TLE9832-2 Microcontroller with LIN and Power Switches for Automotive Applications Data Sheet Rev. 1.1, 2012-03-08 Automotive Power Edition 2012-03-08 Published by Infineon Technologies AG 81726 Munich, Germany © 2012 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. TLE9832-2 Table of Contents Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 1.1 1.2 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Device Types / Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 2.1 2.2 General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 3.1 3.1.1 3.1.2 3.1.3 3.2 3.2.1 3.2.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage Regulator 5.0V (VDDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage Regulator 1.5V (VDDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Voltage Regulator 5.0V (VDDEXT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System Control Unit - Power Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System Control Unit - Digital Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XC800 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Watchdog Timer 1 (WDT1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Watchdog Timer (WDT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multiplication/Division Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parallel Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 0 and Timer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 and Timer 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capture/Compare Unit 6 (CCU6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High-Speed Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Measurement Core Module (incl. ADC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analog Digital Converter (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High Voltage Monitor Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High Side Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low Side Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PWM Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Debug System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 19 22 23 24 25 25 26 26 28 29 29 31 32 38 38 41 42 43 44 46 47 47 49 51 52 53 54 55 56 57 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electric Drive Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connection of N.C. Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connection of ADCGND Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connection of Exposed Pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage Regulators-Blocking Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Additional External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ESD Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 58 59 59 59 59 59 60 5 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Data Sheet 3 Rev. 1.1, 2012-03-08 TLE9832-2 Table of Contents 5.1 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.2 5.2.1 5.2.2 5.2.3 5.3 5.3.1 5.3.2 5.4 5.5 5.5.1 5.5.2 5.6 5.6.1 5.7 5.8 5.8.1 5.8.2 5.8.3 5.8.4 5.9 5.9.1 5.9.1.1 5.9.1.2 5.9.2 5.10 5.11 5.11.1 5.11.2 5.12 5.12.1 5.12.2 General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PMU I/O Supply Parameters VDDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PMU Core Supply Parameters VDDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDDEXT Voltage Regulator 5.0V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oscillators and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Clock Parameters XTAL1, XTAL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flash Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parallel Ports (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High-Speed Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analog Digital Converter 8-Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Measurement Unit (VBAT_SENSE - Supply Voltage Attenuator) . . . . . . . . . . . . . . . . . . . . . . . . . . Measurement Functions Monitoring Input Voltage Attenuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Sensor Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADC - 10-Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VAREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analog/Digital Converter Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High-Voltage Monitor Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High Side Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low Side Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Data Sheet 4 61 61 62 63 63 64 65 65 66 67 68 68 69 70 71 71 71 74 74 78 79 79 79 80 81 82 82 82 82 83 85 86 86 86 89 89 89 Rev. 1.1, 2012-03-08 TLE9832-2 Summary of Features 1 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Summary of Features High performance XC800 core – compatible to standard 8051 core – up to 40 MHz clock frequency – two clocks per machine cycle architecture – two data pointers On-chip memory – 32 kByte + 4 kByte Flash for program code and data (4 kByte EEPROM emulation built-in) – 512 Byte One Time Programmable Memory (OTP) – 512 Byte 100 Time Programmable Memory (100TP) – 256 Byte RAM, 3 kByte XRAM – BootROM for startup firmware and Flash routines Core logic supply at 1.5 V On-chip OSC and PLL for clock generation – Loss of clock detection with fail safe mode for power switches Watchdog timer (WDT) with programmable window feature for refresh operation and warning prior to overflow General-purpose I/O Port (GPIO) with wake-up capability Multiplication/division unit (MDU) for arithmetic calculation Software libraries to support floating point and MDU calculations Five 16-Bit timers - Timer 0, Timer 1, Timer 2, Timer 21 and Timer 3 Capture/compare unit for PWM signal generation (CCU6) with Timer 12 and Timer 13 Full duplex serial interface (UART) with LIN support Synchronous serial channel (SSC) On-chip debug support via 2-wire Device Access Port (DAP) LIN Bootstrap loader (LIN BSL) LIN transceiver compliant to LIN 1.3, LIN 2.0 and LIN 2.1 2 x Low Side Switches with clamping capability incl. PWM functionality, e.g. as relay driver 2 x High Side Switches with cyclic sense option and PWM functionality, e.g. for LED or powering of switches 5 x High Voltage Monitor Input pins for wake-up and with cyclic sense and analog measurement option Measurement unit with 10 channels, 8-Bit A/D Converter (ADC2) and data post processing 8 channels, 10-Bit A/D Converter (including battery voltage and supply voltage measurement) (ADC1) Single power supply from 3.0 V to 27 V Low-dropout voltage regulators (LDO) Dedicated 5 V voltage regulator for external loads (e.g. hall sensor) Programmable window watchdog (WDT1) with independent on-chip clock source Power saving modes – MCU slow-down mode – Stop Mode – Sleep Mode – Cyclic wake-up and cyclic sense during Stop Mode and Sleep Mode Power-on and undervoltage/brownout reset generator Overtemperature protection Overcurrent protection with shutdown Supported by a full range of development tools including C compilers, macro assembler packages, emulators, evaluation boards, HLL debugger, programming tools, software packages Temperature Range TJ: -40 °C up to 150 °C Packages TLE9832-2QV: VQFN-48-22 and TLE9832-2QX: VQFN-48-29 Green package (RoHS compliant) Data Sheet 5 Rev. 1.1, 2012-03-08 TLE9832-2 Summary of Features 1.1 Device Types / Ordering Information The TLE983x product family features devices with different peripheral modules, configurations and program memory sizes to offer cost-effective solutions for different application requirements. Table 1 describes the TLE9832-2 device configuration. Table 1 Device Configuration Device Name Max Clock Frequency High Side Switches High Voltage Flash Size Monitor Inputs Bidirectional Parallel Port I/O´s Operational Amplifier TLE9832-2QV 40 MHz 2 5 36 kByte 11 no TLE9832-2QX 40 MHz 2 5 36 kByte 11 no Data Sheet 6 Rev. 1.1, 2012-03-08 TLE9832-2 Summary of Features 1.2 Abbreviations The following acronyms and terms are used within this document. List see in Table 2. Table 2 Acronyms Acronyms Name ALU Arithmetic Logic Unit CCU6 Capture Compare Unit 6 CGU Clock Generation Unit CMU Cyclic Management Unit DAP Device Access Port DPP Data Post Processing ECC Error Correction Code EEPROM Electrically Erasable Programmable Read Only Memory GPIO General Purpose Input Output FSR Full Scale Range ICU Interrupt Control Unit IRAM Internal Random Access Memory - Internal Data Memory LDO Low DropOut voltage regulator LIN Local Interconnect Network LSB Least Significant Bit MCU Micro Controller Unit MDU Multiplication Division Unit MMC Monitor Mode Control MSB Most Significant Bit NMI Non Maskable Interrupt OCDS On Chip Debug Support OTP One Time Programmable OSC Oscillator PC Program Counter PCU Power Control Unit PD Pull Down PGU Power supply Generation Unit PLL Phase Locked Loop PMU Power Management Unit PSW Program Status Word PU Pull Up PWM Pulse Width Modulation RAM Random Access Memory RCU Reset Control Unit RMU Reset Management Unit Data Sheet 7 Rev. 1.1, 2012-03-08 TLE9832-2 Summary of Features Table 2 Acronyms Acronyms Name ROM Read Only Memory SCK SSC Clock SFR Special Function Register SOW Short Open Window (for WDT1) SPI Serial Peripheral Interface SSC Synchronous Serial Channel SSU System Status Unit TMS Test Mode Select UART Universal Asynchronous Receiver Transmitter UDIG Universal Digital Controller for ADC1 VBG Voltage reference Band Gap WDT Watchdog timer WMU Wake-up Management Unit XRAM On-Chip eXternal Data Memory XSFR On-Chip eXternal Special Function Register Data Sheet 8 Rev. 1.1, 2012-03-08 TLE9832-2 25 P0.5/MRST_0/EXINT0_0/T21EX_2/T1/CCPOS2_1/COUT60_0 26 P1.4/EXINT2_1/T21EX1/CCPOS1_2/CLKOUT_1/COUT62_0 27 XTAL1 28 XTAL2 30 G ND 31 P2.5/AN5/T1_2 32 P2.4/AN4/T0_2 33 ADCGND Pin Configuration 34 VAREF 2.1 36 P2.3/AN3/CCPOS1_0/EXINT0_2/CTRAP_1/CC60_1 General Device Information 35 P2.7/AN7/CCPOS2_0/EXINT2_0/T13HR_1/CC62_1 2 29 N.C. General Device Information 24 P0.4/MTSR_0/CC60_0/T21_2/EXINT 2_2/CCPOS1_1/CLKOUT _0 P2. 1/AN1/CCPOS0_0/EXINT 1_0/T12HR_1/CC61_1 37 23 P0.3/SCK_0/EXINT1_2/T0/ CCPOS0_1/EXF21_2 GND 38 P1.3/EXINT1_1/CC62_0/CCPOS0_2/EXF21_1 39 22 P0.2/CTRAP_0/T21EX_0/EXINT 1_3/TXD_1/EXF 2_0 N.C. 40 21 RESET N.C. 41 20 P0.0/T12HR_0/T2_0/DAP0/EXINT 2_3/EXF 21_0/RXDO VDDC 42 19 GND GND 43 18 TMS/DAP1 VDDP 44 17 P0.1/T13HR_0/RXD_1/T2EX_1/T21_0/EXINT0_3 VDDEXT 45 16 P1.2/EXINT 0_1/T21_1/MRST_1/CCPOS2_2/COUT63_0 N.C. 46 15 P1.1/T1_1/MTSR_1/T21EX_3/COUT61_0 VS 47 14 P1.0/T0_1/CC61_0/SCK_1/EXF 21_3 Figure 1 Data Sheet LS2 12 LS1 11 N.C. 10 MO N5 9 MO N4 8 MO N3 7 MO N2 6 MO N1 5 HS2 4 HS1 3 LIN 1 13 LSGND LINGND 2 VBATSENSE 48 TLE9832-2 pin configuration, VQFN-48-22 and VQFN-48-29 packages (top view) 9 Rev. 1.1, 2012-03-08 TLE9832-2 General Device Information 2.2 Pin Definitions and Functions After reset, all pins are configured as input (except supply and LIN pins) with one of the following settings: • • • • Pull-up device enabled only (PU) Pull-down device enabled only (PD) Input with both pull-up and pull-down devices disabled (I) Output with output stage deactivated = high impedance state (Hi-Z) The functions and default states of the TLE9832-2 external pins are provided in the following table. Type: indicates the pin type. • • • • I/O: Input or output I: Input only O: Output only P: Power supply Table 3 Symbol Pin Definitions and Functions Pin Number Type Reset State P0 Function Port 0 Port 0 is an 6-Bit bidirectional general purpose I/O port. Alternate functions can be assigned as follows: DAP, CCU6, Timer 0, Timer 1, Timer 2, Timer 21, UART, SSC, external interrupt input and clock output. P0.0 20 I/O I/PU T12HR_0 T2_0 DAP0 EXINT2_3 EXF21_0 RXDO CCU6 Timer 12 hardware run input Timer 2 input Debug Access Port 0 External interrupt input 0 Timer 21 external flag output UART transmit data output (synchronous mode) P0.1 17 I/O I/PU T13HR_0 RXD_1 T2EX_1 T21_0 EXINT0_3 CCU6 Timer 13 hardware run input UART receive input Timer 2 external trigger input Timer 21 input External interrupt input 0 P0.2 22 I/O I/PU CTRAP_0 T21EX_0 EXINT1_3 TXD_1 EXF2_0 CCU6 trap input Timer 21 external trigger input External interrupt input 1 UART transmit output Timer 2 external flag output P0.3 23 I/O I/PU SCK_0 EXINT1_2 T0 CCPOS0_1 EXF21_2 SSC clock input (for slave) / output (for master) External interrupt input 1 Timer 0 input CCU6 hall input 0 Timer 21 external flag output P0.4 24 I/O I/PU MTSR_0 CC60_0 T21_2 EXINT2_2 CCPOS1_1 CLKOUT_0 SSC master transmit output / slave receive input CCU6 capture/compare channel 0 input/output Timer 21 input External interrupt input 2 CCU6 hall input 1 Clock output Data Sheet 10 Rev. 1.1, 2012-03-08 TLE9832-2 General Device Information Table 3 Pin Definitions and Functions (cont’d) Symbol Pin Number Type Reset State Function P0.5 25 I/PU MRST_0 EXINT0_0 T21EX_2 T1 CCPOS2_1 COUT60_0 I/O P1 SSC master receive input / slave transmit output External interrupt input 0 Timer 21 external trigger input Timer 1 input CCU6 hall input 2 CCU6 capture/compare channel 0 output Port 1 Port 1 is an 5-Bit bidirectional general purpose I/O port. Alternate functions can be assigned as follows: CCU6, Timer 0, Timer 1 Timer 21, SSC, external interrupt input and clock output. P1.0 14 I/O I T0_1 CC61_0 SCK_1 EXF21_3 Timer 0 input CCU6 capture/compare channel 1 input/output SSC clock input (for slave) / output (for master) Timer 21 external flag output P1.1 15 I/O I T1_1 MTSR_1 T21EX_3 COUT61_0 Timer 1 input SSC master transmit output/slave receive input Timer 21 external trigger input CCU6 capture/compare channel 1 output P1.2 16 I/O I EXINT0_1 T21_1 MRST_1 CCPOS2_2 COUT63_0 External interrupt input 0 Timer 21 input SSC master receive input/slave transmit output CCU6 hall input 2 CCU6 capture/compare channel 3 output P1.3 39 I/O I EXINT1_1 CC62_0 CCPOS0_2 EXF21_1 External interrupt input 1 CCU6 capture/compare channel 2 input/output CCU6 hall input 0 Timer 21 external flag output P1.4 26 I/O I EXINT2_1 T21EX_1 CCPOS1_2 CLKOUT_1 COUT62_0 External interrupt input 2 Timer 21 external trigger input CCU6 hall input 1 Clock output CCU6 capture/compare channel 2 output P2 P2.1 Data Sheet Port 2 Port 2 is an 5-Bit general purpose input-only port. Alternate functions can be assigned as follows: CCU6, Timer 0, Timer 1, Timer 21 and external interrupt input It is also used as analog inputs for the 10-Bit ADC (ADC1). 37 I I AN1 CCPOS0_0 EXINT1_0 T12HR_1 CC61_1 11 ADC1 analog input channel 1 CCU6 hall input 0 External interrupt input 1 CCU6 Timer 12 hardware run input CCU6 capture/compare channel 1 input Rev. 1.1, 2012-03-08 TLE9832-2 General Device Information Table 3 Pin Definitions and Functions (cont’d) Symbol Pin Number Type Reset State Function P2.3 36 I I AN3 CCPOS1_0 EXINT0_2 CTRAP_1 CC60_1 ADC1 analog input channel 3 CCU6 hall input 1 External interrupt input 0 CCU6 trap input CCU6 capture/compare channel 0 input P2.4 32 I I AN4 T0_2 ADC1 analog input channel 4 Timer 0 input P2.5 31 I I AN5 T1_2 ADC1 analog input channel 5 Timer 1 input P2.7 35 I I AN7 CCPOS2_0 EXINT2_0 T13HR_1 CC62_1 ADC1 analog input channel 7 CCU6 hall input 2 External interrupt input 2 CCU6 timer 13 hardware run input CCU6 capture/compare channel 2 input VS 47 P – Battery supply input VDDP 44 P – I/O port supply (5.0 V). Do not connect external loads. For buffer and bypass capacitors. VDDC 42 P – Core supply (1.5 V during Active Mode, 0.9 V during Stop Mode). Do not connect external loads. For buffer/bypass capacitor. VDDEXT 45 P – External voltage supply output (5.0 V, 20 mA) LSGND 13 P – Low Side ground LS1, LS2 GND 30, 43, 19, 38 P – Core supply ground; analog supply ground ADCGND 33 P – Analog supply ground for ADC1 LINGND 2 P – LIN ground MON1 5 I I High Voltage Monitor Input 1 MON2 6 I I High Voltage Monitor Input 2 MON3 7 I I High Voltage Monitor Input 3 MON4 8 I I High Voltage Monitor Input 4 MON5 9 I I High Voltage Monitor Input 5 Power Supply Monitor Inputs High Side Switch / Low Side Switch Outputs LS1 11 O Hi-Z Low Side Switch output 1 LS2 12 O Hi-Z Low Side Switch output 2 HS1 3 O Hi-Z High Side Switch output 1 HS2 4 O Hi-Z High Side Switch output 2 1 I/O PU LIN bus interface input/output LIN Interface LIN Data Sheet 12 Rev. 1.1, 2012-03-08 TLE9832-2 General Device Information Table 3 Symbol Pin Definitions and Functions (cont’d) Pin Number Type Reset State Function VAREF 34 I/O O 5V ADC1 reference voltage XTAL1 27 I I External oscillator input XTAL2 28 O Hi-Z External oscillator output TMS 18 I I/PD TMS DAP1 RESET 21 I/O I/O/PU Reset input, not available during Sleep Mode VBAT_SENSE 48 I I Battery supply voltage sense input N.C. – – Not connected - can be connected to GND Others Data Sheet 10, 29, 40, 41, 46 13 test mode select input Debug Access Port 1 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3 Functional Description This highly integrated circuit contains analog and digital functional blocks. For system and interface control an embedded 8-Bit state-of-the-art microcontroller, compatible to the standard 8051 core with On-Chip Debug Support (OCDS), is available. For internal and external power supply purposes, on-chip low drop-out regulators are existent. An internal oscillator provides a cost effective and suitable clock in particular for LIN slave nodes. As communication interface, a LIN transceiver and several High Voltage Monitor Inputs with adjustable threshold and filters are available. Furthermore two High Side Switches (e.g. for driving LEDs or cyclic powering of switches), two Low Side Switches (e.g. for relays) and several general purpose input/outputs (GPIO) with pulse-width modulation (PWM) capabilities are available. The Micro Controller Unit (MCU) supervision and system protection including reset feature is controlled by a programmable window watchdog. A cyclic wake-up circuit, supply voltage supervision and integrated temperature sensors are available on-chip. All relevant modules offer power saving modes in order to support terminal 30 connected automotive applications. A wake-up from the power saving mode is possible via a LIN bus message, via the monitoring inputs, via the GPIO ports or repetitive with a programmable time period (cyclic wake-up). The integrated circuit is available in a VQFN-48-22 and VQFN-48-29 package with 0.5 mm pitch and is designed to withstand the severe conditions of automotive applications. Data Sheet 14 Rev. 1.1, 2012-03-08 Figure 2 Data Sheet TMS P0.0 XTAL2 XTAL1 P2.1, P2.3 … P2.5, P2.7 (AN1, AN3 … AN5, AN7) ADCGND VAREF P1.0 … P1.4 P0.1 … P0.5 DAP 8 Bit - MCU 6 7 0 2 Mux 15 3kB XRAM 256 Byte-RAM MCU PLL 8-ch. 10-bit ADC LP_CLK 20MHz Memories Flash-36kB BootROM MAP RAM WMU VREF5V RC-Oszillator 5MHz VMON 1...5 VS_SENSE VBAT_SENSE GPIO Ports 5V LP_CLK2 100kHz Power Down Supply VS WDT Timer 0/1 XSFR-BUS UART Timer 2/21 CCU6 (Capture Compare Unit) SSC (Synchr. Serial Channel) Debug (DAP) Port Control IRQ XC800 EWARP Core VS_SENSE VBAT_SENSE VDDP_SENSE VDDC_SENSE not used LS1_SENSE LS2_SENSE T_SENSE TS_LS_SENSE REF_SENSE BG 0 1 2 3 5 8-Bit ADC 6 7 8 9 4 CMU DPP CTRL Trigger CLK_GEN WDT1 Timer 3 TSENSE Measurement Unit Power-Control AP_SUB_CTRL PMU/ PCU IR RCU SCU_PM CYCMU CGU PREWARN_SUP_NMI XINT PMU VDDP PMU/ PCU MISC MDU (Multiply / Division Unit) BRG MISC Control LIN Control SCU RMU VPRE VDDEXT VDDEXT VDDP Attenuator Attenuator Wake Wake LIN Transceiver Low Side 2 Low Side 1 High Side 2 High Side 1 PWM-Unit VS_SENSE VBAT_SENSE VDDP_SENSE VDDC_SENSE VMON 1..5 MON PMU-XSFR VDDC VDDC LINGND LIN LS2 LSGND LS1 HS 2 HS 1 VBAT_SENSE MON5 MON1 . . TLE9832-2 Functional Description Block Diagram XSFR-BUS SFR-BUS Block Diagram The TLE9832-2 has several operational modes mainly to support low power consumption requirements. The low power modes and state transitions are depicted in Figure 3 below. Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description Power-up VS > 3V Reset WDT1 reset (error_wdt++) Transition by software Transition by external event VDDC stable & error_supp < 5 VDDC fail (error_supp++) Safety Fallback Safety fallback error_supp = 5 Cyclic wake LIN wake or MON wake or GPIO wake Active Mode Cyclic wake LIN wake or MON wake STOP command Stop Mode Transition by internal event SLEEP command Safety fallback error_wdt = 5 Sleep Mode Cyclic-sense Cyclic-sense PCU_state_diagram_simple_Cus.vsd Figure 3 Power Control State Diagram Reset Mode The Reset Mode is a transition mode e.g. during power-up of the device after a power-on reset. In this mode the on-chip power supplies are enabled and all other modules are initialized. Once the core supply VDDC is stable, the Active Mode is entered. In case the watchdog timer WDT1 fails for more than four times, a fail-safe transition to the Sleep Mode is done. Active Mode In Active Mode all modules are activated and the TLE9832-2 is fully operational. Stop Mode The Stop Mode is one out of two low power modes. The transition to the low power modes is done by setting the respective Bits in the mode control register. In Stop Mode the embedded microcontroller is still powered allowing faster wake-up reaction times. A wake-up from this mode is possible by LIN bus activity, the High Voltage Monitor Input pins or the respective 5V GPIOs. Sleep Mode The Sleep Mode is the second low-power mode. The transition to the low-power modes is done by setting the respective Bits in the MCU mode control register. In Sleep Mode the embedded microcontroller power supply is deactivated allowing the lowest system power consumption, but the wake-up time is longer compared to the Stop Mode. A wake-up from this mode is possible by LIN bus activity or the High Voltage Monitor Input pins. A wakeup from Sleep Mode behaves similar to a power-on reset. Data Sheet 16 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description Cyclic Wake-up Mode The cyclic wake-up mode is a special operating mode of the Sleep Mode and the Stop Mode. The transition to the cyclic wake-up mode is done by first setting the respective Bits in the mode control register followed by the SLEEP or STOP command. Additional to the cyclic wake-up behavior (wake-up after a programmable time period), the wake-up sources of the normal Stop Mode and Sleep Mode are available. Cyclic Sense Mode The cyclic sense mode is a special operating mode of the Sleep Mode and the Stop Mode. The transition to the cyclic sense mode is done by first setting the respective Bits in the mode control register followed by the STOP or SLEEP command. In cyclic sense mode a High Side Switch can be switched on periodically for biasing some switches for example. The wake-up condition is configurable, when the sense result of defined monitor inputs at a window of interest changed compared to the previous wake-up period or reached a defined state respectively. In this case the Active Mode is entered immediately. For cyclic sense in Stop Mode VDDEXT can be switched on periodically. Furthermore cyclic sense allows to sense dedicated GPIO port states and transitions when in Stop Mode. The following table shows the possible power mode configurations of each major module or function respectively. Table 4 Power mode configurations Module/function Active Mode Stop Mode Sleep Mode Comment VDD1V5PD ON ON ON Power Down Supply VPRE, VDDP, VDDC ON ON (no dynamic load) OFF – VDDEXT ON/OFF ON (no dynamic load)/OFF cyclic ON/OFF OFF – HSx ON/OFF cyclic ON/OFF cyclic ON/OFF cyclic sense LSx ON/OFF OFF OFF – PWM GEN. ON/OFF OFF OFF – LIN TRx ON/OFF wake-up only/ OFF wake-up only/ OFF – MON1 - MON5 (wake-up) n.a. disabled/static/cyclic disabled/static/ cyclic cyclic: combined with HS=on MON1 - MON5 (measurement) ON/OFF OFF OFF available on four channels VS sense ON/OFF brownout detection brownout detection brownout detection brownout detection done in PCU VBAT_SENSE ON/OFF OFF OFF – GPIO 5V (wake-up) n.a. disabled/static/cyclic OFF – GPIO 5V (active) ON ON OFF – WDT1 ON OFF OFF – Data Sheet 17 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description Table 4 Power mode configurations Module/function Active Mode Stop Mode Sleep Mode CYCLIC Modes n.a. cyclic wake-up/ cyclic sense/OFF cyclic wake-up/ cyclic sense with HS, cyclic sense/OFF VDDEXT; wake-up from cyclic wake needs MC for entering Sleep Mode / Stop Mode again Measurement Unit ON1) OFF OFF – 2) Comment MCU ON/slowdown/HALT STOP OFF – CLOCK GEN (MC) ON OFF OFF – LP_CLK (20 MHz) ON OFF OFF WDT1 LP_CLK2 (100 kHz) ON ON ON for cyclic wake-up 1) Cannot not be switched off due to safety reasons 2) MC PLL clock disabled, MC supply reduced to 0.9 V Wake-up Source Prioritization All wake-up sources have the same priority. In order to handle the asynchronous nature of the wake-up sources, the first wake-up signal will initiate the wake-up sequence. Nevertheless all wake-up sources are latched in order to provide all wake-up events to the application software. The software can clear the wake-up source flags. It is ensured, that no wake-up event is lost. As default wake-up sources, the LIN and MON inputs are activated after power-on reset only. GPIO ports as wakeup sources are disabled by default after power-on reset. The application software can reconfigure the wake-up sources according to the application needs. Wake-up Levels and Transitions The wake-up can be triggered by rising, falling or both signal edges for each monitor and GPIO input individually. Data Sheet 18 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.1 Power Management Unit (PMU) The purpose of the power management unit is to ensure the fail safe behavior of embedded automotive systems. Therefore the power management unit controls all system modes including the corresponding transitions. The power management unit is responsible for generating all required voltage supplies for the embedded MCU (VDDC, VDDP) and the external sensor supply (VDDEXT). Additionally, the PMU provides well defined sequences for the system mode transitions and generates hierarchical reset priorities. The reset priorities control the reset behavior of all system functionalities, especially the reset behavior of the embedded MCU, including the test hardware. All these functions are controlled by finite state machines. The system master functionality of the PMU forces the generation of an independent logic supply (Power Down Supply) and system clock (LP_CLK). Therefore the PMU needs a module internal logic supply and system clock which works independently of the MCU clock. The following state diagram shows the available modes of the device. Vs > 3V start-up LIN-wake | MON-wake | cyclic _wake VDDC =stable & error_supp<5 error_sup=5 sleep VDDC = fail Sleep command (from MCU) | WDT1_SEQ_FAIL = 1 active LIN-wake | MON-wake | GPIO-wake | cyclic _wake | PMU_PIN = 1 | SUP_TMOUT = 1 PMU_PIN = 1 | PMU_SOFT = 1 | (PMU_Ext_WDT = 1 & WDT1_SEQ_FAIL= 0) stop command (from MCU) stop PMU_System _Modes _Cus.vsd Figure 4 Data Sheet Power Management Unit System Modes 19 Rev. 1.1, 2012-03-08 TLE9832-2 VS Functional Description Power Down Supply VDDP Power Supply Generation (PSG) VDDC CLK_20MHz Pheripherals HALL_SUPPLY CLK_100KHz I N T E R N A L PMU-XSFR VDDEXT PMU-CYCMU B U S PMU-PCU PMU-CMU PMU-WMU PMU-RMU MON 1...5 LIN P0.0….P0.5 P1.0….P1.4 PMU-Control Power Management Unit Figure 5 Data Sheet Power Management Unit Block Diagram 20 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description Table 5 Description of PMU Submodules Mod. Name Modules Functions Power Down Supply Independent Supply Voltage Generation for PMU This supply is only dedicated to the PMU to ensure a independent operation of generated power supplies (VDDP, VDDC). LP_CLK (= 20 MHz) - Clock Source for all PMU submodules - Backup Clock Source for System - Clock Source for WDT1 This ultra low power oscillator generates the clock for the PMU. This clock is also used as backup clock for the system in case of PLL clock failure and as independent clock source for WDT1 LP_CLK2 (= 100 kHz) Clock Source for PMU This ultra low power oscillator generates the clock for the PMU mainly in Stop Mode and in the cyclic modes. Peripherals Peripheral blocks of PMU This blocks includes all relevant peripherals to ensure a stable and fail safe PMU startup and operation Power Supply Generation Unit (PGU) Voltage regulators for VDDP and VDDC This block includes the voltage regulators for the pad supply (VDDP) and the core supply (VDDC) including all diagnosis and safety features VDDEXT (Hall Voltage regulator for VDDEXT to Sensor supply external modules (e.g. Hall Supply) Sensors) This voltage regulator is a dedicated supply for external modules and can also be used for cyclic sense operations (e.g. with hall sensor) PMU-XSFR All PMU relevant Extended Special Function Registers This module contains all PMU relevant registers, which are needed to control and monitor the PMU. PMU-PCU Power Control Unit of the PMU This block is responsible for controlling all power related actions within the PGU Module. PMU-WMU Wake-up Management Unit of the PMU This block is responsible for controlling all wake-up related actions within the PMU Module. PMU-CYCMU Cyclic Management Unit of the PMU This block is responsible for controlling all actions within cyclic mode. PMU-CMU Clock Management Unit of the PMU This block is responsible for controlling all clocking actions within the PMU. PMU-RMU Reset Management Unit of the PMU This block is responsible for generating all system required resets. Data Sheet 21 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.1.1 Voltage Regulator 5.0V (VDDP) This module represents the 5 V voltage regulator, which serves as pad supply for the parallel port pins and other 5 V analog functions. Features • • • • • • • • 5 V low-drop voltage regulator Current limitation Overcurrent monitoring and shutdown with MCU signalling (Interrupt) Overvoltage monitoring with MCU signalling (Interrupt) Undervoltage monitoring with MCU signalling (Interrupt) Preregulator for VDDC regulator GPIO supply Pull-down current source at the output for Sleep Mode (100 μA) The output capacitor CVDDP is mandatory to ensure a proper regulator functionality. VDDP Regulator VDDP-5V VS CVS C VDDP 5V LDO Figure 6 Data Sheet PMU_5V_OVERVOLT PMU_5V_OVERCURR PMU_5V_OVERLOAD Supervision Module Block Diagram of VDDP Voltage Regulator 22 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.1.2 Voltage Regulator 1.5V (VDDC) This module represents the 1.5 V voltage regulator, which serves as core supply for the 8-bit µC and other chip internal analog 1.5 V functions (e.g. 8 Bit ADC). To further reduce the current consumption of the 8-bit MCU during Stop Mode the output voltage is optionally reduced to 0.9 V. Features • • • • • • • 1.5 V low-drop voltage regulator Optional 0.9 V in Stop Mode Current limitation Overcurrent monitoring and shutdown with MCU signalling (interrupt) Overvoltage monitoring with MCU signalling (interrupt) Undervoltage monitoring with MCU signalling (interrupt) Pull-down current source at the output for Sleep Mode (100 μA) The output capacitor CVDDC is mandatory to ensure a proper regulator functionality. VDDC Regulator VDDC-1.5V VDDP-5V CVDDP CVDDC 1.5 / 0.9V LDO Figure 7 Data Sheet PMU_1V5_OVERVOLT PMU_1V5_OVERCURR PMU_1V5_OVERLOAD Supervision Module Block Diagram of VDDC Voltage Regulator 23 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.1.3 External Voltage Regulator 5.0V (VDDEXT) The external voltage regulator provides 5 V output voltage in order to supply external circuitry like LEDs, hall sensors or potentiometers. Features • • • • • • • • Switchable +5 V, 20 mA low-drop voltage regulator Switch-on overcurrent blanking time in order to drive small capacitive loads Short circuit robust Overvoltage monitoring with MCU interrupt signalling Undervoltage monitoring with MCU interrupt signalling Selectable switch-on slew-rate 0.95 V/µs max. @10 mA supply current, 10 nF capacitive load Pull-down current source at the output for Sleep Mode and off mode (100 μA) Cyclic sense option together with GPIOs VDDEXT Regulator VDDEXT-5V VS C VS CVDDEXT VDDEXT LDO Figure 8 Data Sheet VDDEXT_OVERVOLT VDDEXT_OVERCURR VDDEXT_OVERLOAD Supervision Module Block Diagram 24 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.2 System Control Unit 3.2.1 System Control Unit - Power Modules The System Control Unit of the power modules consists of the following sub-modules: • • • • • • Reset Control Unit (RCU): generation of all required subsystem resets Clock Generation Unit (CGU): providing all required clocks to the analog subsystem Interrupt Control Unit (ICU): all system relevant interrupt flags and status flags Power Control Unit (PCU): takes over control when device enters and exits Sleep Mode and Stop Mode System Status Unit (SSU): controls mode changes due to system failures External Watchdog (WDT1): independent system watchdog to monitor system activity On signals to analog peripherals; status signals from analog peripherals XSFR-BPI Reset_Type_0 Reset_Type_1 PCU RCU Reset_Type_2 Reset_Type_3 Reset_Type_4 I N T E R N A L fsys mi_clk CGU clk_2mhz all STS bits from analog peripherals ICU PREWARN_SUP_NMI XINT B U S SSU WDT1 LP_CLK System Control Unit-Power Modules Figure 9 Data Sheet Block Diagram of System Control Unit - Power Modules 25 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.2.2 System Control Unit - Digital Part The System Control Unit - Digital Part supports all central control tasks in the TLE9832-2. It consists of the following submodules: • • • • • • • • • • • • Clock System and Control Reset Control Power Management Interrupt Management General Port Control Flexible Peripheral Management Module Suspend Control Watchdog Timer XRAM Addressing Modes Error Detection and Correction in Data Memory Miscellaneous Control Register Mapping 3.3 XC800 Core The XC800 Core is a complete, high performance CPU core that is functionally upward compatible to the 8051. While the standard 8051 core is designed around a 12-clock machine cycle, the XC800 Core uses a two-clock period machine cycle. The instruction set consists of 45% one-Byte, 41% two-Byte and 14% three-Byte instructions. Each instruction takes 1, 2 or 4 machine cycles to execute. In case of access to slower memory, the access time may be extended by wait cycles (one wait cycle lasts one machine cycle, which is equivalent to two clock cycles). Via the dedicated DAP interface the XC800 Core supports a range of debugging features including basic stop/start, single-step execution, breakpoint support and read/write access to the data memory, program memory and special function registers. The key features of the XC800 Core implemented are listed below. • • • • • • • • Two clocks per machine cycle 256 Byte of internal data memory Program memory download option 15-source, 4-level interrupt controller 2 data pointers Power saving modes Dedicated debug mode via low-pin-count DAP interface (native JTAG mode) Two 16-Bit timers (Timer 0 and Timer 1) Data Sheet 26 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description Figure 10 shows the functional blocks of the XC800 Core. The XC800 Core consists mainly of the instruction decoder, the arithmetic section, the program control section, the access control section, and the interrupt controller. The instruction decoder decodes each instruction and accordingly generates the internal signals required to control the functions of the individual units within the core. These internal signals have an effect on the source and destination of data transfers and control the ALU processing. Internal Data Memory Core SFRs Register Interface External SFRs External Data Memory 16-bit Registers & Memory Interface ALU Opcode & Immediate Registers Multiplier / Divider Opcode Decoder Timer 0 / Timer 1 Program Memory Clocks Memory Wait Reset Legacy External Interrupts (IEN0, IEN1) External Interrupts Non-Maskable Interrupt State Machine & Power Saving Interrupt Controller Core Block Diagram Figure 10 XC800 Core Block Diagram The arithmetic section of the processor performs extensive data manipulation and consists of the arithmetic/logic unit (ALU), A register, B register and PSW register. The ALU accepts 8-Bit data words from one or two sources and generates an 8-Bit result under the control of the instruction decoder. The ALU performs both arithmetic and logic operations. Arithmetic operations include add, subtract, multiply, divide, increment, decrement, BCDdecimal-add-adjust and compare. Logic operations include AND, OR, Exclusive OR, complement and rotate (right, left or swap nibble (left four)). Also included is a Boolean unit performing the Bit operations as set, clear, complement, jump-if-set, jump-if-not-set, jump-if-set-and-clear and move to/from carry. The ALU can perform the Bit operations of logical AND or logical OR between any addressable Bit (or its complement) and the carry flag, and place the new result in the carry flag. The program control section controls the sequence in which the instructions stored in program memory are executed. The 16-Bit program counter (PC) holds the address of the next instruction to be executed. The conditional branch logic enables internal and external events to the processor to cause a change in the program execution sequence. The access control unit is responsible for the selection of the on-chip memory resources. The interrupt requests from the peripheral units are handled by the interrupt controller unit. Data Sheet 27 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.4 Memory Architecture The TLE9832-2 CPU manipulates operands in the following memory spaces: • • • • 36 kByte of Flash memory in code space BootROM memory in code space 256 Byte of internal RAM data memory in internal data space 3 kByte of XRAM memory in code space and external data space (XRAM can be read/written as program memory or external data memory) 128 Byte of special function registers SFR in internal data space 256 Byte of special function registers XSFR in external data space. • • Figure 11 illustrates the memory address spaces of the TLE9832-2. F' FFFF H Bank F F' 0000H Bank E E' 0000H Bank D Reserved 1) Bank C D' 0000H C' 0000H Bank B B' 0000H Bank A Reserved XRAM 3 KByte Bank 9 A' 0C00H A' 0000H Reserved 2) 9' 0000H Bank 8 8' 0000H Bank 7 Reserved 1) Bank 6 Bank 5 7' 0000H Memory Extension Stack Pointer (MEXSP) 6' 0000H 5' 0000H Bank 4 FFH 4' 0000H Bank 3 Reserved XRAM 3 KByte Reserved XRAM 3 KByte 2' FC00H 2' F000H 80H Bank 2 Boot ROM 2' 9C00 H Reserved Reserved 2' 8000H Flash Lower 32 KByte 2' 0100H 2' 0000H XSFR, 256 Byte 1' 0000H Flash Upper 4 Kbyte Direct Address Internal RAM Special Function Registers 80H Reserved 2) 0' 9000H 0' 8000H 7F H Flash Lower 32 Kbyte 40H Internal RAM 00H 0' 0000H Code Space Indirect Address FFH Reserved 1) Bank 1 Bank 0 Not user-accessible ; HW access only Extension Stack RAM 3' 0000H External Data Space Internal Data Space Memory Map User Mode 1) The lower 32 Kbyte of the 36 Kbyte NVM is always mapped and can be accessed in the lower half (0000H to 7FFFH) of each bank in the code space (except bank A, where the 3 Kbyte XRAM is mapped.) 2) XRAM is always mapped and can be accessed in the range (F000H to FBFFH) of each bank in the external data space; XSFR is always mapped and can be accessed in the range (0000H to 00FFH) of each bank in the external data space. Figure 11 Data Sheet TLE9832-2 Memory Map 28 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.5 Flash Memory The Flash memory provides an embedded user-programmable non-volatile memory, allowing fast and reliable storage of user code and data. It is operated from a single 1.5V supply (VDDC) from the internal voltage regulator and does not require additional programming or erasing voltage. Features • • • • • • • • • In-System Programming via LIN (Flash mode) and DAP Error Correction Code (ECC) for dynamic correction of single Bit errors and signalling for double Bit failures Support for aborting erase operation Program width of 128 Byte (page) Minimum erase width of 128 Byte (page) 4 Byte read access Read access time: 75 ns Program time for 1 page: 3 ms Page erase time: 4 ms 3.6 Watchdog Timer 1 (WDT1) Features • • • • • Windowed Watchdog Timer with programmable timing in Active Mode Long open window (80ms) after power-up, reset, wake-up Short open window (30ms) to facilitate Flash programming Disabled during debugging Safety shutdown to Sleep Mode after 5 missed WDT1 services There are two watchdog timers in the system. The Watchdog Timer (WDT) within the microcontroller (see Chapter 3.7) and the Watchdog Timer 1 (WDT1), which is described in this section. In Active Mode, the WDT1 acts as a windowed watchdog timer, which provides a highly reliable and safe way to recover from software or hardware failures. The WDT1 is always enabled in Active Mode. In Sleep Mode, Stop Mode and OCDS mode the WDT1 is disabled. The behavior of the Watchdog Timer 1 in Active Mode is depicted in Figure 12. Data Sheet 29 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description Power-up Reset RESET timeout always RESET RESET Timeout or Trigger in closed window timeout Trigger SOW Maximum number of SOW triggers exceeded Long Open Window Trigger Normal „windowed“ operation Trigger SOW Short open window Trigger Trigger Figure 12 Data Sheet Trigger SOW Watchdog Timer 1 Behavior 30 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.7 Watchdog Timer (WDT) The Watchdog Timer (WDT) is a sub-module in the System Control Unit (SCU). The Watchdog Timer provides a highly reliable and secure way to detect and recover from software or hardware failures. The WDT helps to abort an accidental malfunction of the TLE9832-2 in a user-specified time period. When enabled, the WDT will cause the TLE9832-2 system to be reset if the WDT is not serviced within a user-programmable time period. The CPU must service the WDT within this time interval to prevent the WDT from causing an TLE9832-2 system reset. Hence, routine service of the WDT confirms that the system is functioning properly. The WDT is disabled by default. In debug mode, the WDT is suspended by default and stops counting (its debug suspend Bit is set by default i.e. MODSUSP.WDTSUSP = 1). Therefore during debugging, there is no need to refresh the WDT. Features • • • • 16-Bit Watchdog Timer Programmable reload value for upper 8 Bits of timer Programmable window boundary Selectable input frequency of fPCLK/2 or fPCLK/128 The Watchdog Timer is a 16-Bit timer, which is incremented by a count rate of fPCLK/2 or fPCLK/128. This 16-Bit timer is realized as two concatenated 8-Bit timers. The upper 8 Bits of the Watchdog Timer can be preset to a userprogrammable value via a watchdog service access in order to vary the watchdog expiring time. The lower 8 Bits are reset on each service access. Figure 13 shows the block diagram of the watchdog timer unit. WDT Control Clear 1:2 MUX f PCLK WDTREL WDT Low Byte WDT High Byte 1:128 Overflow/Time-out Control & Window-boundary control WDTIN ENWDT WDTTO WDTRST Logic ENWDT_P Figure 13 Data Sheet WINBCNT WDT Block Diagram 31 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.8 Interrupt System The TLE9832-2 supports 14 interrupt vectors with four priority levels. Eleven of these interrupt vectors are assigned to the on-chip peripherals: Timer 0, Timer 1, UART, SSC and A/D Converter are each assigned to one dedicated interrupt vector; while Timer2, Timer21, MDU, LIN and the Capture/Compare Unit share six interrupt vectors. Two interrupt vectors are assigned to the external interrupts. External interrupts 0 to 1 are each assigned to one dedicated interrupt vector, external interrupt 2 shares on interrupt vector with Timer21 and the MDU. One interrupt vector is dedicated to the XINT interrupt events whose interrupt flags are also located in registers in XSFR area. A non-maskable interrupt (NMI) with the highest priority is shared by the following: • • • • • • • • • Watchdog Timer, warning before overflow MI_CLK Watchdog Timer overflow event PLL, loss of lock Flash, on operation complete, e.g. erase. OCDS, on user IRAM event Oscillator watchdog detection for too low oscillation of fOSC Flash map error Uncorrectable ECC error on Flash, XRAM and IRAM VSUP supply pre warning when any supply voltage drops below or exceeds any threshold. Figure 14, Figure 15, Figure 16, Figure 17 and Figure 18 give a general overview of the interrupt sources and nodes, and their corresponding control and status flags. Figure 19 gives the corresponding overview for the NMI sources. Data Sheet 32 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description Highest Timer 0 Overflow TF0 TCON.5 ET0 000B H IEN0.1 Timer 1 Overflow ET1 001B H IEN0.3 IP.3/ IPH.3 RI SCON.0 RIEN SCON1.0 UART Transmit IP.1/ IPH.1 TF1 TCON.7 UART Receive Lowest Priority Level >=1 ES TI 0023 H IEN0.4 SCON.1 TIEN IP.4/ IPH.4 SCON1.1 IE0 EINT0 TCON.1 IT0 EX0 0003 H IEN0.0 TCON.0 P o l l i n g S e q u e n c e IP.0/ IPH.0 EXINT0 EXICON0.0/1 IE1 EINT1 TCON.3 IT1 EX1 0013 H IEN0.2 TCON.2 IP.2/ IPH.2 EXINT1 EA EXICON0.2/3 IEN0.7 Bit-addressable Request flag is cleared by hardware Figure 14 Data Sheet Interrupt Request Sources (Part 1) 33 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description Highest Timer 2 Overflow TF2 T2_T2CON.7 T2EX Lowest Priority Level TF2EN T2_T2CON1.1 >=1 EXF2 EXEN2 T2_T2CON.6 T2_T2CON.3 EDGES EL T2_T2MOD.5 EXF2EN T2_T2CON1.0 >=1 ET2 002B H IEN0.5 End of Synch Byte IP.5/ IPH.5 EOFSYN LINST.4 Synch Byte Error >=1 ERRSYN SYNEN LINST.5 P o l l i n g LINST.6 ADC Service Request 0 ADCSR0 ADC Service Request 1 ADCSR1 EADC IRCON1.4 IEN1.0 IRCON1.3 >=1 0033 H IP1.0/ IPH1.0 S e q u e n c e EA IEN0.7 Bitaddressable Request flag is cleared by hardware Figure 15 Data Sheet Interrupt Request Sources (Part 2) 34 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description Highest SSC_EIR EIR IRCON1.0 Lowest Priority Level EIREN MODIEN.0 SSC_TIR >=1 TIR IRCON1.1 TIREN MODIEN.1 ESSC RIR SSC_RIR IRCON1.2 003B H IEN1.1 IP1.1/ IPH1.1 RIREN MODIEN.2 P o l l i n g EXINT2 EINT2 IRCON0.2 EXINT2 EXICON0.4/5 Timer 21 Overflow TF2 T21_T2CON.7 TF2EN T21_T2CON1.1 T21EX >=1 EXF2 >=1 T21_T2CON.3 MDU_0 0043 H IEN1.2 EXEN2 T21_T2CON.6 EXF2EN EDGES EL T21_T2MOD.5 EX2 IP1.2/ IPH1.2 S e q u e n c e T21_T2CON1.0 IRDY MDUSTAT.0 IE MDUCON.7 MDU_1 IERR MDUSTAT.1 IE EA MDUCON.7 IEN0.7 Bitaddressable Request flag is cleared by hardware Figure 16 Data Sheet Interrupt Request Sources (Part 3) 35 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description Highest Lowest Priority Level XINTx P o l l i n g XINTxF . . . XINTxEN XSFRc.d XSFRa.b >=1 XINTyF XINTy XINTyEN XSFRu.v XSFRs.t XINTw XINTz . . . 004B EXM H IEN1.3 S e q u e n c e IP1.3/ IPH1.3 XINTwF XSFRe.f >=1 XINTzEN XINTzF XSFRi.j XSFRg.h EA IEN0.7 Bit-addressable Figure 17 Interrupt Request Sources (Part 4) Highest Lowest Priority Level CCU6 Node 0 CCU6SR0 IRCON3.0 ECCIP0 0053 H IEN1.4 CCU6 Node 1 CCU6SR1 IRCON3.4 CCU6 Node 2 ECCIP1 IEN1.5 005B H IP1.5/ IPH1.5 CCU6SR2 IRCON4.0 ECCIP2 0063 H IEN1.6 CCU6 Node 3 IP1.4/ IPH1.4 IP1.6/ IPH1.6 P o l l i n g S e q u e n c e CCU6SRC3 IRCON4.4 ECCIP3 IEN1.7 006B H IP1.7/ IPH1.7 EA IEN0.7 Bit-addressable Request flag is cleared by hardware Figure 18 Data Sheet Interrupt Request Sources (Part 5) 36 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description Watchdog Timer Overflow >=1 MI_CLK Watchdog Timer Overflow FNMIWDT NMISR.0 (Type interrupt structure 1) NMIWDT NMICON.0 PLL Loss -of-Lock FNMIPLL NMISR.1 NMIPLL NMICON.1 Flash Operation Complete FNMINVM NMISR.2 IRAM read event* NMICON.2 FNMIRR MMICR.2 NMIRRE MMICR.0 IRAM write event* >=1 FNMIOCDS NMISR.3 FNMIRW MMICR.3 NMINVM NMIOCDS NMICON.3 NMIRWE Non Maskable Interrupt MMICR.1 Oscillator Watchdog >=1 FNMIOWD NMISR.4 0073 H NMIOWD NMICON.4 Flash Map Error FNMIMAP NMISR.5 XRAM Uncorrectable ECC Error XRDBE NMIMAP NMICON.5 EDCSTAT.0 XRIE EDCCON.0 IRAM Uncorrectable ECC Error IRDBE >=1 EDCSTAT.1 Flash Uncorrectable ECC Error IRIE FNMIECC NMISR.6 EDCCON.1 NMIECC NMICON.6 NVMDBE EDCSTAT.2 NVMIE EDCCON.2 Supply Prewarning (Type interrupt structure 1) FNMISUP NMISR.7 NMISUP NMICON.7 * Includes other pre-condition Figure 19 Data Sheet Non-Maskable Interrupt Request Source 37 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.9 Multiplication/Division Unit The Multiplication/Division Unit (MDU) provides fast 16-Bit multiplication, 16-Bit and 32-Bit division as well as shift and normalize features. It has been integrated to support the TLE9832-2 core in real-time control applications, which require fast mathematical computations. Features • • • • Fast signed/unsigned 16-Bit multiplication Fast signed/unsigned 32-Bit divide by 16-Bit and 16-Bit divide by 16-Bit operations 32-Bit unsigned normalize operation 32-Bit arithmetic/logical shift operations 3.10 Parallel Ports The TLE9832-2 has 16 port pins organized into three parallel ports: Port 0 (P0), Port 1 (P1) and Port 2 (P2). Each port pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled. P0 and P1 are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can be selected. Bidirectional Port Features (P0, P1) • • • • • • Configurable pin direction Configurable pull-up/pull-down devices Configurable open drain mode Configurable drive strength Transfer of data through digital inputs and outputs (general purpose I/O) Alternate input/output for on-chip peripherals Data Sheet 38 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description PUDSEL Internal Bus Pull -up/Pull -down Select Register Pull-up/Pull-down Control Logic PUDEN Pull -up/Pull -down Enable Register TCCR Temperature Compensation Control Register Px_POCONy Port Output Driver Control Registers OD Open Drain Control Register DIR Direction Register ALTSEL0 Alternate Select Register 0 ALTSEL1 Pull Device Alternate Select Register 1 AltDataOut 3 Output Driver 11 AltDataOut 2 10 AltDataOut1 Pin 01 00 Data Data Register Out Input Driver In Schmitt Trigger AltDataIn Pad AnalogIn Figure 20 Data Sheet General Structure of a Bidirectional Port Pin 39 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description Figure 21 shows the structure of an input-only port pin. Each P2 pin can only function in input mode. Register P2_DIR is provided to enable or disable the input driver. When the input driver is enabled, the actual voltage level present at the port pin is translated into a logic 0 or 1 via a Schmitt-Trigger device and can be read via register. Each pin can also be programmed to activate an internal weak pull-up or pull-down device. The analog input (Analog In) bypasses the digital circuitry and Schmitt-Trigger device for direct feed-through to the ADC1 input channel. Internal Bus PUDSEL Pull-up/Pull-down Select Register Pull-up/Pull-down Control Logic PUDEN Pull-up/Pull-down Enable Register Pull Device In Data Input Driver Pin Data Register Schmitt Trigger Pad AltDataIn AnalogIn Figure 21 Data Sheet General Structure of an Input Port Pin 40 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.11 Timer 0 and Timer 1 Timer 0 and Timer 1 can function as both, timers or counters. When functioning as a timer, Timer 0 and Timer 1 are incremented with every machine cycle, i.e. every 2 input clocks (or 2 PCLKs). When functioning as a counter, Timer 0 and Timer 1 are incremented in response to a 1-to-0 transition (falling edge) at its respective external input pins, T0 or T1. Timer 0 and Timer 1 are fully compatible and can be configured in four different operating modes to use in a variety of applications, see Table 6. In modes 0, 1 and 2, the two timers operate independently, but in mode 3, their functions are specialized. Table 6 Timer 0 and Timer 1 Modes Mode Operation 0 13-Bit-timer The timer is essentially an 8-Bit counter with a divide-by-32 prescaler. This mode is included solely for compatibility with Intel 8048 devices. 1 16-Bit-timer The timer registers, TLx and THx, are concatenated to form a 16-Bit counter. 2 8-Bit timer with auto-reload The timer register TLx is reloaded with a user-defined 8-Bit value in THx upon overflow. 3 Timer 0 operates as two 8-Bit timers The timer registers, TL0 and TH0, operate as two separate 8-Bit counters. Timer 1 is halted and retains its count even if enabled. Data Sheet 41 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.12 Timer 2 and Timer 21 Timer 2 and Timer 21 are 16-Bit general purpose timers that are fully compatible and have two modes of operation, a 16-Bit auto-reload mode and a 16-Bit one channel capture mode, see Table 7. As a timer, the timers count with an input clock of PCLK/12 (if prescaler is disabled). As a counter, they count 1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for the count is PCLK/24 (if prescaler is disabled). Table 7 Timer 2 Modes Mode Description Auto-reload Up/Down Count Disabled • Count up only • Start counting from 16-Bit reload value, overflow at FFFFH • Reload event configurable for trigger by overflow condition only, or by negative/positive edge at input pin T2EX as well • Programmable reload value in register RC2 • Interrupt is generated with reload events. Auto-reload Up/Down Count Enabled • Count up or down, direction determined by level at input pin T2EX • No interrupt is generated • Count up – Start counting from 16-Bit reload value, overflow at FFFFH – Reload event triggered by overflow condition – Programmable reload value in register RC2 • Count down – Start counting from FFFFH, underflow at value defined in register RC2 – Reload event triggered by underflow condition – Reload value fixed at FFFFH Channel capture • • • • • • • Data Sheet Count up only Start counting from 0000H, overflow at FFFFH Reload event triggered by overflow condition Reload value fixed at 0000H Capture event triggered by falling/rising edge at pin T2EX Captured timer value stored in register RC2 Interrupt is generate with reload or capture event 42 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.13 Timer 3 Timer 3 can function as timer or counter. When functioning as a timer, Timer 3 is incremented in periods based on the system clock. When functioning as a counter, Timer 3 is incremented in response to a 1-to-0 transition (falling edge) at its respective input. Timer 3 can be configured in four different operating modes to use in a variety of applications, see Table 8. Table 8 Timer 3 Modes Mode Sub-Mode Operation 0 - 13-Bit Timer The timer is essentially an 8-Bit counter with a divide-by-32 prescaler. This mode is included solely for compatibility with Intel 8048 devices. 1 a 16-Bit Timer The timer registers, TLx and THx, are concatenated to form a 16-Bit counter. 1 b 16-Bit Timer The timer registers, TLx and THx, are concatenated to form a 16-Bit counter, which is triggered by the PWM Unit to enable a single shot measurement on a preset channel with the measurement unit. 1 c 16-Bit Timer The timer registers, TLx and THx, are concatenated to form a 16-Bit counter, which is triggered by the PWM Unit to enable the LIN Baudrate Measurement. 2 - 8-Bit Timer with Auto-reload The timer register TLx is reloaded with a user-defined 8-Bit value in THx upon overflow. 3 a Timer 3 operates as Two 8-Bit Timers The timer registers, TL3 and TH3, operate as two separate 8-Bit counters. 3 b Timer 3 operates as Two 8-Bit Timers The timer registers, TL3 and TH3, operate as two separate 8-Bit counters. In this mode the 100 kHz Low Power Clock can be measured. TL3 acts as an edge counter for the clock edges and TH3 as an counter which counts the time between the edges. Data Sheet 43 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.14 Capture/Compare Unit 6 (CCU6) The CCU6 unit is made up of a Timer T12 block with three capture/compare channels and a Timer T13 block with one compare channel. The T12 channels can independently generate PWM signals or accept capture triggers, or they can jointly generate control signal patterns to drive AC-motors or inverters. A rich set of status Bits, synchronized updating of parameter values via shadow registers, and flexible generation of interrupt request signals provide means for efficient software-control. Note: The capture/compare module itself is named CCU6 (capture/compare unit 6). A capture/compare channel inside this module is named CC6x. Timer 12 Block Features • • • • • • • • • • • Three capture/compare channels, each channel can be used either as capture or as compare channel Generation of a three-phase PWM supported (six outputs, individual signals for High Side and Low Side Switches) 16-Bit resolution, maximum count frequency = peripheral clock Dead-time control for each channel to avoid short-circuits in the power stage Concurrent update of T12 registers Center-aligned and edge-aligned PWM can be generated Single-shot mode supported Start can be controlled by external events Capability of counting external events Multiple interrupt request sources Hysteresis-like control mode Timer 13 Block Features • • • • • • • • One independent compare channel with one output 16-Bit resolution, maximum count frequency = peripheral clock Concurrent update of T13 registers Can be synchronized to T12 Interrupt generation at period-match and compare-match Single-shot mode supported Start can be controlled by external events Capability of counting external events Data Sheet 44 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description Additional Specific Functions • • • • • • • • Block commutation for brushless DC-drives implemented Position detection via hall sensor pattern Noise filter supported for position input signals Automatic rotational speed measurement and commutation control for block commutation Integrated error handling Fast emergency stop without CPU load via external signal (CTRAP) Control modes for multi-channel AC-drives Output levels can be selected and adapted to the power stage The Timer T12 can work in capture and/or compare mode for its three channels. The modes can also be combined (e.g. a channel works in compare mode, whereas another channel works in capture mode). The Timer T13 can work in compare mode only. The multi-channel control unit generates output patterns which can be modulated by T12 and/or T13. The modulation sources can be selected and combined for the signal modulation. CCU6 Module Kernel Compare CC63 Compare Interrupt Control 1 SR[3:0] 3 2 2 2 Trap Input T13 Trap Control Output Select Start fCC 6 Hall Input 1 Multichannel Control Output Select CC62 DeadTime Control Compare 1 Compare Clock Control CC61 Compare T13SUSP T12 1 Capture Debug T12 SUSP Suspend CC60 3 1 CTRAP CCPOS2 CCPOS1 CCPOS0 CC62 COUT62 CC61 COUT61 CC60 COUT60 COUT63 T13HR T12HR Input / Output Control Port Control CCU6_MCB05506+ Figure 22 Data Sheet CCU6 Block Diagram 45 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.15 UART The UART provides a full-duplex asynchronous receiver/transmitter, i.e. it can transmit and receive simultaneously. It is also receive-buffered, i.e. it can commence reception of a second Byte before a previously received Byte has been read from the receive register. However, if the first Byte still has not been read by the time reception of the second Byte is complete, one of the Bytes will be lost. The serial port receive and transmit registers are both accessed at Special Function Register (SFR) SBUF. Writing to SBUF loads the transmit register, and reading SBUF accesses a physically separate receive register. UART Features • • • • • • Full-duplex asynchronous modes – 8-Bit or 9-Bit data frames, LSB first – fixed or variable baud rate Receive buffered Multiprocessor communication Interrupt generation on the completion of a data transmission or reception Baud-rate generator with fractional divider for generating a wide range of baud rates Hardware logic for break and synch Byte detection UART Modes The UART can be used in four different modes. In mode 0, it operates as an 8-Bit shift register. In mode 1, it operates as an 8-Bit serial port. In modes 2 and 3, it operates as a 9-Bit serial port. The only difference between mode 2 and mode 3 is the baud rate, which is fixed in mode 2 but variable in mode 3. The variable baud rate is set by the underflow rate on the dedicated baud-rate generator. The different modes are selected by setting Bits SM0 and SM1 to their corresponding values, as shown in Table 9. Table 9 UART Modes SM0 SM1 0 0 Mode 0: 8-Bit shift register fPCLK/2 0 1 Mode 1: 8-Bit shift UART Variable 1 0 Mode 2: 9-Bit shift UART fPCLK/64 1 1 Mode 3: 9-Bit shift UART Variable Data Sheet Operating Mode Baud Rate 46 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.16 LIN Transceiver The LIN module is a transceiver for the Local Interconnect Network (LIN) compliant to the standards LIN 1.3, LIN 2.0 and LIN 2.1. It operates as a bus driver between the protocol controller and the physical network. The LIN bus is a single wire, bi-directional bus typically used for in-vehicle networks, using baud rates between 2.4 kbps and 20 kbps. Additionally baud rates up to 40 kBaud are implemented. The LIN module offers several different operation modes, including a Sleep Mode and the normal operation mode. The integrated slope control allows to use several data transmission rates with optimized EMC performance. For data transfer at the end of line, a Flash Mode up to 115 kBaud is also implemented. VS LIN Transceiver 30 k XSFR LIN CTRL Driver LIN-FSM TxD STATUS GND_LIN Transmitter CTRL STATUS + Curr. Limit. + TSD Filter Filter RxD Receiver LIN_Wake Sleep Comparator GND_LIN Figure 23 LIN Transceiver Block Diagram 3.17 High-Speed Synchronous Serial Interface The High-Speed Synchronous Serial Interface (SSC) supports full-duplex and half-duplex synchronous communication. The serial clock signal can be generated by the SSC internally (master mode), using its own 16Bit baud-rate generator, or can be received from an external master (slave mode). Data width, shift direction, clock polarity and phase are programmable. This allows communication with SPI-compatible devices or devices using other synchronous serial interfaces. Features • • • Master and slave mode operation – Full-duplex or half-duplex operation Transmit and receive buffered Flexible data format Data Sheet 47 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description • • • – Programmable number of data Bits: 2 to 8 Bits – Programmable shift direction: LSB or MSB shift first – Programmable clock polarity: idle low or high state for the shift clock – Programmable clock/data phase: data shift with leading or trailing edge of the shift clock Variable baud rate Compatible with Serial Peripheral Interface (SPI) Interrupt generation – On a transmitter empty condition – On a receiver full condition – On an error condition (receive, phase, baud rate, transmit error) Data is transmitted or received on lines TXD and RXD, which are normally connected to the pins MTSR (Master Transmit/Slave Receive) and MRST (Master Receive/Slave Transmit). The clock signal is output via line MS_CLK (Master Serial Shift Clock) or input via line SS_CLK (Slave Serial Shift Clock). Both lines are normally connected to the pin SCLK. Transmission and reception of data are double-buffered. Figure 24 shows all functional relevant interfaces associated with the SSC Kernel. f hw _clk Address Decoder EIR Data Sheet MTSRA MTSRB MRST RIR TIR BPI Interface Figure 24 MRSTA MRSTB MTSR Master Slave Interrupt Control SSC Module ( Kernel ) Master f cfg_ clk Slave Cloc k Control Module Port Control SCLKA SCLKB SCLK Product Interface SSC Interface Diagram 48 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.18 Measurement Unit The measurement unit is a functional unit that comprises the following associated sub-modules: • • • • • • • 1 x 8 Bit ADC (ADC2) with 10 inputs. 5 are for single ended input signals and 5 are for differential input signals. Monitoring inputs voltage attenuators with two selectable attenuation settings: divide by 4 and divide by 6 Supply voltage attenuators with attenuation of VBAT_SENSE, VS, VDDP and VDDC. VBG monitoring of 8-Bit ADC (ADC2) to guarantee functional safety requirements. Low Side Switch current sensing of LS1 and LS2. Allows a scalable overcurrent pre warning. Temperature sensor for monitoring the chip temperature and Low Side Switches temperature. Supplement block with reference voltage generation, bias current generation, voltage buffer for Flash reference voltage, voltage buffer for analog module reference voltage and test interface. Table 10 Measurement functions and associated modules Module Name Modules Functions Central Functions Bandgap reference circuit Unit The bandgap-reference sub-module provides two reference voltages 1. a trimmable reference voltage for the 8-Bit ADC. A local dedicated bandgap circuit is implemented to avoid deterioration of the reference voltage arising e.g. from crosstalk or ground voltage shift. 2. the reference voltage for the Flash module 8-Bit ADC (ADC2) 8-Bit ADC module with 10 multiplexed inputs 1. 5 single-ended inputs 0 ... 1.23V 2. 5 differential inputs 0 ... 1.23V (allocation see following overview figure) 10-Bit ADC (ADC1) 10-Bit ADC module including analog 1. VBAT_SENSE measurement on channel 0 of ADC1. 2. VS measurement on channel 2 of ADC1. test bus interface - part of µC 3. MONx measurement on channel 6 of ADC1. subsystem 4. 5 additional (5V) analog inputs from Port 2. Supply Voltage Attenuator Resistive supply voltage attenuator Scales down the supply voltages of the system to the input voltage range of ADC1 and ADC2. Monitoring Input Attenuator Resistive attenuator for (HV) Scales down 5 monitoring input voltages to the input voltage range of the ADC1. Central Temperature Low Side Switch Temperature Sensor Temperature sensor readout with two multiplexed ∆Vbe sensing elements Generates outputs voltage which is a linear function of the local chip (junction) temperature. Measurement Core Module Digital signal processing and ADC control unit 1. Generates the control signal for the 8-Bit ADC2 and the synchronous clock for the switched capacitor circuits, 2. Performs digital signal processing functions and provides status outputs for interrupt generation. The structure of the measurement functions module is shown in Figure 29. Data Sheet 49 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description VAREF VS * 0.252 CH0 5V P2.1 CH1 * 0.252 CH2 UDIG VREF P2.3 CH3 P2.4 CH4 P2.5 CH5 MUX A D 10 / SFR ADC 1 CH6 CH7 P2.7 10 Bit ADC + UDIG MON1 * 0,25 (0,166 ) MON2 * 0,25 (0,166 ) MON3 * 0,25 (0,166 ) MON4 * 0,25 (0,166 ) MON5 * 0,25 (0,166 ) VBAT_SENSE M U X Measurement-Unit * 0.063 CH0 * 0.063 CH1 VDDP * 0.2 CH2 VDDC * 0.687 1. 23 V CH3 VBG DPP CH4 MUX n.u. A D 8 / XSFR CH5 Low Side 1 CH6 Low Side 2 CH7 TSENSE 1 ADC 2 CH8 TSENSE 2 CH9 Measurement Core Figure 25 Data Sheet TLE9832-2 Measurement Unit-Overview 50 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.19 Measurement Core Module (incl. ADC2) The basic function of this block is the digital postprocessing of several analog digitized measurement signals by means of filtering, level comparison and interrupt generation. The measurement postprocessing block is built of ten identical channel units attached to the outputs of the 10-channel 8-Bit ADC (ADC2). It processes ten channels, where the channel sequence and prioritization is programmable within a wide range. Features • • • • • 10 individually programmable channels split into two groups of user configurable and non user configurable Individually programmable channel prioritization scheme for measurement unit Two independent filter stages with programmable low-pass and time filter characteristics for each channel Two channel configurations: – Programmable upper- and lower trigger thresholds comprising a fully programmable hysteresis – Two individually programmable trigger thresholds with limit hysteresis settings Individually programmable interrupts and status for all channel thresholds TSENSE_SEL 4 / MUX_SEL<3:0> Channel Controller (Sequencer) ADC2 - XSFR VBAT_SENSE CH0 VS CH1 VDDP CH2 VDDC CH3 VBG CH4 n.u. CH5 LS1 CH6 LS2 CH7 TS1 CH8 TS2 CH9 TSENSE Figure 26 Data Sheet Digital Signal Processing 1st Order IIR ADC2 VREF MUX A D 8 / Calibration Unit: y= a + (1+b)*x 8 / 8 / TH_UP_CHx TH_LOW_CHx + + 1 / +/- UP_X_STS 1 / +/- LOW_X_STS Measurement Core Module Block Diagram 51 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.20 Analog Digital Converter (ADC1) The TLE9832-2 includes a high-performance 10-Bit Analog-to-Digital Converter (ADC1) with eight multiplexed analog input channels. The ADC1 uses a successive approximation technique to convert the analog voltage levels from up to eight different sources. The analog input channels of the ADC1 are available at AN1, AN3 - AN5, AN7. Features • • • • • • • • • • • • • • • • • • Successive approximation 8-Bit or 10-Bit resolution 8 analog channels Four independent result registers Result data protection for slow CPU access (wait-for-read mode) Single conversion mode Autoscan functionality Limit checking for conversion results Data reduction filter (accumulation of up to 2 conversion results) Two independent conversion request sources with programmable priority Selectable conversion request trigger Flexible interrupt generation with configurable service nodes Programmable sample time Programmable clock divider Cancel/restart feature for running conversions Integrated sample and hold circuitry Compensation of offset errors Low power modes Data Sheet 52 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.21 High Voltage Monitor Input This module is dedicated to monitor external voltage levels above or below a specified threshold or it can be used to detect a wake-up event at each high-voltage MON_IN pin in low-power mode. Each input is sensitive to an input level monitoring. It is available when the module is switched to Active Mode via the MON_int (internal signal name) output with a small filter delay of typical 2 µs. Features • • • • High-voltage input with VS/2 threshold voltage Edge sensitive wake capability for power saving modes Level sensitive wake-up feature configurable for transitions from low to high, high to low or both directions MON inputs can also be evaluated with ADC1 in Active Mode, using adjustable threshold values (see also Chapter 3.20). VS MONx MONx Filter MON_int Logic XSFR Figure 27 Data Sheet Monitoring Input Block Diagram 53 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.22 High Side Switches The High Side Switches are intended for resistive load connections (only small line inductance are allowed) leaving the ECU board. Typical applications are single or multiple LEDs of a dashboard or switch illumination or other loads that require a High Side Switch. A cyclic switch activation during Sleep Mode or Stop Mode of the system is also available. Features • • • • • • • • • Multi purpose High Side Switch for resistive load connections (only small line inductances are allowed) Over-current detection with thresholds: 8 mA (also used for on-state Open Load detection), 50 mA, 100 mA, 150 mA Cyclic switch activation in Sleep Mode and Stop Mode for cyclic sense support with reduced driver capability: max. 40 mA Open load detection in off mode with two different thresholds: Ground (0 V, for functional safety) and 0.67 * VS Off-state open load detection operates with two different test currents: 75 µA and 750 µA PWM capability up to 25 kHz (with disabled slew rate control only) Robust output for off ECU connection Slew rate control Selectable PWM source: PWM-Unit or CCU6 VS OCTH_SEL 8 mA 50 mA 100 mA 150 mA OC-Detection CyclicDriver XSFR ON Driver OLTH_SEL HS 0V 0.67*Vs OL-Detection 6.8 nF High Side Figure 28 Data Sheet High Side Switch Module Block Diagram 54 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.23 Low Side Switches The general purpose Low Side Switches are intended to control an on-board relay. They include an over-current detection function.The module is designed for on-board connections. Features • • • • • Multi purpose Low Side Switch – configurable over-current protection with automatic shutdown – configurable over-temperature protection with automatic shutdown Intended for relay driver – PWM relay driver – simple relay driver Integrated clamping PWM capability up to 25 kHz Selectable PWM source: PWM-Unit or CCU6 LS Clamp XSFR ON Driver 250 mA OC-Detection Low Side LSGND Figure 29 Data Sheet Module Block Diagram 55 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.24 PWM Generator The PWM generator provides up to two configurable PWM channels in order to drive the Low Side Switches LS1, LS2 and the High Side Switches HS1 and HS2 in a PWM mode. Features • • • • Programmable modulation frequency per channel Programmable duty-cycle per channel with glitch-free reprogramming PWM frequency up to 25 kHz Duty-cycle resolution from 0 % ... 100 % in steps of 0.5 % 0 1 2 3 ls1_pwm_o 0 1 2 3 ls2_pwm_o 0 1 2 3 hs1_pwm_o 0 1 2 3 hs2_pwm__o PWM 1 PWM2 XSFR ccu6_int_o TIMER 3 EXT_INT_O TO_TRINP_SEL ccu6_ch0__o ccu6_ch1__o 0 1 2 3 0 1 ap_t2ex__o 0 1 ap_t21ex__o MOD_PWM Figure 30 Data Sheet Module Block diagram of PWM module and included PWM switching matrix 56 Rev. 1.1, 2012-03-08 TLE9832-2 Functional Description 3.25 Debug System The On-Chip Debug Support (OCDS) provides the basic functionality required for software development and debugging of XC800 based systems.The OCDS design is based on the following principles: • • • • Use the built-in debug functionality of the XC800 Core Add a minimum of hardware overhead Provide support for most of the operations by a monitor program Use standard interfaces to communicate with the Host (a debugger) Features • • • • Set breakpoints on instruction address and on address range within the program memory Set breakpoints on internal RAM address range Support unlimited amount of software breakpoints in Flash / RAM code region Step through the program code The Monitor Mode Control (MMC) block at the center of the OCDS system brings together control signals and supports the overall functionality. The MMC communicates with the XC800 Core, primarily via the Debug Interface, and also receives reset and clock signals. After processing memory address and control signals from the core, the MMC provides proper access to the dedicated extra-memories: a Monitor ROM (holding the code) and a Monitor RAM (for work data and monitor stack). The OCDS system is accessed through the DAP, which is an interface dedicated exclusively for testing and debugging activities and is not normally used in an application. The dedicated TMS pin is used for external configuration and debugging control. Note: All the debug functionality described here can normally be used only after TLE9832-2 has been started in OCDS mode. Data Sheet 57 Rev. 1.1, 2012-03-08 TLE9832-2 Application Information 4 Application Information 4.1 Electric Drive Application Figure 31 shows the TLE9832-2 in an electric drive application setup controlling a DC-brush motor. The two Low Side Switches are controlling a relay each. An external FET allows to control the window lift motor with a PWM signal as generated with the CCU6 module of the microcontroller. Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. LIN LIN GND GND VBAT_SENSE V BAT MON1 MON2 MON3 MON4 MON5 VS HS LS1 M VDDC LS2 PWM VDDP VDDEXT Double Hall Sensor E.g. TLE4966 Figure 31 Data Sheet Speed Direction CCPOS0 CCPOS1 Simplified Application Diagram 58 Rev. 1.1, 2012-03-08 TLE9832-2 Application Information 4.2 Connection of N.C. Pins It is recommended to connect N.C. pins to GND unless otherwise specified. Since pins 10 and 46 are located next to high voltage pins (VS, MON5, LS1) these 2 N.C. pins can be also left unconnected in order to avoid huge current flow and damage of the system in case of short-circuit. 4.3 Connection of ADCGND Pin The ADCGND pin is chip-internal connected to reference ground. In order to provide full offset compensation and achieve full accuracy of ADC1 the ADCGND pin must not be connected to board ground. ADCGND pin should be connected with a capacitor (100 nF) to VAREF only. 4.4 Connection of Exposed Pad It is recommended to connect the exposed pad to GND. 4.5 Voltage Regulators-Blocking Capacitors Table 11 External Component Recommendation Symbol Function Comment CVS blocking capacitor at VS pin > 20 µF Elco + 100 nF Ceramic, ESR < 1 Ω CVDDP blocking capacitor at VDDP pin 1 µF typ. + 100 nF Ceramic, ESR < 1 Ω CVDDEXT blocking capacitor at VDDEXT pin 100 nF typ., ESR < 1 Ω CVDDC blocking capacitor at VDDC pin > 330 nF + 100 nF Ceramic, ESR < 1 Ω CVAREF blocking capacitor at VAREF pin > 100 nF, ESR < 1 Ω 4.6 Additional External Components Table 12 External Component Recommendation Symbol Function Comment CHSx HF blocking capacitor at HSx pin 6.8 nF RMONx resistor at MONx pin 1 kΩ RVBAT_ resistor at VBAT_SENSE pin 1 kΩ Data Sheet 59 Rev. 1.1, 2012-03-08 TLE9832-2 Application Information 4.7 ESD Tests Note: Test for ESD robustness to IEC61000-4-2 “gun test” (150pF, 330Ω) will be performed. The result and test condition can be provided in a test report Table 13 ESD “Gun Test” Performed Test Result ESD at pin LIN, versus GND > 6 ESD at pin LIN, versus GND < -6 Unit Remarks kV 1) positive pulse kV 1) negative pulse 1) ESD susceptibility “ESD GUN” according LIN EMC 1.3 Test Specification, Section 4.3 (IEC 61000-4-2). Tested by external test house (IBEE Zwickau). Data Sheet 60 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics 5 Electrical Characteristics This chapter includes all relevant Electrical Characteristics of the product TLE9832-2. 5.1 General Characteristics 5.1.1 Absolute Maximum Ratings Table 14 Absolute Maximum Ratings 1) Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Voltages Supply Pins Supply voltage VS VS -0.3 – 40 V – P_5.1.1 Voltage VDDP VDDP -0.3 – 5.5 V – P_5.1.2 Voltage VDDP VDDP -0.3 – 6.0 V t < 100ms, in Stop P_5.1.50 Mode only Output voltage VDDEXT VDDEXT -0.3 – 5.5 V – P_5.1.3 Voltage VDDC VDDC -0.3 – 1.6 V – P_5.1.4 Battery Voltage VBAT_SENSE VBAT_SENSE -27 – 40 V – P_5.1.5 Output voltage HS VHS -0.3 – 40 V – P_5.1.6 Input voltage at LIN VLIN -27 – 40 V – P_5.1.7 Input voltage MON_x VMON_X_maxrate -40 – 40 V – P_5.1.8 Input voltage LS VLS -0.3 – 40 V – P_5.1.9 Vin -0.3 – VDDP V VIN < 5.4V P_5.1.10 Voltages High Voltage Pins Voltages GPIOs Voltage on any port pin +0.3 Voltages Others VAREF -0.3 – 5.3 V – P_5.1.11 Junction Temperature Tj -40 – 150 °C – P_5.1.12 Storage Temperature Tstg -55 – 150 °C – P_5.1.13 VESD1 -2 – 2 kV EIA/JESD 22-A114B (1.5kΩ, 100pF) P_5.1.14 Input voltage VAREF Temperatures ESD Resistivity ESD Resistivity HBM all pins Data Sheet 61 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics Table 14 Absolute Maximum Ratings 1) Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Number Min. Typ. Max. ESD Resistivity HBM VESD2 pins HS, MON1, MON2, MON3, MON4, MON5, VS, VBATSENSE vs.GND -4 – 4 kV EIA/JESD 22-A114B (1.5kΩ, 100pF) P_5.1.15 VESD2 -6 – 6 kV EIA/JESD 22-A114B (1.5kΩ, 100pF) P_5.1.16 ESD Resistivity HBM pins LIN vs. LINGND 1) Not subject to production test, specified by design. Notes 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. 5.1.2 Functional Range Table 15 Functional Range Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Supply voltage in Active Mode Symbol VS_AM Values Unit Min. Typ. Max. 5.5 – 27 Note / Test Condition Number V – P_5.1.17 P_5.1.18 Min. Supply voltage in Active Mode with reduced functionality (Microcontroller / Flash with full operation) VS_AMmin 3.0 – 5.5 V 1) Supply voltage in VS_PD 3.0 – 27 V – P_5.1.19 Supply voltage in Sleep Mode VS_Sleep 3.0 – 27 V – P_5.1.20 P_5.1.21 Supply Voltage transients slew rate dVS/dt -1 – 1 V/µs 2) Output sum current for all GPIO pins IGPIO,sum – – 60 mA – P_5.1.22 5 – 40 MHz – P_5.1.23 -40 – 150 °C – P_5.1.24 3) sys Operating frequency f Junction Temperature Tj 1) Reduced functionality (e.g. cranking pulse) - not part of production test 2) Not subject to production test, specified by design 3) Specified function not guaranteed when limits are exceeded Data Sheet 62 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics 5.1.3 Current Consumption Table 16 Electrical Characteristics 1) Vs = 5.5V to 18V, TJ = -40°C to 85°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Number Current Consumption @VS pin Current Consumption in Active Mode IActive – 30 40 mA fsys = 40 MHz P_5.1.25 no loads on pins, LIN in recessive state, LS1, LS2, HS1 and HS2 off Current consumption in Stop Mode IPowerdown – 85 95 µA microcontroller in Stop Mode, LIN P_5.1.26 recessive state, MON1-5 disabled, GPIOs open (no loads) Current consumption in Stop Mode with cyclic sense enabled IPowerdown2 – – 110 µA microcontroller in Stop Mode, LIN recessive state, GPIOs open (no loads) Current consumption in Sleep Mode ISleep – 25 µA P_5.1.28 system in Sleep Mode, microcontroller not powered, LIN recessive state, MON1-5 disabled and GPIOs open (no loads) – P_5.1.27 1) Not subject to production test, specified by design. Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 5.1.4 Thermal Resistance Table 17 Thermal Resistance Parameter Junction to Ambient Symbol RthJA Values Min. Typ. Max. – 23.9 – 1) EIA/JESD 52_2, FR4, 76.2 x 114.3 x 1.5 mm; 35µ Cu, 5µ Sn; 300 mm Data Sheet 63 Unit Note / Test Condition Number K/W 1) P_5.1.29 2 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics 5.1.5 Timing Characteristics The transition times between the system modes are specified here. Generally the timings are defined from the time when the corresponding Bits in register PMCON0 are set until the sequence is terminated. Table 18 System Timing1) VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Wake-up over battery tstart – – 1 ms Battery ramp-up till MCU reset P_5.1.30 is released; Vs > 3V and RESET = ’1’ Sleep Mode Exit tsleep - exit – – 1 ms rising/falling edge of any wake-up signal (LIN, MONs) till MCU reset is released; P_5.1.31 Sleep Mode Entry tsleep - – – 330 µs – P_5.1.32 Stop Mode Exit tstop - exit – – 300 µs rising/falling edge of any wake-up signal (LIN, MONs, GPIOs) P_5.1.33 Stop Mode Entry tstop - entry – – 300 µs – P_5.1.34 entry 1) Not subject to production test, specified by design. Data Sheet 64 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics 5.2 Power Management Unit (PMU) This chapter includes all electrical characteristics of the Power Management Unit 5.2.1 PMU I/O Supply Parameters VDDP Table 19 Electrical Characteristics VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Specified Output Current Symbol IVDDP Values Min. Typ. Max. 0 – 60 Unit Note / Test Condition Number mA 1) P_5.2.1 Required Output Capacitance CVDDP 0.1 – 10 µF 1) Output Voltage including line regulation VDDPOUT 4.9 5.0 5.1 V Iload < 90mA;Vs > 5.5V P_5.2.3 Output Drop Vs V DDPout – – +400 mV Iload < 70mA; 3V < Vs < 5.5V P_5.2.4 Dynamic Load Regulation VVDDPLOR -50 – 50 mV 1) 2 ... 70mA; C=470nF; dI/dt=100mA/µs P_5.2.5 Dynamic Line Regulation VVDDPLIR – 25 mV 1) P_5.2.6 -25 ESR < 1Ω P_5.2.2 Vs= 5.5 ... 20V; dV/dt=5V/µs Power Supply Ripple Rejection PSSRVDDP 50 – – dB 1) Vs= 13.5V; f=0 ... 1KHz; Vr=2Vpp P_5.2.7 Over Voltage Detection VDDPOV 5.05 – 5.4 V Vs > 5.5V; Overvoltage leads to SUPPLY_NMI P_5.2.8 Under Voltage Reset VDDPUV 2.4 – 2.7 V Vs > 5.5V P_5.2.9 Over Current Shutdown IVDDPOC 90 – 180 mA – P_5.2.10 1) Not subject to production test, specified by design Data Sheet 65 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics 5.2.2 PMU Core Supply Parameters VDDC Table 20 Electrical Characteristics VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Specified Output Current IVDDC 0 – 30 mA 1) only used as internal core supply P_5.2.11 Required Output Capacitance CVDDC 0.1 – 10 µF 2) ESR < 1Ω P_5.2.12 Output Voltage including line regulation @ Active Mode VDDCOUT 1.44 1.5 1.56 V Iload < 40mA P_5.2.13 Output Voltage including line regulation @ Stop Mode VDDCOUT 0.89 0.95 1.15 V Iload < 200µA P_5.2.14 Dynamic Load Regulation VDDCLOR -50 – 50 mV 2) 2 ... 30mA; C=330nF; dI/dt=100mA/µs P_5.2.15 Dynamic Line Regulation VDDCLIR -25 – 25 mV 2) P_5.2.16 VDDP= 2.5 ... 5.5V; dV/dt=5V/µs Over Voltage Detection VDDCOV 1.61 – 1.68 V Overvoltage leads to P_5.2.17 SUPPLY_NMI Under Voltage Reset VDDVUV 1.10 – 1.19 V – P_5.2.18 Over Current Shutdown IVDDCOC 35 – 80 mA – P_5.2.19 1) VDDC is not intended to be used as external voltage regulator 2) Not subject to production test, specified by design Data Sheet 66 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics 5.2.3 VDDEXT Voltage Regulator 5.0V Table 21 Electrical Characteristics VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number P_5.2.20 Output Current IVDDEXT 0 – 20 mA 1) Output Capacitance CVDDEXT 10 – 1000 nF 1) Output Voltage including line regulation VDDEXT 4.9 5.0 5.1 V Iload < 20mA;Vs > Output Drop Vs-VDDEXT Dynamic Load Regulation VDDEXTLOR Dynamic Line Regulation VVDDEXTLIR Power Supply Ripple Rejection1) PSSRVDDEXT 50 ESR < 1 Ω P_5.2.21 P_5.2.22 5.5V – +400 mV 1) Iload < 20mA; 3V < Vs < 5.5V P_5.2.23 -50 – 50 mV 1) 2 ... 20mA; C=10nF; dI/dt=10mA/µs P_5.2.24 -25 – 25 mV Vs= 5.5 ... 20V; dV/dt=5V/µs P_5.2.25 – – dB Vs= 13.5V; f=0 ... P_5.2.26 1KHz; Vr=2Vpp Over Voltage Detection VVDDEXTOV 5.05 – 5.4 V Vs > 5.5V P_5.2.27 P_5.2.28 Under Voltage Detection VVDDEXTUV 2.6 – 2.9 V 2) Over Current Diagnostic IVDDEXTOC 25 – 70 mA – Vs > 3.0V P_5.2.29 1) Not subject to production test, specified by design 2) When the condition is met, the Bit VDDEXT_CTRL.VDDEXT_SHORT will be set Data Sheet 67 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics 5.3 System Clocks 5.3.1 Oscillators and PLL Table 22 Electrical Characteristics VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Unit Typ. Max. Note / Test Condition Number PMU Oscillators (Power Management Unit) fLP_CLK1 14 18 22 MHz this clock is used at startup and can be used in case the PLL fails P_5.3.1 Frequency of LP_CLK2 fLP_CLK2 70 100 130 kHz this clock is used for cyclic wake and cyclic sense P_5.3.2 MHz 1) Frequency of LP_CLK CGU Oscillator (Clock Generation Unit Microcontroller) Short term frequency deviation fTRIMST -1.5% 5 +1.5% with respect to nominal P_5.3.3 configured system frequency within one LIN message (< 10ms ... 100ms) Long term frequency deviation fTRIMLT -3.0% 5 +3.0% MHz with respect to nominal P_5.3.4 configured system frequency over lifetime and temperature CGU-OSC Start-up time TOSC – – 10 µs startup time OSC from Sleep P_5.3.5 Mode and Stop Mode, power supply stable PLL (Clock Generation Unit Microcontroller) VCO frequency range Mode 0 fVCO-0 48 – 112 MHz VCOSEL =”0” P_5.3.6 VCO frequency range Mode 1 fVCO-1 96 – 160 MHz VCOSEL =”1” P_5.3.7 Input frequency range fOSC 4 – 16 MHz – P_5.3.8 XTAL1 input freq. range fOSC 4 – 16 MHz – P_5.3.9 0.04687 – 80 MHz – P_5.3.10 Free-running frequency fVCOfree_0 Mode 0 – – 38 MHz VCOSEL =”0” P_5.3.11 Free-running frequency fVCOfree_1 Mode 1 – – 76 MHz VCOSEL =”1” P_5.3.12 Output freq. range fPLL Input clock high/low time thigh/low 10 – – ns – P_5.3.13 Peak period jitter tjp -500 – 500 ps for K=1 P_5.3.14 Data Sheet 68 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics Table 22 Electrical Characteristics VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Accumulated jitter jacc – – 5 ns for K=1 P_5.3.15 lock-in time TL – – 200 µs – P_5.3.16 1) VDDC = 1.5 V, Tj = 25°C 5.3.2 External Clock Parameters XTAL1, XTAL2 Table 23 Functional Range VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Max. Unit Note / Test Condition -1.7 + VDDC – 1.7 V 1) P_5.3.17 0.3 x VDDP – – V 2) Peak-to-peak voltage P_5.3.18 0 V < VIN < VDDC P_5.3.19 Min. Input voltage range limits for signal on XTAL1 VIX1_SR Input voltage (amplitude) on VAX1_SR XTAL1 Typ. Number XTAL1 input current IIL – – ±20 µA Oscillator frequency fOSC 4 – 24 MHz Clock signal P_5.3.20 Oscillator frequency fOSC 4 – 16 MHz Crystal or Resonator P_5.3.21 High time t1 6 – – ns – P_5.3.22 Low time t2 6 – – ns – P_5.3.23 Rise time t3 – 8 8 ns – P_5.3.24 Fall time t4 – 8 8 ns – P_5.3.25 1) Overload conditions must not occur on pin XTAL1. 2) The amplitude voltage VAX1 refers to the offset voltage VOFF. This offset voltage must be stable during the operation and the resulting voltage peaks must remain within the limits defined by VIX1. Data Sheet 69 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics 5.4 Flash Parameters This chapter includes the parameters for the 36 kByte embedded flash module. Table 24 Flash Characteristics 1) VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Number Test Condition Min. Typ. Max. 3 3.5 ms – P_5.4.1 4 4.5 ms – P_5.4.2 1,000 erase / P_5.4.3 program cycles Programming time per 128 Byte page tPR – 2) Erase time per sector/page tER – 2) Data retention time tRET 20 – – years Flash erase endurance for user sectors NER 30 – – kcycles Data retention time 5 years P_5.4.4 1) Not subject for production test, specified by design 2) Programming and erase times depend on the internal Flash clock source. The control state machine needs a few system clock cycles. This requirement is only relevant for extremely low system frequencies. Data Sheet 70 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics 5.5 Parallel Ports (GPIO) 5.5.1 Functional Range Table 25 Functional Range VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. IOH , IOL – Output current on any pin Max output current for all GPIOs Imax – Typ. Max. – 20 – 60 Unit Note / Test Condition Number mA 1) 2) P_5.5.1 mA 1) 2) P_5.5.2 1) One of these limits must be kept. 2) Not subject to production test, specified by design 5.5.2 DC Parameters These parameters apply to the IO voltage range, 4.5 V ≤ VDDP ≤ 5.5 V. Note: Operating Conditions apply. Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current IOV. Table 26 DC Characteristics VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Input low voltage (all except XTAL1) VIL -0.3 – 0.3 x VDDP V – P_5.5.3 Input high voltage (all except XTAL1) VIH 0.7 x VDDP – VDDP + 0.3 V – P_5.5.4 Input Hysteresis1) HYS 0.11 x VDDP – – V Series resistance P_5.5.5 =0Ω Output low voltage VOL – 1.0 V 2) IOL ≤ IOLmax P_5.5.6 V 2) IOL ≤ 3) P_5.5.7 IOH ≥ IOHmax VOL Output low voltage 4) – – – 0.4 IOLnom Output high voltage VOH VDDP - 1.0 – – V 2) Output high voltage VOH VDDP - 0.4 – – V 2)3) Input leakage current (Port 2) IOZ1 -400 – +400 nA TJ ≤ 85°C, 0 V < VIN < VDDP P_5.5.10 Input leakage current (all other)5) IOZ2 -5 – +5 µA TJ ≤ 85°C, 0.45 V < VIN < VDDP P_5.5.11 Data Sheet 71 IOH ≥ IOHnom P_5.5.8 P_5.5.9 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics Table 26 DC Characteristics VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Input leakage current (all other) IOZ2 -15 – +15 µA TJ ≤ 150°C, 0.45 V < VIN < VDDP P_5.5.12 Pull level keep current IPLK -240 – +240 µA 6) VPIN ≥ VIH (up) VPIN ≤ VIL (dn) P_5.5.13 Pull level force current IPLF -1.5 – +1.5 mA 6) VPIN ≤ VIL (up) VPIN ≥ VIH (dn) P_5.5.14 Pin capacitance (digital inputs/outputs) CIO – – 10 pF – P_5.5.15 1) Not subject to production test, specified by design. 2) The maximum deliverable output current of a port driver depends on the selected output driver mode. The limit for pin groups must be respected. 3) As a rule, with decreasing output current the output levels approach the respective supply level (VOL→GND, VOH→VDDP). However, only the levels for nominal output currents are verified. 4) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is determined by the external circuit. 5) The given values are worst-case values. In production test, this leakage current is only tested at 125°C; other values are ensured by correlation. For derating, please refer to the following descriptions: Leakage derating depending on temperature (TJ = junction temperature [°C]): IOZ = 0.05 × e(1.5 + 0.028×TJ) [μA]. For example, at a temperature of 95°C the resulting leakage current is 3.2 μA. Leakage derating depending on voltage level (∆V = VDDP - VPIN [V]): IOZ = IOZtempmax - (1.6 × ∆V) [μA] This voltage derating formula is an approximation which applies for maximum temperature. 6) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level: VPIN ≥ VIH for a pull-up; VPIN ≤ VIL for a pull-down. Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull device: VPIN ≤ VIL for a pull-up; VPIN≥ VIH for a pull-down. These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general purpose IO pins. Data Sheet 72 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics Table 27 Current Limits for Port Output Drivers1) Port Output Driver Mode Number Maximum Output Current Nominal Output Current (IOLmax , - IOHmax) VDDP ≥ 4.5V VDDP < 4.5V (IOLnom , - IOHnom) VDDP ≥ 4.5V VDDP < 4.5V Strong Driver 7.5 mA 7.5 mA 2.5 mA 2.5 mA P_5.5.16 Medium Driver 4 mA 2.5 mA 1.0 mA 1.0 mA P_5.5.17 Weak Driver 0.5 mA 0.5 mA 0.1 mA 0.1 mA P_5.5.18 1) Not subject to production test, specified by design. Note: Stresses above the values listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for an extended time may affect device reliability. During absolute maximum rating overload conditions (VIN > VDDP or VIN < GND) the voltage on VDDP pins with respect to ground (GND) must not exceed the values defined by the absolute maximum ratings. Data Sheet 73 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics 5.6 LIN Transceiver 5.6.1 Electrical Characteristics Table 28 Electrical Characteristics LIN Transceiver Vs = 5.5V - 18V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Unit Note / Test Condition Number Max. Bus Receiver Interface Receiver threshold voltage, Vth_dom recessive to dominant edge Receiver dominant state VBUSdom -27 Receiver threshold voltage, Vth_rec dominant to recessive edge Receiver recessive state 0.4 ×VS 0.45 ×VS 0.53 x VS V VBUSrec 0.47 x VS SAE J2602 P_5.6.1 0.4 ×VS V LIN Spec 2.1 (Par. 17) P_5.6.2 0.55 ×VS 0.6 ×VS V SAE J2602 P_5.6.3 – 0.6 ×VS – 1) LIN Spec 2.1 (Par. 18) P_5.6.4 0.525 × VS V 2) LIN Spec 2.1 (Par. 19) P_5.6.5 Receiver center voltage VBUS_CN 0.475 × VS T Receiver hysteresis VHYS 0.07 VS 0.12 ×VS 0.175 × VS V 3) LIN Spec 2.1 (Par. 20) P_5.6.6 Wake-up threshold voltage VBUS,wk 0.4 ×VS 0.5 ×VS 0.6 ×VS V – P_5.6.7 3 – 15 µs To achieve the required P_5.6.8 wake-up time from 30 µs to 150 µs according to LIN spec., an additional digital filter is added (see PMU chapter) 0.8 ×VS – VS V VTxD = high Level P_5.6.9 40 100 150 mA VBUS = 13.5 V P_5.6.10 -70 – µA VS = 0 V; VBUS = -12 V; P_5.6.11 Dominant time for bus wake- tWK,bus up 0.5 ×VS 1.15 ×VS V Bus Transmitter Interface Bus recessive output voltage VBUS,ro Bus short circuit current IBUS,sc Leakage current IBUS_NO_ -1000 LIN Spec 2.1 (Par. 15) GND Leakage current IBUS_NO_ – 10 20 µA VS = 0 V; VBUS = 18 V; P_5.6.12 LIN Spec 2.1 (Par. 16) BAT Leakage current IBUS_PAS -1 Leakage current IBUS_PAS – – – mA VS = 18 V; VBUS = 0 V; LIN Spec 2.1 (Par. 13) P_5.6.13 – 20 µA VS = 8 V; VBUS = 18 V; P_5.6.14 _dom LIN Spec 2.1 (Par. 14) _rec Bus pull-up resistance RBUS 20 30 47 kΩ Normal mode LIN Spec P_5.6.15 2.1 (Param. 26) LIN input capacity CLIN_IN – 15 30 pF 4) Data Sheet 74 P_5.6.80 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics Table 28 Electrical Characteristics (cont’d) LIN Transceiver Vs = 5.5V - 18V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Unit Note / Test Condition Number Max. AC Characteristics - Transceiver Normal Slope Mode td(L),R 0.1 1 6 µs (LIN Spec 2.1; Param. 31) P_5.6.16 td(H),R Propagation delay bus recessive to RxD HIGH 0.1 1 6 µs (LIN Spec 2.1; Param. 31) P_5.6.17 µs tsym,R = td(L),R - td(H),R;(LIN P_5.6.18 Spec 2.1; Param. 31) Propagation delay bus dominant to RxD LOW Receiver delay symmetry tsym,R -2 – 2 Duty cycle D1 Normal Slope Mode (for worst case at 20 kBit/s) tduty1 0.396 – – 5) duty cycle 1 THRec(max) = 0.744 ×VS; THDom(max) = 0.581 ×VS; VS = 5.5 … 18 V; tbit = 50 µs; D1 = tbus_rec(min)/2 tbit; LIN Spec 2.1 (Par. 27) P_5.6.19 Duty cycle D2 Normal Slope Mode (for worst case at 20 kBit/s) tduty2 – – 0.581 6) duty cycle 2 THRec(max) = 0.422 ×VS; THDom(max) = 0.284 ×VS; VS = 5.5 … 18 V; tbit = 50 µs; D2 = tbus_rec(max)/2 tbit; LIN Spec 2.1 (Par. 28) P_5.6.20 AC Characteristics - Transceiver Low Slope Mode td(L),R 0.1 1 6 µs (LIN Spec 2.1; Param. 31) P_5.6.21 td(H),R Propagation delay bus recessive to RxD HIGH 0.1 1 6 µs (LIN Spec 2.1; Param. 31) P_5.6.22 -2 – 2 µs tsym,R = td(L),R - td(H),R; P_5.6.23 Propagation delay bus dominant to RxD LOW Receiver delay symmetry tsym,R (LIN Spec 2.1; Param. 32) Data Sheet 75 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics Table 28 Electrical Characteristics (cont’d) LIN Transceiver Vs = 5.5V - 18V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Number Duty cycle D3 (for worst case at 10,4 kBit/s) tduty1 0.417 – – 7) duty cycle 3 THRec(max) = 0.778 ×VS; THDom(max) = 0.616 ×VS; VS = 5.5 … 18 V; tbit = 96 µs; D3 = tbus_rec(min)/2 tbit; LIN Spec 2.1 (Par. 29) P_5.6.24 Duty cycle D4 (for worst case at 10,4 kBit/s) tduty2 – – 0.590 duty cycle 4 THRec(max) = 0.389 ×VS; THDom(max) = 0.251 ×VS; VS = 5.5 … 18 V; tbit = 96 µs; D4 = tbus_rec(max)/2 tbit; LIN Spec 2.1 (Par. 30) P_5.6.25 AC Characteristics - Transceiver Fast Slope Mode td(L),R 0.1 1 6 µs – P_5.6.26 td(H),R Propagation delay bus recessive to RxD HIGH 0.1 1 6 µs – P_5.6.27 -1 – 1 µs tsym,R = td(L),R - td(H),R; P_5.6.28 6) P_5.6.29 Propagation delay bus dominant to RxD LOW Receiver delay symmetry tsym,R Duty cycle D5 (for worst case at 40 kBit/s) tduty1 0.395 – – duty cycle 5 THRec(max) = 0.744 ×VS; THDom(max) = 0.581 ×VS; VS = 5.5 … 18 V; tbit = 25µs; D1 = tbus_rec(min)/2 tbit; Duty cycle D6 (for worst case at 40 kBit/s) tduty2 – – 0.581 6) 0.1 0.5 6 P_5.6.30 duty cycle 6 THRec(max)= 0.422 ×VS; THDom(max)= 0.284 ×VS; VS = 5.5 … 18 V; tbit = 25 µs; D2 = tbus_rec(max)/2 tbit; LIN Spec 2.1 (Par. 28) AC Characteristics - Flash Mode Propagation delay bus dominant to RxD LOW Data Sheet td(L),R 76 µs – P_5.6.31 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics Table 28 Electrical Characteristics (cont’d) LIN Transceiver Vs = 5.5V - 18V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Propagation delay td(H),R bus recessive to RxD HIGH Receiver delay symmetry tsym,R Values Unit Note / Test Condition Number Min. Typ. Max. 0.1 0.5 6 µs – P_5.6.32 -1.0 – 1.0 µs tsym,R = td(L),R - td(H),R; P_5.6.33 8) Duty cycle D7 tduty1 (for worst case at 115 kBit/s) for +1 µs Receiver delay symmetry 0.399 – – duty cycle D7 P_5.6.34 THRec(max) = 0.744 ×VS; THDom(max) = 0.581 ×VS; VS = 13.5 V; tbit = 8.7 µs; D7 = tbus_rec(min)/2 tbit; tduty2 Duty cycle D8 (for worst case at 115 kBit/s) for +1 µs Receiver delay symmetry – – 0.578 6) 6 12 20 TxD dominant time out ttimeout ms duty cycle 8 THRec(max) = 0.422 ×VS; THDom(max) = 0.284 ×VS;VS = 13.5 V; tbit = 8.7 µs; D8 = tbus_rec(max)/2 tbit; P_5.6.35 8) P_5.6.36 VTxD = 0 V 1) 2) 3) 4) 5) Maximum limit specified by design. VBUS_CNT = (Vth_dom +Vth rec)/2 VHYS = VBUSrec - VBUSdom This parameter is not subject to production test Bus load concerning LIN Spec 2.1: Load 1 = 1 nF / 1 kΩ = CBUS / RBUS Load 2 = 6.8 nF / 660 Ω = CBUS / RBUS Load 3 = 10 nF / 500 Ω = CBUS / RBUS 6) Bus loads: Load 1 = 1 nF / 1 kΩ = CBUS / RBUS 7) Bus load concerning LIN Spec 2.1: Load 1 = 1 nF / 1 kΩ = CBUS / RBUS Load 2 = 6.8 nF / 660 Ω = CBUS / RBUS Load 3 = 10 nF / 500 Ω = CBUS / RBUS 8) Timeout can be disabled optional Data Sheet 77 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics 5.7 High-Speed Synchronous Serial Interface The table below provides the SSC timing in the TLE9832-2. Table 29 SSC Master Mode Timing (Operating Conditions apply; CL = 50 pF) VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Unit Max. Note / Number Test Condition – – P_5.7.1 SCLK clock period t0 1) MTSR delay from SCLK t1 10 – – ns – P_5.7.2 MRST setup to SCLK t2 10 – – ns – P_5.7.3 MRST hold from SCLK t3 15 – – ns – P_5.7.4 2 * TSSC – 1) TSSCmin = TCPU = 1/fCPU. When fCPU = 24 MHz, t0 = 83.3 ns. TCPU is the CPU clock period. t0 SCLK1) t1 t1 MTSR1) t2 t3 Data valid MRST1) t1 1) This timing is based on the following setup: CON.PH = CON.PO = 0. SSC_Tmg1 Figure 32 Data Sheet SSC Master Mode Timing 78 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics 5.8 Measurement Unit 5.8.1 Analog Digital Converter 8-Bit Table 30 DC Specifications ADC 8 Bit VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Number Test Condition Resolution – – 8 – Bit – P_5.8.1 Offset error – -10 4 +10 mV – P_5.8.2 Gain single-ended input mode GSE – 1 – – P_5.8.3 Input voltage single-ended mode Vainp,Vainn 0 – VDD1V5_A V – P_5.8.4 Gain differential input mode GDF 1.24 – – – P_5.8.5 Common input voltage in differential mode Vicm VDDP/2 – Vicm=(Vainp + Vainn)/2 P_5.8.6 Gain error – -5 1.5 +5 %FSR – P_5.8.7 Differential nonlinearity (DNL) – -1.5 0.5 +1.5 LSB – P_5.8.8 Integral Nonlinearity (INL) – -3 ±1.5 3 LSB – P_5.8.9 0.5 0.6 +0.1 5.8.2 Measurement Unit (VBAT_SENSE - Supply Voltage Attenuator) Table 31 Supply voltage signal conditioning VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Unit Note / Test Condition Number Typ. Max. – 20 V Max. value corresponds P_5.8.10 to typ. ADC full scale input 289 380 kΩ PD_N=1 (on-state) P_5.8.11 – 1.0 µA PD_N=0 (off-state), VBAT_SENSE=13.5V P_5.8.12 Battery Voltage Measurement VBAT_SENSE Nominal operating input voltage range1) VS/BAT_SENSE Measurement input resistance Rin,VS/VBAT_SENS 200 Measurement input leakage current Ileak 3 E 0 Overall (calibrated) measurement accuracy after A/D-conversion2) VBAT_SENSE / Vs 8-bit ADC ∆VBATADC8B VBAT_SENSE / Vs 10-bit ADC ∆VBATADC10B Data Sheet -250 – 250 mV Vs= 5.5V to 18V, Tj = 40..85°C P_5.8.13 -200 – 200 mV Vs= 5.5V to 18V, Tj = 40..85°C P_5.8.14 79 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics Table 31 Supply voltage signal conditioning VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number VDD5_SENSE ∆VDDP_SENSE -150 – 150 mV – P_5.8.15 VDD1V5_SENSE ∆VDDC_SENSE -45 – 45 mV – P_5.8.16 1) This parameter is not subject to production test 2) The device is calibrated based on an external 1kΩ resistor 5.8.3 Measurement Functions Monitoring Input Voltage Attenuator Table 32 Monitoring input voltage attenuation VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Number Power Supply Input resistance1) RIN 300 400 500 kΩ PD_N=1 (on-state) VMON_X=0 P_5.8.17 to 18V if VMON_SEN_SEL_INRANGE =0 Input resistance RIN 250 – – kΩ P_5.8.18 VMON_X =0 to 28V if VMON_SEN_SEL_INRANGE =1 >200 kΩ under all other conditions – – 30 µs This time frame is valid from writing the corresponding selection register to proper settling of the voltage at channel 7 of the 10-Bit ADC P_5.8.19 Vs=5.5V to 18V, Tj = 40..85°C P_5.8.20 Timing Characteristics Analog Multiplexer Settling TMUXsettle Time Overall (calibrated) measurement accuracy after A/D-conversion VMONx 10-bit ADC ∆VMONxAD -200 – 200 C10B mV 1) Not subject to production test, specified by design. Data Sheet 80 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics 5.8.4 Temperature Sensor Module Table 33 Electrical Characteristics Temperature Sensor Module VS = 5.5 V to 27 V, Tj = -40° C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Unit Note / Test Condition Number °C – P_5.8.21 Max. Linear temperature range TRANGE -40 Output voltage VTEMP at T0=273 K (0°C) Mode 1 a – 0.4893 – V 1) DVBE_MODE=0 T=273K (0°C) P_5.8.22 Output voltage VTEMP at T0=273 K (0°C) Mode 2 a – 0.5365 – V DVBE_MODE=1 T0=273 K (0°C) P_5.8.23 Temperature sensitivity b in b Mode 1 – 1.685 – mV/K 1) P_5.8.24 Temperature sensitivity b Mode 2 b – 1.834 – mV/K DVBE_MODE=1 P_5.8.25 Accuracy_12) Acc_1 -10 – 10 °C -40°C < Tj < 125°C P_5.8.26 Accuracy_2 Acc_2 -15 – 15 °C 125°C < Tj < 175°C P_5.8.27 175 DVBE_MODE=0 1) Not subject to production test, specified by design 2) Accuracy with reference to on-chip temperature calibration measurement Data Sheet 81 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics 5.9 ADC - 10-Bit 5.9.1 VAREF 5.9.1.1 Functional Range Table 34 Functional Range VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol VAREF_IN VAREF input voltage Values Min. Typ. Max. Note / Test Condition 0 – VDDP+0.3 V – 5.9.1.2 Electrical Characteristics Table 35 10-Bit ADC - VAREF Unit Number P_5.9.1 VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Output Capacitance CVAREF 0.1 – 1 µF ESR < 1Ω P_5.9.2 Reference output voltage VAREF 4.95 5 5.05 V Vs > 5.5V P_5.9.3 P_5.9.4 P_5.9.5 DC Supply voltage rejection DCPSRVAREF 30 – – dB 1) Supply voltage ripple rejection ACPSRVAREF 26 – – dB 1) Vs= 13.5V; f=0 ... 1KHz; Vr=2Vpp Turn ON time tso – 200 µs 1) – P_5.9.6 Cext=100nF PD_N to 99.9% of final value (test setup: measure 1τ, calculate 5τ. 1) Not subject to production test, specified by design. Data Sheet 82 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics 5.9.2 Analog/Digital Converter Parameters These parameters describe the conditions for optimum ADC performance. Note: Operating Conditions apply. Table 36 A/D Converter Characteristics VS = 5.5 V to 27 V, Tj = -40° C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Analog reference supply Symbol VAREFSR Values Min. Typ. Max. Unit Note / Number Test Condition VAGND – VDDPA V 1) P_5.9.7 + 1.0 Analog reference ground VAGNDSR GND + 0.05 – 1.5 V 2) P_5.9.8 – VAREF V 3) P_5.9.9 MHz 4) P_5.9.10 - 0.05 Analog input voltage range VAIN VAGND Analog clock frequency fADCI 0.5 Conversion time for 10-bit result5) tC10 (13 + STC) (13 + STC) (13 + STC) – × tADCI × tADCI × tADCI + 2 x tSYS + 2 x tSYS + 2 x tSYS – P_5.9.11 Conversion time for 8-bit result tC8 (11 + STC) (11 + STC) (11 + STC) – × tADCI × tADCI × tADCI + 2 × tSYS + 2 × tSYS + 2 × tSYS – P_5.9.12 Wake-up time from analog Stop Mode, fast mode tWAF – – 4 µs 6) P_5.9.13 Wake-up time from analog Stop Mode, slow mode tWAS – – 15 µs 6) P_5.9.14 Total unadjusted error7) TUE -15 – + 15 LSB 1) – 20 VAREF = P_5.9.15 5.0 V±1% DNL error EADNLEA -2 – +2 LSB – P_5.9.16 INL error EAINLEA -5 – +5 LSB – P_5.9.17 Gain error EAGAINEA -10 – + 10 LSB – P_5.9.18 Offset error EAOFFEA -2 – +2 LSB – P_5.9.19 Total capacitance of an analog input CAINT – – 10 pF 6)8) Switched capacitance of an analog input CAINS – – 4 pF 6)8) P_5.9.21 Resistance of the analog input path RAIN – – 2 kΩ 6)8) P_5.9.22 Total capacitance of the reference input CAREFT – – 15 pF 6)8) P_5.9.23 Switched capacitance of the reference input CAREFS – – 7 pF 6)8) P_5.9.24 Resistance of the reference input path RAREF – – 2 kΩ 6)8) P_5.9.25 Data Sheet 83 P_5.9.20 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics 1)TUE is tested at VAREF = 5V±1%, VAGND = 0 V. It is verified by design for all other voltages within the defined voltage range. The specified TUE is valid only if VAREF and VAGND remain stable during the measurement time. 2) Only valid in case of external supplied reference voltage. 3) VAIN may exceed VAGND or VAREFx up to the absolute maximum ratings. However, the conversion result in these cases will be 000H or 3FFH, respectively. 4) The limit values for fADCI must not be exceeded when selecting the peripheral frequency and the prescaler setting. 5) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the digital result and the time to load the result register with the conversion result. 6) Not subject to production test, specified by design. 7) The total unadjusted error TUE is the maximum deviation from the ideal ADC transfer curve, not the sum of individual errors. All error specifications are based on measurement methods standardized by IEEE 1241.2000. 8) These parameter values cover the complete operating range. Under relaxed operating conditions (temperature, supply voltage) typical values can be used for calculation. At room temperature and nominal supply voltage the following typical values can be used: CAINTtyp = 12 pF, CAINStyp = 5 pF, RAINtyp = 1.0 kΩ, CAREFTtyp = 15 pF, CAREFStyp = 10 pF, RAREFtyp = 1.0 kΩ. Data Sheet 84 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics 5.10 High-Voltage Monitor Input Table 37 Electrical Characteristics VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. 0.4*Vs 0.5*Vs 0.6*Vs Unit Note / Test Condition Number V P_5.10.1 Input Pin characteristics Wake-up/monitoring threshold VMONth voltage Threshold hysteresis VMONth,hys 0.02*Vs 0.06*Vs 0.12*Vs V without external serial resistor Rs (with Rs: ∆V = IPD/PU * Rs); P_5.10.2 in all modes; without external serial resistor Rs (with Rs: ∆V = IPD/PU * Rs); Pull-up current IPU, MONx MONx_CTRL_STS.MONx_PU = high MONx_CTRL_STS.MONx_PD = low -20 -10 -1 µA 0 V < VMON_IN < Vs - 2 V P_5.10.3 Pull-up current IPU, MONx MONx_CTRL_STS.MONx_PU = high MONx_CTRL_STS.MONx_PD = high -20 -10 -1 µA 0.6*Vs < VMON_IN < Vs 2V P_5.10.4 IPD, MONx Pull-down current MONx_CTRL_STS.MONx_PU = low MONx_CTRL_STS.MONx_PD = high 4 10 18 µA 2 V < VMON_IN < Vs P_5.10.5 Pull-down current IPD, MONx MONx_CTRL_STS.MONx_PU = high MONx_CTRL_STS.MONx_PD = high 4 10 18 µA 2 V < VMON_IN < 0.4*Vs P_5.10.6 Input leakage current ILK,I MONx_CTRL_STS.MONx_PU = low MONx_CTRL_STS.MONx_PD = low -2 – 2 µA 0 V < VMON_IN < 28 V P_5.10.7 The Parameters of the analog measurement are listed in the chapter Measurement Interface. Data Sheet 85 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics 5.11 High Side Switches 5.11.1 Functional Range Table 38 Functional Range Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Nominal Operating Voltage VS 5.5 – 27 V – P_5.11.1 Current range for Sleep Mode / Stop Mode IHS max – – 40 mA Cyclic Sense Mode P_5.11.2 sleep_pd PWM frequency of HS with Slew Rate Control fPWM_W_SR 0 – 10 kHz 1) PWM frequency of HS without Slew Rate Control fPWM_W/O_SR 0 – 252) kHz 1) Frequency must be P_5.11.3 configured in the PWM Generator Frequency must be P_5.11.4 configured in the PWM Generator 1) Not subject to production test, specified by design. 2) referring to a 47ohm series resistor to charge an external power mos gate 5.11.2 Electrical Characteristics Table 39 Electrical Characteristics VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Number Min. Typ. Max. VHSxOUT -0.3 – VS V min. value referred to GND_A P_5.11.5 RON – – 20 Ω VS =5.5 to 27 V, P_5.11.6 Maximum ratings Output voltage Output HS ON-State Resistance Ids=100mA, higher resistance below VS =5.5V Output leakage Current Ileakage Output Slew Rate (rising) with SRraise_w_SR Slew Rate Control Data Sheet – – 2 µA 1 – 10 V/µs 10% to 90% of VS VS = 9 to 18V RL =300Ω1) 86 Output OFF 0 V < VXLO < VS; Tj < 85 °C P_5.11.7 P_5.11.8 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics Table 39 Electrical Characteristics (cont’d) VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Number Min. Typ. Max. -10 – -1 V/µs 90% to 10% of VS VS = 9 to 18V RL =300Ω1) P_5.11.9 Output Slew Rate (falling) with Slew Rate Control SRfall_w_SR Output Slew Rate (rising) without Slew Rate Control SRraise_w/o_SR 25 – 60 V/µs 10% to 90% of VS VS = 9 to 18V RL =300Ω1) P_5.11.10 Output Slew Rate (falling) without Slew Rate Control SRfall_w/o_SR –30 – -10 V/µs 90% to 10% of VS VS = 9 to 18V RL =300Ω1) P_5.11.11 Turn ON Delay time tIN-HS – – 3 µs ON = 1 to 10% of VS RL =300Ω P_5.11.12 Turn ON time tON 1 – 15 µs VS =13.5V HS_ON=1 to 90% of VS RL =300Ω Tj =25°C P_5.11.13 Turn OFF time tOFF 1 – 15 µs VS =13.5V HS_ON= 0 to 10% of VS RL =300Ω; Tj =25°C P_5.11.14 Load current limitation Ishort -1.2 – – A 1) VS =27V, VHS=0V, max duration 200 µs P_5.11.15 Overcurrent threshold 0 Iocth0 4 – 18 mA 1) HSx_OC_SEL =00 P_5.11.16 Overcurrent threshold 0 hysteresis Iocth0,hyst 2 – 5 mA 1) HSx_OC_SEL =00 P_5.11.17 Overcurrent threshold 1 Iocth1 50 – 75 mA HSx_OC_SEL =01 P_5.11.18 P_5.11.19 Over-current detection Overcurrent threshold 1 hysteresis Iocth1,hyst 5 – 15 mA 1) Overcurrent threshold 2 Iocth2 100 – 150 mA HSx_OC_SEL =10 P_5.11.20 Overcurrent threshold 2 hysteresis Iocth2,hyst 10 – 30 mA 1) P_5.11.21 Overcurrent threshold 3 Iocth3 150 – 220 mA HSx_OC_SEL =11 P_5.11.22 P_5.11.23 Overcurrent threshold 3 hysteresis Iocth3,hyst Overall over-current filter time tocft HSx_OC_SEL =01 HSx_OC_SEL =10 20 – 50 mA 1) 8 – 80 µs 1) P_5.11.24 VS =13.5V, RL =100Ω, HS_ON to OC_SD (including switchon time) 4 – 18 mA 1) HSx_OC_SEL =11 ON-state open load detection Open load threshold Data Sheet IOLONth 87 OL_EN = 1; HS_ON = 1 P_5.11.25 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics Table 39 Electrical Characteristics (cont’d) VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Number Min. Typ. Max. 1 – 0.5* VS 0.67 0.85* V *VS VS IOL_test; open load VOLhys 0.1* – V IOL_SEL = 1 P_5.11.28 Open load output current IOL_test -150 – -25 µA IOL_SEL = 0 P_5.11.29 Open load output current IOL_test -1.5 – -0.5 mA IOL_SEL = 1 P_5.11.30 ON-State Resistance RON,static – – 40 Ω Definition: differential resistance or resistance at 40 mA P_5.11.31 Output Slew Rate (rising) SRrise 1) 1 – – V/µs 10% to 90% of VS VS = 9 to 18V RL =300Ω 1) P_5.11.32 Output Slew Rate (falling) SRfall1) – – -1 V/µs 90% to 10% of VS VS = 9 to 18V RL =300Ω P_5.11.33 Delay Time CYCLIC_ON-HS tIN-CYC – – 2 µs ON =1 to 10% of VS RL=300Ω P_5.11.34 Hysteresis IOLONhys 4 mA 1) OL_EN = 1; HS_ON = 1 P_5.11.26 Off-state open load detection Open load voltage threshold Hysteresis VOLth1 0.3* VS P_5.11.27 activated; OLTH_SEL = 1 VS Cyclic sense mode Turn-ON time tON – – 15 µs VS =13.5V ON=1 to 90% RL =300Ω P_5.11.35 Turn-OFF time tOFF – – 15 µs VS =13.5V ON=0 to 10% of VS RL =300Ω; Tj=25°C P_5.11.36 1) Not subject to production test, specified by design. Data Sheet 88 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics 5.12 Low Side Switches 5.12.1 Functional Range Table 40 Functional Range Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Nominal Operating Voltage VS PWM Frequency of LS fPWM Values Unit Min. Typ. Max. 5.5 – 27 – 1) – 25 Note / Test Condition Number V – P_5.12.1 kHz 2) P_5.12.2 1) referring to a 47ohm series resistor to charge an external power mos gate 2) Not subject to production test, specified by design Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 5.12.2 Electrical Characteristics Table 41 Electrical Characteristics VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number P_5.12.3 Overcurrent Limitation ILSTyp 175 250 325 mA ON-State Resistance 150°C RON – – 10 Ω VS > 5.5 V, Ids =100mA, Tj = 150°C P_5.12.4 – 4 – Ω Tj = 25°C P_5.12.5 ON-State Resistance 25°C Leakage Current Ileakage – – 2 µA 0 V < VLS < VS; Tj < 85°C P_5.12.6 Turn ON Delay time, slow mode tdOn-LS – – 50 µs 1) P_5.12.7 Turn ON Delay time, PWM mode tdOn,f-LS LS_ON=1 to 0.9*Vs VS=13.5V, RL =270Ω – – 0.5 µs LS_ON=1 to 0.9*Vs VS=13.5V, RL =270Ω P_5.12.8 Turn ON fall time, PWM mode tONF,PWM – 1 1.25 µs VLS 0.9*Vs to 0.1*Vs VS=13.5V, RL =270Ω P_5.12.9 Turn ON fall time, slow mode tONF,Slow – 100 150 µs 1) VLS 0.9*Vs to 0.1*Vs VS=13.5V, RL =270Ω P_5.12.10 – – 50 µs 1) P_5.12.11 Turn OFF Delay time, slow mode tdOff-LS Data Sheet LS_ON=0 to 0.1*Vs VS=13.5V, RL =270Ω 89 Rev. 1.1, 2012-03-08 TLE9832-2 Electrical Characteristics Table 41 Electrical Characteristics (cont’d) VS = 5.5 V to 27 V, Tj = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Number Min. Typ. Max. – – 2 µs LS_ON=0 to 0.1*Vs VS=13.5V, RL =270Ω P_5.12.12 Turn OFF Rise time, PWM mode tOFFR,PWM – 1 1.25 µs VLS 0.1*Vs to 0.9*Vs; VS=13.5V, RL =270Ω P_5.12.13 100 150 µs 1) VLS 0.9*Vs to 0.9*Vs; VS=13.5V, RL =270Ω P_5.12.14 Turn OFF Delay time, PWM mode Turn OFF Rise time, slow mode tdOff,f-LS tOFFR,Slow – Minimum Duty Cycle Pulse Width tonMIN variation 1.5 2 3.5 µs ton(dig) = 2µs2) P_5.12.15 Typical (systematic) Pulse Width d tonTYP increase LS_ON to VLS – 1.25 – µs ton(dig) = 2µs2) P_5.12.16 Zener Clamp Voltage VAZ – 50 – V values are valid at Tj = 25°C P_5.12.17 Clamping Energy (repetitive) Eclamp – – 2 mJ 2) 1.000.000 cycles P_5.12.18 mJ 2) Tstart = 25°C P_5.12.19 mJ 2) 10 cycles, Tstart = 85°C P_5.12.20 Clamping Energy Clamping Energy (single), hot Eclamp Eclamp – – – 14 – 7 1) Static ON mode (no PWM) 2) Not subject to production test, specified by design Data Sheet 90 Rev. 1.1, 2012-03-08 TLE9832-2 Package Outlines Package Outlines 0.9 MAX. (0.65) 0.4 x 45˚ Index Marking 36 25 24 (5.2) 37 (6.2) 0.5 +0.03 48x 0.08 7 ±0.1 6.8 0.5 26 B 0. 6.8 11 x 0.5 = 5.5 0.4 ±0.07 A 11 x 0.5 = 5.5 7 ±0.1 48 13 12 1 0.23 ±0.05 (5.2) 0. (0.2) 15 SEATING PLANE 6 Index Marking 48x 0.1 M A B C 3 .0 ±0 C (6.2) 0.05 MAX. PG-VQFN-48-15, -19, -20, -22, -24, -48, -51, -52, -53, -54, -55, -56, -57-PO V12 0.1±0.03 48x 0.08 1) Vertical burr 0.03 max. all sides 48 1 12 5) C .3 Index Marking 37 13 (0 0.4 x 45° 36 25 24 0.23 ±0.05 (5.2) (0.2) 0.05 MAX. (6) 0.5 +0.03 0.5 (5.2) 6.8 B 0.10 ±0.05 1) 11 x 0.5 = 5.5 6.8 11 x 0.5 = 5.5 0.5 ±0.07 A SEATING PLANE 7 ±0.1 0.9 MAX. (0.65) 0.15 ±0.05 Package outline TLE9832-2QV, VQFN-48-22 7 ±0.1 Figure 33 Index Marking 48x 0.1 M A B C (6) PG-VQFN-48-29, -31-PO V01 Figure 34 Package outline TLE9832-2QX, VQFN-48-29 Notes 1. You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”: http://www.infineon.com/products. 2. Dimensions in mm. Data Sheet 91 Rev. 1.1, 2012-03-08 TLE9832-2 Revision History 7 Revision History Revision Date Changes 1.1 2012-03-08 Editorial Changes 1.1 2012-03-08 Added full package name (VQFN-48-22) 1.1 2012-03-08 Table 4: VDD1V5P: Power Mode configurations: added comment: "Power Down Supply" 1.1 2012-03-08 Table 5: Description of PMU Submodules: PMU-CYCMU description added and PMU-CMU changed from “cyclic” to “clock” management 1.1 2012-03-08 Table 30: Changed Value Max. from parameter “Common input voltage in differential mode” from VDD to VDDP 1.1 2012-03-08 Table 23: Changed Value Min. from parameter “Input voltage (amplitude) on XTAL1” from 0.3xVDDI to 0.3xVDDP 1.1 2012-03-08 Table 41: for “Turn ON..., Turn OFF...” Parameters changed Test condition from RL =1kΩ to RL =270Ω 1.1 2012-03-08 Table 14: - Removed “max” from the symbol suffixes - Corrected Symbol of Parameter “Input voltage at LIN” from VMONx to VLIN 1.1 2012-03-08 Table 41: Parameter “Overcurrent Limitation”: - Renamed Parameter from “Typical on-state current” to “Overcurrent Limitation”. - Added min. (175mA) and max (325mA) values - Removed Parameter “Overcurrent threshold accuracy”. This information is added in the “Note/Test” Condition of the Parameter ”Overcurrent Limitation” 1.1 2012-03-08 Table 19: - Renamed Parameter “Output Current” to “Specified Output Current” - Renamed Parameter “Output Capacitance” to “Required Output Capacitance” 1.1 2012-03-08 Table 20: - Renamed Parameter “Output Current” to “Specified Output Current” - Renamed Parameter “Output Capacitance” to “Required Output Capacitance” - Parameter “Dynamic Line Regulation”: Correct typo in “Note/Test Condition” from VDDC to VDDP - Parameter “Output Voltage including line regulation @ Stop Mode”: Value Max. changed from 1.01 to 1.15 1.1 2012-03-08 Figure 31: Application Diagram updated 1.1 2012-03-08 Figure 29: Modul Block Diagram updated (replaced 500mA by 250mA) 1.1 2012-03-08 Table 27: Changed “Maximum Output Current” to “Nominal Output Current” in third row 1.1 2012-03-08 Table 14: Added “Output voltage VDDP” for t < 100ms, in Stop Mode only 1.1 2012-03-08 Chapter 4.1: Added disclaimer note 1.1 2012-03-08 Table 11: Changed value CVDDEXT of blocking capacitor at VDDEXT pin to100nF (from 10nF) 1.1 2012-03-08 Table 11 and Table 12: Changed headline from “External Component Requirements” to “External Component Recommendation” Data Sheet 92 Rev. 1.1, 2012-03-08 TLE9832-2 Revision History Revision Date Changes 1.1 2012-03-08 Table 14: - Renamed Parameter “Output voltage VDDP” to “Voltage VDDP” (2x) - Renamed Parameter “Output voltage VDDC” to “Voltage VDDC” 1.1 2012-03-08 Table 28: Added value LIN input capacity CLIN_IN Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2011-02-24 Data Sheet 93 Rev. 1.1, 2012-03-08 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG Doc_Number