Bourns FW20A10R0JA Fusible Power Resistor

Title
Reference Design Report for a 7 W NonDimmable, Non-Isolated Buck LED Driver
Using LYTSwitchTM-0 LYT0006D
Specification 190 VAC – 265 VAC Input; 85 V, 82 mA Output
Application
Author
Document
Number
Date
Revision
A17 / A19 LED Driver Lamp Replacement
Applications Engineering Department
RDR-378
October 4, 2013
1.0
Summary and Features
 Single-stage power factor corrected ( >0.5 at 230 V) and accurate constant current (CC) output
 Low cost, low component count and small PCB footprint solution
 Highly energy efficient, 91% across VAC input range
 Fast start-up time (<100 ms) – no perceptible delay
 Integrated protection and reliability features
 Single-shot no-load protection
 Output short-circuit protected with auto-recovery
 Auto-recovering thermal shutdown with large hysteresis protects both components and PCB
 No damage during brown-out conditions
 Meets IEC ring wave, differential line surge and EN55015 conducted EMI
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered
by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A
complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under
certain patent rights as set forth at <http://www.powerint.com/ip.htm>.
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-378 7 W Non-Isolated Buck Using LYT0006D
04-Oct-13
Table of Contents
1 2 3 4 Introduction ................................................................................................................. 3 Power Supply Specification ........................................................................................ 5 Schematic ................................................................................................................... 6 Circuit Description ...................................................................................................... 7 4.1 Input EMI Filtering ............................................................................................... 7 4.2 LYTSwitch-0 ........................................................................................................ 7 4.3 Output Rectification ............................................................................................. 7 4.4 Output Feedback ................................................................................................. 7 4.5 No-Load Protection ............................................................................................. 8 5 PCB Layout ................................................................................................................ 9 6 Bill of Materials ......................................................................................................... 10 7 Inductor Design Spreadsheet ................................................................................... 11 8 Performance Data .................................................................................................... 13 8.1 Active Mode Efficiency ...................................................................................... 14 8.2 Output Current Regulation................................................................................. 15 8.2.1 Output Current Regulation Across Line and Load ...................................... 15 9 Thermal Performance ............................................................................................... 16 9.1 Equipment Used ................................................................................................ 16 9.2 Thermal Result .................................................................................................. 18 9.2.1 Load: 85 V / 82 m A LED Load. .................................................................. 18 9.3 Thermal Scan .................................................................................................... 19 10 Waveforms ............................................................................................................ 20 10.1 Drain Voltage, Current Normal Operation.......................................................... 20 10.2 Drain Voltage and Current When Output Short ................................................. 21 10.3 Drain Voltage and Current Start-up Profile ........................................................ 21 10.4 Output Current Start-up Profile .......................................................................... 22 10.5 Input-Output Profile ........................................................................................... 23 10.6 Line Sag and Surge ........................................................................................... 24 10.7 One Shot No-Load Protection ........................................................................... 25 10.8 Brown-out / Brown-in ......................................................................................... 26 11 Line Surge............................................................................................................. 27 12 Conducted EMI ..................................................................................................... 29 13 Revision History .................................................................................................... 32 Important Note:
Although this board is designed to satisfy safety isolation requirements, the engineering
prototype has not been agency approved. Therefore, all testing should be performed
using an isolation transformer to provide the AC input to the prototype board.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 2 of 33
04-Oct-13
RDR-378 7 W Non-Isolated Buck Using LYT0006D
1 Introduction
This document describes a cost-effective power supply utilizing the LYTSwitchTM-0 family
(LYT0006D) in a highly compact buck topology.
Figure 1 – Populated Circuit Board
This power supply operates over an input voltage range of 190 VAC to 265 VAC. The DC
bus voltage is high enough to support an 85 V output when using a buck topology - in a
buck converter the output voltage must always be lower than the input voltage. The
output voltage is also limited by the maximum duty cycle of the LYTSwitch-0 (which also
requires the input voltage to be larger than the output voltage).
The reference design is not limited for retrofit lamp application; the design layout can be
easily modified to fit in LED tube or ballast applications.
Page 3 of 33
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-378 7 W Non-Isolated Buck Using LYT0006D
04-Oct-13
Figure 2 – Populated Circuit Board, Top View.
Figure 3 – Populated Circuit Board, Bottom View.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 4 of 33
04-Oct-13
RDR-378 7 W Non-Isolated Buck Using LYT0006D
2 Power Supply Specification
The table below represents the minimum acceptable performance for the design. Actual
performance is listed in the results section.
Description
Symbol
Min
Input
Voltage Operation
VIN
190
Frequency
fLINE
47
50/60
VOUT
IOUT
83
85
82
Output
Output Voltage
Output Current
Total Output Power
Continuous Output Power
Efficiency
240 VAC; 85 V LED
Typ
7
POUT

91
PF
0.5
Max
Units
Comment
265
VAC
2 Wire – no P.E.
Operating frequency is not limited.
Adjust sense resistor if application
is for 400 Hz line.
Hz
88
V
mA
±4% at 200 VAC - 240 VAC
W
%
º
Measured at POUT, 25 C
Power Factor
240 VAC; 85 V LED
º
Measured at POUT, 25 C
Environmental
Conducted EMI
Meets CISPR22B / EN55015B
Line Surge
Differential Mode (L1-L2)
Page 5 of 33
2.5
kV
500 A short circuit
Series Impedance:
Differential Mode: 2 
25
º
0.5
Ring Wave (100 kHz)
Differential Mode (L1-L2)
Ambient Temperature
kV
1.2/50 s surge, IEC 1000-4-5,
Series Impedance:
Differential Mode: 2 
TAMB
-10
C
Free convection, sea level
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-378 7 W Non-Isolated Buck Using LYT0006D
04-Oct-13
3 Schematic
Figure 4 – Schematic. Zener Diode VR1 is Optional, Providing One-time No-load Protection.
Refer to AN-60 for Additional OVP Options.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 6 of 33
04-Oct-13
RDR-378 7 W Non-Isolated Buck Using LYT0006D
4 Circuit Description
The power supply shown in Figure 3 uses the LYT0006D (U1) in a high-side buck
configuration to deliver a constant 82 mA current at an output voltage of 85 VDC. The
power supply is designed for driving LEDs, which should always be driven with a
constant current (CC).
4.1 Input EMI Filtering
Fuse RF1 provides short circuit protection. Bridge BR1 provides full wave rectification for
good power factor. Capacitor C1, C2 and common-mode choke L1 form a π filter in order
meet conducted EMI standards. Capacitor C1 and C2 are also used for energy storage
reducing line noise and protecting against line surge.
4.2 LYTSwitch-0
The LYTSwitch-0 family is fully optimized to enable the design of a simple, cost-effective
LED driver with good line and temperature regulation from 0 to 100 ºC (LYTSwitch-0
case temperature). The PIXls spreadsheet was used to achieve the best possible line
regulation by optimizing the choices of power inductor and sense resistor. Optimize the
total input capacitance to design for the highest possible power factor and line load
regulation.
The LYTSwitch-0 family has a built-in thermal limit to protect the power supply in the
event that temperature rises beyond the suitable level of operation.
The buck converter stage consists of the integrated power MOSFET switch within
LYT0006D (U1), a freewheeling diode (D1), sense resistors (R2, R3), power inductor L2
and output capacitor (C5). The converter is operating mostly in discontinuous mode
(DCM) in order to limit the cycles of reverse current. A fast freewheeling diode was
selected to minimize switching losses.
A standard off-the-shelf inductor was used in the power converter to reduce cost.
4.3 Output Rectification
Fast output diode (D1) was used to achieve good efficiency and for thermal
management. Normally for LED applications, the ambient temperature is above 70 ºC. A
device with low tRR (<35 ns) is recommended.
4.4 Output Feedback
Regulation is maintained by skipping switching cycles. As the output current rises, the
voltage into the FEEDBACK (FB) pin also rises. If this voltage exceeds VFB then
subsequent switching cycles will be skipped until the voltage drops below VFB. Current is
sensed via R2, R3 and filtered by C4, then fed to the FB pin for accurate regulation. The
key to achieving good line regulation is in balancing the power inductor and sense
resistor values after the minimum inductance has been calculated.
Page 7 of 33
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-378 7 W Non-Isolated Buck Using LYT0006D
04-Oct-13
The bypass capacitor (C4) is connected between the FB pin and the SOURCE (S) pin
and helps reduce power loss during output current sensing. The capacitor acts to
sample-and-hold the feedback current information for the FB pin. No limiting resistor is
required between the FB pin and C4, because the peak voltage will not exceed the
maximum rating of the device.
4.5 No-Load Protection
An optional, one-shot, no-load protection circuit is incorporated into the design. In case of
accidental no-load operation, the output capacitor is protected by VR1. Zener diode VR1
would need to be replaced after a failure. Refer to AN-60 for other OVP design options.
In operation (LED retrofit lamp), the load is always connected, so VR1 could be removed
to save cost. If this option is utilized, to protect during board level testing (in
manufacturing) 70 VAC can be applied to the input; if no output current is measured then
the load is not connected. This test will allow safe, non-destructive initial power up of the
board, without the need of an OV protection circuit.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 8 of 33
04-Oct-13
RDR-378 7 W Non-Isolated Buck Using LYT0006D
5 PCB Layout
Figure 5 – Printed Circuit Layout, Top View.
Figure 6 – Printed Circuit Layout, Bottom View.
Page 9 of 33
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-378 7 W Non-Isolated Buck Using LYT0006D
04-Oct-13
6 Bill of Materials
Item
Qty
Ref Des
Description
Manufacturer P/N
Manufacturer
B10S-G
Comchip Technology
Electrical
1
1
BR1
2
1
C1
1000 V, 0.8 A, Bridge Rectifier, SMD, MBS-1, 4-SOIC
100 nF, 450 V, Film
MEXXD31004JJ1
Duratech
3
1
C2
330 nF, 450 V, METALPOLYPRO
ECW-F2W334JAQ
Panasonic
Vishay
4
1
C3
100 nF, 25 V, Ceramic, X7R, 0603
VJ0603Y104KNXAO
5
1
C4
22 F, 16 V, Ceramic, X7R, 0805
C2012X5R1C226K
TDK
6
1
C5
68 F, 100 V, Electrolytic, Gen. Purpose, (10 x 16)
UHE2A680MPD
Nichicon
7
1
D1
600 V, 1 A, Ultrafast Recovery, 30 ns, SOD57
BYV26C
Philips
8
1
L1
10 mH, 0.076 A, 20%
RL-5480-3-10000
Renco Elect
9
1
L2
1.5 mH, 0.250 A, 10%
RL-5480HC-3-1500
Renco Elect
10
1
R1
4.7 k, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ472V
Panasonic
11
2
R2 R3
53.6 , 1%, 1/8 W, Thick Film, 0805
ERJ-6ENF53R6V
Panasonic
12
1
RF1
10 , 5%, 2 W, Wirewound, Fusible
FW20A10R0JA
Bourns
13
1
RV1
275 V, 23 J, 7 mm, RADIAL
V275LA4P
Littlefuse
14
1
U1
LYTSwitch-0, SMD-8C
LYT0006D
Power Integrations
15
1
VR1
100 V, 5%, 1 W, DO-41
1N4764A-TAP
Vishay
Anixter
Mechanical
16
1
WIRE(V-)
Wire, UL1007,# 24 AWG, Blk, PVC, 4"
1007-24/7-0
17
1
WIRE (L)
Wire, UL1007, #24 AWG, Blu, PVC, 4"
1007-24/7-6
Anixter
18
1
WIRE(V+)
Wire, UL1007, #24 AWG, Red, PVC, 4"
1007-24/7-2
Anixter
19
1
WIRE(N)
Wire, UL1007, #24 AWG, Wht, PVC, 4"
1007-24/7-9
Anixter
20
1
PCB
FR4, 0.31, 1 Oz Cu (0.51” X 2.1“)
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 10 of 33
04-Oct-13
RDR-378 7 W Non-Isolated Buck Using LYT0006D
7 Inductor Design Spreadsheet
ACDC_LYTSwitchZero_052813;
Rev.0.8; Copyright Power
Integrations 2013
INPUT VARIABLES
VACMIN
VACNOM
VACMAX
FL
VO
IO
Pout
OUTPUT
UNIT
LYTSwitchZero_Rev_0-8.xls:
LYTSwitchZero Design
Spreadsheet
190
230
265
50
85
82
190
230
265
50
85
82
6.97
Volts
Minimum AC Input Voltage
Volts
Hertz
Volts
mA
W
Maximum AC Input Voltage
Line Frequency
Output Voltage
Output Current
EFFICIENCY
0.91
0.91
CIN
0.43
0.43
uF
Input Stage Resistance
4.7
4.7
ohms
Switching Topology
DC INPUT VARIABLES
VMIN
VMAX
LYTSwitchZero
LYTSwitchZero
ILIMIT
ILIMIT_MIN
ILIMIT_MAX
FSMIN
INPUT
INFO
Buck
Overall Efficiency Estimate (Adjust to
match Calculated, or enter Measured
Efficiency)
Input Filter Capacitor
Input Stage Resistance, Fuse &
Filtering
Type of Switching topology
85
374.766594
Volts
Volts
Minimum DC Bus Voltage
LYT0006
0.375
0.33275
0.401
62000
Amps
Amps
Amps
Hertz
IRMS
85.25298
mA
VDS
4.8375
Volts
Typical Current Limit
Minimum Current Limit
Maximum Current Limit
Minimum Switching Frequency
Expected RMS current through
LYTSwitch
Maximum On-State Drain To Source
Voltage drop
VD
0.7
Volts
VRR
600
Volts
1
Amps
LYT0006
DIODE
IF
Diode Recommendation
OUTPUT INDUCTOR
Core type
BYV26C
Off-theShelf
Off-the-Shelf
Core size
Custom Core
AE
LE
AL
BW
NL
BP
LG
N/A
N/A
N/A
N/A
N/A
N/A
N/A
OD
N/A
INS
N/A
Page 11 of 33
mm^2
mm
nH/T^2
mm
Gauss
mm
Freewheeling Diode Forward Voltage
Drop
Recommended PIV rating of
Freewheeling Diode
Recommended Diode Continuous
Current Rating
Suggested Freewheeling Diode
Select core type between Ferrite and
Off-the-Shelf
Select core size
Enter custom core description (if
used)
Core Effective Cross Sectional Area
Core Effective Path Length
Ungapped Core Effective Inductance
Bobbin Physical Winding Width
Number of turns on inductor
Peak flux density
Gap length
Maximum Primary Wire Diameter
including insulation
Estimated Total Insulation Thickness
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-378 7 W Non-Isolated Buck Using LYT0006D
04-Oct-13
(= 2 * film thickness)
DIA
N/A
AWG
N/A
CM
N/A
CMA
N/A
L
N/A
LP
1350
Bare conductor diameter
Primary Wire Gauge (Rounded to
next smaller standard AWG value)
Bare conductor effective area in
circular mils
!!! INCREASE CMA > 200 (increase
L(primary layers),decrease NS, use
larger Core)
1350
uH
IO_Average
82.52548
mA
ILRMS
176.4503
mA
Output Inductor, Recommended
Standard Value
Average output current
Estimated RMS inductor current (at
VMAX)
FEEDBACK COMPONENTS
RFB
26.8
CFB
OUTPUT REGULATION
IO_VACMIN
IO_VACNOM
IO_VACMAX
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
26.8
Ohms
22
uF
Feedback Resistor. Use closest
standard 1% value
Feedback Capacitor
82.52548
80.51328
79.12785
mA
mA
mA
Output Current at VACMIN
Output Current at VACNOM
Output Current at VACMAX
Page 12 of 33
04-Oct-13
RDR-378 7 W Non-Isolated Buck Using LYT0006D
8 Performance Data
All measurements performed at room temperature (≈25 ºC) unless otherwise specified.
Input
VAC Freq
(VRMS) (Hz)
190
50
200
50
220
50
230
50
265
50
190
50
200
50
220
50
230
50
265
50
190
50
200
50
220
50
230
50
265
50
Input Measurement
VIN
IIN
PIN
(VRMS) (mARMS)
(W)
190.20
54.85
7.449
220.35
53.19
7.388
230.22
52.27
7.332
240.23
51.60
7.279
265.25
50.39
7.100
190.16
55.32
7.669
220.35
52.81
7.598
230.21
52.40
7.570
240.23
52.08
7.545
265.28
52.16
7.473
190.17
55.92
7.937
220.35
53.01
7.833
230.22
52.54
7.798
240.34
52.22
7.773
265.26
51.80
7.719
PF
0.714
0.630
0.609
0.587
0.531
0.729
0.653
0.628
0.603
0.540
0.746
0.671
0.645
0.619
0.562
LED Load Measurement
VOUT
IOUT
POUT
(VDC)
(mADC)
(W)
81.4500 83.680 6.832
81.4400 82.620 6.740
81.4400 82.000 6.688
81.4300 81.390 6.637
81.4000 79.050 6.442
84.4900 83.260 7.052
84.4800 82.290 6.964
84.4800 81.840 6.925
84.4700 81.390 6.885
84.4600 80.300 6.790
87.5700 83.230 7.306
87.5500 81.780 7.173
87.5400 81.480 7.144
87.5400 81.180 7.117
87.5300 80.430 7.048
Efficiency
(%)
Regulation
(%)
91.72
91.23
91.22
91.18
90.73
91.95
91.66
91.48
91.25
90.86
92.05
91.57
91.61
91.56
91.31
2.05
0.76
0.00
-0.74
-3.60
1.54
0.35
-0.20
-0.74
-2.07
1.50
-0.27
-0.63
-1.00
-1.91
Table 1 – Raw Data of Unit.
Page 13 of 33
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-378 7 W Non-Isolated Buck Using LYT0006D
8.1
04-Oct-13
Active Mode Efficiency
93.0
82 V
85 V
88 V
92.5
Efficiency (%)
92.0
91.5
91.0
90.5
90.0
180
190
200
210
220
230
240
250
260
270
280
Input Voltage (VRMS)
Figure 7 – Efficiency with Respect to AC Input Voltage, 190-265 VAC (60 Hz) Input.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 14 of 33
04-Oct-13
8.2
RDR-378 7 W Non-Isolated Buck Using LYT0006D
Output Current Regulation
8.2.1 Output Current Regulation Across Line and Load
5
82 V
85 V
88 V
4
3
Regulation (%)
2
1
0
-1
-2
-3
-4
-5
180
190
200
210
220
230
240
250
260
270
Input Voltage (VRMS)
Figure 8 – Load Regulation, Room Temperature.
Page 15 of 33
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
280
RDR-378 7 W Non-Isolated Buck Using LYT0006D
04-Oct-13
9 Thermal Performance
9.1
Equipment Used
Chamber:
AC Source:
Tenney Environmental Chamber
Model No: TJR-17 942
Chroma Programmable AC Source
Model No: 6415
Wattmeter:
Data Logger:
Yokogawa Power Meter
Model No: WT2000
Agilent
Figure 9 – Thermal Chamber Set-up Showing Box Used to Prevent Airflow Over UUT. Open Frame Set-up
Measurement.
Figure 10 – Thermal Measurement, Thermocouple Set-up.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 16 of 33
04-Oct-13
RDR-378 7 W Non-Isolated Buck Using LYT0006D
Figure 11 – Enclosed Thermal Measurement Set-up.
Note: Typical A19 enclosure is used in the test; the housing may be identical to lamps available in the
market but it does not limit its application. It is up to the end customer to enclose the driver and design the
housing.
Page 17 of 33
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-378 7 W Non-Isolated Buck Using LYT0006D
9.2
04-Oct-13
Thermal Result
9.2.1 Load: 85 V / 82 m A LED Load.
Remarks
Normal Operation
Open Frame in the
Thermal Chamber
190 V / 50 Hz
OTP; 190 V / 50 Hz
Recovery; 190 V / 50 Hz
190 V / 50 Hz Enclosed
(30 °C External Ambient)
265 V / 50 Hz Enclosed
(30 °C External Ambient)
Internal
Ambient
C
-10
0
10
20
30
40
50
60
70
80
90
100
110
117
53
BR
C
LYT0006D
C
4.91
14.36
23.80
33.37
43.09
52.69
62.33
71.65
81.40
91.33
101.09
110.97
121.03
129.15
62.83
L2;Power
Inductor
C
-2.24
6.81
15.71
25.10
34.45
43.71
53.12
61.98
71.32
80.89
90.23
99.85
109.71
117.55
65.18
Output
Capacitor
C
-10.24
-0.98
8.23
17.89
27.58
37.16
46.80
55.77
65.44
75.19
85.05
94.78
105.11
112.42
61.33
Output
Diode
C
-0.15
9.28
18.29
28.07
37.70
47.12
56.79
66.10
75.87
85.60
95.59
105.34
115.51
123.19
61.86
-5.77
3.92
13.39
23.10
32.95
42.64
52.30
61.92
71.69
81.52
91.01
101.31
111.48
119.28
58.08
64
54.28
78.39
74.10
70.15
67.79
65
54.30
81.11
76.26
71.11
69.66
Table 2 – Thermal Measurement.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 18 of 33
04-Oct-13
RDR-378 7 W Non-Isolated Buck Using LYT0006D
9.3 Thermal Scan
Open-frame thermal measurement at 25C ambient. UUT was soaked for 1 hour to
achieve steady-state before the measurements were made.
Figure 12 – Temperature (C) at Bottom Side of PCB.
SP1 – U1, LYT0006D.
SP2 – BR1, Bridge Rectifier.
SP3 – Ambient.
Figure 13 – Temperature (C) at Top Side of PCB.
SP1 – Output Capacitor.
SP2 – L2, Power inductor.
SP3 – D1, Freewheeling Diode.
SP4 – Ambient.
Page 19 of 33
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-378 7 W Non-Isolated Buck Using LYT0006D
04-Oct-13
10 Waveforms
10.1 Drain Voltage, Current Normal Operation
Missing pulses are normal and are used to regulate the output current. These missing
pulses are present every time the sense resistors (R2, R3) voltage-drop reaches 1.65 V.
The unit will enter into auto-restart if there is not at least one missing pulse within a 50 ms
period. For some designs where the power inductance is high and the circuit is operating
(mostly) in CCM, a period of reverse current may be present. This can be avoided by
increasing the device size or increase input capacitance or adding a drain blocking diode.
See AN-60 for additional information.
Figure 14 – 190 VAC, 50 Hz, Nominal VLED Load.
F1 (Orange): VD-S, 200 V / div.
Ch1 (Yellow): VD-G, 100 V / div.
Ch3 (Blue): IDRAIN, 100 mA / div.
Time Scale: 1 ms / div.
Figure 15 – 265 VAC, 50 Hz, Nominal VLED Load.
F1 (Orange): VD-S, 200 V / div.
Ch1 (Yellow): VD-G, 100 V / div.
Ch3 (Blue): IDRAIN, 100 mA / div.
Time Scale: 1 ms / div.
Figure 16 – 190 VAC, 50 Hz, Nominal VLED Load.
F1 (Orange): VD-S, 200 V / div. Ch3
(Blue): IDRAIN, 100 mA / div.
Time Scale: 20 s / div.
Figure 17 – 265 VAC, 50 Hz, Nominal VLED Load.
F1 (Orange): VD-S, 200 V / div. Ch3
(Blue): IDRAIN, 100 mA / div.
Time Scale: 20 s / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 20 of 33
04-Oct-13
RDR-378 7 W Non-Isolated Buck Using LYT0006D
10.2 Drain Voltage and Current When Output Short
Device is operating within range, no inductor saturation was observed.
Figure 18 – LYT0006D Output Short. 265 VAC.
Ch3: IDRAIN, 0.5 A / div.
Time Scale: 2 ms / div.
Z4: VD-S, 0.5 A / div.
Zoom Time Scale: 10 s / div.
Figure 19 – LYT0006D Output Short. 265 VAC.
Ch4: IDRAIN, 0.2 A / div.
Time Scale: 10 s / div.
Z4: VD-S, 0.2 A / div.
Zoom Time Scale: 500 ns / div.
10.3 Drain Voltage and Current Start-up Profile
Device is operating within range, no inductor saturation was observed.
Figure 20 – 265 VAC / 50 Hz Start-up.
Ch1: Bulk Input, 500 V / div.
Ch3: Z4: IDRAIN, 0.5 A / div.
Time Scale: 200 s / div.
F1: VD-S, 500 V / div.
Zoom Time Scale: 200 s / div.
Page 21 of 33
Figure 21 – 265 VAC / 50 Hz Start-up.
Ch1: Bulk Input, 500 V / div.
Ch3: Z4: IDRAIN, 0.5 A / div.
Time Scale: 200 s / div.
F1: VD-S, 500 V / div.
Zoom Time Scale: 200 s / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-378 7 W Non-Isolated Buck Using LYT0006D
04-Oct-13
10.4 Output Current Start-up Profile
Output current/light is present within one AC cycle (<100 ms).
Figure 22 – 190 VAC, 50 Hz, Nominal VLED Load.
Ch1 (Yellow): VIN, 100 V / div.
Ch2 (Red): VOUT, 20 V.
Ch3 (Blue): IIN, 50 mA / div.
Ch4 (Green): IOUT, 20 mA / div, 20 ms /
div.
Figure 23 – 230 VAC, 50 Hz, Nominal VLED Load.
Ch1 (Yellow): VIN, 100 V / div.
Ch2 (Red): VOUT, 20 V.
Ch3 (Blue): IIN, 50 mA / div.
Ch4 (Green): IOUT, 20 mA / div, 20 ms / div.
Figure 24 – 240 VAC, 50 Hz, Nominal VLED Load.
Ch1 (Yellow): VIN, 100 V / div.
Ch2 (Red): VOUT, 20 V.
Ch3 (Blue): IIN, 50 mA / div.
Ch4 (Green): IOUT, 20 mA / div, 20 ms / div.
Figure 25 – 265 VAC, 50 Hz, Nominal VLED Load.
Ch1 (Yellow): VIN, 100 V / div.
Ch2 (Red): VOUT, 20 V.
Ch3 (Blue): IIN, 50 mA / div.
Ch4 (Green): IOUT, 20 mA / div, 20 ms / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 22 of 33
04-Oct-13
RDR-378 7 W Non-Isolated Buck Using LYT0006D
10.5 Input-Output Profile
There is no limitation to the amount of output capacitance that can be added. If the
application requires less output current ripple then increasing the output capacitance is
straightforward. Note that the output current waveform below will change depending on
LED load impedance which varies according to LED type.
Figure 26 – 190 VAC / 50 Hz, Nominal VLED Load.
Ch1 (Yellow): VIN, 100 V / div.
Ch2 (Red): VOUT, 20 V.
Ch3 (Blue): IIN, 50 mA / div.
Ch4 (Green): IOUT, 20 mA / div, 10 ms / div.
Figure 27 – 230 VAC / 50 Hz, Nominal VLED Load.
Ch1 (Yellow): VIN, 100 V / div.
Ch2 (Red): VOUT, 20 V.
Ch3 (Blue): IIN, 50 mA / div.
Ch4 (Green): IOUT, 20 mA / div, 10 ms / div.
Figure 28 – 240 VAC / 50 Hz, Nominal VLED Load.
Ch1 (Yellow): VIN, 100 V / div.
Ch2 (Red): VOUT, 20 V.
Ch3 (Blue): IIN, 50 mA / div.
Ch4 (Green): IOUT, 20 mA / div, 10 ms / div.
Figure 29 – 265 VAC / 50 Hz, Nominal VLED Load.
Ch1 (Yellow): VIN, 100 V / div.
Ch2 (Red): VOUT, 20 V.
Ch3 (Blue): IIN, 50 mA / div.
Ch4 (Green): IOUT, 20 mA / div, 10 ms / div.
Page 23 of 33
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-378 7 W Non-Isolated Buck Using LYT0006D
04-Oct-13
10.6 Line Sag and Surge
An inherent advantage of the buck converter implemented with the LYTSwitch-0 family is
the imperceptible start-up delay, the driver will turn-on within 100 ms as shown below. No
failure of any component occurred during line fluctuation tests.
Figure 30 – Line Sag Test at 230 - 0 V at 0.1
Second Interval.
Ch1: VIN, 100 V / div.
Ch2: VOUT, 20 V / div.
Ch4: IOUT, 50 mA / div.
Time Scale: 500 ms / div.
Figure 32 – Line Surge Test at 230 - 190 V at 0.1
Second Interval.
Ch1: VIN, 100 V / div.
Ch2: VOUT, 20 V / div.
Ch4: IOUT, 50 mA / div.
Time Scale: 500 ms / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 31 – Line Surge Test at 230 - 265 V at 0.1
Second Interval.
Ch1: VIN, 100 V / div.
Ch2: VOUT, 20 V / div.
Ch4: IOUT, 50 mA / div.
Time Scale: 500 ms / div.
Figure 33 – Line Sag Test at 230 - 0 V at 1 Second
Interval.
Ch1: VIN, 100 V / div.
Ch2: VOUT, 20 V / div.
Ch4: IOUT, 50 mA / div.
Time Scale: 2 s / div.
Page 24 of 33
04-Oct-13
RDR-378 7 W Non-Isolated Buck Using LYT0006D
10.7 One Shot No-Load Protection
The reference design is protected with one shot no-load protection. Zener diode VR1 will
need to be replaced after the fault.
Figure 34 – No-Load Protection When Load is
Disconnected. 265 V / 50 Hz.
Ch2: VOUT, 20 V / div.
Ch3: IDRAIN, 100 mA / div.
Ch3: IOUT, 50 mA / div.
Time Scale: 200 ms / div.
Page 25 of 33
Figure 35 – No-Load Start-Up. 265 V / 50 Hz.
Ch2: VOUT, 20 V / div.
Ch3: IDRAIN, 100 mA / div.
Ch3: IOUT, 50 mA / div.
Time Scale: 200 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-378 7 W Non-Isolated Buck Using LYT0006D
04-Oct-13
10.8 Brown-out / Brown-in
No failure of any component during brownout test of 1 V / sec and 10 V / sec AC cut-in
and cut-off. Consider the peak current at 132 mApk with an average of 75 mAAVG during
brown-out for LED absolute maximum rating.
Figure 36 – Brown-out Test at 1 V / s and 10 V / s.
The Unit is Able to Operate Normally
Without Any Failure and Without Flicker.
230 V - 0 - 230 V
Ch1: VIN, 100 V / div.
Ch1: VOUT, 20 V / div.
Ch3: IOUT, 20 mA / div.
Time Scale: 100 s / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 37 – Brown-out Test at 1 V / s and 10 V / s.
The Unit is Able to Operate Normally
Without Any Failure and Without
Flicker. 230 V - 0 - 230 V
Ch1: VIN, 100 V / div.
Ch1: VOUT, 20 V / div.
Ch3: IOUT, 20 mA / div.
Time Scale: 100 s / div.
Page 26 of 33
04-Oct-13
RDR-378 7 W Non-Isolated Buck Using LYT0006D
11 Line Surge
Differential input line 500V / 50 s surge testing was completed on a single test unit
following the test method described in IEC61000-4-5. Input voltage was set at 230 VAC /
60 Hz. Full output load applied and operation was verified following each surge event.
Surge
Level (V)
+500
-500
+500
-500
+500
-500
Input
Voltage
(VAC)
230
230
230
230
230
230
Injection
Location
Injection
Phase (°)
Test Result
(Pass/Fail)
L to N
L to N
L to N
L to N
L to N
L to N
90
90
270
270
0
0
Pass
Pass
Pass
Pass
Pass
Pass
Unit passed testing under all conditions.
Differential ring input line surge testing was completed on a single test unit following the
test method described in IEC61000-4-5. Input voltage was set at 230 VAC / 60 Hz. Full
output load was applied and operation was verified following each surge event.
Surge
Level (V)
+2500
-2500
+2500
-2500
+2500
-2500
Input
Voltage
(VAC)
230
230
230
230
230
230
Injection
Location
Injection
Phase (°)
Test Result
(Pass/Fail)
L to N
L to N
L to N
L to N
L to N
L to N
90
90
270
270
0
0
Pass
Pass
Pass
Pass
Pass
Pass
Unit passed testing under all conditions.
Page 27 of 33
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-378 7 W Non-Isolated Buck Using LYT0006D
04-Oct-13
Figure 38 – Differential Line Surge at 500 V / 90.
Peak Drain Voltage Recorded is 680 V.
Ch1: VBULK, 100 V / div.
F1: VDRAIN, 200 V / div.
Time Scale: 100 s / div.
Figure 39 – Differential Line Surge at 500 V / 90.
Peak Drain Voltage Recorded is 427 V.
Ch1: VBULK, 100 V / div.
F1: VDRAIN, 200 V / div.
Time Scale: 100 s / div.
Figure 40 – Differential Ring Surge at 2500 V / 90.
Peak Drain Voltage Recorded is 505 V.
Ch1: VBULK, 100 V / div.
F1: VDRAIN, 200 V / div.
Time Scale: 500 s / div.
Figure 41 – Differential Ring Surge at 2500 V / 0.
Peak Drain Voltage Recorded is 404 V.
Ch1: VBULK, 100 V / div.
F1: VDRAIN, 200 V / div.
Time Scale: 500 s / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 28 of 33
04-Oct-13
RDR-378 7 W Non-Isolated Buck Using LYT0006D
12 Conducted EMI
Figure 42 – The Retrofit Lamp was Verified Inside a Conical Metal Cone as per EN55015.
Page 29 of 33
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-378 7 W Non-Isolated Buck Using LYT0006D
Power Integrations
03.Jul 13 21:00
RBW
MT
04-Oct-13
9 kHz
500 ms
Att 10 dB AUTO
dBµV
100 kHz
120
EN55015Q
110
1 QP
CLRWR
LIMIT CHECK
1 MHz
PASS
10 MHz
SGL
100
90
2 AV
CLRWR
TDF
80
70
60
EN55015A
50
6DB
40
30
20
10
0
-10
-20
9 kHz
30 MHz
Figure 43 – Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55015 B Limits.
Enclosed Unit in a Typical A19 Bulb Replacement Housing.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 30 of 33
04-Oct-13
RDR-378 7 W Non-Isolated Buck Using LYT0006D
Trace1:
EN55015Q
Trace2:
EN55015A
Trace3:
---
TRACE
FREQUENCY
LEVEL dBµV
DELTA LIMIT dB
2
Average
9.09 kHz
23.57
N gnd
2
Average
125.720633819 kHz
28.32
N gnd
2
Average
129.530094744 kHz
27.83
L1 gnd
2
Average
192.364799253 kHz
30.64
L1 gnd
-23.29
2
Average
256.711570318 kHz
35.38
N gnd
-16.15
1
Quasi Peak
259.278686021 kHz
46.59
L1 gnd
-14.85
1
Quasi Peak
310.135545783 kHz
42.05
L1 gnd
-17.90
2
Average
322.728292586 kHz
30.28
N gnd
-19.35
1
Quasi Peak
389.890938834 kHz
39.15
L1 gnd
-18.90
2
Average
452.651275966 kHz
28.63
N gnd
-18.19
1
Quasi Peak
457.177788726 kHz
40.31
N gnd
-16.42
1
Quasi Peak
505.008700673 kHz
40.18
L1 gnd
-15.81
2
Average
510.05878768 kHz
28.59
N gnd
-17.40
1
Quasi Peak
586.299423673 kHz
39.77
L1 gnd
-16.22
1
Quasi Peak
647.639315505 kHz
43.74
L1 gnd
-12.25
2
Average
647.639315505 kHz
30.70
N gnd
-15.29
1
Quasi Peak
680.675429436 kHz
38.42
L1 gnd
-17.57
1
Quasi Peak
908.363999266 kHz
47.31
L1 gnd
-8.68
2
Average
908.363999266 kHz
33.01
N gnd
-12.98
1
Quasi Peak
1.06512822736 MHz
39.04
L1 gnd
-16.95
Table 3 – Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55015 B Limits.
Enclosed Unit in a Typical A19 Bulb Replacement Housing.
Page 31 of 33
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-378 7 W Non-Isolated Buck Using LYT0006D
04-Oct-13
13 Revision History
Date
04-Oct-13
Author
JDC
Revision
1.0
Description & changes
Initial Release
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Reviewed
Apps & Mktg
Page 32 of 33
04-Oct-13
RDR-378 7 W Non-Isolated Buck Using LYT0006D
For the latest updates, visit our website: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability.
Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER
INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits’ external to the products)
may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications
assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power
Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS,
HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power
Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2013 Power Integrations, Inc.
Power Integrations Worldwide Sales Support Locations
WORLD HEADQUARTERS
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail: [email protected]
GERMANY
Lindwurmstrasse 114
80337, Munich
Germany
Phone: +49-895-527-39110
Fax: +49-895-527-39200
e-mail:
[email protected]
JAPAN
Kosei Dai-3 Building
2-12-11, Shin-Yokohama,
Kohoku-ku, Yokohama-shi,
Kanagawa 222-0033
Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: [email protected]
TAIWAN
5F, No. 318, Nei Hu Rd.,
Sec. 1
Nei Hu District
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail:
[email protected]
CHINA (SHANGHAI)
Rm 1601/1610, Tower 1,
Kerry Everbright City
No. 218 Tianmu Road West,
Shanghai, P.R.C. 200070
Phone: +86-21-6354-6323
Fax: +86-21-6354-6325
e-mail: [email protected]
INDIA
#1, 14th Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail:
[email protected]
KOREA
RM 602, 6FL
Korea City Air Terminal B/D,
159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728 Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: [email protected]
EUROPE HQ
1st Floor, St. James’s House
East Street, Farnham
Surrey GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
e-mail:
[email protected]
CHINA (SHENZHEN)
3rd Floor, Block A,
Zhongtou International Business
Center, No. 1061, Xiang Mei Rd,
FuTian District, ShenZhen,
China, 518040
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail: [email protected]
ITALY
Via Milanese 20, 3rd. Fl.
20099 Sesto San Giovanni
(MI) Italy
Phone: +39-024-550-8701
Fax: +39-028-928-6009
e-mail:
[email protected]
SINGAPORE
51 Newton Road,
#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail:
[email protected]
APPLICATIONS HOTLINE
World Wide +1-408-4149660
Page 33 of 33
APPLICATIONS FAX
World Wide +1-408-4149760
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com