Application Note 1845 ISL1904DEMO1Z: Offline Triac Dimmable Isolated LED Driver Introduction Design Specifications The ISL1904DEMO1Z demo board converts a high line AC input voltage to a 18V, 700mA DC output. It is implemented with Intersil’s critical conduction mode (CrCM) LED driver controller, the ISL1904. It demonstrates the fundamental functions of ISL1904, including soft-start, dimming, over-voltage protection, short circuit protection, etc. The circuit operates in CrCM with variable frequency and allows near zero-voltage switching (ZVS). Typical efficiency is about 81% at full load. The ISL1904DEMO1Z demo board supports phase dimming and is compatible with wide variety of leading and trailing edge dimmers available in the market. This application note covers the performance data, critical waveforms, extensive dimming data, schematics, layout and bill of materials. • Input voltage VIN: 176V to 264V • Output voltage VO: 12V to 20V • Output current IO: 700mA (14W) • Board dimensions: 68×26×15mm3 (L×W×H) • Input power factor greater than 0.93 at nominal • Total harmonic distortion less than 7% at nominal • Peak efficiency at full load: 81% • 0-100% flicker free dimming with leading and trailing edge dimmers 1200mH PA2517NL L5 LED Driver with Triac Dimming Rclamp R36 JP1 C14 R1 L1 C34 176V-264V, 50Hz 499k 1206 ac1 ~ 47nF, 400V 5.4mH 450V 100nF, 10% 47nF, 400V DNP Vdrain D14 D2 NEUTRAL 13V Zener 650V, 7A TK5P60V 21.5k 0603 D10 G 499O 0603 D16 600V 1A 1.3O 1206 50V 100pF, 5% R37 R38 1.5O 1206 1.58k 0603 MCL4448 C18 4.99k 0603 DNP 0603 C33 R33 MCL4448 D18 C20 400V 2200pF, 20% R10 Q1 R29 DHC R41 LED 10O 0805 BAV70 70V, 0.2A R30 R44 25V 1µF, 10% 2SK3471 102O 1206 47k 0603 LED Load 10O 0603 R17 300O 2512 25V 680µF, 20% G 680 2512 499k 1206 R39 Q2 ~ _ R34 R2 25V 680µF, 20% Dclamp 220k 1206 C28 C10 Cout1 DNP DNP 400O RES100 R8 D1 + 450V 330nF, 10% Cclamp Cout3 R7 600V, 0.5A MB6S Cout2 400O RES100 Rsense1 L2 10mH JP2 R9 220k 1206 Rsense R4 10O LED + 300V, 2A PDS3200-13-T 10mH, 0.13A LINE 18V, 660mA D15 T1 Q3 500V 0.38A 16V 100nF, 10% OUT 16 1 VDD 2 OFFREF PWMOUT 15 ISL1904DEMO1Z Rev D R19 R40 C6 R21 4.99k 0603 DNP DHC 14 4 IOUT GND 13 2Meg 0805 R14 NC DHC ac1 AC 12 5 CS+ 510k 0603 DNP 3 VREF 6 OC OVP 11 7 FB RAMP 10 8 DELADJ VERR 9 ISL1904 16V 100nF, 10% R20 R22 1k 0603 C31 C30 C29 25V 33µF, 20% C12 R13 C4 R16 16V 0.1µF, 10% 51k 0603 91k 0603 C5 C17 R15 R3 C2 50V 1000pF, 5% 16V 0.1µF, 10% 50V 100pF, 5% 25V 220µF, 20% 90k 0603 4.02k 0603 FIGURE 1. ISOLATED FLYBACK CONVERTER APPLICATION SCHEMATIC ISL1904DEMO1ZD ISL1904DEMO1ZD LINE LINE LED Driver Dimmer AC LINE V OUT V IN LED LOAD AC LINE V IN LED NEUTRAL LED Driver LED + LED + VOUT LED LOAD LED NEUTRAL FIGURE 2. TEST SETUP WITH AND WITHOUT DIMMING August 28, 2013 AN1845.0 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas LLC 2013. All Rights Reserved Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries. All other trademarks mentioned are the property of their respective owners. Application Note 1845 FIGURE 3. TOP/BOTTOM VIEW OF THE EVALUATION BOARD Schematic Description General Description of ISL1904 The ISL1904 is a high-performance, critical conduction mode (CrCM), single-ended flyback LED driver controller. It supports single-stage conversion of the AC mains to a constant current source with power factor correction (PFC). It also may be used with DC input converters. The ISL1904 also supports boost, Cuk, sepic and buck-boost converters. Operation in CrCM allows near zero-voltage switching (ZVS) for improved efficiency while maximizing magnetic core utilization. The ISL1904 LED driver provides all of the features required for high-performance dimmable LED driver designs. Input EMI Filtering Fusible resistor R4 provides protection from components failure. Input EMI filtering is provided by differential inductors L2, L5 and capacitors C14 and C28. The switching current generated by the power-train to the AC line is filtered by the input filter network. Start-up Network A linear regulator startup network is used for initial startup. R7, R8, R9, R36, Q2 and D2 constitute the linear startup circuit. Once the energy is built and voltage is generated on the aux winding, the linear regulator circuit is disabled and the aux winding supplies the voltage and current to the controller IC. Power Stage The primary current loop encompasses the transformer primary winding, MOSFET Q1 and the current sense resistors Rsense and Rsense1. Near zero voltage switching (ZVS) or quasi-resonant switching, as it is sometimes referred to, can be achieved by delaying the next switching cycle after the inductor current decays to zero. The delay allows the inductance and parasitic capacitance to oscillate, causing the switching FET drain-source voltage to ring down to minima. If the FET is turned on at this minima, the 2 1 capacitive switching losses ⎛⎝ --- CV ⎞⎠ are greatly reduced. 2 Inductor zero-crossing is detected using the transformer aux winding. R29, R12 scales down the sensed zero crossing voltage and is delivered to the IC. Deladj sets the delay before a new switching cycles starts. This adjustment allows the user to delay the next switching cycle until the switching FET drain-source 2 voltage reaches a minimum value to allow quasi-ZVS (Zero Voltage Switching) operation. Resistor R16 to ground programs the delay. DELAY TIME SETTING In order to reduce electromagnetic interference and switching loss, ISL1904 can insert a delay between the off period and the on period. A resistor connected from deladj pin to ground will program the delay time according to the equation below. The optimal delay time depends on the resonance between the inductance, drain-source capacitance (Coss) and parasitic capacitance on the drain node. Circuit designers should optimize the delay according to the following equation: 1 fsw = ----------------------------------------------------------------2π Lp ( Coss + Cstray ) After determining the delay time, the resistor can be chosen according to the following equation: Tdel – 73.33 ) kΩ Rdel = (-------------------------------------10.2 Resistor R16 programs this delay in the application schematic. Feedback The ISL1904 is designed to regulate the LED current by monitoring the primary switch current at the OC pin through resistors Rsense and Rsense1. The peak primary switch current is captured, processed, and output on IOUT as a PWM voltage signal modulated in proportion to the LED current. The IOUT PWM frequency is the same as the converter switching frequency and its amplitude is equivalent to 4x the peak switch current during the previous ON-time. Resistor R19 scales the signal before being input to the control loop at the FB pin. The OC pin also provides cycle-by-cycle overcurrent protection. The ON-time is terminated if OC exceeds 0.6V nominal. There is ~120ns of leading edge blanking (LEB) on OC to minimize or eliminate external filtering. Output Rectification Transformer secondary winding voltage is rectified by diode D15 and filtered by capacitors Cout1, Cout2 and Cout3. The capacitors are connected in parallel as the combination has a lower parasitic inductance and resistance compared to a single capacitor. AN1845.0 August 28, 2013 Application Note 1845 Overvoltage Protection Primary Inductance: ISL1904 has an independent overvoltage protection accessed through the OVP pin. There is a nominal 20µA switched current source to create hysteresis. The current source is active only during an OV fault; otherwise, it is inactive and does not affect the node voltage. Bias voltage: Vbias = 12V 46.3μH Ls Lp = -------------- = -------------------- = 2.89mH 2 2 0.11 Nsp Aux voltage is: Vaux = Vbias + 0.7 = 12.7V Aux winding inductance is: 2 VREF MONITORED VOLTAGE 20µA Peak secondary current (avg) is: R1 1 R3 0 + 1.5V C OPT Vaux Laux = Ls ---------------------------------------------- = 16.9μH 2 ( Nsp × Vf + Vd ) _ R2 Vout ( 1 – Dmax ) 18 ( 1 – 0.4 ) Ispk = --------------------------------------------- = --------------------------------------------------------------- = 2.75A 3 –6 f × Ls 100 × 10 × 46.3 × 10 Peak primary current (avg) is: Ippk = Ispk × Nsp = 2.75 × 0.11 = 0.344A Maximum peak primary current is: FIGURE 4. OV HYSTERESIS ( R1 + R2 ) V = 1.5 --------------------------- V R2 Vminpk × Ton × 2 Ippkmax = ----------------------------------------------------- = 0.49A Lp Maximum peak secondary current is Hysteresis is given by: ΔV = 20x10 xR1 V Ippkmax Ispkmax = ------------------------- = 3.88A Nsp DESIGN EXAMPLE 1 Time period is: Ts = ----- = 10μs –6 Flyback converter Inductance calculation TABLE 1. Delay time to program partial zero voltage switching: PARAMETER VALUE Vmin(rms) 176V Min rms input voltage π Lp ( Coss + Cother ) ) Tdelay = ----------------------------------------------------------------- = 1005ns 2 Vmax(rms) 264V Max rms input voltage Worst case minimum frequency is Efficiency 1 fmin = -------------------------------------------------------------------- = 80.09kHz Ton + Toffmax + Tdelay η fmin(avg) DESCRIPTION fs Maximum ON time is Tonmax = Dmax × Ts = 4μs 100kHz Frequency when VIN = min VIN(rms) Dmax 0.4 Maximum duty cycle VOUT 18V Output voltage IOUT 0.7 LED current Ispk OFFREF control: REFIN ( off ) = OFFREF – 0.1 REFIN ( on ) = OFFREF – 0.05 Peak secondary current - avg Ippk 1 Peak primary current - avg Ispkmax Peak secondary current - max Ippkmax Peak primary current - max Coss VDD 2 24 23 3 O FFREF 22 4 VREF 21 R3 IS L 1 9 0 2 MOSFET drain-source capacitance Cother Parasitic capacitance on drain node R4 Secondary inductance is calculated as: 2 FIGURE 5. 2 18 ( 1 – 0.4 ) Vo ( 1 – Dmax ) Ls = ------------------------------------------ = -------------------------------------------------- = 46.3μH 3 2 × f × Iout 2 × 100 × 10 × 0.7 Primary to sec turns ratio: R4 OFFREF = ---------------------- Vref R3 + R4 Vo ( 1 – Dmax ) 18 ( 1 – 0.4 ) Nsp = --------------------------------------------- = -------------------------------------- = 0.11 Vminpk × Dmax 176 × 2 × 0.4 3 AN1845.0 August 28, 2013 Application Note 1845 Performance Data TABLE 2. PERFORMANCE DATA WITH VARIATION IN TEMPERATURE TEMP (°C) VIN (V) VOUT (V) IOUT (mA) POUT (W) PIN (W) EFF (%) PF (%) THD (%) -35 220 18.57 709.21 16.86 13.17 78.13 90.97 7.704 -20 220 18.57 703.74 16.71 13.07 78.24 90.88 7.69 5 220 18.42 714.72 16.40 13.16 80.25 90.68 8.22 25 220 18.47 704.50 16.31 13.01 79.80 90.68 8.19 50 220 18.61 705.02 16.27 13.12 80.66 90.89 7.87 75 220 18.51 709.35 16.07 13.13 81.72 90.89 7.86 105 220 18.46 692.26 15.81 12.78 80.82 90.75 7.56 125 220 18.40 664.58 15.46 12.23 79.09 90.22 7.61 720 90 700 EFFICIENCY (%) LED CURRENT (mA) 710 690 680 80 70 670 660 650 -60 -40 -20 0 20 40 60 80 100 120 60 -60 140 -40 -20 0 20 40 60 80 100 FIGURE 6. VARIATION OF LED CURRENT WITH AMBIENT TEMPERATURE FIGURE 7. VARIATION OF EFFICIENCY WITH AMBIENT TEMPERATURE 100 10 95 90 85 -60 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 8. VARIATION OF POWER FACTOR WITH AMBIENT TEMPERATURE 4 120 140 120 140 TEMPERATURE (°C) TOTAL HARMONIC DISTORTION (%) POWER FACTOR (V/V) TEMPERATURE (°C) 140 8 6 4 2 0 -60 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) FIGURE 9. VARIATION OF THD WITH AMBIENT TEMPERATURE AN1845.0 August 28, 2013 Application Note 1845 TABLE 3. PERFORMANCE DATA WITH 5 LED LOAD VRMS (V) VPK (V) AVERAGE IN (mA) VOUT (V) IOUT (mA) PIN (W) POUT (W) PLOSS (W) EFFI (%) PF (%) ATHD (%) 69.10 15.37 683.93 13.43 10.52 2.92 78.27 89.94 9.70 170.10 240.60 81.25 15.36 685.02 13.39 10.52 2.87 78.56 96.92 8.02 180.08 254.70 77.66 15.37 703.22 13.39 10.81 2.58 80.74 95.75 8.44 190.10 268.80 74.69 15.39 686.58 13.41 10.57 2.84 78.80 94.45 8.90 200.08 283.00 72.09 15.41 687.77 13.45 10.60 2.85 78.79 93.23 9.15 210.10 297.10 69.85 15.40 700.54 13.50 10.79 2.71 79.92 91.99 9.45 220.11 311.30 67.86 15.40 696.67 13.52 10.73 2.79 79.35 90.52 9.76 230.11 325.40 66.06 15.38 695.25 13.51 10.69 2.82 79.13 88.87 10.25 240.03 339.50 64.45 15.36 679.63 13.47 10.44 3.04 77.47 87.09 10.36 250.10 353.70 63.05 15.37 669.18 13.44 10.28 3.16 76.52 85.22 10.62 260.14 367.90 61.81 15.34 658.98 13.37 10.11 3.26 75.62 83.13 10.89 264.19 373.60 61.36 15.35 660.37 13.33 10.14 3.19 76.07 82.20 10.83 VRMS (V) VPK (V) IN (mA) VOUT (V) IOUT (mA) PIN (W) POUT (W) PLOSS (W) EFFI (%) PF (%) ATHD (%) 78.391 18.35 684.48 15.70 12.56 3.14 80.01 92.52 8.37 92.10 18.32 669.43 15.32 12.27 3.05 80.08 97.77 7.04 TABLE 4. PERFORMANCE DATA WITH 6 LED LOAD AVERAGE 170.12 240.60 180.08 254.70 87.81 18.35 673.88 15.30 12.36 2.94 80.80 96.77 7.39 190.11 268.90 84.24 18.32 679.84 15.32 12.46 2.87 81.30 95.68 7.75 200.09 283.00 81.25 18.36 679.71 15.40 12.48 2.92 81.02 94.72 8.12 210.10 297.10 78.75 18.33 676.66 15.52 12.40 3.12 79.91 93.81 8.34 220.12 311.30 76.66 18.36 683.45 15.65 12.55 3.11 80.16 92.76 8.67 230.11 325.40 74.91 18.35 693.90 15.79 12.73 3.06 80.63 91.61 8.82 240.04 339.50 73.40 18.36 698.04 15.93 12.82 3.11 80.46 90.42 8.94 250.11 353.70 72.05 18.34 690.84 16.07 12.67 3.40 78.83 89.19 8.98 260.15 367.90 70.80 18.37 694.93 16.17 12.76 3.41 78.93 87.80 8.99 264.20 373.60 70.33 18.35 688.61 16.19 12.63 3.56 78.01 87.15 9.05 TABLE 5. PERFORMANCE DATA WITH 7 LED LOAD VRMS (V) VPK (V) AVERAGE IN (mA) VOUT (V) IOUT (mA) PIN (W) POUT (W) PLOSS (W) EFFI (%) PF (%) ATHD (%) 86.76 21.36 662.70 17.64 14.16 3.48 80.28 93.98 7.35 170.11 240.60 103.45 21.38 652.23 17.32 13.95 3.37 80.549 98.39 6.35 180.08 254.70 98.39 21.38 649.51 17.28 13.89 3.39 80.37 97.53 6.69 190.10 268.80 93.96 21.37 650.78 17.24 13.91 3.34 80.66 96.57 7.00 200.07 282.90 90.17 21.39 651.76 17.27 13.94 3.33 80.70 95.76 7.23 210.11 297.10 87.05 21.38 659.59 17.38 14.10 3.27 81.16 95.02 7.50 220.14 311.30 84.45 21.36 665.39 17.50 14.21 3.29 81.20 94.13 7.74 230.11 325.40 82.28 21.39 671.36 17.64 14.35 3.29 81.37 93.16 7.63 240.03 339.50 80.49 21.34 671.95 17.81 14.34 3.47 80.52 92.17 7.71 250.11 353.70 79.03 21.34 667.17 18.03 14.24 3.79 78.98 91.21 7.68 260.14 367.90 77.81 21.33 673.70 18.25 14.37 3.88 78.76 90.15 7.67 264.19 373.60 77.37 21.35 676.25 18.33 14.44 3.89 78.78 89.66 7.67 5 AN1845.0 August 28, 2013 Application Note 1845 90 100 7 LEDs 6 LEDs 7 LEDs 80 5 LEDs 75 70 6 LEDs 95 POWER FACTOR (%) EFFICIENCY (%) 85 5 LEDs 90 85 65 60 150 180 210 240 80 150 270 180 LINE VOLTAGE (V) FIGURE 10. EFFICIENCY WITH LINE VOLTAGE AT DIFFERENT LOADS 210 LINE VOLTAGE (V) 240 270 FIGURE 11. POWER FACTOR WITH LINE VOLTAGE AT DIFFERENT LOADS 15 760 740 LED CURRENT (mA) 6 LEDs 5 LEDs THD (%) 10 7 LEDs 5 720 6 LEDs 5 LEDs 700 680 7 LEDs 660 640 620 0 150 180 210 240 270 LINE VOLTAGE (V) FIGURE 12. THD WITH LINE VOLTAGE AT DIFFERENT LOADS 600 150 180 210 240 270 LINE VOLTAGE (V) FIGURE 13. LED CURRENT WITH LINE VOLTAGE AT DIFFERENT LOADS Critical Waveforms WAVEFORM SHOWING LINE VOLTAGE AND LINE CURRENT: PF = 0.92 LINE VOLTAGE AND CURRENT DURING STARTUP LINE VOLTAGE LINE VOLTAGE LINE CURRENT LINE CURRENT FIGURE 14. TRACE 3 - INPUT VOLTAGE [200V/DIV); TRACE 4 - INPUT CURRENT [60mA/DIV) 6 FIGURE 15. INPUTS DURING STARTUP; TRACE 3 - INPUT VOLTAGE [200V/DIV); TRACE 4 - INPUT CURRENT [60mA/DIV) AN1845.0 August 28, 2013 Application Note 1845 Critical Waveforms (Continued) WAVEFORM DEPICTING SOFT-START LED VOLTAGE WAVEFORM SHOWING LED RIPPLE CURRENT - 35% PK-AVG RIPPLE LED VOLTAGE LED CURRENT LED CURRENT FIGURE 16. TRACE 3 - OUTPUT VOLTAGE [10V/DIV); TRACE 4 - LED CURRENT [200mA/DIV) FIGURE 17. TRACE 3 - OUTPUT VOLTAGE [10V/DIV); TRACE 4 - LED CURRENT [200mA/DIV); LED CURRENT RIPPLE: 35% PK-AVG OR 1.35 CREST FACTOR SWITCHING WAVEFORMS RECTIFIED AC LED CURRENT WAVEFORM SHOWING DRAIN-SOURCE VOLTAGE RECTIFIED AC VDRAIN GATE VDRAIN GATE FIGURE 18. TRACE 1 - DRAIN VOLTAGE [100V/DIV); TRACE 2 - GATE [10V/DIV); TRACE 3 - RECTIFIED AC [200V/DIV); TRACE 4 - LED CURRENT [1A/DIV) WAVEFORM SHOWING ZERO VOLTAGE SWITCHING BEHAVIOR FIGURE 19. TRACE 1 - DRAIN VOLTAGE [100V/DIV); TRACE 2 - GATE [10V/DIV); SWITCHING WAVEFORMS WAVEFORM SHOWING OC (MOSFET CURRENT) WAVEFORM OC VDRAIN VDRAIN GATE GATE FIGURE 20. TRACE 1 - DRAIN VOLTAGE [100V/DIV); TRACE 2 - GATE [10V/DIV); TDELAY = 1.07µs; PARTIAL ZVS 7 FIGURE 21. TRACE 1 - DRAIN VOLTAGE [100V/DIV); TRACE 2 - GATE [10V/DIV); TRACE 3 - DRAIN CURRENT OR OC [300mV/DIV) AN1845.0 August 28, 2013 Application Note 1845 Dimming Compatibility Dimming Curve The requirement to provide output dimming with low cost, TRIAC based, leading-edge phase dimmers introduced a number of trade-offs in the design. To overcome these issues, an active dimmer current holding circuit (DHC pin, R17), passive bleeder circuit (C14, R34) and an active damping circuit (Q3, D18, R44, C33 and R41) are incorporated into the design. These circuits result in increased power dissipation and hence reduce electrical efficiency and overall lamp efficacy. For non-dimming applications, these circuits can be omitted. 700 LED CURRENT (mA) Due to the much lower power consumed by LED based lighting, the current drawn by the lamp during dimming is below the holding current of the TRIAC within many dimmers. This causes undesirable behavior - limited dimming range and/or flickering when the TRIAC fires inconsistently. The relatively large impedance presented to the line by the LED driver allows significant ringing to occur due to the inrush current charging the input capacitance when the TRIAC turns on. This effect can cause similar undesirable behavior, as the ringing may cause the TRIAC current to fall to zero and turn off prematurely. 800 600 500 DIMMER SLIDER FROM HIGH TO LOW - DIMMING 400 300 DIMMER SLIDER FROM LOW TO HIGH 200 100 0 0 20 40 60 80 100 AC CONDUCTION ANGLE (%) FIGURE 22. DIMMING CURVE - RAMPING DOWN AND RAMPING UP THE DIMMER; DIMMER USED: LEADING EDGE 600VA CHINESE DIMMER TABLE 6. DIMMING DATA CONDUCTION ANGLE (%) LED CURRENT (mA) % OF LED CURRENT MEASURED (%) % OF LIGHT PERCEIVED BY HUMAN EYE 100 685 100 100 91 685 100 100 80 685 100 100 70 651 95.04 97.49 60 556 81.17 90.09 50 444 64.82 80.51 40 325 47.45 68.88 30 222 32.41 56.93 20 122 17.81 42.2 10 21 3.07 17.51 8 4 0.58 7.64 8 AN1845.0 August 28, 2013 Application Note 1845 Dimming Waveforms WAVEFORM SHOWING LINE VOLTAGE AND CURRENT; CONDUCTION ANGLE: 90.6% WAVEFORM SHOWING LINE VOLTAGE AND CURRENT; CONDUCTION ANGLE: 80% LINE VOLTAGE LINE VOLTAGE LINE CURRENT LINE CURRENT FIGURE 23. TRACE 3 - LINE VOLTAGE [300V/DIV); TRACE 4 - LINE CURRENT [80mA/DIV); 90.6% CONDUCTION ANGLE WAVEFORM SHOWING LINE VOLTAGE AND CURRENT; CONDUCTION ANGLE: 50% FIGURE 24. TRACE 3 - LINE VOLTAGE [300V/DIV); TRACE 4 - LINE CURRENT [80mA/DIV); 80% CONDUCTION ANGLE WAVEFORM SHOWING LINE VOLTAGE AND CURRENT; CONDUCTION ANGLE: 30% LINE VOLTAGE LINE VOLTAGE LINE CURRENT LINE CURRENT FIGURE 25. TRACE 3 - LINE VOLTAGE [300V/DIV); TRACE 4 - LINE CURRENT [80mA/DIV); 50% CONDUCTION ANGLE WAVEFORM SHOWING LINE VOLTAGE AND CURRENT; CONDUCTION ANGLE: 10% LINE VOLTAGE LINE CURRENT FIGURE 27. TRACE 3 - LINE VOLTAGE [300V/DIV); TRACE 4- LINE CURRENT [80mA/DIV); 10% CONDUCTION ANGLE 9 FIGURE 26. TRACE 3 - LINE VOLTAGE [300V/DIV); TRACE 4 - LINE CURRENT [80mA/DIV); 30% CONDUCTION ANGLE WAVEFORM SHOWING LINE VOLTAGE AND CURRENT; CONDUCTION ANGLE: 6.25% LINE VOLTAGE LINE CURRENT FIGURE 28. TRACE 3 - LINE VOLTAGE [300V/DIV); TRACE 4- LINE CURRENT [80mA/DIV); 6.95% CONDUCTION ANGLE AN1845.0 August 28, 2013 Application Note 1845 Overvoltage Protection OPEN CIRCUIT PROTECTION LED CURRENT VDD OVP FIGURE 29. TRACE 1 - V DD [20V/DIV); TRACE 2- OVP [900mV/DIV); TRACE 4 - LED CURRENT [400mA/DIV) EMI Results - Cispr 22 Class B QUASI PEAK AVERAGE FIGURE 30. LINE AT 230V, 50Hz QUASI PEAK AVERAGE FIGURE 31. NEUTRAL AT 230V, 50Hz 10 AN1845.0 August 28, 2013 Application Note 1845 TABLE 7. QUASI PEAK AND AVERAGE READINGS CLASS B FREQUENCY (MHz) LEVEL (dBµV) AC LINE LIMIT MARGIN 3.513 45.5 Line 1 56 -10.5 0.268 49.3 Neutral 61.2 -11.9 2.61 44.1 Neutral 56 -11.9 3.009 43.6 Neutral 56 -12.4 3.535 43.6 Neutral 56 -12.4 3.134 43.5 Neutral 56 -12.5 0.284 47.9 Neutral 60.7 -12.8 3.41 43 Line 1 56 -13 3.008 42.2 Line 1 56 -13.8 2.612 41.2 Line 1 56 -14.8 0.262 46.3 Line 1 61.4 -15.1 3.513 30.8 Line 1 46 -15.2 3.535 30.7 Neutral 46 -15.3 0.28 44.5 Line 1 60.8 -16.3 3.41 29.4 Line 1 46 -16.6 3.134 29.4 Neutral 46 -16.6 3.009 29.2 Neutral 46 -16.8 2.61 28.2 Neutral 46 -17.8 3.008 27.7 Line 1 46 -18.3 0.268 32.9 Neutral 51.2 -18.3 2.612 25.9 Line 1 46 -20.1 0.262 30.6 Line 1 51.4 -20.8 0.284 27.8 Neutral 50.7 -22.9 0.28 25.6 Line 1 50.8 -25.2 11 AN1845.0 August 28, 2013 Application Note 1845 Temperature Mapping FIGURE 32. TOP SIDE TEMPERATURE SNAPSHOT DURING 100% CONDUCTION AND FULL LOADING FIGURE 33. BOTTOM SIDE TEMPERATURE SNAPSHOT DURING 100% CONDUCTION AND FULL LOADING FIGURE 34. TOP SIDE TEMPERATURE SNAPSHOT DURING DEEP DIMMING FIGURE 35. BOTTOM SIDE TEMPERATURE SNAPSHOT DURING DEEP DIMMING 12 AN1845.0 August 28, 2013 Application Schematic 1200mH PA2517NL L5 LED Driver with Triac Dimming 600V, 0.5A MB6S 10mH JP1 13 C34 176V-264V, 50Hz 499k 1206 ac1 + 47nF, 400V R2 499k 1206 R34 450V 100nF, 10% 47nF, 400V _ Dclamp R39 DNP D14 D2 NEUTRAL 650V, 7A TK5P60V 21.5k 0603 R30 D10 16V 100nF, 10% 499O 0603 D18 D16 1.5O 1206 1.3O 1206 50V 100pF, 5% R37 R38 400V 2200pF, 20% 1.58k 0603 MCL4448 C18 4.99k 0603 DNP 0603 C33 R33 MCL4448 G C20 R10 Q1 R29 DHC R41 LED 10O 0805 BAV70 70V, 0.2A Application Note 1845 13V Zener 600V 1A Cout3 Vdrain 102O 1206 47k 0603 25V 1µF, 10% G R17 R44 LED Load 2SK3471 680 2512 300O 2512 25V 680µF, 20% 10O 0603 Q2 ~ 25V 680µF, 20% 220k 1206 C28 C10 450V 330nF, 10% ~ 5.4mH R8 D1 C14 R1 L1 Cout1 DNP DNP 400O RES100 Rsense1 10O Cclamp Rclamp R36 Cout2 400O RES100 R7 L2 JP2 R9 220k 1206 Rsense R4 LED + 300V, 2A PDS3200-13-T 10mH, 0.13A LINE 18V, 660mA D15 T1 Q3 500V 0.38A 1 VDD OUT 16 2 OFFREF PWMOUT 15 ISL1904DEMO1Z Rev D R19 R40 C6 R21 DNP DHC 14 4 IOUT GND 13 5 CS+ 510k 0603 DNP 3 VREF 4.99k 0603 2Meg 0805 R14 NC DHC ac1 AC 12 6 OC OVP 11 7 FB RAMP 10 8 DELADJ VERR 9 ISL1904 16V 100nF, 10% R20 R22 1k 0603 C31 C30 C29 25V 33µF, 20% C12 R13 C4 16V 0.1µF, 10% 25V 220µF, 20% R16 51k 0603 91k 0603 C5 C17 R15 R3 C2 50V 1000pF, 5% 16V 0.1µF, 10% 50V 100pF, 5% 90k 0603 4.02k 0603 AN1845.0 August 28, 2013 Application Note 1845 Electrical Bill of Materials TABLE 8. BOM FOR ISL1904DEMO1Z REV. D QTY REFERENCE DESIGNATOR TYPE/MOUNT/PACKAGE/VOL/TOL/MAT MANUFACTURER PANASONIC MANUFACTURER PART # 2 C10, C34 Cap, TH, CAPR_190x90_200, 47n, 400V, 10%, X7R ECQ-E4473KF 3 C2, C4, C6 Cap, SM, 0603, 100n, 16V, 10%, MKT H1045-00104-16V10 1 C5 Cap, SM, 1000p, 50V, 5%, MKT H1045-00102-50V5 1 C12 Cap, TH, CAPR_248x354_100_P, 220µ, 25V, 20% RUBYCON 25PX220MEFC6.3X11 1 C14 Cap, TH, CAPR_472x248_400, 0.33µ, 450V, 10% PANASONIC ECW-F2W334JAQ 1 C17 Cap, SM, 0603, 100p, 50V, 10% 1 C18 Cap, SM, 0603, 10p, 50V, 5%, C0G 1 C20 Cap, TH, CAPR_394x500_160, 2200p, 400V VISHAY 440LD22-R 1 C28 Cap, TH, CAPR_472x248_400, 0.1µ, 400V, 10% PANASONIC ECQ-E4104KF 3 C29, C30, C31 Cap, SM, 1206, 33µ, 25V, 20% 1 C33 Cap, SM, 0805, 100n, 25V, 10% 1 Cclamp Cap, SM, 1206, DNP 2 Cout1, Cout2 Cap, TH, CAPR_393x630_200_P, 680µ, 25V, ALUM 1 Cout3 Cap, SM, 1206, 1µ, 25V, 10% 1 DB Diode, SMD, DIO_MCC_MBS, 600V, 05A 1 Dclamp Diode, SMA, DNP 1 D2 2 H1045-00101-50V10 H1065-00336-25V20-T PANASONIC EEUFR1E681 MICRO COM MB6D-TP-T Diode, SM, SOD123FL, 13V, zener MICRO COM BZX84C20/MMSZ5243BTP D10, D16 Diode, SM, MCL4448, 75V, 200mA, general purpose VISHAY MCL4448 1 D14 Diode, SM, SOT23, 75V, 150mA, switching NXP BAV70-TP 1 D15 Diode, SM, SOD123FL, 600V, 1A, ultra fast DIODES INC PDS3200-13-T 1 D18 Diode, SM, DIO_POWERD1-5, 200V, 3A, ultra fast MICRO COM SM4005PL-TP 1 F1 RES, TH, RES100, 10 Ohms, fusible YAGEO FKN1WSJR-52-10R 1 L1 IND, TH, 11x17x17mm, 5.4mH, common mode WURTH 744862056 2 L2, L5a IND, TH, 10mH, Radial RENCO 1 Q1 MOSFET, TH, TO251, 600V, 7.5A TOSHIBA TK5Q60V 1 Q2 MOSFET, SMD, SOT89, 500V, 0.5A TOSHIBA 2SK3471 1 Q3 MOSFET, TH, TO92, 500V, 0.38A FAIRCHILD FQN1N50CTA 1 Rclamp Res, SM, 1206, DNP 1 Rsense Res, SM, 1206, 1.5, 1%, Thick Film 1 Rsense1 Res, SM, 1206, 1.2, 1%, Thick Film - 2 R1, R2 Res, SM, 1206, 499k, 1%, Thick Film H2511-04993-1/8W1 1 R3 Res, SM, 0603, 4.02k, 1%, Thick Film H2511-04021-1/16W1 2 R7, R8 Res, SM, 1206, 220k, 1%, Thick Film H2513-02203-1/8W5 2 R9, R36 Res, SM, 1210, 499, 1%, Thick Film 2 R10, R39 Res, SM, 0805, 10, 1%, Thick Film H2512-00100-1/10W1 1 R13 Res, SM, 0603, 43k, 1%, Thick Film H2511-04302-1/16W5 1 R14 Res, SM, 0805, 2Meg, 1%, Thick Film 2 R15, R16 Res, SM, 0603, 91k, 1%, Thick Film 14 H2511-09112-1/16W1 AN1845.0 August 28, 2013 Application Note 1845 TABLE 8. BOM FOR ISL1904DEMO1Z REV. D (Continued) QTY REFERENCE DESIGNATOR TYPE/MOUNT/PACKAGE/VOL/TOL/MAT MANUFACTURER MANUFACTURER PART # 1 R17 Res, SM, 1206, 102, 1% ,Thick Film H2513-01020-1/8W1 1 R19 Res, SM, 0603, 510k, 1%, Thick Film H2511-05103-1/16W5 2 R20, R37 Res, SM, 0603, 4.99k, 1%, Thick Film H2511-04991-1/16W1 2 R21, R40 Res, SM, 0603, DNP 1 R22 Res, SM, 0603, 1k, 1%, Thick Film 1 R29 Res, SM, 0603, 21.5k, 1%, Thick Film 1 R30 Res, SM, 0603, 499, 1%, Thick Film 1 R33 Res, SM, 0603, 1.58k, 1%, Thick Film 1 R34 Res, SM, 2512, 680, 1%, Thick Film 1 R38 Res, SM, 0603, DNP 1 R41 Res, SM, 2512, 300, 1%, Thick Film 1 R44 Res, SM, 1206, 47k, 1%, Thick Film 1 T1 xfmr, TH, 1.2mH, 8:1 turns ratio PULSE PA2517NL 1 U1 IC, SM, QSSOP, ISL1904FAZ INTERSIL ISL1904FAZ 15 H2511-02152-1/16W1 H2511-04990-1/16W1 AN1845.0 August 28, 2013 Application Note 1845 Assembly Drawing FIGURE 36. SILKSCREEN TOP FIGURE 37. SILKSCREEN BOTTOM 16 AN1845.0 August 28, 2013 Application Note 1845 PCB Layout FIGURE 38. ASSEMBLY TOP FIGURE 39. ASSEMBLY BOTTOM Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that the Application Note or Technical Brief is current before proceeding. For information regarding Intersil Corporation and its products, see www.intersil.com 17 AN1845.0 August 28, 2013