internal power-switch. The power-switch has to be
in the RDSon region. If VGS is not high enough, the power-switch can not operate in the RDSON region, which
means high power dissipation. An integrated under voltage lockout function (BDS UV-Comparator)
supervising the ’bootstrap’ capacitor voltage ensures that the device is always driven with a sufficient
bootstrap voltage in order to prevent from extensive heat up of the power-switch.
An integrated charge pump supports the gate driver in case of low input supply voltage, small differential
voltage between input supply and output voltage at low current and during startup. In order to minimize
emission, the charge pump is switched off if the input voltage is sufficient for supplying the bootstrap.
The soft start function generates a defined ramp of the reference voltage during the first 0.5 ms (typ.) after
device initialization and if the Device is autorestarting after a thermal shutdown. This function is disabled
during the dimming operation via the PWMI-pin.
VS
8
Charge
Pump
Overcurrent
Comp.
COMP
3
BDS
Charger
5
BDS
6
BUO
Clock
Feedback
Error Amp.
4
Gate
Driver
+
FB
-
PWM
Comp.
Power
Switch
Logic
Soft Start
Ramp
Temp.
Sensor
Ramp Generator
=
Figure 5-1
Data Sheet
BDS
UV Comp.
VREF=0.6 V
2
1
GND
PWMI
Block Diagram Buck Regulator
10
Revision 1.1
2015-03-10
Infineon® LITIX™ Power
TLD5085EJ
Electrical Characteristics
5.2
Table 5-1
Confidential
Electrical Characteristics
Electrical Characteristics: Buck Regulator
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
FB input voltage
VFB
0.588
0.60
0.612
V
VEN = VS;
VS = 12V
0.1A < ICC < 1.0A
P_5.2.1
FB input voltage
VFB
VFB
0.576
0.60
0.624 VEN = VS;
VS = 12V
1mA < ICC < 1.8A
P_5.2.2
FB input current
IFB
-1
-0.1
0
µA
VFB = 0.6V
P_5.2.3
Power-Switch onresistance
RDS(ON)
–
–
500
mΩ
ICC=300 mA;
TJ = 150 °C max.
P_5.2.4
Current transition
rise/fall time
tr
–
50
–
ns
ICC=1 A 1)
P_5.2.5
Buck peak over
current limit
IBUOC
2.2
–
3.6
A
Bootstrap under
voltage lockout,
turn-off threshold
VBDS,off
VBUO
+3.3
–
–
V
Bootstrap voltage
decreasing
Charge pump current ICP
2
–
–
mA
VS = 12V;
P_5.2.8
VBUO = VBDS = GND
Charge pump switch- VBDS -VBUO
off threshold
–
–
5
V
(VBDS - VBUO)
increasing
P_5.2.9
Maximum duty cycle Dmax
–
–
100
%
1)2)
P_5.2.10
Soft start ramp
350
500
750
µs
P_5.2.11
Input under voltage VS,off
shutdown threshold
3.75
–
–
V
P_5.2.12
Input voltage startup VS,on
threshold
–
–
4.75
V
P_5.2.13
Input under voltage VS,hyst
shutdown hysteresis
150
–
–
mV
P_5.2.14
tstart
P_5.2.6
P_5.2.7
1) Not subject to production test; specified by design.
2) Consider “Chapter 4.2”
Data Sheet
11
Revision 1.1
2015-03-10
Infineon® LITIX™ Power
TLD5085EJ
Enable, Thermal Shutdown and PWM Dimming Function
Confidential
6
Enable, Thermal Shutdown and PWM Dimming Function
6.1
Description
Enable Function
With the enable pin (EN) the device can be set in off-state reducing the current consumption to typ. 0.1µA. The
enable function features an integrated pull down resistor which ensures that the IC is shut down and the powerswitch is off in case the pin EN is not connected.
Device Wake Up Behavior
The device initialization is triggered either by the EN voltage level crossing the turn-on threshold, rising supply
voltage (during EN=H), and also when the device restarts after a thermal shutdown. The softstart ramp starts
after the BDS external capacitor is charged.
Overtemperature Behaviour
The integrated thermal shutdown function turns the power-switch off in case of overtemperature. The typ. junction
shutdown temperature is 175°C, with a min. of 150°C. After cooling down the IC will automatically restart
operation. The thermal shutdown is an integrated protection function designed to prevent IC destruction when
operating under fault conditions. It must not be used for normal operation.
PWM Dimming Function
The PWMI signal directly controls the gate driver of the integrated power-switch by overriding the internal control
signals.
Data Sheet
13
Revision 1.1
2015-03-10
Infineon® LITIX™ Power
TLD5085EJ
Enable, Thermal Shutdown and PWM Dimming Function
6.2
Confidential
Electrical Characteristics Enable, Bias, Thermal Shutdown and PWM Dimming
Vs = 6 V to 40 V, Tj = -40°C to +150°C, all voltages with respect to ground (unless otherwise specified)
Table 6-1
Electrical Characteristics: Enable, Bias, Thermal Shutdown and PWM Dimming
Parameter
Symbol
Values
Min.
Typ.
Max.
–
0.1
2
Unit
Note or
Test Condition
Number
µA
VEN = 0.8V;
Tj < 105°C; VS =
P_6.2.1
VEN = 5.0V; ICC =
P_6.2.2
Current
Consumption,
shut down mode
Iq,OFF
Current
Consumption,
active mode
Iq,ON
Current
Consumption,
active mode
Iq,ON
–
–
10
mA
Enable high signal
valid
VEN,hi
3
–
–
V
P_6.2.4
Enable low signal
valid
VEN,lo
–
–
0.8
V
P_6.2.5
Enable hysteresis
VEN,HY
50
200
400
mV
1)
P_6.2.6
Enable high input
current
IEN,hi
–
–
30
µA
VEN = 16V
P_6.2.7
Enable low input
current
IEN,lo
–
0.1
1
µA
VEN = 0.5V
P_6.2.8
PWMI high threshold VPWMI,hi
3
–
–
V
PWMI low threshold
–
–
0.8
V
16V1)
–
–
7
mA
0mA;
VS = 16V
2)
VPWMI,lo
PWMI turn-on delay
tPWM,ON
–
–
5
µs
PWMI turn-off delay
tPWM,OFF
–
–
5
µs
Over temperature
shutdown
Tj,sd
Over temperature
Tj,sd_hyst
shutdown hysteresis
VEN = 5.0V; ICC =
1.8A;
VS = 16V1)
P_6.2.3
P_6.2.9
P_6.2.10
3)
P_6.2.11
P_6.2.12
150
175
190
°C
1)
–
15
–
K
1)
P_6.2.13
P_6.2.14
1) Specified by design. Not subject to production test.
2)
3) At startup current flowing in CBU1, recommended max. PWM frequency 1kHz@370kHz fsw
Data Sheet
14
Revision 1.1
2015-03-10
Infineon® LITIX™ Power
TLD5085EJ
Oscillator
Confidential
7
Oscillator
7.1
Description
The oscillator turns on the power-switch with a constant frequency while the buck regulating circuit turns the
power-switch off in every cycle with an appropriate time gap depending on the output and input voltage.
The internal sawtooth signal used for the PWM generation has an amplitude proportional to the input supply
voltage (feedforward).
7.2
Electrical Characteristics Oscillator
Vs = 6 V to 40 V, Tj = -40°C to +150°C, all voltages with respect to ground (unless otherwise specified)
Table 7-1
Parameter
Electrical Characteristics: Buck Regulator
Symbol
Oscillator Frequency fosc
Data Sheet
Values
Unit
Min.
Typ.
Max.
330
370
420
15
kHz
Note or
Test Condition
Number
P_7.2.1
Revision 1.1
2015-03-10
Infineon® LITIX™ Power
TLD5085EJ
Application Information
8
Confidential
Application Information
Note: The following information is given as a hint for the implementation of the device only and shall not be
regarded as a description or warranty of a certain functionality, condition or quality of the device.
8.1
Frequency Compensation
The stability of the output voltage can be achieved with a simple RC connected between pin COMP and GND.
The standard configuration using the switching frequency of the internal oscillator is a ceramic capacitor
CCOMP = 22nF and RCOMP = 22kW. By slight modifications to the compensation network the stability can be
optimized for different types of buck capacitors (ceramic or tantalum).
The compensation network is essential for the control loop stability. Leaving pin COMP open might lead to an
instable operation.
8.2
Compensating a Tantalum Buck Capacitor CBU1
The TLD5085EJ control loop is optimized for ceramic buck capacitors CBU. In order to maintain stability also
for tantalum capacitors with ESR up to 300mΩ, an additional compensation capacitance CCOMP2 at pin COMP
to GND is required. Its value is calculated as follows:
(8.1)
C COMP 2 =
C BU ⋅ ESR (C BU )
RCOMP
whereby CCOMP2 needs to stay below 5nF.
Application _C-COMP2.vsd
COMP
3
TLD5085
CCOMP
CCOMP2
2
RCOMP
Figure 8-1
8.3
GND
High-ESR Buck Capacitor Compensation
Freewheeling Diode
In order to minimize losses and for fast recovery, a Schottky freewheeling diode is required. Disconnecting the
freewheeling diode during operation might lead to destruction of the IC.
Data Sheet
16
Revision 1.1
2015-03-10
Infineon® LITIX™ Power
TLD5085EJ
Application Information
8.3.1
Confidential
Constant Output Voltage Mode for LED Applications
VBatt
L1
DRV
8
VS
TLD5085
CS
C1
Cbootstrap
C2
BDS
5
BUO
6
LBU
Ignition Key
Terminal 15
7
EN
1
PWMI
R balance1
PWM Dimming
DBU
CBU1
R1
3
COMP
FB
4
GND
CCOMP
VFB
2
R balance2
CBU2
VCC
R2
RCOMP
SPIDER-LS
Optional
Parts
Figure 8-2
TLE7240 SL
Application Diagram (constant voltage mode)
Note: This is a very simplified example of an application circuit. The function must be verified in the real
application
The output voltage of the TLD5085EJ can be programmed by a voltage divider connected to the feedback pin FB.
The divider cross current should be 300 µA at minimum, therefore the maximum R2 is calculated as follows:
(8.2)
R2 ≤
0 . 6V
V FB
→ R2 ≤
= 2 kΩ
300 µA
IR2
For the desired output voltage level VCC, R1 is calculated thus (neglecting the small FB input current):
(8.3)
⎛V
⎞
R1 = R2 ⎜⎜ CC − 1⎟⎟
⎝ VFB ⎠
Data Sheet
17
Revision 1.1
2015-03-10
Infineon® LITIX™ Power
TLD5085EJ
Application Information
8.3.2
Confidential
Constant Current Mode for LED Applications
VBatt
L1
DRV
8
TLD5085
VS
CS
C1
Cbootstrap
C2
BDS
5
LBU
Ignition Key
Terminal 15
PWM Dimming
7
EN
1
PWMI
BUO
6
DBU
CBU1
2 x High Brightness
White LEDs
3
COMP
FB
4
GND
CCOMP
2
RFB =
RCOMP
0.6V
I LED
Optional
Parts
Figure 8-3
Application Diagram TLD5085 as LITIXTM Power(constant current mode)
Note: This is a very simplified example of an application circuit. The function must be verified in the real
application
Data Sheet
18
Revision 1.1
2015-03-10
Infineon® LITIX™ Power
TLD5085EJ
Package Outlines
9
Confidential
Package Outlines
0.35 x 45˚
0.41±0.09 2)
0.2
M
C A-B D 8x
0.64 ±0.25
D
0.2
6 ±0.2
8˚ MAX.
0.19 +0.06
0.08 C
Seating Plane
C
1.27
0.1 C D 2x
1.7 MAX.
Stand Off
(1.45)
0.1+0
-0.1
3.9 ±0.11)
M
D 8x
Bottom View
8
1
5
1
4
8
4
5
2.65 ±0.2
3 ±0.2
A
B
4.9 ±0.11)
0.1 C A-B 2x
Index Marking
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Dambar protrusion shall be maximum 0.1 mm total in excess of lead width
3) JEDEC reference MS-012 variation BA
Figure 9-1
PG-DSO-8-27-PO V01
Outline PG-DSO-8 (e-Pad)
Green Product (RoHS Compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Data Sheet
19
Revision 1.1
2015-03-10
Infineon® LITIX™ Power
TLD5085EJ
Confidential
Revision History
Revision 1.1, 2015-03-10
Page or Item
Subjects (major changes since previous revision)
Rev1.1
Initial Data Sheet for TLD5085EJ
Data Sheet
Responsible Date
2009-12-16
20
Revision 1.1 2015-03-10
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBLADE™, EasyPIM™,
EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, Infineon™, ISOFACE™, IsoPACK™, iWafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™,
PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™,
thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited,
UK. ANSI™ of American National Standards Institute. AUTOSAR™ of AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT
Forum. CIPURSE™ of OSPT Alliance. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. HYPERTERMINAL™ of Hilgraeve Incorporated. MCS™ of Intel Corp. IEC™ of Commission Electrotechnique Internationale.
IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of
Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc.,
USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies,
Inc. Openwave™ of Openwave Systems Inc. RED HAT™ of Red Hat, Inc. RFMD™ of RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of
Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA,
Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design
Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.
Trademarks Update 2014-11-12
www.infineon.com
Edition 2015-03-10
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: [email protected]
Document reference
Doc_Number
Legal Disclaimer
The information given in this document shall in
no event be regarded as a guarantee of
conditions or characteristics. With respect to any
examples or hints given herein, any typical
values stated herein and/or any information
regarding the application of the device, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation, warranties of noninfringement of intellectual property rights of
any third party.
Information
For further information on technology, delivery
terms and conditions and prices, please contact
the nearest Infineon Technologies Office
(www.infineon.com).
Warnings
Due to technical requirements, components
may contain dangerous substances. For
information on the types in question, please
contact the nearest Infineon Technologies
Office. Infineon Technologies components may
be used in life-support devices or systems only
with the express written approval of Infineon
Technologies, if a failure of such components
can reasonably be expected to cause the failure
of that life-support device or system or to affect
the safety or effectiveness of that device or
system. Life support devices or systems are
intended to be implanted in the human body or
to support and/or maintain and sustain and/or
protect human life. If they fail, it is reasonable to
assume that the health of the user or other
persons may be endangered.