Bourns FW20A4R70JA Fusible Power Resistor

Title
Reference Design Report for a 6 W NonDimmable, Non-Isolated Buck LED Driver
Using LYTSwitchTM-0 LYT0006P
Specification 90 VAC – 265 VAC Input; 54 V, 110 mA Output
Application
GU10 LED Driver Lamp Replacement
Author
Applications Engineering Department
Document
Number
Date
Revision
RDR-355
June 18, 2013
1.0
Summary and Features
 Single-stage power factor corrected (>0.75 at 120 V and >0.5 at 230 V) and accurate constant current
(CC) output
 Low cost, low component count and small PCB footprint solution
 Highly energy efficient, >91 % at 120 VAC input
 Highly energy efficient, >90 % at 240 VAC input
 Superior performance and end user experience
 Fast start-up time (<20 ms) – no perceptible delay
 Integrated protection and reliability features
 Single shot no-load protection / output short-circuit protected with auto-recovery
 Auto-recovering thermal shutdown with large hysteresis protects both components and PCB
 No damage during brown-out conditions
 Meets IEC ring wave, differential line surge and EN55015 conducted EMI
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered
by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A
complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under
certain patent rights as set forth at <http://www.powerint.com/ip.htm>.
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-355 6 W Non-Isolated Buck Using LYT0006P
18-Jun-13
Table of Contents
1 2 3 4 Introduction ................................................................................................................. 4 Power Supply Specification ........................................................................................ 6 Schematic ................................................................................................................... 7 Circuit Description ...................................................................................................... 8 4.1 Input EMI Filtering ............................................................................................... 8 4.2 LYTSwitch-0 ........................................................................................................ 8 4.3 Output Rectification ............................................................................................. 8 4.4 Output Feedback ................................................................................................. 8 4.5 No-Load Protection ............................................................................................. 9 5 PCB Layout .............................................................................................................. 10 6 Bill of Materials ......................................................................................................... 12 7 Inductor Specification ............................................................................................... 13 7.1 Electrical Diagram ............................................................................................. 13 7.2 Electrical Specifications ..................................................................................... 13 7.3 Materials ............................................................................................................ 13 7.4 Inductor Build Diagram ...................................................................................... 14 7.5 Transformer Construction .................................................................................. 14 8 Inductor Design Spreadsheet ................................................................................... 15 9 Performance Data .................................................................................................... 17 9.1 Active Mode Efficiency ...................................................................................... 18 9.2 Output Current Regulation................................................................................. 19 9.2.1 Input Line and Load Voltage to Output Current Regulation ........................ 19 10 Thermal Performance ........................................................................................... 20 10.1 Equipment Used ................................................................................................ 20 11 Thermal Result...................................................................................................... 21 11.1 Thermal Scan .................................................................................................... 22 12 Waveforms ............................................................................................................ 23 12.1 Drain Voltage Normal Operation ....................................................................... 23 12.2 Drain Current at Normal Operation .................................................................... 24 12.3 Drain Voltage and Current When Output Short ................................................. 26 12.4 Drain Voltage and Current Start-up Profile ........................................................ 26 12.5 Output Current Start-up Profile .......................................................................... 27 12.6 Input-Output Profile ........................................................................................... 28 12.7 Line Sag and Surge ........................................................................................... 29 12.8 Brown-out/ Brown-in .......................................................................................... 30 13 Line Surge............................................................................................................. 31 14 Conducted EMI ..................................................................................................... 33 15 Audible Noise ........................................................................................................ 35 16 Appendix ............................................................................................................... 36 17 Revision History .................................................................................................... 39 Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 2 of 40
18-Jun-13
RDR-355 6 W Non-Isolated Buck Using LYT0006P
Important Note:
Although this board is designed to satisfy safety isolation requirements, the engineering
prototype has not been agency approved. Therefore, all testing should be performed
using an isolation transformer to provide the AC input to the prototype board.
Page 3 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-355 6 W Non-Isolated Buck Using LYT0006P
18-Jun-13
1 Introduction
This document describes a cost effective power supply utilizing the LYTSwitchTM-0 family
(LYT0006P) in a highly compact buck topology.
This power supply operates over an input voltage range of 90 VAC to 264 VAC. The DC
bus voltage is high enough to support a 54 V output when using a buck topology. In a
buck converter the output voltage must always be lower than the input voltage. The
output voltage is also limited by the maximum duty cycle of the LYTSwitch-0, which also
requires the input voltage to be larger than the output voltage.
Figure 1 – Populated Circuit Board Photograph, Top.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 4 of 40
18-Jun-13
RDR-355 6 W Non-Isolated Buck Using LYT0006P
Figure 2 – Populated Circuit Board Photograph, Bottom.
Page 5 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-355 6 W Non-Isolated Buck Using LYT0006P
18-Jun-13
2 Power Supply Specification
Description
Symbol
Min
Input
Voltage Operation
VIN
90
Frequency
fLINE
47
50/60
VOUT
IOUT
52
54
110
56
6
6.5
Output
Output Voltage
Output Current
Total Output Power
Continuous Output Power
Efficiency
120 VAC; 54 V LED
POUT
Typ
Max
Units
Comment
265
VAC
2 Wire – no P.E.
Operating frequency is not limited.
Adjust sense resistor if application
is for 400 Hz line.
Hz
V
mA
W

91
%

90
%
120 VAC; 54 V LED
PF
0.75
240 VAC; 54 V LED
PF
0.5
240 VAC; 54 V LED
±4% at 100 VAC - 240 VAC
º
Measured at POUT 25 C
Power Factor
º
Measured at POUT 25 C
Environmental
Conducted EMI
Meets CISPR22B / EN55015B
Line Surge
Differential Mode (L1-L2)
0.5
Ring Wave (100 kHz)
Differential Mode (L1-L2)
2.5
Ambient Temperature
TAMB
-10
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
25
kV
1.2/50 s surge, IEC 1000-4-5,
Series Impedance:
Differential Mode: 2 
kV
500 A short circuit
Series Impedance:
Differential Mode: 2 
º
C
Free convection, sea level
UUT can start-up at – (neg) 40 ºC
Page 6 of 40
18-Jun-13
RDR-355 6 W Non-Isolated Buck Using LYT0006P
3 Schematic
Figure 3 – Schematic. T1 can be replaced by a drum core inductor if final casing/housing has sufficient
room to avoid shorting the magnetic flux. Zener diode VR1 is an option and provides one-time no-load
protection.
Page 7 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-355 6 W Non-Isolated Buck Using LYT0006P
18-Jun-13
4 Circuit Description
The power supply shown in Figure 3 uses the LYT0006P (U1) in a high-side buck
configuration to deliver a constant 110 mA current at an output voltage of 54 VDC. The
power supply is designed for driving LEDs, which should always be driven with a
constant current (CC).
4.1 Input EMI Filtering
Fuse RF1 provides short circuit protection. Bridge BR1 provides full wave rectification for
good power factor. Capacitor C1, C2 and common-mode choke L1 form a π filter in order
meet conducted EMI standards. Capacitor C1 and C2 are also used for energy storage
reducing line noise and protecting against line surge.
4.2 LYTSwitch-0
LYTSwitch-0 is optimized to achieve a simple and cost effective LED driver with good line
and temperature regulation from 0 to 100C (LYTSwitch-0 case temperature). The PIXls
spreadsheet was used to achieve the best line regulation by balancing the power inductor
and the sense resistor. The total input capacitance will also have some effect but it can
be compensated for by adjusting the sense resistor (R2/R3) to optimize performance.
The LYTSwitch-0 family has built-in thermal limit to protect the power supply in case the
bulb is subjected to an excessive operating temperature.
The buck converter stage is consists of the integrated power MOSFET switch within
LYT0006P (U1), a freewheeling diode (D1), sense resistor (R2), power inductor L2 and
output capacitor (C5). The converter is operating mostly in DCM in order to limit the
cycles of reverse current. A fast freewheeling diode was selected to minimize the
switching losses.
Inductor L2 is a standard EE10 which will constrain the flux path and ensure the right
inductance in any casing. It can be replaced by a lower cost drum-core inductor once
positioned in a specific enclosure that has a known effect on the magnetic flux of the
inductor.
4.3 Output Rectification
Fast output diode (D1) was used to achieve good efficiency and for thermal
management. Normally for LED applications, the ambient temperature is above 70C. A
device with low tRR (<35 nS) is recommended.
4.4 Output Feedback
Regulation is maintained by skipping switching cycles. As the output current rises, the
voltage into the FB pin will rise. If this exceeds VFB then subsequent cycles will be
skipped until the voltage reduces below VFB. Current is sensed from R2 and filtered by
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 8 of 40
18-Jun-13
RDR-355 6 W Non-Isolated Buck Using LYT0006P
C4, then fed to the FB pin for accurate regulation. The key to achieving good line
regulation is in balancing the power inductor and sense resistor values after the minimum
inductance has been calculated.
The bypass capacitor (C4) is connected between the FEEDBACK pin and the SOURCE
pin and helps reduce power loss during output current sensing. The capacitor acts to
sample-and-hold the feedback current information for the FB pin. No limiting resistor is
required between the FB pin and C4, because the peak voltage will not exceed the
maximum rating of the device.
4.5 No-Load Protection
Optional, one shot, no-load protection circuit is incorporated in this design. In case of
accidental no-load operation, the output capacitor is protected by VR1. Zener diode VR1
would need to be replaced after a failure.
In operation (LED retrofit lamp), the load is always connected, so VR1 can be removed to
save cost. To protect during board level testing (in manufacturing) 40 VAC can be applied
to the input; if no output current is measured then the load is not connected. This test will
allow safe, non-destructive initial power up of the board, without the need of an OV
protection circuit.
Page 9 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-355 6 W Non-Isolated Buck Using LYT0006P
18-Jun-13
5 PCB Layout
Figure 4 – Printed Circuit Layout. Top view.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 10 of 40
18-Jun-13
RDR-355 6 W Non-Isolated Buck Using LYT0006P
Figure 5 – Printed Circuit Layout. Bottom View.
Page 11 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-355 6 W Non-Isolated Buck Using LYT0006P
18-Jun-13
6 Bill of Materials
Item
Qty
Ref Des
1
1
BR1
Description
2
1
C1
47 nF, 630 V, Film
3
1
C2
330 nF, 450 V, METALPOLYPRO
4
1
C3
100 nF, 25 V, Ceramic, X7R, 0603
VJ0603Y104KNXAO
Vishay
5
1
C4
22 F, 16 V, Ceramic, X5R, 1206
EMK316BJ226ML-T
Taiyo Yuden
6
1
C5
47 F, 63 V, Electrolytic, Gen. Purpose, (6.3 x 13)
63YXJ47M6.3X11
Rubycon
7
1
D1
600 V, 1 A, Ultrafast Recovery, 35 ns, SMB Case
MURS160T3G
On Semi
8
1
L1
4.7 mH, 0.150 A, 20%
RL-5480-3-4700
Renco
600 V, 0.5 A, Bridge Rectifier, SMD, MBS-1, 4-SOIC
Manufacturer P/N
Manufacturer
MB6S-TP
Micro Commercial
ECQ-E6473KF
Panasonic
ECW-F2W334JAQ
Panasonic
9
1
R1
4.7 k, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ472V
Panasonic
10
1
R2
18.7 , 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF18R7V
Panasonic
11
1
RF1
4.7 , 5%, 2 W, Metal Film Fusible
12
1
RV1
13
1
T1
275 V, 23 J, 7 mm, RADIAL
EE10, Bobbin
Inductor
LinkSwitch-0, DIP-8B
14
1
U1
15
1
VR1
62 V, 5%, 1 W, DO-41
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
FW20A4R70JA
Bourns
V275LA4P
Custom
SNX-R1699
LYT0006P
Littlefuse
Kunshan Fengshunhe
Santronics USA
Power Integrations
1N4759A
Vishay
Page 12 of 40
18-Jun-13
RDR-355 6 W Non-Isolated Buck Using LYT0006P
7 Inductor Specification
7.1
Electrical Diagram
Figure 6 – Inductor Electrical Diagram.
7.2
Electrical Specifications
Primary Inductance
7.3
Pins 4-5, all other windings open, measured at 100 kHz, 0.4 VRMS.
1.4 mH ±7%
Materials
Item
[1]
[2]
[3]
[4]
[5]
Description
Core: EE10; TDK-PC40EE10/11-Z; or equivalent.
Bobbin: EE10; 8 pins (4/4), Horizontal, PI#: 25-00956-00.
Magnet Wire: #31 AWG, double coated.
Tape: Polyester film, 3M 1350-1, 6.5mm wide.
Varnish.
Page 13 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-355 6 W Non-Isolated Buck Using LYT0006P
7.4
18-Jun-13
Inductor Build Diagram
Finish (P5)
Start (P4)
Figure 7 – Inductor Build Diagram.
7.5
Transformer Construction
Winding
Preparation
Winding
Tape
Final Assembly
Place bobbin item [2] on the mandrel with pin side 1-4 on the right side.
Winding direction is clockwise direction.
Start pin 4, wind 150 turns of wire item [3] from right to left then left to right in ~6
layers and finish at pin 5.
Secure winding with tape item [4].
Gap cores to get the 1.35 mH inductance. Apply tape to secure both cores.
Remove pins: 2 and 3.
Figure 8 – Transformer Assembly Sample.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 14 of 40
18-Jun-13
RDR-355 6 W Non-Isolated Buck Using LYT0006P
8 Inductor Design Spreadsheet
ACDC_LYTSwitchZero_052813;
Rev.0.8; Copyright Power
Integrations 2013
INPUT VARIABLES
VACMIN
VACNOM
VACMAX
FL
VO
IO
Pout
OUTPUT
UNIT
LYTSwitchZero_Rev_0-8.xls:
LYTSwitchZero Design
Spreadsheet
90
120
265
60
54
110
90
120
265
60
54
110
5.94
Volts
Minimum AC Input Voltage
Volts
Hertz
Volts
mA
W
Maximum AC Input Voltage
Line Frequency
Output Voltage
Output Current
EFFICIENCY
0.9
0.9
CIN
0.38
0.38
uF
Input Stage Resistance
4.7
4.7
ohms
Switching Topology
DC INPUT VARIABLES
VMIN
VMAX
LYTSwitchZero
LYTSwitchZero
ILIMIT
ILIMIT_MIN
ILIMIT_MAX
FSMIN
INPUT
INFO
Buck
Overall Efficiency Estimate (Adjust to
match Calculated, or enter Measured
Efficiency)
Input Filter Capacitor
Input Stage Resistance, Fuse &
Filtering
Type of Switching topology
54.00068302
374.766594
Volts
Volts
Minimum DC Bus Voltage
LYT0006
0.375
0.33275
0.401
62000
Amps
Amps
Amps
Hertz
4.8375
Volts
Typical Current Limit
Minimum Current Limit
Maximum Current Limit
Minimum Switching Frequency
Maximum On-State Drain To Source
Voltage drop
VD
0.7
Volts
VRR
600
Volts
1
Amps
LYT0006
VDS
DIODE
IF
Diode Recommendation
OUTPUT INDUCTOR
BYV26C
Core type
Ferrite
Ferrite
Core size
EE10
EE10
Custom Core
AE
LE
AL
BW
NL
BP
LG
12.1
26.1
850
6.6
149.6667555
3100
2.253983597
OD
0.132293908
INS
0.031219467
Page 15 of 40
mm^2
mm
nH/T^2
mm
Gauss
mm
Freewheeling Diode Forward Voltage
Drop
Recommended PIV rating of
Freewheeling Diode
Recommended Diode Continuous
Current Rating
Suggested Freewheeling Diode
Select core type between Ferrite and
Off-the-Shelf
Select core size
Enter custom core description (if
used)
Core Effective Cross Sectional Area
Core Effective Path Length
Ungapped Core Effective Inductance
Bobbin Physical Winding Width
Number of turns on inductor
Peak flux density
Gap length
Maximum Primary Wire Diameter
including insulation
Estimated Total Insulation Thickness
(= 2 * film thickness)
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-355 6 W Non-Isolated Buck Using LYT0006P
DIA
18-Jun-13
0.101074441
AWG
Bare conductor diameter
Primary Wire Gauge (Rounded to
next smaller standard AWG value)
Bare conductor effective area in
circular mils
!!! INCREASE CMA > 200 (increase
L(primary layers),decrease NS, use
larger Core)
39
CM
12.69920842
CMA
0.112907248
L
3
LP
L_R
IO_Average
Output Inductor, Recommended
Standard Value
DC Resistance of Inductor
Average output current
Estimated RMS inductor current (at
VMAX)
1400
1400
uH
2
2
112.474696
Ohms
112.474696
mA
18.7
Ohms
22
uF
Feedback Resistor. Use closest
standard 1% value
Feedback Capacitor
109.393596
112.474696
114.3382366
mA
mA
mA
Output Current at VACMIN
Output Current at VACNOM
Output Current at VACMAX
ILRMS
FEEDBACK COMPONENTS
RFB
18.7
CFB
OUTPUT REGULATION
IO_VACMIN
IO_VACNOM
IO_VACMAX
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 16 of 40
18-Jun-13
RDR-355 6 W Non-Isolated Buck Using LYT0006P
9 Performance Data
All measurements performed at room temperature (≈25 ºC) otherwise specified.
Input
VAC Freq
(VRMS) (Hz)
90
60
100
60
115
60
120
60
132
60
190
50
200
50
220
50
230
50
240
50
265
50
Input Measurement
VIN
IIN
PIN
(VRMS) (mARMS)
(W)
90.07
82.57
6.480
100.11
78.53
6.584
110.12
73.24
6.555
120.12
69.70
6.566
135.16
67.07
6.564
190.30
57.15
6.386
200.41
56.02
6.359
220.35
54.16
6.308
230.37
53.68
6.286
264.15
55.86
6.726
90.07
82.57
6.480
Page 17 of 40
PF
0.871
0.838
0.813
0.784
0.724
0.587
0.566
0.529
0.508
0.456
0.871
LED Load Measurement
VOUT
IOUT
POUT
(VDC)
(mADC)
(W)
54.0400 108.050 5.918
54.1400 110.150 6.024
54.1400 110.080 6.006
54.1600 110.500 6.021
54.1600 110.590 6.015
54.0200 107.810 5.836
53.9900 107.310 5.805
53.9400 106.430 5.749
53.9200 106.010 5.723
54.2500 112.380 6.098
54.0400 108.050 5.918
Efficiency
(%)
Regulation
(%)
91.33
91.49
91.62
91.70
91.64
91.39
91.29
91.14
91.04
90.66
91.33
-1.77
0.14
0.07
0.45
0.54
-1.99
-2.45
-3.25
-3.63
2.16
-1.77
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-355 6 W Non-Isolated Buck Using LYT0006P
9.1
18-Jun-13
Active Mode Efficiency
Figure 9 – Efficiency with Respect to AC Input Voltage. 90-132 VAC (50 Hz) and 190-265 VAC (60 Hz)
Input.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 18 of 40
18-Jun-13
9.2
RDR-355 6 W Non-Isolated Buck Using LYT0006P
Output Current Regulation
9.2.1 Input Line and Load Voltage to Output Current Regulation
Figure 10 – Load Regulation, Room Temperature.
Page 19 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-355 6 W Non-Isolated Buck Using LYT0006P
18-Jun-13
10 Thermal Performance
10.1 Equipment Used
Chamber:
AC Source:
Tenney Environmental Chamber
Model No: TJR-17 942
Chroma Programmable AC Source
Model No: 6415
Wattmeter:
Data Logger:
Yokogawa Power Meter
Model No: WT2000
Yokogawa
Model: 2008-3-4-2-2-1D
SN: S5L409310
Figure 11 – Thermal Chamber Set-up Showing Box Used to Prevent Airflow Over UUT.
Figure 12 – Thermal Unit Thermocouple Measurement Set-up.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 20 of 40
18-Jun-13
RDR-355 6 W Non-Isolated Buck Using LYT0006P
11 Thermal Result
Input: 90 VAC / 60 Hz
Load: 54 V / 110 m A LED load.
Location
Temperature
Thermal
Shutdown
Thermal
Recovery
Ambient
23.3
38.7
47.9
58.4
70.0
80.0
90.0
100.0
107.9
40.5
Bridge
37.8
52.4
60.8
70.9
80.7
89.6
99.0
108.5
115.1
64.4
L1
37.2
52.7
60.9
71.2
81.9
90.6
100.4
109.9
117.8
60.2
L2
39.4
54.6
63.7
73.9
84.7
93.4
103.2
112.7
120.6
63.0
IC
40.9
56.9
66.1
76.9
87.6
97.5
107.5
117.8
125.0
61.7
Diode
38.0
53.5
62.8
73.5
83.9
93.3
103.1
113.0
120.1
59.4
Table 1 – Thermal Measurement.
Note: Unit will start reliably at -40 C. Tests were performed but are not shown here.
140
IC
Bridge
L2
L1
O/P Diode
130
Device Temperature (ºC)
120
110
100
90
80
70
60
50
40
30
20
10
20
30
40
50
60
70
80
90
100
110
Ambient (ºC)
Figure 13 – Thermal Performance Curve.
Page 21 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
120
RDR-355 6 W Non-Isolated Buck Using LYT0006P
18-Jun-13
11.1 Thermal Scan
Open-frame thermal measurement at 25C ambient. UUT was soaked for 1 hour to
achieve steady-state before the measurement.
Figure 14 – Temperature (C) at Top Side of PCB.
SP1 – U1, LYT0006P.
SP2 – L2, Power Inductor.
SP3 – L1, EMI Choke.
SP4 – FR1, Fusible Resistor.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 15 – Temperature (C) at Bottom Side of PCB.
SP1 – BR1, Bridge Rectifier.
SP2 – PCB, Trace Temperature.
SP3 – D1, Freewheeling Diode.
Page 22 of 40
18-Jun-13
RDR-355 6 W Non-Isolated Buck Using LYT0006P
12 Waveforms
12.1 Drain Voltage Normal Operation
Figure 16 – 90 VAC, 60Hz, Full Load
F1(Orange): VDRAIN-SOURCE, 100 V / div.
Ch1(Yellow): VDRAIN-GND, 100 V / div.
Ch2(Red): VSOURCE-GND, 100 V, 2 ms / div.
Figure 17 – 265 VAC, Full Load
F1(Orange): VDRAIN-SOURCE, 200 V / div.
Ch1(Yellow): VDRAIN-GND, 200 V / div.
Ch2(Red): VSOURCE-GND, 200 V, 2 ms / div.
Figure 18 – 90 VAC, 60Hz, Full Load
F1(Orange): VDRAIN-SOURCE, 50 V / div.
Ch1(Yellow): VDRAIN-GND, 50 V / div.
Ch2(Red): VSOURCE-GND, 50 V, 2 ms / div.
Z1(Yellow): VDRAIN-GND, 50 V / div.
Z2(Red): VSOURCE-GND, 50 V, 20 s / div.
Figure 19 – 265 VAC, Full Load
F1(Orange): VDRAIN-SOURCE, 200 V / div.
Ch1(Yellow): VDRAIN-GND, 200 V / div.
Ch2(Red): VSOURCE-GND, 200 V, 2 ms / div.
Z1(Yellow): VDRAIN-GND, 200V / div.
Z2(Red): VSOURCE-GND, 200 V, 20 s / div.
Page 23 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-355 6 W Non-Isolated Buck Using LYT0006P
18-Jun-13
12.2 Drain Current at Normal Operation
Missing pulses are normal and are used to regulate the output current. These missing
pulses are present every time the sense resistor (R2) voltage-drop reaches 1.65 V. The
unit will enter into auto-restart if there is not at least one missing pulse within 50 ms. For
some designs wherein the power inductance is high and operating mostly in CCM, a
reverse current may be present. One way to avoid this is by increasing the device size or
increase input capacitance or adding a blocking diode in the drain. See AN-60 for more
details.
Figure 20 – 90 VAC, 60 Hz, 54 VLED
Ch2(Red): VBULK, 50V / div.
Ch4(Green): IDRAIN, 200 mA / div., 1 ms / div.
Z2(Green): IDRAIN, 100 mA / div., 20 s / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 21 – 115 VAC, 60 Hz, 54 VLED
Ch2(Red): VBULK, 50 V / div.
Ch4(Green): IDRAIN, 200 mA / div., 1 ms /
div.
Z2(Green): IDRAIN, 100 mA / div., 20 s / div.
Page 24 of 40
18-Jun-13
RDR-355 6 W Non-Isolated Buck Using LYT0006P
Figure 22 – 240 VAC, 60 Hz, 54 VLED
Ch2(Red): VBULK, 50 V / div.
Ch4(Green): IDRAIN, 200 mA / div., 1 ms / div.
Z2(Green): IDRAIN, 100 mA / div., 20 s / div.
Page 25 of 40
Figure 23 – 265 VAC, 60 Hz, 54 VLED
Ch2(Red): VBULK, 50 V / div.
Ch4(Green): IDRAIN, 200 mA / div., 1 ms / div.
Z2(Green): IDRAIN, 100 mA / div., 20 s / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-355 6 W Non-Isolated Buck Using LYT0006P
18-Jun-13
12.3 Drain Voltage and Current When Output Short
Device is operating within the range and no inductor saturation was observed.
Figure 24 – LYT0006P Output Short.
Ch4: IDRAIN; 0.2 A / div.
Time Scale: 20 ms / div.
Z4: VDS; 0.2 A / div.
Zoom Time Scale: 5 s / div.
Figure 25 – LYT0006P Output Short.
Ch4: IDRAIN; 0.2 A / div.
Time Scale: 20 ms / div.
Z4: VDS; 0.2 A / div.
Zoom Time Scale: 2 s / div.
12.4 Drain Voltage and Current Start-up Profile
Device is operating within the range and no inductor saturation was observed.
Figure 26 – 265 VAC / 50 Hz Start-up.
Ch1, Z1: SOURCE Pin to Ground; 100 V / div.
Ch2, Z2: Bulk Input; 100 V / div.
Ch4, Z4: IDRAIN; 0.2 A / div.
Time Scale: 100 s / div.
F1: VDS; 100 V / div.
Zoom Time Scale: 500 ns / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 27 – 265 VAC / 50 Hz Start-up.
Ch1: SOURCE Pin to Ground; 100 V / div.
Ch2: Bulk Input; 100 V / div.
Ch4: IDRAIN; 0.2 A / div.
Time Scale: 500 ns / div.
F1: VDS; 100 V / div.
F2: Switching Power; 500 W / div.
Zoom Time Scale: 500 ns / div.
Page 26 of 40
18-Jun-13
RDR-355 6 W Non-Isolated Buck Using LYT0006P
12.5 Output Current Start-up Profile
Output current/light is present in just one AC cycle. <20 ms
Figure 28 – 90 VAC, 60Hz, Full Load
Ch1(Yellow): VIN, 200 V / div.
Ch2(Red): VOUT, 20 V,
Ch3(Blue): IIN, 0.5 A / div.
Ch4(Green): IOUT, 100 mA / div., 20 ms / div.
Page 27 of 40
Figure 29 – 265 VAC, Full Load
Ch1(Yellow): VIN, 200 V / div.
Ch2(Red): VOUT, 20 V,
Ch3(Blue): IIN, 0.5 A / div.
Ch4(Green): IOUT, 100 mA / div., 20 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-355 6 W Non-Isolated Buck Using LYT0006P
18-Jun-13
12.6 Input-Output Profile
There is no limitation to the amount of output capacitance that can be added. If the
application requires less output current ripple then increasing the output capacitance is
straight forward. Note that the output current waveform below will vary depending on LED
load impedance and will vary according to LED type.
Figure 30 – 120 VAC, 60 Hz, Full Load
Ch1(Yellow): VIN, 200 V / div.
Ch2(Red): VOUT, 20 V.
Ch3(Blue): IIN, 0.5 A / div.
Ch4(Green): IOUT, 100 mA / div, 10 ms / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 31 – 240 VAC, Full Load
Ch1(Yellow): VIN, 200 V / div.
Ch2(Red): VOUT, 20 V.
Ch3(Blue): IIN, 0.5 A / div.
Ch4(Green): IOUT, 100 mA / div, 10 ms / div.
Page 28 of 40
18-Jun-13
RDR-355 6 W Non-Isolated Buck Using LYT0006P
12.7 Line Sag and Surge
The inherent advantage of the buck converter implemented with LYTSwitch-0 is the
imperceptible start-up delay, the driver will turn-on within 20 ms as shown in the figures
below. No failure of any component occurred during line fluctuation tests.
Figure 32 – Line sag test at 230 - 0 V at 1 Sec
Interval.
Ch1: VIN; 100 V / div.
Ch2: IOUT; 50 mA / div.
Time Scale: 5 s / div.
Figure 34 – Line Surge Test at 230 - 265 V at 1 Sec
Interval.
Ch1: VIN; 100 V / div.
Ch2: IOUT; 50 mA / div.
Time Scale: 5 s / div.
Page 29 of 40
Figure 33 – Line Surge Test at 230 - 265 V at 1
Sec Interval.
Ch1: VIN; 100 V / div.
Ch2: IOUT; 50 mA / div.
Time Scale: 5 s / div.
Figure 35 – Line Sag Test at 230 - 265 V at 1 Sec
Interval.
Ch1: VIN; 100 V / div.
Ch2: IOUT; 50 mA / div.
Time Scale: 5 s / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-355 6 W Non-Isolated Buck Using LYT0006P
18-Jun-13
12.8 Brown-out/ Brown-in
No failure of any component during brownout test of 0.5 V / sec AC cut-in and cut-off.
Figure 36 – Brown-out Test at 0.5 V / s. The Unit is
Able to Operate Normally Without Any
Failure and Without Flicker.
Ch1: VIN; 100 V / div.
Ch2: IOUT; 50 mA / div.
Time Scale: 100 s / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 30 of 40
18-Jun-13
RDR-355 6 W Non-Isolated Buck Using LYT0006P
13 Line Surge
Differential input line 1.2 kV / 50 s surge testing was completed on a single test unit to
IEC61000-4-5. Input voltage was set at 230 VAC / 60 Hz. Output was loaded at full load
and operation was verified following each surge event.
Surge
Level (V)
+500
-500
+500
-500
+500
-500
Input
Voltage
(VAC)
230
230
230
230
230
230
Injection
Location
Injection
Phase (°)
Test Result
(Pass/Fail)
L to N
L to N
L to N
L to N
L to N
L to N
90
90
270
270
0
0
Pass
Pass
Pass
Pass
Pass
Pass
Unit passed under all test conditions.
Differential ring input line surge testing was completed on a single test unit to IEC610004-5. Input voltage was set at 230 VAC / 60 Hz. Output was loaded at full load and
operation was verified following each surge event.
Surge
Level (V)
+2500
-2500
+2500
-2500
+2500
-2500
Input
Voltage
(VAC)
230
230
230
230
230
230
Injection
Location
Injection
Phase (°)
Test Result
(Pass/Fail)
L to N
L to N
L to N
L to N
L to N
L to N
90
90
270
270
0
0
Pass
Pass
Pass
Pass
Pass
Pass
Unit passed under all test conditions.
Page 31 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-355 6 W Non-Isolated Buck Using LYT0006P
Figure 37 – Differential Line Surge at 500 V / 90.
Peak Drain Voltage Recorded is 678 V.
Ch1: VIN; 200 V / div.
Ch2: VDRAIN; 200 V / div.
Ch3: VBULK; 200 V / div.
Time Scale: 1 ms / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
18-Jun-13
Figure 38 – Differential Ring Surge at 2500 V / 90.
Peak Drain Voltage Recorded is 468 V.
Ch1: VIN; 200 V / div.
Ch2: VDRAIN; 200 V / div.
Ch3: VBULK; 200 V / div.
Time Scale:1 ms / div.
Page 32 of 40
18-Jun-13
RDR-355 6 W Non-Isolated Buck Using LYT0006P
14 Conducted EMI
Att 10 dB AUTO
dBµV
100 kHz
120
EN55015Q
LIMIT CHECK
110
1 QP
CLRWR
1 MHz
PASS
10 MHz
SGL
100
90
2 AV
CLRWR
TDF
80
70
60
EN55015A
50
6DB
40
30
20
10
0
-10
-20
9 kHz
30 MHz
Figure 26 – Conducted EMI, Maximum Steady State Load, 120 VAC, 60 Hz, and EN55015 B Limits.
Trace1:
EDIT PEAK LIST (Final Measurement Results)
EN55015Q
Trace2:
EN55015A
Trace3:
---
TRACE
Page 33 of 40
FREQUENCY
LEVEL dBµV
DELTA LIMIT dB
2
Average
9.9415991287 kHz
22.25
N gnd
2
Average
67.8393045788 kHz
23.52
N gnd
2
Average
134.789536006 kHz
38.77
N gnd
1
Quasi Peak
165.693318812 kHz
47.45
L1 gnd
-17.72
2
Average
167.350252 kHz
33.66
N gnd
-21.42
2
Average
200.175581485 kHz
38.55
N gnd
-15.05
1
Quasi Peak
204.199110673 kHz
45.87
N gnd
-17.56
2
Average
267.135089486 kHz
34.58
N gnd
-16.62
1
Quasi Peak
272.504504785 kHz
44.83
N gnd
-16.20
2
Average
397.727746704 kHz
31.37
N gnd
-16.53
1
Quasi Peak
401.705024172 kHz
41.34
N gnd
-16.47
1
Quasi Peak
475.741040231 kHz
40.79
N gnd
-15.62
1
Quasi Peak
536.076911993 kHz
39.85
N gnd
-16.14
1
Quasi Peak
610.105531335 kHz
41.66
N gnd
-14.33
1
Quasi Peak
806.126927408 kHz
43.14
N gnd
-12.85
2
Average
806.126927408 kHz
33.29
N gnd
-12.70
1
Quasi Peak
1.00339897152 MHz
39.33
N gnd
-16.66
2
Average
2.03372014292 MHz
26.57
N gnd
-19.42
1
Quasi Peak
29.2697736439 MHz
43.21
L1 gnd
-16.78
2
Average
29.5624713804 MHz
34.37
L1 gnd
-15.62
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-355 6 W Non-Isolated Buck Using LYT0006P
18-Jun-13
Table 2 – Conducted EMI, Maximum Steady State Load, 120 VAC, 60 Hz, and EN55015 B Limits.
Power Integrations
17.Oct 12 21:24
RBW
MT
9 kHz
500 ms
Att 10 dB AUTO
dBµV
100 kHz
120
EN55015Q
LIMIT CHECK
110
1 QP
CLRWR
1 MHz
PASS
10 MHz
SGL
100
90
2 AV
CLRWR
TDF
80
70
60
EN55015A
50
6DB
40
30
20
10
0
-10
-20
9 kHz
30 MHz
Figure 27 – Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55015 B Limits.
Trace1:
EDIT PEAK LIST (Final Measurement Results)
EN55015Q
Trace2:
EN55015A
Trace3:
---
TRACE
FREQUENCY
LEVEL dBµV
DELTA LIMIT dB
2
Average
134.789536006 kHz
37.65
L1 gnd
2
Average
200.175581485 kHz
41.49
N gnd
-12.10
2
Average
267.135089486 kHz
39.23
N gnd
-11.97
2
Average
332.507282579 kHz
35.66
N gnd
-13.72
2
Average
475.741040231 kHz
33.70
N gnd
-12.71
1
Quasi Peak
592.16241791 kHz
45.66
N gnd
-10.33
2
Average
592.16241791 kHz
35.36
N gnd
-10.63
1
Quasi Peak
667.263434405 kHz
48.66
N gnd
-7.33
2
Average
667.263434405 kHz
36.60
N gnd
-9.39
1
Quasi Peak
744.444692652 kHz
48.12
N gnd
-7.87
1
Quasi Peak
872.919948931 kHz
50.67
N gnd
-5.32
2
Average
872.919948931 kHz
38.46
N gnd
-7.53
1
Quasi Peak
954.699692378 kHz
47.91
N gnd
-8.08
1
Quasi Peak
1.02356729084 MHz
47.16
N gnd
-8.83
1
Quasi Peak
1.55458365781 MHz
43.77
N gnd
-12.22
1
Quasi Peak
2.50634031306 MHz
42.47
N gnd
-13.53
2
Average
2.93888112801 MHz
31.88
N gnd
-14.11
1
Quasi Peak
29.2697736439 MHz
48.08
L1 gnd
-11.91
2
Average
29.2697736439 MHz
40.24
L1 gnd
-9.75
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 34 of 40
18-Jun-13
RDR-355 6 W Non-Isolated Buck Using LYT0006P
Table 3 – Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55015 B Limits.
15 Audible Noise
Input voltage were sweep from 90V to 265Vac at 60Hz line input.
+80
+70
+60
+50
+40
d
B
r
+30
+20
A
+10
+0
-10
-20
-30
2k
4k
6k
8k
10k
12k
14k
16k
18k
20k
22k
Hz
Color
Line Style
Thick
Data
Axis
Cyan
Green
Yellow
Solid
Solid
Solid
1
1
1
Fft.Ch.1 Ampl
Fft.Ch.1 Ampl
Fft.Ch.1 Ampl
Left
Left
Left
PI Standard Audio Noise (do not edit).at2
Figure 39 – Noise from the UUT at 1 cm from the Center of the Board to Microphone Receiver Position.
Page 35 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-355 6 W Non-Isolated Buck Using LYT0006P
18-Jun-13
16 Appendix
Types of overvoltage protection for a buck converter:
Figure 40 – Simple and cheapest approach is to add a Zener diode across the output terminals. In case of
no load, the Zener diode will short in order and protect the output capacitor. IC U1 will be limited by the
primary current limit. Note that the Zener diode will need to be replaced after this event.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 36 of 40
18-Jun-13
RDR-355 6 W Non-Isolated Buck Using LYT0006P
Figure 41 – Auto-recovery OVP latch protection. Once AC input is recycled for 2s, the unit will function
normally once load is connected. Advantage is lowest no-load consumption and non-damaging failure.
Page 37 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-355 6 W Non-Isolated Buck Using LYT0006P
18-Jun-13
Figure 42 – Constant voltage (CV) mode protection. Load can be connected anytime without AC recycle.
Disadvantage is it will require some pre-load in order to regulate, which decreases efficiency. Pre-load can
be replaced by a appropriately rated Zener in series with a resistor if efficiency is a concern.
OVP Protection
Zener
SCR Latch
Constant
Voltage Mode
1.
2.
1.
2.
3.
Pros
Cheapest and simple.
VOUT  0 V at no-load; safe.
Auto-recovery.
Lowest no-load consumption.
VOUT  0 V at no-load; safe.
1. Hot-plug, load can be
connected anytime.
1.
1.
2.
1.
2.
3.
Cons
Non-auto recovery. Replace
Zener once fault is removed.
Cost.
Requires AC recycle for
recovery.
Consumes extra power.
Residual voltage at no-load.
Cost.
Table 4 – Overvoltage Protection Comparison.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 38 of 40
18-Jun-13
RDR-355 6 W Non-Isolated Buck Using LYT0006P
17 Revision History
Date
18-Jun-13
Page 39 of 40
Author
JDC
Revision
1.0
Description & changes
Initial Release
Reviewed
Apps & Mktg
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-355 6 W Non-Isolated Buck Using LYT0006P
18-Jun-13
For the latest updates, visit our website: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability.
Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER
INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits’ external to the products)
may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications
assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power
Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS,
HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power
Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2013 Power Integrations, Inc.
Power Integrations Worldwide Sales Support Locations
WORLD HEADQUARTERS
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail: [email protected]
GERMANY
Lindwurmstrasse 114
80337, Munich
Germany
Phone: +49-895-527-39110
Fax: +49-895-527-39200
e-mail:
[email protected]
JAPAN
Kosei Dai-3 Building
2-12-11, Shin-Yokohama,
Kohoku-ku, Yokohama-shi,
Kanagawa 222-0033
Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: [email protected]
TAIWAN
5F, No. 318, Nei Hu Rd.,
Sec. 1
Nei Hu District
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail:
[email protected]
CHINA (SHANGHAI)
Rm 1601/1610, Tower 1,
Kerry Everbright City
No. 218 Tianmu Road West,
Shanghai, P.R.C. 200070
Phone: +86-21-6354-6323
Fax: +86-21-6354-6325
e-mail: [email protected]
INDIA
#1, 14th Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail:
[email protected]
KOREA
RM 602, 6FL
Korea City Air Terminal B/D,
159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728 Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: [email protected]
EUROPE HQ
1st Floor, St. James’s House
East Street, Farnham
Surrey GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
e-mail:
[email protected]
CHINA (SHENZHEN)
3rd Floor, Block A,
Zhongtou International Business
Center, No. 1061, Xiang Mei Rd,
FuTian District, ShenZhen,
China, 518040
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail: [email protected]
ITALY
Via Milanese 20, 3rd. Fl.
20099 Sesto San Giovanni
(MI) Italy
Phone: +39-024-550-8701
Fax: +39-028-928-6009
e-mail:
[email protected]
SINGAPORE
51 Newton Road,
#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail:
[email protected]
APPLICATIONS HOTLINE
World Wide +1-408-4149660
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
APPLICATIONS FAX
World Wide +1-408-4149760
Page 40 of 40