RENESAS M37733M4LXXXHP

To all our customers
Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been
made to the contents of the document, and these changes do not constitute any alteration to the
contents of the document itself.
Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices
and power devices.
Renesas Technology Corp.
Customer Support Dept.
April 1, 2003
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
DESCRIPTION
●Interrupts ............................................................ 19 types, 7 levels
●Multiple-function 16-bit timer ................................................. 5 + 3
●Serial I/O (UART or clock synchronous) ..................................... 3
●10-bit A-D converter .............................................. 8-channel inputs
●12-bit watchdog timer
●Programmable input/output
(ports P0, P1, P2, P3, P4, P5, P6, P7, P8) ............................... 68
●Clock generating circuit ........................................ 2 circuits built-in
●Small package ..................... 80-pin plastic molded fine-pitch QFP
(80P6D-A;0.5 mm lead pitch)
The M37733M4LXXXHP is a single-chip microcomputer using the
7700 Family core. This single-chip microcomputer has a CPU and a
bus interface unit. The CPU is a 16-bit parallel processor that can be
an 8-bit parallel processor, and the bus interface unit enhances the
memory access efficiency to execute instructions fast. This
microcomputer also includes a 32 kHz oscillation circuit, in addition
to the ROM, RAM, multiple-function timers, serial I/O, A-D converter,
and so on.
Its strong points are the low power dissipation, the low supply voltage,
and the small package.
APPLICATION
FEATURES
Control devices for general commercial equipment such as office
automation, office equipment, personal information equipment, and
so on.
Control devices for general industrial equipment such as
communication equipment, and so on.
●Number of basic instructions .................................................. 103
●Memory size
ROM ................................................. 32 Kbytes
RAM ................................................ 2048 bytes
●Instruction execution time
The fastest instruction at 12 MHz frequency ...................... 333 ns
●Single power supply ...................................................... 2.7–5.5 V
●Low power dissipation (At 3 V supply voltage, 12 MHz frequency)
............................................ 9 mW (Typ.)
41
42
44
43
46
47
45
49
48
51
50
52
54
53
56
55
58
57
61
40
62
39
63
38
64
37
65
36
66
35
67
34
68
33
69
32
70
31
M37733M4LXXXHP
71
30
72
29
73
28
74
27
75
26
76
25
77
24
20
19
17
18
15
16
14
13
12
11
10
8
9
6
7
4
21
3
80
5
22
1
23
79
2
78
P66/TB1IN
P65/TB0IN
P64/INT2
P63/INT1
P62/INT0
P61/TA4IN
P60/TA4OUT
P57/TA3IN/KI3
P56/TA3OUT/KI2
P55/TA2IN/KI1
P54/TA2OUT/KI0
P53/TA1IN
P52/TA1OUT
P51/TA0IN
P50/TA0OUT
P47
P46
P45
P44
P43
P85/CLK1
P84/CTS1/RTS1
P83/TXD0
P82/RXD0/CLKS0
P81/CLK0
P80/CTS0/RTS0/CLKS1
VCC
AVCC
VREF
AVSS
VSS
P77/AN7/XCIN
P76/AN6/XCOUT
P75/AN5/ADTRG/TXD2
P74/AN4/RXD2
P73/AN3/CLK2
P72/AN2/CTS2
P71/AN1
P70/AN0
P67/TB2IN/φSUB
59
60
P86/RxD1
P87/TxD1
P00/A0
P01/A1
P02/A2
P03/A3
P04/A4
P05/A5
P06/A6
P07/A7
P10/A8/D8
P11/A9/D9
P12/A10/D10
P13/A11/D11
P14/A12/D12
P15/A13/D13
P16/A14/D14
P17/A15/D15
P20/A16/D0
P21/A17/D1
PIN CONFIGURATION (TOP VIEW)
Outline
80P6D-A
P22/A18/D2
P23/A19/D3
P24/A20/D4
P25/A21/D5
P26/A22/D6
P27/A23/D7
P30/R/W
P31/BHE
P32/ALE
P33/HLDA
VSS
E
XOUT
XIN
RESET
CNVSS
BYTE
P40/HOLD
P41/RDY
P42/φ1
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
External data bus width
Reference
selection input
voltage input
VREF
BYTE
Data Bus(Even)
Data Bus(Odd)
P0(8)
Instruction Queue Buffer Q0(8)
P1(8)
Instruction Queue Buffer Q2(8)
Address Bus
Input/Output
port P1
Instruction Queue Buffer Q1(8)
AVCC
Instruction Register(8)
Data Buffer DBL(8)
Input/Output
port P0
Data Buffer DBH(8)
Incrementer(24)
Incrementer/Decrementer(24)
(0V)
VSS
Program Counter PC(16)
Program Bank Register PG(8)
Input/Output
port P2
Input/Output
port P3
P2(8)
A-D Converter(10)
CNVss
Data Address Register DA(24)
P3(4)
(0V)
AVSS
Program Address Register PA(24)
2
Input/Output
port P4
Input/Output
port P5
Input/Output
port P6
Input/Output
port P7
P4(8)
P5(8)
P6(8)
UART0(9)
Timer TB0(16)
Timer TA0(16)
UART2(9)
UART1(9)
Timer TB2(16)
Timer TB1(16)
P7(8)
E
2048 bytes
RAM
Accumulator A(16)
Input/Output
port P8
32 Kbytes
P8(8)
XCOUT
XCIN
Arithmetic Logic
Unit(16)
ROM
Clock Generating Circuit
Enable
output
Accumulator B(16)
Timer TA1(16)
XCOUT
XCIN
Index Register X(16)
Timer TA4(16)
Stack Pointer S(16)
Watchdog Timer
RESET
Direct Page Register DPR(16)
Index Register Y(16)
Clock input Clock output
XIN
XOUT
M37733M4LXXXHP BLOCK DIAGRAM
Reset input
Processor Status Register PS(11)
Timer TA3(16)
Input Butter Register IB(16)
Timer TA2(16)
VCC
Data Bank Register DT(8)
MITSUBISHI MICROCOMPUTERS
ARY
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
M37733M4LXXXHP
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
FUNCTIONS OF M37733M4LXXXHP
Parameter
Number of basic instructions
Instruction execution time
Memory size
Input/Output ports
Multi-function timers
ROM
RAM
P0 – P2, P4 – P8
P3
TA0, TA1, TA2, TA3, TA4
TB0, TB1, TB2
Serial I/O
A-D converter
Watchdog timer
Interrupts
Clock generating circuit
Supply voltage
Power dissipation
Input/Output characteristic
Memory expansion
Operating temperature range
Device structure
Package
Input/Output voltage
Output current
Functions
103
333 ns (the fastest instruction at external clock 12 MHz frequency)
32 Kbytes
2048 bytes
8-bit ✕ 8
4-bit ✕ 1
16-bit ✕ 5
16-bit ✕ 3
(UART or clock synchronous serial I/O) ✕ 3
10-bit ✕ 1 (8 channels)
12-bit ✕ 1
3 external types, 16 internal types
Each interrupt can be set to the priority level (0 – 7.)
2 circuits built-in (externally connected to a ceramic resonator or a
quartz-crystal oscillator)
2.7 – 5.5 V
9 mW (at 3 V supply voltage, external clock 12 MHz frequency)
22.5 mW (at 5 V supply voltage, external clock 12 MHz frequency)
5V
5 mA
Maximum 16 Mbytes
–40 to 85 °C
CMOS high-performance silicon gate process
80-pin plastic molded fine-pitch QFP (80P6D-A;0.5 mm lead pitch)
3
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
PIN DESCRIPTION
Pin
Vcc,
Vss
CNVss
Name
Input/Output
Power source
Apply 2.7 – 5.5 V to Vcc and 0 V to Vss.
CNVss input
Input
RESET
Reset input
Input
XIN
Clock input
Input
XOUT
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
Clock output
Output
E
Enable output
Output
BYTE
External data
bus width
selection input
Analog power
source input
Reference
voltage input
I/O port P0
Input
_
AVcc,
AVss
VREF
P00 – P07
Input
I/O
P10 – P17 I/O port P1
I/O
P20 – P27 I/O port P2
I/O
P30 – P33 I/O port P3
I/O
P40 – P47 I/O port P4
I/O
P50 – P57 I/O port P5
I/O
P60 – P67 I/O port P6
I/O
P70 – P77 I/O port P7
I/O
P80 – P87 I/O port P8
I/O
4
Functions
This pin controls the processor mode. Connect to Vss for the single-chip mode and the memory
expansion mode, and to Vcc for the microprocessor mode.
When “L” level is applied to this pin, the microcomputer enters the reset state.
These are pins of main-clock generating circuit. Connect a ceramic resonator or a quartzcrystal oscillator between XIN and XOUT. When an external clock is used, the clock source should
be connected to the XIN pin, and the XOUT pin should be left open.
This pin functions as the enable
signal output pin which indicates the access status in the internal
_
bus. When output level of E signal is “L”, data/instruction read or data write is performed.
In the memory expansion mode or the microprocessor mode, this pin determines whether the
external data bus has an 8-bit width or a 16-bit width. The data bus has a 16-bit width when “L”
signal is input and an 8-bit width when “H” signal is input.
Power source input pin for the A-D converter. Externally connect AVcc to Vcc and AVss to Vss.
This is reference voltage input pin for the A-D converter.
In the single-chip mode, port P0 becomes an 8-bit I/O port. An I/O direction register is available so
that each pin can be programmed for input or output. These ports are in the input mode when
reset.
In the memory expansion mode or the microprocessor mode, these pins output address (A0 – A7).
In the single-chip mode, these pins have the same functions as port P0. When the BYTE pin is set
to “L” in the memory expansion mode or the microprocessor mode and external data bus has a
16-bit width, high-order data (D8 – D15) is input/output or an address (A8 – A15) is output. When
the BYTE pin is “H” and an external data bus has an 8-bit width, only address (A8 – A15) is output.
In the single-chip mode, these pins have the same functions as port P0. In the memory expansion
mode or the microprocessor mode, low-order data (D0 – D7) is input/output or an address
(A16 – A23) is output.
In the single-chip mode, these pins have
the
same function
as port P0. In the memory expansion
_
_
_
_
_ _
_
_
_
_
_
_
______
mode or the microprocessor mode, R/W, BHE, ALE, and HLDA signals are output.
In the single-chip mode, these pins have the same functions as__
port
P0. In___the
memory expansion
_
_
_
_
_
_
_
_
_
_
mode or the microprocessor mode, P40, P41, and P42 become HOLD and RDY input pins, and
clock φ1 output pin, respectively.
Functions of the other pins are the same as in the single-chip mode. However, in the memory
expansion mode, P42 also functions as an I/O port.
In addition to having the same functions as port P0 in the single-chip mode, these pins
also
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
function as I/O pins for timers A0 to A3 and input pins for key input interrupt input (KI0 – KI3).
In addition to having the same functions as port P0 in the single-chip mode,
these
pins also
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
function as I/O pins for timer A4, input pins for external interrupt input (INT0 – INT2) and input pins
for timers B0 to B2. P67 also functions as sub-clock φSUB output pin.
In addition to having the same functions as port P0 in the single-chip mode, these pins function
as input pins for A-D converter. P72 to P75 also function as I/O pins for UART2. Additionally, P76
and P77 have the function as the output pin (XCOUT) and the input pin (XCIN) of the sub-clock
(32 kHz) oscillation circuit, respectively. When P76 and P77 are used as the XCOUT and XCIN pins,
connect a resonator or an oscillator between the both.
In addition to having the same functions as port P0 in the single-chip mode, these pins also
function as I/O pins for UART 0 and UART 1.
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
BASIC FUNCTION BLOCKS
The M37733M4LXXXHP has the same functions as the
M37733MHBXXXFP except for the memory allocation, the reset
circuit, the ROM area modification function, and the package.
Refer to the section on the M37733MHBXXXFP.
MEMORY
The memory map is shown in Figure 1. The address space has a
capacity of 16 Mbytes and is allocated to addresses from 016 to
FFFFFF16. The address space is divided by 64-Kbyte unit called bank.
The banks are numbered from 016 to FF16.
Built-in ROM, RAM and control registers for internal peripheral devices
are assigned to bank 016.
The 32-Kbyte area from addresses 800016 to FFFF16 is the built-in
ROM. Addresses FFD616 to FFFF16 are the RESET and interrupt
vector addresses and contain the interrupt vectors. Refer to the section
on interrupts for details.
The 2048-byte area allocated to addresses from 8016 to 87F16 is the
built-in RAM. In addition to storing data, the RAM is used as stack
during a subroutine call or interrupts.
00000016
00000016
00007F 16
00008016
Bank 0 16
00087F 16
Peripheral devices such as I/O ports, A-D converter, serial I/O, timer,
and interrupt control registers are allocated to addresses from 016 to
7F16.
Additionally, the internal ROM area can be modified by software. Refer
to the section on ROM area modification function for details.
A 256-byte direct page area can be allocated anywhere in bank 016
by using the direct page register (DPR). In the direct page addressing
mode, the memory in the direct page area can be accessed with two
words. Hence program steps can be reduced.
00000016
Internal peripheral
devices
control registers
Internal RAM
2048 bytes
00FFFF16
01000016
refer to Fig. 2 for
detail information
00007F 16
Bank 1 16
Interrupt vector table
00FFD6 16
A-D/UART2 trans./rece.
UART1 transmission
01FFFF16
UART1 receive
•••••••••••••••••••
UART0 transmission
UART0 receive
Timer B2
Timer B1
00800016
Timer B0
Timer A4
Timer A3
Timer A2
FE000016
Timer A1
Internal ROM
32 Kbytes
Bank FE 16
Timer A0
INT2/Key input
INT1
INT0
FEFFFF 16
FF0000 16
Watchdog timer
DBC
Bank FF 16
BRK instruction
00FFD6 16
FFFFFF 16
00FFFF 16
Zero divide
00FFFE16
RESET
Note. Internal ROM area can be modified. (Refer to the section on ROM area modification function.)
Fig. 1 Memory map
5
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
Address (Hexadecimal notation)
000000
000001
000002 Port P0 register
000003 Port P1 register
000004 Port P0 direction register
000005 Port P1 direction register
000006 Port P2 register
000007 Port P3 register
000008 Port P2 direction register
000009 Port P3 direction register
00000A Port P4 register
00000B Port P5 register
00000C Port P4 direction register
00000D Port P5 direction register
00000E Port P6 register
00000F Port P7 register
000010 Port P6 direction register
000011 Port P7 direction register
000012 Port P8 register
000013
000014 Port P8 direction register
000015
000016
000017
000018
000019
00001A
00001B
00001C Reserved area (Note)
00001D Reserved area (Note)
00001E A-D control register 0
00001F A-D control register 1
000020
A-D register 0
000021
000022
A-D register 1
000023
000024
A-D register 2
000025
000026
A-D register 3
000027
000028
A-D register 4
000029
00002A
A-D register 5
00002B
00002C
A-D register 6
00002D
00002E
A-D register 7
00002F
000030 UART 0 transmit/receive mode register
000031 UART 0 baud rate register
000032
UART 0 transmission buffer register
000033
000034 UART 0 transmit/receive control register 0
000035 UART 0 transmit/receive control register 1
000036
UART 0 receive buffer register
000037
000038 UART 1 transmit/receive mode register
000039 UART 1 baud rate register
00003A
UART 1 transmission buffer register
00003B
00003C UART 1 transmit/receive control register 0
00003D UART 1 transmit/receive control register 1
00003E
UART 1 receive buffer register
00003F
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Address (Hexadecimal notation)
000040
000041
000042
000043
000044
000045
000046
000047
000048
000049
00004A
00004B
00004C
00004D
00004E
00004F
000050
000051
000052
000053
000054
000055
000056
000057
000058
000059
00005A
00005B
00005C
00005D
00005E
00005F
000060
000061
000062
000063
000064
000065
000066
000067
000068
000069
00006A
00006B
00006C
00006D
00006E
00006F
000070
000071
000072
000073
000074
000075
000076
000077
000078
000079
00007A
00007B
00007C
00007D
00007E
00007F
Count start flag
One-shot start flag
Up-down flag
Timer A0 register
Timer A1 register
Timer A2 register
Timer A3 register
Timer A4 register
Timer B0 register
Timer B1 register
Timer B2 register
Timer A0 mode register
Timer A1 mode register
Timer A2 mode register
Timer A3 mode register
Timer A4 mode register
Timer B0 mode register
Timer B1 mode register
Timer B2 mode register
Processor mode register 0
Processor mode register 1
Watchdog timer register
Watchdog timer frequency selection flag
Reserved area (Note)
Memory allocation control register
UART 2 transmit/receive mode register
UART 2 baud rate register
UART 2 transmission buffer register
UART 2 transmit/receive control register 0
UART 2 transmit/receive control register 1
UART 2 receive buffer register
Oscillation circuit control register 0
Port function control register
Serial transmit control register
Oscillation circuit control register 1
A-D/UART 2 trans./rece. interrupt control register
UART 0 transmission interrupt control register
UART 0 receive interrupt control register
UART 1 transmission interrupt control register
UART 1 receive interrupt control register
Timer A0 interrupt control register
Timer A1 interrupt control register
Timer A2 interrupt control register
Timer A3 interrupt control register
Timer A4 interrupt control register
Timer B0 interrupt control register
Timer B1 interrupt control register
Timer B2 interrupt control register
INT0 interrupt control register
INT1 interrupt control register
INT2/Key input interrupt control register
Note. Do not write to this address.
Fig. 2 Location of internal peripheral devices and interrupt control registers
6
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
RESET CIRCUIT
_
_
_
_
_
_
_
_
_
_
_
_
_
The microcomputer is released from the reset state when the RESET
pin is returned to “H” level after holding it at “L” level with the power
source voltage at 2.7 – 5.5 V. Program execution starts at the address
formed by setting address A23 – A16 to 0016, A15 – A8 to the contents
of address FFFF16, and A7 – A0 to the contents of address FFFE16.
Figure 3 shows an example of a reset circuit. When the stabilized
clock is input from the external to the main-clock oscillation circuit,
the reset input voltage must be 0.55 V or less when the power source
voltage reaches 2.7 V. When a resonator/oscillator is connected to
the main-clock oscillation circuit, change the reset input voltage from
“L” to “H” after the main-clock oscillation is fully stabilized.
The status of the internal registers during reset is the same as the
M37733MHBXXXFP’s.
Power on
2.7V
VCC
RESET
VCC
0V
RESET
0V
0.55V
Note. In this case, stabilized clock is input from the
external to the main-clock oscillation circuit.
Perform careful evalvation at the system design
level before using.
Fig. 3 Example of a reset circuit
7
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
ROM AREA MODIFICATION FUNCTION
The internal ROM size and its address area of the M37733M4LXXXHP
can be modified by the memory allocation control register’s bit 0 shown
in Figure 4.
Figure 6 shows the memory allocation in which the internal ROM
size and its address area are modified.
Make sure to write data in the memory allocation control register as
the flow shown in Figure 5.
This ROM area modification function is valid in memory expansion
mode and single-chip mode.
7
6
5
4
3
2
1
When ordering a mask ROM, Mitsubishi Electric corp. produces the
mask ROM using the data within 32 Kbytes (addresses 00800016 –
00FFFF16). It is regardless of the selected ROM size (refer to MASK
ROM ORDER CONFIRMATION FORM.) Therefore, program “FF16”
to the addresses out of the selected ROM area in the EPROM which
you tender when ordering a mask ROM.
Address 00FFFF16 of this microcomputer corresponds to the lowest
address of the EPROM which you tender.
0
ML0
Memory allocation control register
Address
6316
Memory allocation selection bit
ROM size
(ROM area)
0 : 32 Kbytes (addresses 00800016 – 00FFFF16)
1 : 16 Kbytes (addresses 00C00016 – 00FFFF16)
Note. Write to the memory allocation control register as the flow shown in Figure 5.
Fig. 4 Bit configuration of memory allocation control register
Writing data “5516” (LDM instruction)
Next instruction
Writing data “0016” or “0116” (LDM instruction)
ML0 selection bit
• How to write in memory allocation control register
Fig. 5 How to write data in memory allocation control register
8
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
00000016
00007F16
00008016
00087F16
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(ML0) = (0)
(ML0) = (1)
ROM size : 32 Kbytes
ROM size : 16 Kbytes
SFR
Internal RAM
2048 bytes
00000016
00007F16
00008016
00087F16
SFR
Internal RAM
2048 bytes
00800016
Internal ROM
32 Kbytes
00C00016
00FFFF16
01000016
00FFFF16
01000016
FFFFFF16
FFFFFF16
Internal ROM
16 Kbytes
: External memory area
Fig. 6 Memory allocation (modification of internal ROM area by memory allocation selection bit)
ADDRESSING MODES
The M37733M4LXXXHP has 28 powerful addressing modes. Refer
to the SINGLE-CHIP 16-BIT MICROCOMPUTERS DATA BOOK for
the details of each addressing mode.
MACHINE INSTRUCTION LIST
The M37733M4LXXXHP has 103 machine instructions. Refer to the
SINGLE-CHIP 16-BIT MICROCOMPUTERS DATA BOOK for details.
DATA REQUIRED FOR MASK ROM ORDERING
Please send the following data for mask orders.
(1) M37733M4LXXXHP mask ROM order confirmation form
(2) 80P6D mark specification form
(3) ROM data (EPROM 3 sets)
9
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
ABSOLUTE MAXIMUM RATINGS
Symbol
Vcc
AVcc
VI
VI
VO
Pd
Topr
Tstg
Parameter
Conditions
Power source voltage
Analog power___
source
voltage
_
_
_
_
_
_
_
_
_
_
Input voltage RESET, CNVss, BYTE
Input voltage P00 – P07, P10 – P17, P20 – P27,
P30 – P33, P40 – P47, P50 – P57,
P60 – P67, P70 – P77, P80 – P87,
VREF, XIN
Output voltage P00 – P07, P10 – P17, P20 – P27,
P30 – P33, P40 – P47, P50 – P57,
7, P70 – P77, P80 – P87,
P60 – P6
_
XOUT, E
Power dissipation
Ta = 25 °C
Operating temperature
Storage temperature
Ratings
–0.3 to +7
–0.3 to +7
–0.3 to +12
Unit
V
V
V
–0.3 to Vcc + 0.3
V
–0.3 to Vcc + 0.3
V
200
–40 to +85
–65 to +150
mW
°C
°C
RECOMMENDED OPERATING CONDITIONS (Vcc = 2.7 – 5.5 V, Ta = –40 to +85 °C, unless otherwise noted)
Symbol
Vcc
AVcc
Vss
AVss
VIH
VIH
VIH
VIL
VIL
VIL
IOH(peak)
IOH(avg)
IOL(peak)
IOL(peak)
IOL(avg)
IOL(avg)
f(XIN)
f(XCIN)
Parameter
f(XIN) : Operating
f(XIN) : Stopped, f(XCIN) = 32.768 kHz
Analog power source voltage
Power source voltage
Analog power source voltage
3, P40 – P47, P50 – P57, P60 – P67,
High-level input voltage P00 – P07, P30 – P3
_
_
_
_
_
_
_
_
_
_
_
_
P70 – P77, P80 – P87, XIN, RESET, CNVss, BYTE, XCIN (Note 3)
High-level input voltage P10 – P17, P20 – P27 (in single-chip mode)
High-level input voltage P10 – P17, P20 – P27
(in memory expansion mode and microprocessor mode)
P4
0 – P47, P50 – P57, P60 – P67,
Low-level input voltage P00 – P07, P30 – P3__3__,___
_
_
_
_
_
_
P70 – P77, P80 – P87, XIN, RESET, CNVss, BYTE, XCIN (Note 3)
Low-level input voltage P10 – P17, P20 – P27 (in single-chip mode)
Low-level input voltage P10 – P17, P20 – P27
(in memory expansion mode and microprocessor mode)
High-level peak output current P00 – P07, P10 – P17, P20 – P27, P30 – P33,
P40 – P47, P50 – P57, P60 – P67, P70 – P77,
P80 – P87
High-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P33,
P40 – P47, P50 – P57, P60 – P67, P70 – P77,
P80 – P87
Low-level peak output current P00 – P07, P10 – P17, P20 – P27, P30 – P33,
P40 – P43, P54 – P57, P60 – P67, P70 – P77,
P80 – P87
Low-level peak output current P44 – P47, P50 – P53
Low-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P33,
P40 – P43, P54 – P57, P60 – P67, P70 – P77,
P80 – P87
Low-level average output current P44 – P47, P50 – P53
Main-clock oscillation frequency (Note 4)
Sub-clock oscillation frequency
Min.
2.7
2.7
Power source voltage
Max.
5.5
5.5
Vcc
0
0
Unit
V
V
V
V
0.8 Vcc
Vcc
V
0.8 Vcc
Vcc
V
0.5 Vcc
Vcc
V
0
0.2Vcc
V
0
0.2Vcc
V
0
0.16Vcc
V
–10
mA
–5
mA
10
mA
16
mA
5
mA
12
12
50
mA
MHz
kHz
Notes 1. Average output current is the average value of a 100 ms interval.
2. The sum of IOL(peak) for ports P0, P1, P2, P3, and P8 must be 80 mA or less,
the sum of IOH(peak) for ports P0, P1, P2, P3, and P8 must be 80 mA or less,
the sum of IOL(peak) for ports P4, P5, P6, and P7 must be 100 mA or less, and
the sum of IOH(peak) for ports P4, P5, P6, and P7 must be 80 mA or less.
3. Limits VIH and VIL for XCIN are applied when the sub clock external input selection bit = “1”.
4. The maximum value of f(XIN) = 6 MHz when the main clock division selection bit = “1”.
10
Limits
Typ.
32.768
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted)
Symbol
Parameter
VOH
High-level output voltage P00 – P07, P10 – P17, P20 – P27, P33,
P40 – P47, P50 – P57, P60 – P67, P70 – P77,
P80 – P87
High-level output voltage P00 – P07, P10 – P17, P20 – P27, P33
VOH
High-level output voltage P30 – P32
VOH
High-level output voltage E
VOL
Low-level output voltage P00 – P07, P10 – P17, P20 – P27, P33,
P40 – P43, P54 – P57, P60 – P67, P70 – P77,
P80 – P87
VOH
_
VOL
Low-level output voltage P44 – P47, P50 – P53
VOL
Low-level output voltage P00 – P07, P10 – P17, P20 – P27, P33
VOL
Low-level output voltage P30 – P32
VOL
Low-level output voltage E
VT+ – VT–
Hysteresis HOLD, RDY, TA0IN – TA4IN, TB0IN – TB2IN,
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_ _
_
_
_
_
_
_
_
_ _
_
_
_
_
_
_
_
_ _
_
_
_
_
_
_
_ _
_
_
_
_
_
_
_
_
_
INT0 – INT2, ADTRG, CTS0, CTS1, CTS2, CLK0,
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
CLK1, CLK2, KI0 – KI3
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
VT+ – VT–
Hysteresis RESET
VT+ – VT–
Hysteresis XIN
VT+ – VT–
Hysteresis XCIN (When external clock is input)
IIH
IIL
High-level input current P00 – P07, P10 – P17, P20 – P27, P30 – P33,
P40 – P47, P50 – P57, P60 – P67, P70 – P77,
_________
P80 – P87, XIN, RESET, CNVss, BYTE
Low-level input current P00 – P07, P10 – P17, P20 – P27, P30 – P33,
P40 – P47, P50 – P53, P60, P61, P65 – P67,
________
P70 – P77, P80 – P87, XIN, RESET, CNVss, BYTE
Low-level input current P54 – P57, P62 – P64
Test conditions
VCC = 5 V, IOH = –10 mA
Limits
Typ.
Min.
Unit
Max.
3
VCC = 3 V, IOH = –1 mA
2.5
VCC = 5 V, IOH = –400 µA
VCC = 5 V, IOH = –10 mA
VCC = 5 V, IOH = –400 µA
VCC = 3 V, IOH = –1 mA
VCC = 5 V, IOH = –10 mA
VCC = 5 V, IOH = –400 µA
VCC = 3 V, IOH = –1 mA
4.7
3.1
4.8
2.6
3.4
4.8
2.6
V
V
V
V
2
VCC = 5 V, IOL = 10 mA
V
VCC = 3 V, IOL = 1 mA
0.5
VCC = 5 V, IOL = 16 mA
VCC = 3 V, IOL = 10 mA
VCC = 5 V, IOL = 2 mA
VCC = 5 V, IOL = 10 mA
VCC = 5 V, IOL = 2 mA
VCC = 3 V, IOL = 1 mA
VCC = 5 V, IOL = 10 mA
VCC = 5 V, IOL = 2 mA
VCC = 3 V, IOL = 1 mA
1.8
1.5
0.45
1.9
0.43
0.4
1.6
0.4
0.4
VCC = 5 V
0.4
1
VCC = 3 V
0.1
0.7
VCC = 5 V
VCC = 3 V
VCC = 5 V
VCC = 3 V
VCC = 5 V
VCC = 3 V
0.2
0.1
0.1
0.06
0.1
0.06
0.5
0.4
0.4
0.26
0.4
0.26
VCC = 5 V, VI = 5 V
5
VCC = 3 V, VI = 3 V
4
VCC = 5 V, VI = 0 V
–5
VCC = 3 V, VI = 0 V
–4
VI = 0 V,
VCC = 5 V
–5
transistor
VCC = 3 V
–4
VI = 0 V,
VCC = 5 V
–0.25
–0.5
–1.0
VCC = 3 V
–0.08
–0.18
–0.35
without a pull-up
IIL
with a pull-up
transistor
VRAM
RAM hold voltage
When clock is stopped.
2
V
V
V
V
V
V
V
V
µA
µA
µA
mA
V
11
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –40 to +85 °C, unless otherwise noted)
Symbol
Parameter
Power source
current
ICC
Limits
Typ.
Max.
Unit
VCC = 5 V,
f(XIN) = 12 MHz (square waveform),
(f(f2) = 6 MHz),
f(XCIN) = 32.768 kHz,
in operating (Note 1)
4.5
9
mA
VCC = 3 V,
f(XIN) = 12 MHz (square waveform),
(f(f2) = 6 MHz),
f(XCIN) = 32.768 kHz,
in operating (Note 1)
3
6
mA
VCC = 3 V,
f(XIN) = 12 MHz (square waveform),
(f(f2) = 0.75 MHz),
f(XCIN) : Stopped,
in operating
0.4
0.8
mA
6
12
µA
30
60
µA
3
6
µA
1
µA
20
µA
Test conditions
Min.
When single-chip
mode, output pins
are open, and
other pins are VSS. VCC = 3 V,
f(XIN) = 12 MHz (square waveform),
f(XCIN) = 32.768 kHz,
when a WIT instruction is executed (Note 2)
VCC = 3 V,
f(XIN) : Stopped,
f(XCIN) = 32.768 kHz,
in operating (Note 3)
VCC = 3 V,
f(XIN) : Stopped,
f(XCIN) = 32.768 kHz,
when a WIT instruction is executed (Note 4)
Ta = 25 °C,
when clock is stopped
Ta = 85 °C,
when clock is stopped
Notes 1. This applies when the main clock external input selection bit = “1”, the main clock division selection bit = “0”, and the signal output stop
bit = “1”.
2. This applies when the main clock external input selection bit = “1” and the system clock stop bit at wait state = “1”.
3. This applies when CPU and the clock timer are operating with the sub clock (32.768 kHz) selected as the system clock.
4. This applies when the XCOUT drivability selection bit = “0” and the system clock stop bit at wait state = “1”.
A–D CONVERTER CHARACTERISTICS
(VCC = AVCC = 5 V, VSS = AVSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note))
Symbol
—
—
RLADDER
tCONV
VREF
VIA
Parameter
Resolution
Absolute accuracy
Ladder resistance
Conversion time
Reference voltage
Analog input voltage
Test conditions
VREF = VCC
VREF = VCC
VREF = VCC
Note. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz.
12
Min.
10
19.6
2.7
0
Limits
Typ.
Max.
10
±3
25
VCC
VREF
Unit
Bits
LSB
kΩ
µs
V
V
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
TIMING REQUIREMENTS (VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note 1))
Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHZ.
2. Input signal’s rise/fall time must be 100 ns or less, unless otherwise noted.
External clock input
Symbol
tc
tw(H)
tw(L)
tr
tf
Parameter
External clock input cycle time (Note 1)
External clock input high-level pulse width (Note 2)
External clock input low-level pulse width (Note 2)
External clock rise time
External clock fall time
Limits
Min.
83
33
33
Max.
15
15
Unit
ns
ns
ns
ns
ns
Notes 1. When the main clock division selection bit = “1”, the minimum value of tc = 166 ns.
2. When the main clock division selection bit = “1”, values of tw(H) / tc and tw(L) / tc must be set to values from 0.45 through 0.55.
Single-chip mode
Symbol
tsu(P0D–E)
tsu(P1D–E)
tsu(P2D–E)
tsu(P3D–E)
tsu(P4D–E)
tsu(P5D–E)
tsu(P6D–E)
tsu(P7D–E)
tsu(P8D–E)
th(E–P0D)
th(E–P1D)
th(E–P2D)
th(E–P3D)
th(E–P4D)
th(E–P5D)
th(E–P6D)
th(E–P7D)
th(E–P8D)
Parameter
Port P0 input setup time
Port P1 input setup time
Port P2 input setup time
Port P3 input setup time
Port P4 input setup time
Port P5 input setup time
Port P6 input setup time
Port P7 input setup time
Port P8 input setup time
Port P0 input hold time
Port P1 input hold time
Port P2 input hold time
Port P3 input hold time
Port P4 input hold time
Port P5 input hold time
Port P6 input hold time
Port P7 input hold time
Port P8 input hold time
Limits
Min.
200
200
200
200
200
200
200
200
200
0
0
0
0
0
0
0
0
0
Max.
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Memory expansion mode and microprocessor mode
Symbol
tsu(D–E)
tsu(RDY–φ1)
tsu(HOLD–φ1)
th(E–D)
th(φ1–RDY)
th(φ1–HOLD)
Parameter
Data
input setup time
_
_
_
_
_
_
_
_
RDY input setup time
_
_
_
_
_
_
_
_
_
HOLD input setup time
Data
input hold time
_
_
_
_
_
_
_
_
_
RDY input hold time
_
_
_
_
_
_
_
_
_
_
HOLD input hold time
Limits
Min.
80
80
80
0
0
0
Max.
Unit
ns
ns
ns
ns
ns
ns
13
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
Timer A input
(Count input in event counter mode)
Symbol
tc(TA)
tw(TAH)
tw(TAL)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Parameter
TAiIN input cycle time
TAiIN input high-level pulse width
TAiIN input low-level pulse width
Limits
Min.
250
125
125
Max.
Unit
ns
ns
ns
Timer A input (Gating input in timer mode)
Symbol
tc(TA)
tw(TAH)
tw(TAL)
Parameter
TAiIN input cycle time (Note)
TAiIN input high-level pulse width (Note)
TAiIN input low-level pulse width (Note)
Limits
Min.
666
333
333
Max.
Unit
ns
ns
ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.
Timer A input (External trigger input in one-shot pulse mode)
Symbol
t c(TA)
tw(TAH)
tw(TAL)
Parameter
TAiIN input cycle time (Note)
TAiIN input high-level pulse width
TAiIN input low-level pulse width
Limits
Min.
666
166
166
Max.
Unit
ns
ns
ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.
Timer A input (External trigger input in pulse width modulation mode)
Symbol
tw(TAH)
tw(TAL)
Parameter
TAiIN input high-level pulse width
TAiIN input low-level pulse width
Limits
Min.
166
166
Max.
Unit
ns
ns
Timer A input (Up-down input in event counter mode)
Symbol
tc(UP)
tw(UPH)
tw(UPL)
tsu(UP–TIN)
th(TIN–UP)
Parameter
TAiOUT input cycle time
TAiOUT input high-level pulse width
TAiOUT input low-level pulse width
TAiOUT input setup time
TAiOUT input hold time
Limits
Min.
3333
1666
1666
666
666
Max.
Unit
ns
ns
ns
ns
ns
Timer A input (Two-phase pulse input in event counter mode)
Symbol
tc(TA)
tsu(TAjIN–TAjOUT)
tsu(TAjOUT–TAjIN)
14
Parameter
TAjIN input cycle time
TAjIN input setup time
TAjOUT input setup time
Limits
Min.
2000
500
500
Max.
Unit
ns
ns
ns
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer B input (Count input in event counter mode)
Symbol
tc(TB)
tw(TBH)
tw(TBL)
tc(TB)
tw(TBH)
tw(TBL)
Limits
Parameter
Min.
250
125
125
500
250
250
TBiIN input cycle time (one edge count)
TBiIN input high-level pulse width (one edge count)
TBiIN input low-level pulse width (one edge count)
TBiIN input cycle time (both edges count)
TBiIN input high-level pulse width (both edges count)
TBiIN input low-level pulse width (both edges count)
Max.
Unit
ns
ns
ns
ns
ns
ns
Timer B input (Pulse period measurement mode)
Symbol
tc(TB)
tw(TBH)
tw(TBL)
Limits
Parameter
Min.
666
333
333
TBiIN input cycle time (Note)
TBiIN input high-level pulse width (Note)
TBiIN input low-level pulse width (Note)
Max.
Unit
ns
ns
ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.
Timer B input (Pulse width measurement mode)
Symbol
tc(TB)
tw(TBH)
tw(TBL)
Limits
Parameter
Min.
666
333
333
TBiIN input cycle time (Note)
TBiIN input high-level pulse width (Note)
TBiIN input low-level pulse width (Note)
Max.
Unit
ns
ns
ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.
A-D trigger input
Symbol
Limits
Parameter
Min.
1333
166
_
_
_
_
_
_
_
_
_
_
tc(AD)
tw(ADL)
ADTRG input cycle time (minimum allowable trigger)
_
_
_
_
_
_
_
_
ADTRG input low-level pulse width
Max.
Unit
ns
ns
Serial I/O
Symbol
tc(CK)
tw(CKH)
tw(CKL)
td(C–Q)
th(C–Q)
tsu(D–C)
th(C–D)
Limits
Parameter
Min.
333
166
166
CLKi input cycle time
CLKi input high-level pulse width
CLKi input low-level pulse width
TXDi output delay time
TXDi hold time
RXDi input setup time
RXDi input hold time
Max.
100
0
65
75
____
Unit
ns
ns
ns
ns
ns
ns
ns
___
External interrupt INTi input, key input interrupt KIi input
Symbol
Parameter
_
_
_
_
_
_
tw(INH)
tw(INL)
tw(KIL)
INTi input high-level pulse width
_
_
_
_
_
INTi input low-level pulse width
_
_
_
_
_
_
_
KIi input low-level pulse width
Limits
Min.
250
250
250
Max.
Unit
ns
ns
ns
15
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
MIN
.
.
tion
nge
ifica to cha
pec
al s suject
in
f
are
ot a
is n limits
This ntic
ice: arame
t
o
N
ep
Som
LI
PRE
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
DATA FORMULAS
Timer A input (Gating input in timer mode)
Symbol
Parameter
tc(TA)
TAiIN input cycle time
tw(TAH)
TAiIN input high-level pulse width
tw(TAL)
TAiIN input low-level pulse width
Limits
Min.
8 ✕ 109
2 · f(f2)
4 ✕ 109
2 · f(f2)
4 ✕ 109
2 · f(f2)
Max.
Unit
ns
ns
ns
Timer A input (External trigger input in one-shot pulse mode)
Symbol
tc(TA)
Parameter
TAiIN input cycle time
Limits
Min.
8 ✕ 109
2 · f(f2)
Max.
Unit
ns
Timer B input (In pulse period measurement mode or pulse width measurement mode)
Symbol
Parameter
tc(TB)
TBiIN input cycle time
tw(TBH)
TBiIN input high-level pulse width
tw(TBL)
TBiIN input low-level pulse width
Limits
Min.
8 ✕ 109
2 · f(f2)
4 ✕ 109
2 · f(f2)
4 ✕ 109
2 · f(f2)
Note. f(f2) represents the clock f2 frequency.
For the relation to the main clock and sub clock, refer to Table 9 in data sheet “M37733MHBXXXFP”.
16
Max.
Unit
ns
ns
ns
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
SWITCHING CHARACTERISTICS
(VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85°C, f(XIN) = 12 MHz, unless otherwise noted (Note))
Single-chip mode
Symbol
td(E–P0Q)
td(E–P1Q)
td(E–P2Q)
td(E–P3Q)
td(E–P4Q)
td(E–P5Q)
td(E–P6Q)
td(E–P7Q)
td(E–P8Q)
Parameter
Test conditions
Port P0 data output delay time
Port P1 data output delay time
Port P2 data output delay time
Port P3 data output delay time
Port P4 data output delay time
Port P5 data output delay time
Port P6 data output delay time
Port P7 data output delay time
Port P8 data output delay time
Fig. 7
Limits
Min.
Max.
300
300
300
300
300
300
300
300
300
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
Note. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz.
P0
P1
P2
50 pF
P3
P4
P5
P6
P7
P8
φ1
E
Fig. 7 Measuring circuit for ports P0 – P8 and φ1
17
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
MIN
.
.
tion
nge
ifica to cha
pec
al s suject
in
f
are
ot a
is n limits
This ntic
ice: arame
t
o
N
ep
Som
LI
PRE
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Memory expansion mode and microprocessor mode
(VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85°C, f(XIN) = 12 MHz (Note 1), unless otherwise noted)
Symbol
td(An–E)
td(A–E)
Parameter
Address output delay time
Address output delay time
th(E–An)
Address hold time
tw(ALE)
ALE pulse width
tsu(A–ALE)
th(ALE–A)
Address output set up time
Address hold time
td(ALE–E)
ALE output delay time
td(E–DQ)
th(E–DQ)
Data output delay time
Data hold time
tw(EL)
_
tpxz(E–DZ)
tpzx(E–DZ)
Floating start delay time
Floating release delay time
td(BHE–E)
td(R/W–E)
th(E–BHE)
th(E–R/W)
td(E– φ1)
td(φ1–HLDA)
E pulse width
_
_
_
_
_
_
BHE output delay time
_
_
_
_
R/ W output delay time
_
_
_
_
_
_
_
Test
(Note 2)
Wait mode conditions
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
Fig. 7
Max.
No wait
Wait 1
Wait 0
ns
182
ns
20
ns
162
ns
40
ns
40
ns
123
ns
10
ns
93
ns
9
ns
40
ns
4
ns
40
131
ns
ns
ns
ns
298
ns
40
53
ns
ns
20
ns
182
ns
20
ns
182
33
33
0
ns
ns
ns
ns
ns
10
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
BHE hold time
_
_
R/ W hold time
φ1 output delay time
______
HLDA output delay time
Unit
20
90
Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz.
2. No wait : Wait bit = “1”.
Wait 1 : The external memory area is accessed with wait bit = “0” and wait selection bit = “1”.
Wait 0 : The external memory area is accessed with wait bit = “0” and wait selection bit = “0”.
18
Limits
Min.
30
120
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37733M4LXXXHP
I
.
.
tion
nge
ifica to cha
pec
al s suject
in
f
are
ot a
is n limits
This ntic
ice: arame
t
o
N
ep
Som
IM
REL
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Bus timing data formulas (VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85 °C,
Symbol
td(An–E)
Parameter
Address output delay time
f(XIN) = 12 MHz (Max., Note 1), unless otherwise noted)
Wait mode
No wait
Wait 1
Wait 0
td(A–E)
Address output delay time
No wait
Wait 1
Wait 0
th(E–An)
tw(ALE)
Address hold time
ALE pulse width
No wait
Wait 1
Address output set up time
No wait
Wait 1
Wait 0
tsu(A–ALE)
Wait 0
th(ALE–A)
Address hold time
No wait
Wait 1
Wait 0
td(ALE–E)
td(E–DQ)
th(E–DQ)
ALE output delay time
tpxz(E–DZ)
tpzx(E–DZ)
_
_
R/W output delay time
BHE hold time
_
_
th(E–R/W)
R/W hold time
td(E–φ1)
φ 1 output delay time
ns
ns
ns
ns
ns
ns
ns
ns
– 43
ns
ns
No wait
– 43
ns
90
Wait 1
Wait 0
No wait
Wait 1
No wait
Wait 1
1 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
3 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
3 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
0
ns
– 43
ns
– 35
ns
– 35
ns
10
Wait 0
_____
th(E–BHE)
109
1 ✕ 109
2 · f(f2)
2 ✕ 109
2 · f(f2)
4 ✕ 109
2 · f(f2)
Floating release delay time
BHE output delay time
ns
4
1✕
2 · f(f2)
Wait 0
td(R/W–E)
1✕
2 · f(f2)
Unit
ns
Floating start delay time
_____
td(BHE–E)
109
Wait 0
Data hold time
E pulse width
Max.
9
Data output delay time
_
tw(EL)
No wait
Wait 1
Limits
Min.
1 ✕ 109
– 63
2 · f(f2)
9
3 ✕ 10
– 68
2 · f(f2)
9
1 ✕ 10
– 63
2 · f(f2)
9
3 ✕ 10
– 88
2 · f(f2)
9
1 ✕ 10
– 43
2 · f(f2)
1 ✕ 109
– 43
2 · f(f2)
2 ✕ 109
– 43
2 · f(f2)
1 ✕ 109
– 73
2 · f(f2)
9
2 ✕ 10
– 73
2 · f(f2)
ns
– 30
ns
– 63
ns
– 68
ns
– 63
ns
– 68
ns
– 50
ns
– 50
ns
30
ns
Notes 1. This applies when the main-clock division selection bit = “0”.
2. f(f2) represents the clock f2 frequency.
For the relation to the main clock and sub clock, refer to Table 9 in data sheet “M37733MHBXXXFP”.
19
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
TIMING DIAGRAM
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
tr
tf
tc
tw(H)
XIN
E
td(E–P0Q)
Port P0 output
tsu(P0D–E)
th(E–P0D)
Port P0 input
td(E–P1Q)
Port P1 output
tsu(P1D–E)
th(E–P1D)
Port P1 input
td(E–P2Q)
Port P2 output
tsu(P2D–E)
th(E–P2D)
Port P2 input
td(E–P3Q)
Port P3 output
tsu(P3D–E)
th(E–P3D)
Port P3 input
td(E–P4Q)
Port P4 output
tsu(P4D–E)
th(E–P4D)
Port P4 input
td(E–P5Q)
Port P5 output
tsu(P5D–E)
th(E–P5D)
Port P5 input
td(E–P6Q)
Port P6 output
tsu(P6D–E)
th(E–P6D)
Port P6 input
td(E–P7Q)
Port P7 output
tsu(P7D–E)
th(E–P7D)
Port P7 input
td(E–P8Q)
Port P8 output
tsu(P8D–E)
Port P8 input
20
th(E–P8D)
tw(L)
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
tc(TA)
tw(TAH)
TAiIN input
tw(TAL)
tc(UP)
tw(UPH)
TAiOUT input
tw(UPL)
In event count mode
TAiOUT input
(Up-down input)
TAiIN input
(when count by falling)
TAiIN input
(when count by rising)
th(TIN –UP)
t su(UP–TIN )
In event counter mode
(When two-phase pulse input is selected)
tc(TA)
TAjIN input
tsu(TAjIN –TAjOUT )
tsu(TAjIN–TAjOUT )
tsu(TAjOUT –TAjIN )
TAjOUT input
tsu(TAjOUT –TAjIN )
tc(TB)
tw(TBH)
TBiIN input
tw(TBL)
21
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
tc(AD)
tw(ADL)
ADTRG input
tc(CK)
tw(CKH)
CLKi
tw(CKL)
th(C–Q)
TxDi
td(C–Q)
tsu(D–C)
RxDi
tw(INL)
INTi input
Kli input
22
tw(INH)
tw(KNL)
th(C–D)
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Memory expansion mode and microprocessor mode
(When wait bit = “1”)
φ1
E
RDY input
tsu(RDY–φ1) th(φ1–RDY)
( When wait bit = “0”)
φ1
E
RDY input
tsu(RDY–φ1) th(φ1–RDY)
(When wait bit = “1” or “0” in common)
φ1
tsu(HOLD –φ1)
th(φ1–HOLD)
HOLD input
td(φ1–HLDA)
td(φ1–HLDA)
HLDA output
Test conditions
• VCC = 2.7 – 5.5 V
• Input timing voltage : V IL = 0.2 VCC, VIH = 0.8 V CC
• Output timing voltage : V OL = 0.8 V, VOH = 2.0 V
23
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Memory expansion mode and microprocessor mode
(No wait : When wait bit = “1”)
tw(L)
tw(H)
tf
tr
tc
XIN
φ1
td(E-φ1)
td(E- φ1)
tw(EL)
E
td(An-E)
An
th(E-An)
Address
Address
tw(ALE)
Address
td(ALE-E)
ALE
th(ALE-A)
th(E-DQ)
tsu(A-ALE)
Am/Dm
Address
Data
tpxz(E-DZ)
tpzx(E-DZ)
Address
Address
th(E-D)
td(E-DQ)
td(A-E)
tsu(D-E)
DmIN
Data
td(BHE-E)
th(E-BHE)
BHE
td(R/W-E)
R/W
Test conditions
• VCC = 2.7 – 5.5 V
• Output timing voltage : VOL = 0.8 V, VOH = 2.0 V
• Data input DmIN : VIL = 0.16 VCC, VIH = 0.5 VCC
24
th(E-R/W)
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Memory expansion mode and microprocessor mode
(Wait 1 : The external area is accessed when wait bit = “0” and wait selection bit = “1”.)
tw(L)
tw(H)
tf tr
tc
XIN
φ1
td(E–φ1)
td(E–φ1)
tw(EL)
E
td(An–E)
th(E–An)
Address
An
tw(ALE)
Address
td(ALE–E)
ALE
th(ALE–A)
tsu(A–ALE)
Am/Dm
th(E–DQ)
Address
td(A–E)
Data
tpzx(E–DZ)
tpxz(E–DZ)
Address
Address
td(E–DQ)
th(E–D)
tsu(D–E)
DmIN
Data
td(BHE–E)
th(E–BHE)
td(R/W–E)
th(E–R/W)
BHE
R/W
Test conditions
• Vcc = 2.7 – 5.5 V
• Output timing voltage : V OL = 0.8 V, V OH = 2.0 V
• Data input Dm IN : VIL = 0.16 Vcc, V IH = 0.5 Vcc
25
MITSUBISHI MICROCOMPUTERS
ARY
M37733M4LXXXHP
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Memory expansion mode and microprocessor mode
(Wait 0 : The external memory area is accessed when wait bit = “0” and wait selection bit = “0”.)
tw(L)
tw(H)
tf tr
tc
XIN
φ1
td(E–φ1)
td(E–φ1)
tw(EL)
E
td(An–E)
th(E–An)
Address
An
tw(ALE)
td(ALE–E)
tsu(A–ALE)
th(ALE–A)
Address
Address
ALE
th(E–DQ)
Am/Dm
Address
Data
tpzx(E–DZ)
tpxz(E–DZ)
Address
Address
td(E–DQ)
td(A–E)
tsu(D–E)
Data
DmIN
td(BHE–E)
th(E–BHE)
BHE
td(R/W–E)
R/W
Test conditions
• Vcc = 2.7 – 5.5 V
• Output timing voltage : V OL = 0.8 V, V OH = 2.0 V
• Data input Dm IN : VIL = 0.16 Vcc, V IH = 0.5 Vcc
26
th(E–R/W)
th(E–D)
ARY
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
MITSUBISHI MICROCOMPUTERS
M37733M4LXXXHP
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
PACKAGE OUTLINE
27
GZZ–SH00–55B<73A0>
Mask ROM number
7700 FAMILY MASK ROM ORDER CONFIRMATION FORM
SINGLE-CHIP 16-BIT MICROCOMPUTER
M37733M4LXXXHP
MITSUBISHI ELECTRIC
Receipt
Date:
Section head Supervisor
signature
signature
TEL
(
Company
name
Customer
Date
issued
)
Date:
Issuance
signatures
Note : Please fill in all items marked
Responsible
officer
Supervisor
1. Confirmation
Specify the name of the product being ordered.
Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).
If at least two of the three sets of EPROMs submitted contain the identical data, we will produce masks based on this data.
We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data.
Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.
Checksum code for entire EPROM areas
(hexadecimal notation)
EPROM Type :
(1) Set “FF 16” in the shaded area.
27512
(2) Address 0 16 to 10 16 are the area for storing the data on
model designation and options. This area must be written
with the data shown below.
Details for option data are given next in the section
0000
0010
describing the STP instruction option.
Address and data are written in hexadecimal notation.
8000
32K
DATA
FFFF
4D
33
37
37
33
33
4D
34
Address
0
1
2
3
4
5
6
7
4C
FF
FF
FF
FF
FF
FF
FF
Address
Address
Option data 10
8
9
A
B
C
D
E
F
2. STP instruction option
One of the following sets of data should be written to the option data address (1016 ) of the EPROM you have ordered.
Check @ in the appropriate box.
STP instruction enable
STP instruction disable
0116
0016
Address 1016
Address 1016
3. Mark specification
Mark specification must be submitted using the correct form for the type of package being ordered fill out the appropriate
80P6D Mark Specification Form (for M37733M4LXXXHP) and attach to the Mask ROM Order Confirmation Form.
4. Comments
80P6S (80-PIN QFP) MARK SPECIFICATION FORM
80P6D, 80P6Q (80-PIN Fine-pitch QFP)
Mitsubishi IC catalog name
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).
A. Standard Mitsubishi Mark
60
41
40
61
Mitsubishi IC catalog name
Mitsubishi IC catalog name
Mitsubishi product number
(6-digit, or 7-digit)
80
21
1
20
B. Customer’s Parts Number + Mitsubishi IC Catalog Name
60
41
40
61
80
21
1
20
Customer’s Parts Number
Note : The fonts and size of characters are standard Mitsubishi type.
Mitsubishi IC catalog name
Notes 1 : The mark field should be written right aligned.
2 : The fonts and size of characters are standard
Mitsubishi type.
3 : Customer ’s parts number can be up to 10 alphanumeric characters for capital letters, hyphens, commas,
periods and so on.
C. Special Mark Required
60
41
61
40
80
21
1
20
Notes 1 : If Special mark is to be printed, indicate the desired
layout of the mark in the left figure. The layout will be
duplicated technically as close as possible. Mitsubishi
product number (6-digit, or 7-digit) and Mask ROM
number (3-digit) are always marked for sorting the
products.
2 : If special character fonts (e.g., customer’s trade mark
logo) must be used in Special Mark, check the box below.
For the new special character fonts, a clean font original (ideally logo drawing) must be submitted.
Special character fonts required
ARY
IN
.
n.
atio change
cific
spe ject to
l
a
u
fin re s
a
ot a
is n limits
his
ic
e: T ament
ic
t
No e par
Som
IM
REL
MITSUBISHI MICROCOMPUTERS
M37733M4LXXXHP
P
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Keep safety first in your circuit designs!
¡ Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of
substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
¡ These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
¡ Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples
contained in these materials.
¡ All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi
Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor
product distributor for the latest product information before purchasing a product listed herein.
¡ Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
¡ The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
¡ If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the
approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
¡ Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.
© 1996 MITSUBISHI ELECTRIC CORP.
H-LF461-A KI-9612 Printed in Japan (ROD) 2
New publication, effective Dec. 1996.
Specifications subject to change without notice.
REVISION DESCRIPTION LIST
Rev.
No.
M37733M4LXXXHP DATA SHEET
Revision Description
Rev.
date
1.0
First Edition
970604
1.01
The following are added:
980526
•MASK ROM ORDER CONFIRMATION FORM
•MARK SPECIFICATION FORM
(1/1)