BTS50015-1TAD Smart Hig h-Side Power Switch 1 Overview Features • One channel device • Low Stand-by current • 3.3 V to VS level capable input pin • Electrostatic discharge protection (ESD) • Optimized Electromagnetic Compatibility (EMC) • Logic ground independent from load ground • Very low leakage current at OUT pin • Compatible to cranking pulse requirement (test pulse 4 of ISO 7637 and cold start pulse in LV124) • Embedded diagnostic functions • Embedded protection functions • Green Product (RoHS compliant) • AEC Qualified Applications • Suitable for resistive, inductive and capacitive loads • Replaces electromechanical relays, fuses and discrete circuits • Most suitable for applications with high current loads, such as heating system, main switch for power distribution, start-stop power supply switch • PWM applications with low frequencies Description The BTS50015-1TAD is a 1.5 mΩ single channel Smart High-Side Power Switch, embedded in a PG-TO-263-7-8 package, providing protective functions and diagnosis. It contains Infineon® ReverSave™ functionality. The power transistor is built by a N-channel power MOSFET with charge pump. It is specially designed to drive high current loads up to 80 A, for applications like switched battery couplings, power distribution switches, heaters, glow plugs, in the harsh automotive environment. Table 1 Product Summary Parameter Symbol Values Operating voltage range VS(OP) 8 V … 18 V Extended supply voltage including dynamic undervoltage capability VS(DYN) 3.2 V … 28 V Data Sheet www.infineon.com/power 1 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Overview Table 1 Product Summary (cont’d) Parameter Symbol Values Maximum ON-state resistance (TJ = 150°C) RDS(ON) 3 mΩ Minimum nominal load current (TA = 85°C) IL(NOM) 33 A Typical current sense differential ratio dkILIS 51500 Minimum short circuit current threshold ICL(0) 135 A Maximum stand-by current for the whole device with load (TA = TJ = 85°C) IVS (OFF) 18 µA Maximum reverse battery voltage (TA = 25°C for 2 min) 16 V -VS(REV) Embedded Diagnostic Functions • Proportional load current sense • Short circuit / Overtemperature detection • Latched status signal after short circuit or overtemperature detection Embedded Protection Functions • Infineon® ReverSave™: Reverse battery protection by self turn ON of power MOSFET • Infineon® Inversave: Inverse operation robustness capability • Secure load turn-OFF while device loss of GND connection • Overtemperature protection with latch • Short circuit protection with latch • Overvoltage protection with external components • Enhanced short circuit operation • Infineon® SMART CLAMPING Type Package Marking BTS50015-1TAD PG-TO-263-7-8 S50015D Data Sheet 2 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 3.1 3.2 3.3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.1 4.2 4.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 10 14 15 5 5.1 5.1.1 5.1.2 5.1.3 5.1.3.1 5.1.3.2 5.1.4 5.1.5 5.1.6 5.1.7 5.2 5.2.1 5.2.2 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.3.6.1 5.3.6.2 5.3.6.3 5.3.7 5.4 5.4.1 5.4.2 5.4.3 5.4.3.1 5.4.3.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output ON-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Resistive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Inductive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Active Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PWM Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Advanced switch-off behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection during Loss of Load or Loss of VS Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Activation of the Switch into Short Circuit (Short Circuit Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . Short Circuit Appearance when the Device is already ON (Short Circuit Type 2) . . . . . . . . . . . . Influence of the battery wire inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Different Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal Variation and Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 16 16 16 16 16 17 18 19 20 20 21 21 21 21 22 22 24 25 25 26 26 26 26 28 29 29 30 30 31 34 Data Sheet 3 8 8 8 9 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch 5.4.3.3 5.4.3.4 SENSE Signal in Case of Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 SENSE Signal in Case of Over Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6 6.1 6.2 Electrical Characteristics BTS50015-1TAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Electrical Characteristics Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 7 7.1 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 8 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 9 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Data Sheet 4 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Data Sheet Product Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Sense Signal, Function of Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Electrical Characteristics: BTS50015-1TAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 31 Data Sheet Block Diagram for the BTS50015-1TAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Maximum Single Pulse Current vs. Pulse Time, TJ ≤ 150°C, TPIN = 85°C . . . . . . . . . . . . . . . . . . . . . . . 12 Maximum Energy Dissipation for Inductive Switch OFF, EA vs. IL at VS = 13.5 V . . . . . . . . . . . . . . . . 13 Maximum Energy Dissipation Repetitive Pulse temperature derating . . . . . . . . . . . . . . . . . . . . . . . 13 Typical Transient Thermal Impedance Zth(JA) = f(time) for Different PCB Conditions . . . . . . . . . . 15 Switching a Resistive Load: Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Output Clamp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Switching an Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Inverse Current Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Inverse Behavior - Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Switching in PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Input Pin Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Diagram of Diagnosis & Protection Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Loss of Ground Protection with External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Loss of VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Loss of Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Undervoltage Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Overvoltage Protection with External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Reverse Polarity Protection with External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Oscillations at VS pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Consecutive short circuit events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 RC Snubber circuits: between VS pin and module GND; between VS pin and device GND . . . . . 28 Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Diagnostic Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Current Sense for Nominal and Overload Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Improved Current Sense Accuracy after 2-Point Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Fault Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Application Diagram with BTS50015-1TAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 PG-TO-263-7-8 (RoHS-Compliant). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Block Diagram 2 Block Diagram R VS voltage sensor internal power supply over temperature driver logic IN ESD protection VS gate control & charge pump Smart clamp over current switch OFF load current sense OUT IS GND Figure 1 Data Sheet Blockdiagram Block Diagram for the BTS50015-1TAD 7 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Pin Configuration 3 Pin Configuration 3.1 Pin Assignment 4 123 Figure 2 Pin Configuration 3.2 Pin Definitions and Functions 567 Pin Symbol Function 1 GND GrouND; Signal Ground 2 IN INput; Digital signal to switch ON channel (“high” active) 3 IS Sense; Analog/Digital signal for diagnosis, if not used: left open 4, Cooling tab VS Supply Voltage; Battery voltage 5, 6, 7 OUTput; Protected high side power output channel1) OUT 1) All output pins are internally connected and they also have to be connected together on the PCB. Not shorting all outputs on PCB will considerably increase the ON-state resistance and decrease the current sense / overcurrent tripping accuracy. PCB traces have to be designed to withstand the maximum current. Data Sheet 8 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Pin Configuration 3.3 Voltage and Current Definition Figure 3 shows all terms used in this data sheet, with associated convention for positive values. IVS VS VS IIN IN VIN VDS IOUT OUT Vb,IS IIS IS VOUT GND VIS IGND Figure 3 Data Sheet Voltage and Current Definition 9 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Table 2 Absolute Maximum Ratings1) TJ = -40°C to +150°C; (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. -0.3 – 28 Unit Note or Test Condition Number V – P_4.1.1 2) Supply Voltages Supply Voltage VS Reverse Polarity Voltage -VS(REV) 0 – 16 V t < 2 min TA = 25°C RL ≥ 0.5 Ω P_4.1.2 Load Dump Voltage VBAT(LD) – – 45 V 3) RI = 2 Ω RL = 2.2 Ω RIS = 1 kΩ RIN = 4.7 kΩ P_4.1.5 Supply Voltage for Short Circuit VS(SC) Protection 5 – 20 V 4) Short Circuit is Permanent: IN Pin Toggles Short Circuit (SC type 1) nRSC1 – – 1 million – (Grade A) 5) P_4.1.4 IGND -15 –6) – – 107) 15 mA – t ≤ 2 min P_4.1.6 Voltage at IN pin VIN -0.3 – VS V – P_4.1.7 Current through IN pin IIN -5 -5 – – 5 506) mA – t ≤ 2 min P_4.1.8 Maximum Retry Cycle Rate in Fault Condition ffault – – 1 Hz – P_4.1.9 Short Circuit Capability P_4.1.3 RECU = 20 mΩ LECU = 1 µH Rcable = 6 mΩ/m Lcable = 1 µH/m l = to 5 m R, C as shown in Figure 30 See Chapter 5.3 GND Pin Current through GND pin Input Pin Data Sheet 10 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch General Product Characteristics Table 2 Absolute Maximum Ratings1) (cont’d) TJ = -40°C to +150°C; (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. -0.3 – VS Unit Note or Test Condition Number V – P_4.1.10 mA – t ≤ 2 min P_4.1.11 Sense Pin Voltage at IS pin Current through IS Pin VIS IIS 7) -15 –6) – – 10 15 Maximum Energy Dissipation by EAS Switching Off Inductive Load Single Pulse over Lifetime – – 3000 mJ VS = 13.5 V IL = IL(NOM) = 33A TJ(0) ≤ 150°C See Figure 5 P_4.1.12 Maximum Energy Dissipation Repetitive Pulse EAR – – 550 mJ 8) VS = 13.5 V IL = IL(NOM) = 33A TJ(0) ≤ 105°C See Figure 5 P_4.1.13 Maximum Energy Dissipation Repetitive Pulse EAR – – 200 mJ 8) VS = 13.5 V IL = 80A TJ(0) ≤ 105°C See Figure 5 P_4.1.14 Average Power Dissipation PTOT – – 200 W TC = -40°C to 150°C P_4.1.15 Voltage at OUT Pin VOUT -64 – – V – P_4.1.21 TJ -40 – 150 °C – P_4.1.16 Dynamic Temperature Increase ∆TJ while Switching – – 60 K See Chapter 5.3 P_4.1.17 Storage Temperature TSTG -55 – 150 °C – VESD(HBM) -2 – 2 kV HBM9) P_4.1.19 kV 9) P_4.1.20 Power Stage Temperatures Junction Temperature P_4.1.18 ESD Susceptibility ESD Susceptibility (all Pins) ESD Susceptibility OUT Pin vs. GND / VS 1) 2) 3) 4) 5) 6) 7) 8) 9) VESD(HBM) -4 – 4 HBM Not subject to production test, specified by design. The device is mounted on a FR4 2s2p board according to Jedec JESD51-2,-5,-7 at natural convection. VS(LD) is setup without DUT connected to the generator per ISO 7637-1. In accordance to AEC Q100-012, Figure-1 Test Circuit. In accordance to AEC Q100-012, Chapter 3 conditions. Short circuit conditions deviating from AEC Q100-012 may influence the specified short circuit cycle number in the data sheet. The total reverse current (sum of IGND, IIS and -IIN) is limited by -VS(REV)_max and RVS. TC ≤ 125°C Setup for EAR equivalent to short circuit test AEC Q100-012: Grade A (exceeding 106 cycles, parameter deviations are possible) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS-001. Data Sheet 11 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch General Product Characteristics Notes 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. 250 200 IL,max [A] 150 100 50 0 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 tpulse [sec] Figure 4 Maximum Single Pulse Current vs. Pulse Time, TJ ≤ 150°C, TPIN = 85°C Note: Above diagram shows the maximum single pulse current that can be maintained by the internal power stage bond wires for a given pulse time tpulse. The maximum reachable current may be smaller depending on the device current limitation level. The maximum reachable pulse time may be shorter due to thermal protection of the device. TPIN is the temperature of pins 5, 6 and 7. Data Sheet 12 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch General Product Characteristics 5.0 EAS - TJ(0)<150°C 4.5 EAR - TJ(0)<105°C 4.0 EA [J] 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 20 40 60 80 100 120 140 IL(0) [A] Figure 5 Maximum Energy Dissipation for Inductive Switch OFF, EA vs. IL at VS = 13.5 V 100% EAR derating 80% 60% 40% 20% 0% 100 110 120 130 140 150 Tj(0) [°C] Figure 6 Data Sheet Maximum Energy Dissipation Repetitive Pulse temperature derating 13 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch General Product Characteristics 4.2 Functional Range Table 3 Functional Range Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Supply Voltage Range for Nominal Operation VS(NOM) 8 – 18 V – P_4.2.1 Supply Voltage Range for Extended Operation VS(EXT) 5.3 – 28 V 1) P_4.2.2 VS(EXT) 5.5 – 28 V 1) Supply Voltage Range for Extended Operation Dynamic Undervoltage Capability VS(EXT,DYN) 3.22) – – V 1) Supply Undervoltage Shutdown VS(UV) – – 4.5 V 1) VIN ≥ 2.2 V RL = 270 Ω VS decreasing See Figure 19 Slewrate at OUT |dVDS/dt| – – 10 V/µs 1) |VDS| < 3V P_4.2.7 See Chapter 5.1.4 Slewrate at OUT |dVDS/dt| – – 0.2 V/µs 1) VIN ≥ 2.2 V IL ≤ IL(NOM) TJ ≤ 25°C Parameter deviations possible VIN ≥ 2.2 V IL ≤ IL(NOM) TJ = 150°C Parameter deviations possible acc. to ISO 7637 P_4.2.3 P_4.2.4 VS(EXT) < VS < 8 V P_4.2.8 0 < VDS < 1 V t < tON(DELAY) See Chapter 5.1.4 1) Not subject to production test. Specified by design 2) TA = 25°C; RL = 0.5 Ω; pulse duration 6 ms; cranking capability is depending on load and must be verified under application conditions Note: Data Sheet Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the Electrical Characteristics table. 14 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch General Product Characteristics 4.3 Thermal Resistance Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Table 4 Thermal Resistance Parameter Symbol Junction to Case RthJC Junction to Ambient Junction to Ambient RthJA(2s2p) RthJA Values Min. Typ. Max. – – 0.5 – – 20 70 – – Unit Note or Test Condition Number K/W 1) P_4.3.1 K/W 1)2) P_4.3.2 K/W 1)3) P_4.3.3 1) Not subject to production test, specified by design. 2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product (Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 µm Cu, 2 × 35 µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. TA = 25°C. Device is dissipating 2 W power. 3) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 1s0p board; the Product (Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm board with only one top copper layer 1 × 70 µm. TA = 25°C. Device is dissipating 2 W power. Figure 7 is showing the typical thermal impedance of BTS50015-1TAD mounted according to JEDEC JESD512,-5,-7 at natural convection on FR4 1s0p and 2s2p boards. 100 JEDEC 1s0p / 600mm² JEDEC 1s0p / 300mm² JEDEC 1s0p / footprint Zth(JA) [K/W] 10 JEDEC 2s2p 1 0.1 0.01 0.0001 Figure 7 Data Sheet 0.001 0.01 0.1 1 tPULSE [s] 10 100 1000 Typical Transient Thermal Impedance Zth(JA) = f(time) for Different PCB Conditions 15 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Functional Description 5 Functional Description 5.1 Power Stage The power stage is built by a N-channel power MOSFET (DMOS) with charge pump. 5.1.1 Output ON-State Resistance The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Page 42 shows the dependencies in terms of temperature and supply voltage, for the typical ON-state resistance. The behavior in reverse polarity is described in Chapter 5.3.5. A HIGH signal (see Chapter 5.2) at the input pin causes the power DMOS to switch ON with a dedicated slope, which is optimized in terms of EMC emission. 5.1.2 Switching Resistive Loads Figure 8 shows the typical timing when switching a resistive load. The power stage has a defined switching behavior. Defined slew rates results in lowest EMC emission at minimum switching losses. 90% VS 50% VS 25% VS 10% VS dVON/dt VOUT VOUT IOUT IOUT dVOFF/dt tOFF(DELAY) tON(DELAY) tON VIN VIN Figure 8 Switching a Resistive Load: Timing 5.1.3 Switching Inductive Loads 5.1.3.1 Output Clamping tOFF When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential, because the inductance intends to continue driving the current. To prevent the destruction of the device due to high voltages, there is a Infineon® SMART CLAMPING mechanism implemented that keeps negative output voltage to a certain level (VS - VDS(CL)). Please refer to Figure 9 and Figure 10 for details. Nevertheless, the maximum allowed load inductance remains limited. Data Sheet 16 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Functional Description VS RVS Smart Clamp IN VDS LOGIC IL VS OUT GND VIN Figure 9 VOUT L, RL Output Clamp VIN t VOUT VS t VS -V DS(CL) IL t Tj TJ0 t Figure 10 Switching an Inductance The BTS50015-1TAD provides Infineon® SMART CLAMPING functionality. To increase the energy capability for single operation, the clamp voltage VDS(CL) increases with junction temperature TJ and with load current IL. Refer to Page 44. 5.1.3.2 Maximum Load Inductance During demagnetization of inductive loads, energy must be dissipated in the BTS50015-1TAD. This energy can be calculated with following equation: E = VDS(CL) × VS − VDS(CL) RL × IL L × × ln 1 − + IL RL RL VS − VDS(CL) [ ( ) ] (5.1) Data Sheet 17 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Functional Description Following equation simplifies under the assumption of RL = 0 Ω. E= 1 VS × L × I2L × 1 − 2 VS − VDS(CL) ( ) (5.2) The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 5 for the maximum allowed energy dissipation as function of the load current. 5.1.4 Switching Active Loads When switching generative or electronic loads such as motors or secondary ECUs which have the ability to feed back voltage disturbances to the OUT pins, special attention is required about the resulting absolute and dynamic voltage VDS between VS pin and OUT pins. To maintain device functionality it is required to limit the maximum positive or negative slew rate of VDS = VS - VOUT below |dVDS/dt| (parameter P_4.2.7) . In case the device operates at low battery voltage (VS < 8 V) where the load feeds back a positive output voltage reaching almost VS potential (0 < VDS < 1 V), it has to be ensured that for each activation (turn-on event), where the device is commanded on by applying VIN(H) at IN pin, a maximum positive or negative slew rate of VDS below |dVDS/dt| (parameter P_4.2.8) will not be exceeded until tON(DELAY) has expired (maxium 150 µs after turn-on command). For loads that generate steady or dynamic voltage at the OUT pins which is higher than voltage at VS pin please consider Chapter 5.1.5. Data Sheet 18 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Functional Description 5.1.5 Inverse Current Capability In case of inverse current, meaning a voltage VOUT(INV) at the output higher than the supply voltage VS, a current IL(INV) will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 11). In case the IN pin is HIGH, the power DMOS is already activated and will continue to remain in ON state during the inverse event. In case, the input goes from “L” to “H”, the DMOS will be activated even during an inverse event. Under inverse condition, the device is not overtemperature / overload protected. During inverse mode at ON the sense pin will provide a leakage current of less or equal to IIS0. Due to the limited speed of INV comparator, the inverse duration needs to be limited. VBAT VS Gate driver VOUT (INV) I L(INV) OL comp. INV Comp. OUT GND Figure 11 VOUT Inverse Current Circuitry (a) Inverse spike during ON -mode for short times (< tp,INV ,noFAULT) VOUT VS (c) Inverse spike during ON -mode with short circuit after leaving Inverse mode VOUT VS VS t t IIS (b) Inverse spike during ON -mode for times > tp,INV ,noFAULT t > t p, INV ,noFAULT < t p, INV ,noFAULT IIS tOFF (trip ) IIS IIS (fault ) IIS (fault ) tsIS (ON) t p, noINV, FAULT tpIS (FAULT ) t t t Internal Fault -flag set Figure 12 Data Sheet Inverse Behavior - Timing Diagram 19 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Functional Description 5.1.6 PWM Switching The switching losses during this operation should be properly considered (see following equation): PTOTAL = (switching_ON_energy + switching_OFF_energy + IL2 × RDS(ON) × tDC) / period PWM switching application slightly above tIN(RESETDELAY) parameter (see Figure 25) with calculated power dissipation PTOTAL > PTOT parameter limit causes an effective increase in TJ(TRIP) parameter. In the event of a fault condition it has to be ensured, that the PWM frequency will not exceed a maximum retry frequency of fFAULT (parameter P_4.1.9). With this measure the short circuit robustness nRSC1 (parameter P_4.1.4) can be utilized. Operation at nominal PWM frequency can only be restored, once the fault condition is overcome. VIN VIN_H V IN_L t P PTOT t tDC Figure 13 Switching in PWM 5.1.7 Advanced switch-off behavior In order to reduce device stress when switching OFF critical loads and/or critical load conditions, the device provides an advanced switch off functionality which results in a typically ten times faster switch off behavior. This fast switch off functionality is triggered by one the following conditions: • The device is commanded off by applying VIN(L) at the IN pin. During the switch OFF operation the OUT pins’ voltage in respect to GND pin drops to typically -3 V or below (typically VOUT – VGND ≤ -3 V). • The device is commanded on or is already in on-state. The device then detects a short circuit condition (IL ≥ ICL(0)) and initiates a protective switch off. Please refer to Chapter 5.3.6.1 and Chapter 5.3.6.2 for details. Data Sheet 20 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Functional Description 5.2 Input Pins 5.2.1 Input Circuitry The input circuitry is compatible with 3.3 V and 5 V microcontrollers or can be directly driven by VS. The concept of the input pin is to react to voltage threshold. With the Schmitt trigger, the output is either ON or OFF. Figure 14 shows the electrical equivalent input circuitry. RVS VS IN IIN GND Figure 14 Input Pin Circuitry 5.2.2 Input Pin Voltage The IN uses a comparator with hysteresis. The switching ON / OFF takes place in a defined region, set by the threshold VIN(L) Max and VIN(H) Min. The exact value where ON and OFF take place depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON and OFF, an hysteresis is implemented. This ensures immunity to noise. 5.3 Protection Functions The device provides embedded protective functions. Integrated protection functions are designed to prevent the destruction of the IC from fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are designed neither for continuous nor for repetitive operation. Figure 15 describes the typical functionality of the diagnosis and protection block. Data Sheet 21 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Functional Description VS VDS ESD IN protection current sense VS RVS VS(int) 2V & 0 Driver IIS (fault) IS 1 Vb,IS Overcurrent 1 IL 0 (IL/dkILI S) ± IIS 0 VIS IIS OUT tIN(RESET DEL AY) VS -VOUT >3V & RIS IL>ICL ≥1 & ΤJ > ΤJ(TRIP ) R Q S Q FAULT 30mV driver logic invers e comp arator GND Figure 15 Diagram of Diagnosis & Protection Block 5.3.1 Loss of Ground Protection In case of loss of module or device ground, where the load remains connected to ground, the device protects itself by automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied at IN pin. It is recommended to use input resistors between the microcontroller and the BTS50015-1TAD to ensure switching OFF of channel. In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS. Figure 16 sketches the situation. Vbat VIN IN Z(AZ)GND Z(AZ)I S VS OUT Logic RIN Z(ESD-L) Z(ESD-H) RVS IS GND RIS Figure 16 Loss of Ground Protection with External Components 5.3.2 Protection during Loss of Load or Loss of VS Condition In case of loss of load with charged primary inductances the supply voltage transient has to be limited. It is recommended to use a Zener diode, a varistor or VS clamping power switches with connected loads in parallel. The voltage must be limited according to the minimum value of the parameter 6.1.33 indicated in Table 6. Data Sheet 22 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Functional Description In case of loss of VS connection with charged inductive loads, a current path with sufficient load current capability has to be provided, to demagnetize the charged inductances. It is recommended to protect the device using a Zener diode together with a diode (VZ1 + VD1 < 16 V), with path (A) or path (B) as shown in Figure 17. For a proper restart of the device after loss of VS, the input voltage must be delayed compared to the supply voltage ramp up. This can be realized by a capacitor between IN and GND (see Figure 30). For higher clamp voltages, currents through all pins have to be limited according to the maximum ratings. Please see Figure 17 and Figure 18 for details. ext. components acc. to either (A) or (B) required, not both VBAT (A) RVS Logic D1 VS (B) OUT Z1 IN IS GND RIN D1 RIS Figure 17 Inductive Load Z1 VIN Loss of VS VBAT L/R cable VS Logic RVS Z2 OUT IN RIN IS GND RIS Load V IN Figure 18 Data Sheet R/L cable Loss of Load 23 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Functional Description 5.3.3 Undervoltage Behavior If the device is already ON and the power supply decreases but remains above the VS(UV), no effect is observed and the device keeps on working normally (case 1, Figure 19) If the power supply falls below the VS(UV) but remains above the VS(EXT,DYN), the device turns off, but it turns automatically on again when the power supply goes above Min. VS(EXT) (case 2, Figure 19). In case the power supply becomes lower than VS(EXT,DYN), the device turns off and can be switched on again only after a reset signal at the IN pin, provided that the power supply is higher than Min. VS(EXT) (case 3, Figure 19). 1 2 3 MIN VS(EXT) VS(UV) VS(EXT,DYN) Figure 19 Data Sheet 1 Always ON 2 turn OFF , automatic turn ON when V 3 turn OFF , turn ON with IN reset with V S ≥ MIN V S(EXT ) S≥ MIN V S(EXT ) Undervoltage Behavior 24 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Functional Description 5.3.4 Overvoltage Protection In case VS(SC)_max < VS < VDS(CL), the device will switch ON/OFF normally as in the nominal voltage range. Parameters may deviate from the specified limits and lifetime is reduced. This specially impacts the short circuit robustness, as well as the maximum energy EAS and EAR the device can handle. The BTS50015-1TAD provides Infineon® SMART CLAMPING functionality, which suppresses excessive transient overvoltage by actively clamping the overvoltage across the power stage and the load. This is achieved by controlling the clamp voltage VDS(CL) depending on the junction temperature TJ and the load current IL (see Figure 20 for details). VBA T IN Z(A Z)G ND VS Smart Clamp VIN Z(A Z)IS RIN Z(ESD -L) Z(ESD-H) RVS OUT IS GND RIS Figure 20 Overvoltage Protection with External Components 5.3.5 Reverse Polarity Protection In case of reverse polarity, the intrinsic body diode of the power DMOS causes power dissipation. To limit the risk of overtemperature, the device provides Infineon® ReverSave™ functionality. The power in this intrinsic body diode is limited by turning the DMOS ON. The DMOS resistance is then equal to RDS(REV). Additionally, the current into the logic has to be limited. The device includes a RVS resistor which limits the current in the diodes. To avoid overcurrent in the RVS resistor, it is nevertheless recommended to use a RIN resistor. Please refer to maximum current described in Chapter 4.1. Figure 21 shows a typical application. RIS is used to limit the current in the sense transistor, which behaves as a diode. The recommended typical value for RIN is 4.7 kΩ and for RIS 1 kΩ. Data Sheet 25 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Functional Description -VBA T IN Z(A Z)G N D Reverse ON IIN Z(A Z)IS RIN Z(ESD-L) Z(ESD -H) RVS Microcontroller VS OUT -IL IS DOUT IRVS GND RIS -IIS -IGND GND Figure 21 Reverse Polarity Protection with External Components 5.3.6 Overload Protection In case of overload, high inrush current or short circuit to ground, the BTS50015-1TAD offers several protection mechanisms. Any protective switch OFF latches the output. To restart the device, it is necessary to set IN = LOW for t > tIN(RESETDELAY). This behavior is known as latch behavior. Figure 25 gives a sketch of the situation. 5.3.6.1 Activation of the Switch into Short Circuit (Short Circuit Type 1) When the switch is activated into short circuit, the current will raise until reaching the ICL(0) value. After tOFF(TRIP), the device will turn OFF and latches until the IN pin is set to low for t > tIN(RESETDELAY). Under certain supply undervoltage shutdown conditions (for example VS < VS(EXT,DYN)) the latched fault may be reset. For overload (short circuit or overtemperature), the maximum retry cycle (ffault) under fault condition must be considered. 5.3.6.2 Short Circuit Appearance when the Device is already ON (Short Circuit Type 2) When the device is in ON state and a short circuit to ground appears at the output (SC2) with an overcurrent higher than ICL(0) for a time longer than tOFF(TRIP), the device automatically turns OFF and latches until the IN pin is set to low for t > tIN(RESETDELAY). Under certain supply undervoltage shutdown conditions (for example VS < VS(EXT,DYN)) the latched fault may be reset. 5.3.6.3 Influence of the battery wire inductance The wire between the battery and the VS pin includes typically some parasitic inductance. When the device switches off due to a short circuit event, the energy stored in the line inductance together with the capacitance (either the capacitor placed at VS pin or the internal capacitance between drain and source) could trigger an oscillatory behavior on the supply line at short circuit turn-off (see Figure 22), whose frequency depends on the inductance and capacitance values. Data Sheet 26 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Functional Description ILoad Short circuit detected ICL t VS Oscillations of the VS voltage VBAT t Figure 22 Oscillations at VS pin The oscillations can pull the VS pin voltage to GND or even below. In some cases this behaviour may cause the device to reset the fault generated by the overcurrent event. As consequence the device may switch on again, as soon as the VS reaches an adequate value. The short circuit condition will be detected again and then the device will switch off. Short circuits and resets of the fault condition may repeatedly occur (see Figure 23). ILoad Short circuits detected ICL t Figure 23 Data Sheet Consecutive short circuit events 27 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Functional Description Potential solutions to dampen such oscillation and to achieve an effectively latching overcurrent protection is a RC snubber network, which needs to be connected between the VS pin and device or module GND. Figure 24 shows RC snubber circuits for each GND connection. For detailed information see Chapter 7. IN VS IN OUT IS Figure 24 VS OUT IS GND GND RC Snubber circuits: between VS pin and module GND; between VS pin and device GND The design of the most suitable RC snubber network is beyond the scope of this chapter. Nevertheless the recommendation given in Chapter 7 contribute to effectively dampen the oscillation for typical line inductance and CVS. 5.3.7 Temperature Limitation in the Power DMOS The BTS50015-1TAD incorporates an absolute (TJ(TRIP)) temperature sensor. Activation of the sensor will cause an overheated channel to switch OFF to prevent destruction. The device restarts when the IN pin is set to low for t > tIN(RESETDELAY) and the temperature has decreased below TJ(TRIP) - ∆TJ(TRIP). Under certain undervoltage shutdown conditions (for example below VS(EXT,DYN)) the latched fault might be reset. Data Sheet 28 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Functional Description tIN(RESETDELAY) IN IL tOFF(TRIP) t tOFF(TRIP) ICL(1) ICL(0) t TJ TJ(TRIP) TA t IIS IIS(FAULT) Figure 25 Input disable IIS(F AULT) disable Overtemperature IIS (FAULT) disable Input disable Short Circuit 1 Input disable IIS (FAULT) disable Short Circuit 2 start 0 t Overload Protection The current sense exact signal timing can be found in the Chapter 5.4. It is represented here only for device’s behavior understanding. In order to allow the device to detect overtemperature conditions and react effectively, it is recommended to limit the power dissipation below PTOT (parameter 4.1.15). 5.4 Diagnostic Functions For diagnosis purposes, the BTS50015-1TAD provides a combination of digital and analog signal at pin IS. 5.4.1 IS Pin The BTS50015-1TAD provides an enhanced current sense signal called IIS at pin IS. As long as no “hard” failure mode occurs (short circuit to GND / overcurrent / overtemperature) and the condition VIS ≤ VOUT - 5 V is fulfilled, a proportional signal to the load current is provided. The complete IS pin and diagnostic mechanism is described in Figure 26. The accuracy of the sense current depends on temperature and load current. In case of failure, a fixed IIS(FAULT) is provided. In order to enable the fault current reporting, the condition VS - VOUT > 2 V must be fulfilled. In order to get the fault current in the specified range, the condition VS - VIS ≥ 5 V must be fulfilled. Data Sheet 29 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Functional Description Vs RVS RSenseMos VS-VOUT>2V IIS(FAULT) FAULT ZIS(AZ) ( IL / dkILIS ) ± IIS(0) & 1 IS 0 Figure 26 Diagnostic Block Diagram 5.4.2 SENSE Signal in Different Operation Modes Table 5 Sense Signal, Function of Operation Mode1) Operation mode Input Level Output Level VOUT Diagnostic Output (IS)2) Normal operation LOW (OFF) ~ GND IIS(OFF) Short circuit to GND GND IIS(OFF) Overtemperature ~ GND IIS(OFF) Short circuit to VS VS IIS(OFF) Open Load Z IIS(OFF) Inverse current > VS IIS(OFF) ~ VS IIS = (IL / dkILIS) ± IIS0 Overcurrent condition < VS IIS = (IL / dkILIS) ± IIS0 or IIS(FAULT) Short circuit to GND GND IIS(FAULT) Overtemperature (after the event) ~ GND IIS(FAULT) Short circuit to VS VS IIS < IL / dkILIS ± IIS0 Open Load VS IIS0 Inverse current > VS <IIS0 Normal operation HIGH (ON) 1) Z = High Impedance 2) See Chapter 5.4.3 for Current Sense Range and Improved Current Sense Accuracy. 5.4.3 SENSE Signal in the Nominal Current Range Figure 27 and Figure 28 show the current sense as function of the load current in the power DMOS. Usually, a pull-down resistor RIS is connected to the current sense pin IS. A typical value is 1 kΩ. The dotted curve represents the typical sense current, assuming a typical dkILIS factor value. The range between the two solid curves shows the sense accuracy range that the device is able to provide, at a defined current. IIS = Data Sheet IL + I with (IIS ≥ 0) dkILIS IS0 30 (5.3) Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Functional Description where the definition of dkILIS is: dkILIS = IL4 − IL1 IIS4 − IIS1 (5.4) and the definition of IIS0 is: IIS0 = IIS1 − IL1 dkILIS (5.5) 3.5 dkILIS(min) 3 dkILIS(typ) 2.5 dkILIS(max) IIS [mA] 2 1.5 1 0.5 IIS0(max) 0 0 20 40 IL1 IL2 60 80 IL3 100 120 140 160 IL4 IL[A] Figure 27 Current Sense for Nominal and Overload Condition 5.4.3.1 SENSE Signal Variation and Calibration In some applications, an enhanced accuracy is required around the device nominal current range IL(NOM). To achieve this accuracy requirement, a calibration on the application is possible. After two point calibration, the BTS50015-1TAD will have a limited IIS value spread at different load currents and temperature conditions. The IIS variation can be described with the parameters ∆(dkILIS(cal)) and the ∆IIS0(cal). The blue solid line in Figure 28 is the current sense ratio after the two point calibration at a given temperature. The slope of this line is defined as follows: 1 dkILIS(cal) = IIS(cal)2 − IIS(cal)1 IL(cal)2 − IL(cal)1 (5.6) Data Sheet 31 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Functional Description The offset is defined as follows: IIS0(cal) = IIS(cal)1 − IL(cal)1 IL(cal)2 = IIS(cal)2 − dkILIS(cal) dkILIS(cal) (5.7) The bluish area in Figure 28 is the range where the current sense ratio can vary across temperature and load current after performing the calibration. The accuracy of the load current sensing is improved and, given a sense current value IIS (measured in the application), the load current can be calculated as follow, using the absolute value for ∆(dkILIS(cal)) instead of % values: ( ) ( IL = dkILIS(cal) × 1 + ∆(dkILIS(cal)) × IIS − IIS0(cal) − ∆IIS0(cal) ) (5.8) where dkILIS(cal) is the current sense ratio measured after two-points calibration (defined in Equation (5.6)), IIS0(cal) is the current sense offset (calculated after two points calibration, see Equation (5.7)), and ∆IIS0(cal) is the additional variation of the individual offset over life time and temperature. For a calibration at 25°C ∆IIS0(cal) varies over temperature and life time for all positive ∆IIS0(cal) within the differences of the temperature dependent Max. limits. All negative ∆IIS0(cal) vary within the differences of the temperature dependent Min. limits. For positive IIS0(cal) values (IIS0(cal) > 0): Max IIS0 (@TJ = 150°C) − Max IIS0 (@TJ = 25°C) ≤ ∆IIS0(cal) ≤ Max IIS0 (@TJ = -40°C) − Max IIS0 (@TJ = 25°C) (5.9) For negative IIS0(cal) values (IIS0(cal) < 0): Min IIS0 (@TJ = 150°C) − Min IIS0 (@TJ = 25°C) ≥ ∆IIS0(cal) ≥ Min IIS0 (@TJ = -40°C) − Min IIS0 (@TJ = 25°C) (5.10) Equation (5.8) actually provides four solutions for load current, considering that ∆(dkILIS(cal)) and ∆IIS0(cal) can be both positive and negative. The load current IL for any sense current IIS will spread between a minimum IL value resulting from the combination of lowest ∆(dkILIS(cal)) value and highest ∆IIS0(cal) and a maximum IL value resulting from the combination of highest ∆(dkILIS(cal)) value and lowest ∆IIS0(cal). Data Sheet 32 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Functional Description IIS 1/dkILIS(min) ΔdkILIS(cal) 1/dkILIS(cal) IIS(cal)2 ΔdkILIS(cal) 1/dkILIS(max) IIS IIS(cal)1 ΔIIS0(cal) IIS0(cal) ΔIIS0(cal) Figure 28 Data Sheet Min IL Typ IL IL(cal)1 Max IL IL(cal)2 IL Improved Current Sense Accuracy after 2-Point Calibration 33 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Functional Description 5.4.3.2 SENSE Signal Timing Figure 29 shows the timing during settling and disabling of the sense. VIN tOF F<tIN (RESETD EL AY) tOF F>tIN (RESETD EL AY) Short / Overtemp. t VOUT t IIS IIS (fault)t IIS 1.. 4 latch no reset VIN IL VIN t tO N Short circuit 90% of IL s tat ic t 90% of IS s tat ic t ts IS(O N) t t VOUT VOUT IIS t reset 3V t IIS tp IS(O N)_9 0 IIS (fault) IIS 1.. 4 ts IS(L C) t tp IS(FAU L T) Figure 29 Fault Acknowledgement 5.4.3.3 SENSE Signal in Case of Short Circuit to VS t In case of a short circuit between OUT and VS, a major part of the load current will flow through the short circuit. As a result, a lower current compared to the nominal operation will flow through the DMOS of the BTS50015-1TAD, which can be recognized at the current sense signal. 5.4.3.4 SENSE Signal in Case of Over Load An over load condition is defined by a current flowing out of the DMOS reaching the current over load ICL or the junction temperature reaches the thermal shutdown temperature TJ(TRIP). Please refer to Chapter 5.3.6 for details. In that case, the SENSE signal will be in the range of IIS(FAULT) when the IN pin stays HIGH. This is a device with latch functionality. The state of the device will remain and the sense signal will remain on IIS(FAULT) until a reset signal comes from the IN pin. For example, when a thermal shutdown occurs, even when the over temperature condition has disappeared, the DMOS can only be reactivated when a reset signal is sent to the IN pin. Data Sheet 34 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Electrical Characteristics BTS50015-1TAD 6 Electrical Characteristics BTS50015-1TAD 6.1 Electrical Characteristics Table Table 6 Electrical Characteristics: BTS50015-1TAD VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified) For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. Operating Current (Channel IGND(ACTIVE) Active) – 1.2 3 mA VIN ≥ 2.2 V P_6.1.1 Standby Current for Whole Device with Load IVS(OFF) – 7 18 µA 1) VS = 18 V VOUT = 0 V VIN ≤ 0.8 V TJ ≤ 85°C See Page 41 P_6.1.2 Maximum Standby Current for Whole Device with Load IVS(OFF) – 25 120 µA VS = 18 V VOUT = 0 V VIN ≤ 0.8 V TJ ≤ 150°C See Page 41 P_6.1.3 ON-State Resistance in Forward Condition RDS(ON) – 2.1 3 mΩ IL = 135 A VIN ≥ 2.2 V TJ = 150°C See Page 42 P_6.1.4 ON-State Resistance in Forward Condition, Low Battery Voltage RDS(ON) – 3.2 5 mΩ IL = 20 A VIN ≥ 2.2 V VS = 5.5 V TJ = 150°C See Page 42 P_6.1.5 ON-State Resistance in Forward Condition RDS(ON) – 1.5 – mΩ 1) IL = 135 A VIN ≥ 2.2 V TJ = 25°C See Page 42 P_6.1.6 ON-State Resistance in Inverse Condition RDS(INV) – 2.1 3.1 mΩ IL = -135 A VIN ≥ 2.2 V TJ = 150°C See Figure 11 P_6.1.7 ON-State Resistance in Inverse Condition RDS(INV) – 1.5 – mΩ 1) P_6.1.8 Operating and Standby Currents Power Stage Data Sheet 35 IL = -135 A VIN ≥ 2.2 V TJ = 25°C See Figure 11 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Electrical Characteristics BTS50015-1TAD Table 6 Electrical Characteristics: BTS50015-1TAD (cont’d) VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified) For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Nominal Load Current IL(NOM) 33 39 – A TA = 85°C2) TJ ≤ 150°C P_6.1.9 Drain to Source Smart Clamp Voltage VDS(CL) = VS VOUT VDS(CL) 28 – 46 V IDS = 50 mA See Page 44 P_6.1.11 Output Leakage Current IL(OFF) – 5 15 µA 1) VIN ≤ 0.8 V VOUT = 0 V TJ ≤ 85°C P_6.1.13 Output Leakage Current IL(OFF) – 20 100 µA VIN ≤ 0.8 V VOUT = 0 V TJ = 150°C P_6.1.14 Turn ON Slew Rate VOUT = 25% to 50% VS dVON/dt 0.05 0.23 0.5 V/µs P_6.1.15 Turn OFF Slew Rate VOUT = 50% to 25% VS -dVOFF/dt 0.05 0.25 0.55 V/µs Turn ON Time to VOUT = 90% VS tON – 220 700 µs RL = 0.5 Ω VS = 13.5 V See Figure 8 See Page 42 See Page 43 Turn OFF Time to VOUT = 10% VS tOFF – 300 700 µs P_6.1.18 Turn ON Time to VOUT = 10% VS tON(DELAY) – 80 150 µs P_6.1.19 Turn OFF Time to VOUT = 90% VS tOFF(DELAY) – 230 500 µs P_6.1.20 Switch ON Energy EON – 7 – mJ 1) RL = 0.5 Ω VS = 13.5 V See Page 43 P_6.1.21 Switch OFF Energy EOFF – 5 – mJ 1) P_6.1.22 Data Sheet 36 RL = 0.5 Ω VS = 13.5 V See Page 43 P_6.1.16 P_6.1.17 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Electrical Characteristics BTS50015-1TAD Table 6 Electrical Characteristics: BTS50015-1TAD (cont’d) VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified) For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number See Page 44 P_6.1.23 Input Pin LOW Level Input Voltage VIN(L) – – 0.8 V HIGH Level Input Voltage VIN(H) 2.2 – – V See Page 44 P_6.1.24 P_6.1.25 Input Voltage Hysteresis VIN(HYS) – 200 – mV 1) LOW Level Input Current IIN(L) 8 – – µA VIN = 0.8 V P_6.1.26 HIGH Level Input Current IIN(H) – – 80 µA VIN ≥ 2.2 V P_6.1.27 Output Leakage Current while Module GND Disconnected IOUT(GND_M) 0 20 100 µA 1)3) VS = 18 V P_6.1.28 VOUT = 0 V IS & IN pins open GND pin open TJ = 150°C See Figure 16 Output Leakage Current while Device GND Disconnected IOUT(GND) 0 20 100 µA VS = 18 V GND pin open VIN ≥ 2.2 V 1 kΩ pull down from IS to GND 4.7 kΩ to IN pin TJ = 150°C See Figure 16 See Page 45 P_6.1.29 Protection: Loss of Ground Protection: Reverse Polarity ON-State Resistance in Reverse Polarity RDS(REV) – – 3.2 mΩ VS = 0 V VGND = VIN = 16 V IL = -20 A TJ = 150°C See Figure 21 P_6.1.30 ON-State Resistance in Reverse Polarity RDS(REV) – 1.5 – mΩ 1) VS = 0 V VGND = VIN = 16 V IL = -20 A TJ = 25°C See Page 45 P_6.1.31 Integrated Resistor RVS – 60 90 Ω TJ = 25°C P_6.1.32 Data Sheet 37 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Electrical Characteristics BTS50015-1TAD Table 6 Electrical Characteristics: BTS50015-1TAD (cont’d) VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified) For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Protection: Overvoltage Overvoltage Protection VS to GND Pin VS(AZ)_GND 64 70 80 V See Figure 20 See Page 44 P_6.1.33 Overvoltage Protection VS to IS Pin VS(AZ)_IS 64 70 80 V GND and IN pin open See Figure 20 See Page 44 P_6.1.34 Current Trip Detection Level ICL(0) 135 175 – A VS = 13.5 V, static P_6.1.35 TJ = 150°C See Figure 25 ICL(0) 145 185 – A VS = 13.5 V, static TJ = -40 ... 25°C See Figure 25 Current Trip Maximum Level ICL(1) – 190 250 A 1) VS = 13.5 V dIL/dt = 1 A/µs See Page 45 Overload Shutdown Delay Time tOFF(TRIP) – 12 – µs 1) P_6.1.36 Thermal Shutdown Temperature TJ(TRIP) 150 1701) 2001) °C See Figure 25 P_6.1.37 Thermal Shutdown Hysteresis ∆TJ(TRIP) – 10 – K 1) P_6.1.38 Sense Signal Current in Fault IIS(FAULT) Condition 3.5 6 8 mA 1) VIN = 4.5 V VS - VIS ≥ 5 V P_6.1.40 Sense Signal Saturation Current 3.5 6 8 mA 1) P_6.1.57 Protection: Overload Diagnostic Function: Sense Pin Data Sheet IIS(LIM) 38 VIN = 4.5 V VS - VIS ≥ 5 V Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Electrical Characteristics BTS50015-1TAD Table 6 Electrical Characteristics: BTS50015-1TAD (cont’d) VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified) For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C Parameter Symbol Values Min. Typ. Unit Max. Note or Test Condition Number Diagnostic Function: Current Sense Ratio Signal in the Nominal Area, Stable Current Load Condition Current Sense Differential Ratio dkILIS 45300 51500 57700 – IL4 = 135 A IL1 = 20 A See Equation (5.4) P_6.1.41 Calculated Sense Offset Current IL = IL0 = 0 A IIS0 -165 15 190 µA 4) VIN ≥ 2.2 V VS - VIS ≥ 5 V TJ = -40°C See Figure 27 P_6.1.42 IIS0 -115 5 125 µA 1)4) VIN ≥ 2.2 V VS - VIS ≥ 5 V TJ = 25°C See Figure 27 IIS0 -65 -5 60 µA 4) VIN ≥ 2.2 V VS - VIS ≥ 5 V TJ = 150°C See Figure 27 Sense Current IL = IL1 = 20 A IIS1 180 390 635 µA 1) Sense Current IL = IL2 = 40 A IIS2 525 780 1075 µA Sense Current IL = IL3 = 80 A IIS3 1.22 1.56 1.96 mA Sense Current IL = IL4 = 135 A IIS4 2.17 2.62 3.17 mA -5 0 5 % 1) P_6.1.47 Current Sense Ratio Spread ∆(dkILIS(cal)) over Temperature and Repetitive Pulse Operation after 2-Points Calibration VIN ≥ 2.2 V VS - VIS ≥ 5 V See Figure 27 1) VIN ≥ 2.2 V VS - VIS ≥ 5 V See Figure 27 See Figure 28 P_6.1.43 P_6.1.44 P_6.1.45 P_6.1.46 Diagnostic Function: Diagnostic Timing in Normal Condition Current Sense Propagation tpIS(ON)_90 Time until 90% of IIS Stable After Positive Input Slope on IN Pin 0 – 700 µs VIN ≥ 2.2 V VS = 13.5 V RL = 0.5 Ω See Figure 29 P_6.1.48 Current Sense Settling Time tsIS(ON) to IIS Stable after Positive Input Slope on IN Pin – – 3000 µs VIN ≥ 2.2 V VS = 13.5 V RL = 0.5 Ω See Figure 29 P_6.1.49 IIS Leakage Current when IN IIS(OFF) Disabled 0 0.05 1 µA VIN ≤ 0.8 V RIS = 1k Ω P_6.1.50 Data Sheet 39 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Electrical Characteristics BTS50015-1TAD Table 6 Electrical Characteristics: BTS50015-1TAD (cont’d) VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified) For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C Parameter Symbol Current Sense Settling Time tsIS(LC) after Load Change Values Min. Typ. Max. – 50 – Unit Note or Test Condition Number µs 1) P_6.1.51 VIN ≥ 2.2 V dIL/dt = 0.4 A/µs Diagnostic Function: Diagnostic Timing in Overload Condition Current Sense Propagation Time for Short Circuit Detection tpIS(FAULT) tIN(RESETDELAY) Delay Time to Reset Fault Signal at IS Pin after Turning OFF VIN 0 – 100 µs 1) 250 1000 1500 µs 1) P_6.1.53 VIN ≥ 2.2 V P_6.1.52 from VOUT = VS 3 V to IIS(FAULT)_min See Figure 29 Timing: Inverse Behavior Propagation Time From VOUT > VS to Fault Disable tp,INV,noFAULT – 4 – µs 1) P_6.1.55 Propagation Time from VOUT < VS to Fault Enable tp,noINV,FAULT – 10 – µs 1) P_6.1.56 1) 2) 3) 4) See Figure 12 See Figure 12 Not subject to production test, specified by design. Value is calculated from the parameters typ. RthJA(2s2p), with 65 K temperature increase, typ. and max. RDS(ON). All pins are disconnected except VS and OUT. Value is calculated from the parameters dkILIS and IIS1. Data Sheet 40 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Electrical Characteristics BTS50015-1TAD 6.2 Typical Performance Characteristics Standby Current for Whole Device with Load, IVS(OFF) = f(VS, TJ) Standby Current for Whole Device with Load, IVS(OFF) = f(TJ) at VS = 13.5 V 40 30 -40°C 0°C 35 25°C 25 85°C 30 100°C 20 150°C 25 IVS(OFF) [µA] I VS(OFF) [µA] 125°C 20 15 15 10 10 5 5 0 0 10 20 0 30 -40 -20 0 20 V S [V] 60 80 100 120 140 160 TJ [oC] GND Leakage Current IGND(OFF) = f(VS, TJ) GND Leakage Current IGND(OFF) = f(TJ) at VS = 13.5 V 4 4 3.5 3.5 3 3 2.5 2.5 I GND(OFF) [µA] IGND(OFF) [µA] 40 2 1.5 2 1.5 -40°C 1 0°C 1 25°C 85°C 100°C 0.5 0.5 125°C 0 150°C 0 0 5 10 15 20 25 -40 -20 30 0 20 40 60 80 100 120 140 160 o T J [ C] V S [V] Data Sheet 41 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Electrical Characteristics BTS50015-1TAD ON State Resistance RDS(ON) = f(VS, TJ), IL = 20 A ... 135 A ON State Resistance RDS(ON) = f(TJ),VS = 13.5 V, IL = 20 A ... 135 A 2.5 5 4.5 -40°C 25°C 4 2 150°C R DS(ON) [mΩ] RDS(ON) [mΩ] 3.5 3 2.5 2 1.5 1 1.5 0.5 1 0.5 0 0 5 7 9 11 13 15 -40 -20 0 20 40 60 80 100 120 140 160 V S [V] T J [°C] Turn ON Time tON = f(VS, TJ), RL = 0.5 Ω Turn OFF Time tOFF = f(VS, TJ), RL = 0.5 Ω 1200 1200 -40°C 25°C 1000 -40°C 25°C 1000 150°C 150°C 800 tOFF [µs] tON [µs] 800 600 600 400 400 200 200 0 0 0 Data Sheet 5 10 15 VS [V] 20 25 30 42 0 5 10 15 VS [V] 20 25 30 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Electrical Characteristics BTS50015-1TAD Slew Rate at Turn ON dVON / t = f(VS, TJ), RL = 0.5 Ω 0.7 0.7 -40°C 0.6 150°C 25°C 150°C 0.5 dVOFF/dt [V/µs] 0.4 0.3 0.2 0.4 0.3 0.2 0.1 0.1 0 -40°C 0.6 25°C 0.5 dVON/dt [V/µs] Slew Rate at Turn OFF dVOFF / t = f(VS, TJ), RL = 0.5 Ω 0 5 10 15 20 25 0 30 0 5 10 Switch ON Energy EON = f(VS, TJ), RL = 0.5 Ω 20 25 30 20 25 30 Switch OFF Energy EOFF = f(VS, TJ), RL = 0.5 Ω 50 40 -40°C -40°C 35 45 25°C 25°C 40 150°C 30 150°C 35 EOFF [mJ] 25 EON [mJ] 15 VS [V] VS [V] 20 15 30 25 20 15 10 10 5 5 0 0 0 5 10 15 20 25 0 30 VS [V] Data Sheet 5 10 15 VS [V] 43 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Electrical Characteristics BTS50015-1TAD Drain to Source Clamp Voltage VDS(CL) = f(TJ), IL = 50 mA Overvoltage Protection VS(AZ)_GND = f(TJ), VS(AZ)_IS = f(TJ) 44 80 78 42 V S(AZ)_GND, V S(AZ)_IS [V] 76 V DS(CL) [V] 40 38 36 34 74 72 70 68 66 64 32 62 30 60 -40 -20 0 20 40 -40 -20 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 T J [°C] T J [°C] HIGH Level Input Voltage VIN(H) = f(VS, TJ) 1.8 1.8 1.6 1.6 1.4 1.4 1.2 1.2 V IN(H) [V] V IN(L) [V] LOW Level Input Voltage VIN(L) = f(VS, TJ) 1 0.8 0.6 0.8 0.6 -40°C -40°C 25°C 0.4 1 25°C 0.4 150°C 150°C 0.2 0.2 0 0 0 5 10 15 20 25 30 0 V S [V] Data Sheet 5 10 15 20 25 30 V S [V] 44 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Electrical Characteristics BTS50015-1TAD Output Leakage Current while Device GND Disconnected, IOUT(GND) = f(VS, TJ) Overload Detection Current ICL(1) = f(dIL/dt, TJ), VS = 13.5 V 25 400 350 -40°C 20 25°C 300 15 ICL(1) [A] IOUT(GND) [µA] 150°C 10 250 200 -40°C 25°C 150°C 150 100 5 50 0 0 0 5 10 15 20 25 0 30 2 4 Resistance in ReverSave™ RDS(REV) = f(VS, TJ), IL = -120 A 12 8 6 10 8 6 4 4 2 2 8 10 12 14 16 0 18 4 6 8 10 12 14 16 18 VS [V] VS [V] Data Sheet 25°C 150°C 150°C 10 -40°C 12 25°C RDS(REV) [mΩ] RDS(REV) [mΩ] 14 -40°C 6 10 Resistance in ReverSave™ RDS(REV) = f(VS, TJ), IL = -20 A 14 4 8 dI L/dt [A/µs] V S [V] 0 6 45 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Electrical Characteristics BTS50015-1TAD Input Current IIN = f(TJ); VS = 13.5 V; VIN(L) = 0.8V; VIN(H) = 5.0 V Input Current IIN = f(VIN, TJ); VS = 13.5 V 60 60 IIN(L) 50 50 IIN(H) 40 IIN [µA] I IN(H) [µA] I IN [µA] 40 30 20 30 -40°C 20 25°C 150°C 10 10 0 -40 -20 0 20 40 60 80 0 100 120 140 160 0 TJ [°C] 2 4 6 8 10 12 14 VIN [V] GND current IGND(ACTIVE) = f(VS, TJ); VIN = 2.2 V 1,6 1,4 1,2 IGND(ACTIVE) [mA] 1,0 0,8 0,6 -40°C 0,4 25°C 150°C 0,2 0,0 4 8 12 16 20 24 28 V S [V] Data Sheet 46 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Application Information 7 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. VBAT R/L cable (A) ZA CVS VDD ext. components acc. to either (A) or (B) required, not both RS ZB CS VS VDD GPIO Micro controller A/D IN RIN IN RIS_PROT IS OUT COUT R/L cable CIN VSS GND RIS CSENSE (B) RGND Load Figure 30 Application Diagram with BTS50015-1TAD Note: This is a very simplified example of an application circuit. The function must be verified in the real application. Data Sheet 47 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Application Information Table 7 Bill of material Reference Value Purpose RGND 4Ω Resistor of RC snubber network Option B, damps possible oscillation of the VS pin voltage in combination with CVS RIN 4.7 kΩ Protection of the microcontroller during overvoltage, reverse polarity allows BTS50015-1TAD channels OFF during loss of ground RIS 1 kΩ Sense resistor RIS_PROT 4.7 kΩ Protection of the microcontroller during overvoltage Protection of the BTS50015-1TAD during reverse polarity RS 3.9 Ω Resistor of RC snubber network Option A, damps possible oscillation of the VS pin voltage with improved EMC behavior Za Zener diode Protection of the BTS50015-1TAD during loss of load with primary charged inductance, see Chapter 5.3.2 Zb Zener diode Protection of the BTS50015-1TAD during loss of battery or against huge negative pulse at OUT (like ISO pulse 1), see Chapter 5.3.2 CSENSE 10 nF Sense signal filtering CVS 100 nF Improved EMC behavior (in layout, pls. place close to the pins) COUT 10 nF Improved EMC behavior (in layout, pls. place close to the pins) CIN 150 nF BTS50015-1TAD tends to latched switch-off due to short negative transients on supply pin; CIN automatically resets the device CS 4.7 µF Capacitor of RC snubber network Option A, damps possible oscillation of the VS pin voltage with improved EMC behavior 7.1 Further Application Information • Please contact us for information regarding the pin FMEA • For further information you may contact http://www.infineon.com/ Data Sheet 48 Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Package Outlines 8 Package Outlines 4.4 10 ±0.2 1.27 ±0.1 0...0.3 B 0.05 4.7 ±0.5 2.7 ±0.3 2.4 0.1 1.3 ±0.3 7.55 1) 1 ±0.3 9.25 ±0.2 (15) A 8.5 1) 0...0.15 6 x 0.6 ±0.1 6 x 1.27 0.5 ±0.1 0.25 M A B 8˚ MAX. 1) Typical Metal surface min. X = 7.25, Y = 6.9 All metal surfaces tin plated, except area of cut. Figure 31 0.1 B GPT09063 Dimensions in mm PG-TO-263-7-8 (RoHS-Compliant) Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). For further information on alternative packages, please visit our website: http://www.infineon.com/packages. Data Sheet 49 Dimensions in mm Rev. 1.0 2016-02-26 BTS50015-1TAD Smart High-Side Power Switch Revision History 9 Revision History Revision Date Changes 1.0 2016-02-26 Data Sheet created. Data Sheet 50 Rev. 1.0 2016-02-26 Please read the Important Notice and Warnings at the end of this document Trademarks of Infineon Technologies AG µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™. Trademarks updated November 2015 Other Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2016-02-26 Published by Infineon Technologies AG 81726 Munich, Germany © 2016 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: [email protected] IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.