RENESAS M37920S4CGP

To all our customers
Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been
made to the contents of the document, and these changes do not constitute any alteration to the
contents of the document itself.
Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices
and power devices.
Renesas Technology Corp.
Customer Support Dept.
April 1, 2003
Y
NAR
I
MITSUBISHI MICROCOMPUTERS
M37920S4CGP
.
e
n.
atio chang
cific
o
spe bject t
l
a
u
fin
s
ot a its are
is n
m
This etric li
:
e
m
ic
Not e para
Som
IM
REL
P
16-BIT CMOS MICROCOMPUTER
DESCRIPTION
• Instruction execution time
The M37920S4CGP is a single-chip microcomputers designed with
high-performance CMOS silicon gate technology. These are housed
in 100-pin plastic molded QFP. This microcomputer supports the
7900 Series instruction set, which are enhanced and expanded instruction set and are upper-compatible with the 7700/7751 Series instruction set.
The CPU of this microcomputer is a 16-bit parallel processor that can
also be switched to perform 8-bit parallel processing. Also, the bus
interface unit of this microcomputer enhance the memory access efficiency to execute instructions fast. This microcomputer include the
4-channel DMA controller and the DRAM controller with enhanced
fast page mode. Therefore, this microcomputer are suitable for office, business, and industrial equipment controller that require fast
processing of large data.
•
•
•
•
•
•
•
•
•
•
The fastest instruction at 20 MHz frequency ........................ 50 ns
Single power supply .................................................... 5 V ± 0.5 V
Interrupts ........... 6 external sources, 17 internal sources, 7 levels
Multi-functional 16-bit timer ................................................... 5 + 3
Serial I/O (UART or Clock synchronous) ..................................... 2
10-bit A-D converter ............................................ 4-channel inputs
DMA controller .............................................................. 4-channels
DRAM controller
Real-time output
.... 4 bits × 2 channels, or 6 bits × 1 channel + 2 bits × 1 channel
12-bit watchdog timer
Programmable input/output (ports P2–P9, P12) ....................... 49
APPLICATION
DISTINCTIVE FEATURES
<Microcomputer mode>
Number of basic machine instructions .................................... 203
Memory
RAM .............................................................................2048 bytes
ROM ................................................................................. External
•
•
Telecommunications equipment such as copiers, printers, typewriters, facsimiles, optical disk drives, HDD, mobile radio communication equipment, ISDN terminals
Control devices for office automation equipment such as personal
computers
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
→ A1
→ A2
→ A3
→ A4
→ A5
→ A6
→ A7
→ A8/MA0
→ A9/MA1
→ A10/MA2
→ A11/MA3
→ A12/MA4
→ A13/MA5
→ A14/MA6
→ A15/MA7
→ A16/MA8
→ A17
→ A18/MA9
→ A19
→ A20/MA10
→ A21
→ A22/MA11
→ A23
VSS
← MD1
↔ D0
↔ D1
↔ D2
↔ D3
↔ D4
M37920S4CGP PIN CONFIGURATION (TOP VIEW)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
M37920S4CGP
P66/DMAREQ3 ↔
P65/TA4IN/DMAREQ2 ↔
P64/TA4OUT/DMAACK2 ↔
P63/TA3IN/DMAREQ1 ↔
P62/TA3OUT/DMAACK1 ↔
P61/TA1IN/DMAREQ0 ↔
P60/TA1OUT/DMAACK0 ↔
P57/TA2IN/RTP13 ↔
P56/TA2OUT/RTP12 ↔
P55/RTP11 ↔
P54/RTP10 ↔
P53/RTP03 ↔
P52/RTP02 ↔
P51/TA0IN/RTP01 ↔
P50/TA0OUT/RTP00 ↔
P96/WRH/UCAS ↔
P95/WRL/LCAS ↔
P94/CAS/W ↔
P93/CS3/RAS3 ↔
P92/CS2/RAS2 ↔
P91/CS1/RAS1 ↔
CS0 ↔
P44/HLDA ↔
P43/HOLD ↔
P42/TC ↔
P41/φ1 ↔
P40/ALE ↔
P33/BHW ←
BLW ←
RD ←
A0 ← 81
P86/CLK0 ↔ 82
P85/RXD0 ↔ 83
P84/TXD0 ↔ 84
P83/CTS0/RTS0 ↔ 85
P82/CTS0/CLK1 ↔ 86
P81/RXD1 ↔ 87
P80/TXD1 ↔ 88
VCC
89
AVCC
90
VREF
91
AVSS
92
VSS
93
P73/AN3/ADTRG/INT4 ↔ 94
P72/AN2/INT3 ↔ 95
P71/AN1 ↔ 96
P70/AN0 ↔ 97
P122/INT2/TB2IN ↔ 98
P121/INT1/TB1IN ↔ 99
P120/INT0/TB0IN ↔ 100
Outline 100P6S-A
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
↔ D5
↔ D6
↔ D7
↔ P20/D8
↔ P21/D9
↔ P22/D10
↔ P23/D11
↔ P24/D12
↔ P25/D13
↔ P26/D14
↔ P27/D15
VCC
→ XOUT
← XIN
VSS
← MD0
← RESET
← NMI
← BYTE
↔ P30/RDY
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
ELI
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
met
ice:
Not e para
Som
BLW
Data Buffer DQ0 (8)
Address Bus
Data Buffer DQ3 (8)
Instruction Queue Buffer Q0 (8)
Instruction Queue Buffer Q1 (8)
Instruction Queue Buffer Q2 (8)
VREF
Instruction Queue Buffer Q5 (8)
Data bus
Data I/O circuit
Instruction Queue Buffer Q3 (8)
Instruction Queue Buffer Q4 (8)
Program Counter PC (16)
Program Bank Register PG (8)
Input/Output
port P2
Input/Output
port P3
Input/Output
port P4
P4(5)
P3(2)
Incrementer/Decrementer (24)
P5(8)
(0 V)
MD1
Data Address Register DA (24)
DRAM controoler
Incrementer (24)
Input/Output
port P5
P2(8)
DMA1(16)
Instruction Queue Buffer Q9 (8)
Program Address Register PA (24)
(5 V)
MD0
DMA0(16)
DMA2(16)
DMA3(16)
Instruction Queue Buffer Q8 (8)
A-D converter (10)
(0 V)
AVSS
Instruction Queue Buffer Q7 (8)
Bus
Interface
Unit
(BIU)
Instruction register (8)
Instruction Queue Buffer Q6 (8)
AVcc
Reference
voltage input
Address bus
Data Buffer DQ2 (8)
Address output circuit
Data Buffer DQ1 (8)
RD
Read output
Data Bus (Even)
NMI
External data bus width
select input
16-BIT CMOS MICROCOMPUTER
Data Bus (Odd)
BYTE
Write output
PR
Input/Output
port P6
P6(7)
Input Buffer Register IB (16)
UART0(9)
UART1(9)
(0 V)
Vss
Data bank Register DT (8)
Input/Output
port P7
Timer TB0 (16)
Timer TA0 (16)
P7(4)
Timer TB1 (16)
Timer TB2 (16)
Timer TA1 (16)
Watchdog timer
Direct Page Register DPR1 (16)
Timer TA2 (16)
Vcc
Direct Page Register DPR0 (16)
Timer TA3 (16)
Processor Status Register PS (11)
Input/Output
port P8
Stack Pointer S (16)
P8(7)
Direct Page Register DPR3 (16)
Timer TA4 (16)
RESET
Reset input
Direct Page Register DPR2 (16)
2
Input/Output
port P9
Input/Output
port P12
Arithmetic Logic
Unit (16)
P9(7)
Accumulator A (16)
P12(3)
Accumulator B (16)
RAM
2048 bytes
Index Register X (16)
Central Processing Unit
(CPU)
Clock Generating Circuit
Clock output
XOUT
XIN
Clock input
BLOCK DIAGRAM
Index Register Y (16)
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
I
L
E
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
t
me
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
FUNCTIONS (Microcomputer mode)
Parameter
Number of basic machine instructions
203
Functions
Instruction execution time
50 ns (the fastest instruction at f(XIN) = 20 MHz)
External clock input frequency f(X IN)
20 MHz (Max.)
Memory size
ROM
External
RAM
2048 bytes
Programmable input/output
P2, P5
8-bit ✕ 2
ports
P3
2-bit ✕ 1
P4
5-bit ✕ 1
P6, P8
7-bit ✕ 2
P7
4-bit ✕ 1
P9
6-bit ✕ 1
P12
3-bit ✕ 1
TA0–TA4
16-bit ✕ 5
TB0–TB2
16-bit ✕ 3
UART0 and UART1
(UART or Clock synchronous serial I/O) ✕ 2
Multi-functional timers
Serial I/O
A-D converter
10-bit successive approximation method ✕ 1 (4 channels)
Watchdog timer
12-bit ✕ 1
DMA controller
4 channels
Maximum transfer rate
20 Mbytes/sec.
(at f(XIN) = 20 MHz, 0 wait, 1-bus cycle transfer)
10 Mbytes/sec.
(at f(XIN) = 20 MHz, 0 wait, 2-bus cycles transfer)
DRAM controller
1 channel
Supports fast page access mode.
Incorporates 8-bit refresh timer.
Supports CAS before RAS refresh method or self refresh method.
Chip-select wait control
Chip select area ✕ 4 (CS 0–CS3 ). A wait number and bus width
can be set for each chip select area.
Real-time output
4 bits ✕ 2 channels; or 6 bits ✕ 1 channel + 2 bits ✕ 1 channel
Interrupts
6 external types, 17 internal types. Each interrupt except NMI
can be set to a priority level within the range of 0–7 by software.
Clock generating circuit
Built-in (externally connected to a ceramic resonator or quartz
crystal resonator).
Power supply voltage
5 V±10 %
Power dissipation
135 mW (at f(XIN) = 20 MHz, typ.)
Ports’ input/output
characteristics
Memory expansion
Operating temperature range
Device structure
Package
Input/Output withstand voltage
Output current
5V
5 mA
Up to 16 Mbytes. Note that bank FF 16 is a reserved area.
–20 to 85 °C
CMOS high-performance silicon gate process
100-pin plastic molded QFP
3
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
ELI
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
met
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
PIN DESCRIPTION (Microcomputer mode)
Pin
Name
Input/
Output
Vcc, Vss
Power supply input
MD0
MD0
Input
This pin controls the processor mode. Connect this pin to VCC .
MD1
MD1
Input
Connect this pin to Vss.
RESET
Reset input
Input
The microcomputer is reset when “L” level is applies to this pin.
XIN
Clock input
Input
XOUT
Clock output
These are input and output pins of the internal clock generating circuit. Connect a
ceramic or quartz- crystal resonator between the XIN and X OUT pins. When an
external clock is used, the clock source should be connected to the XIN pin, and the
XOUT pin should be left open.
BYTE
External data bus width
select input
AVcc,
AVss
Analog power supply input
VREF
Reference voltage input
A0–A7
Low-order address
Output
The low-order 8 bits of address (A0–A7) are output.
A8–A15/
MA0–MA7
Middle-order address/
DRAM address
Output
The middle-order 8 bits of address (A 8–A15) are input/output. While DRAM space is
accessed, multiplexed address (MA0–MA7) is output.
A16–A23/
MA8–MA11
High-order address/
DRAM address
Output
The high-order 8 bits of address (A16–A23 ) are output. While DRAM space is accessed, multiplexed address (MA8–MA11) is output.
D0–D 7
Low-order data
I/O
The low-order 8 bits of data (D0–D 7) are input/output.
P20/D8–
P27/D15
I/O port P2/
High-order data
I/O
■ When 8-bit external data bus is used (BYTE = “H” level)
Port P2 is an 8-bit I/O port.
■ When 16-bit external data bus is used (BYTE = “L” level)
The high-order 8 bits (D8–D15) are input/output.
P30/RDY,
RD,
BLW,
P33/BHW
Memory control signal I/O
Input
Output
Output
Output
While the input level at pin RDY is “L”, the microcomputer is placed in the ready
state. While pin RD is at “L” level, the microcomputer reads out data and instruction codes. Also, pin RDY can function as a programmable I/O port pin (P30) by
software.
■ When 8-bit external data bus is used (BYTE = “H” level)
While pin BLW is at “L” level, the microcomputer writes data.
■ When 16-bit external data bus is used (BYTE = “L” level)
While pin BLW is at “L” level, the microcomputer writes data into an evennumbered address.
While pin BHW is at “L” level, the microcomputer writes data into an oddnumbered address.
P40/ALE,
P41/φ1,
P42/TC,
P43/HOLD,
P44/HLDA
I/O port P4
Output
Output
I/O
Input
Output
Signal ALE is used to latch an address. φ1 has the same period as internal clock φ.
Pin P42 functions as a programmable I/O port pin.
While the input level at pin HOLD is at “L” level, the microcomputer is placed in the
hold state. Signal HLDA is used to inform the external that the microcomputer
enters the hold state. By software, pin ALE, clock φ1 output pin, and pins HOLD,
HLDA function as programmable I/O port pins (P40, P41, P4 3, P44). Pin P4 2 also
functions as pin TC.
P50–P5 7
I/O port P5
I/O
Port P5 is an 8-bit I/O port. These pins also function as I/O pins for timers A0, A2,
and pulse output pins for the real-time output.
P60–P6 6
I/O port P6
I/O
Port P6 is a 7-bit I/O port. These pins also function as I/O pins for timers A1, A3,
A4, input pins for DMA requests, and output pins for DMA acknowledge signals.
4
—
Functions
Output
Apply 5 V±10 % to Vcc, and 0 V to Vss.
Input
This pin determines whether the external data bus has an 8-bit width or 16-bit width
for the memory expansion mode or microprocessor mode. The width is 16 bits when
“L” signal is input, and 8 bits when “H” signal is input.
—
Power supply input pin for the A-D converter. Connect AVcc to Vcc, and AVss to Vss
externally.
Input
This is the reference voltage input pin for the A-D converter.
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
I
L
E
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
t
me
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
P70–P7 3
I/O port P7
Input/
Output
I/O
P80–P8 6
I/O port P8
I/O
CS 0
Chip-select output
P91–P9 6
I/O port P9
I/O
Port P9 is a 6-bit I/O port. According to the software setting, P91 –P93 also funtion
as chip select output pins. While DRAM space is selected, P94–P96 function as
output pins for DRAM control signals.
P120–P122
I/O port P12
I/O
Port P12 is a 3-bit I/O port. These pins also functions as input pins for INT0, INT1,
INT2. According to software setting, these pins also function as input pins for timers
B0–B2.
NMI
Non-maskable interrupt
Pin
Name
Output
Input
Functions
Port P7 is a 4-bit I/O port. P72 and P7 3 also function as input pins for INT3 and
INT4. According to the software setting, these pins also function as input pins for
the A-D converter.
Port P8 is a 7-bit I/O port. These pins also function as I/O pins for UART0, UART1.
This is an output pin for CS 0.
This pin is for a non-maskable interrupt.
5
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
ELI
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
met
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
BASIC FUNCTION BLOCKS
MEMORY
The M37920S4CGP is the same functions as the M37920F8CGP
except for the following.
Therefore, refer to the datasheet of the M37920F8CGP.
• The M37920S4CGP does not include the internal flash memory.
• The M37920S4CGP operates only in the microprocessor mode.
• The M37920S4CGP does not have the flash memory control register (address 9E16 ).
• Some of programmable I/O ports of the M37920S4CGP differ from
those of the M37920FGCGP.
Figure 1 shows the memory map.
00000016
Bank 016
00FFFF16
01000016
00000016
0000FF16
Peripheral devices
control registers
Interrupt vector table
00FFC016
00080016
Bank 116
01FFFF16
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Internal RAM
2048 bytes
DMA3
DMA2
DMA1
DMA0
Address matching detect
Reserved area (Note 1)
000FFF16
00100016
Reserved area (Note 1)
Reserved area (Note 1)
INT4
INT3
A-D conversion
UART1 transmit
UART1 receive
UART0 transmit
UART0 receive
Timer B2
Timer B1
Timer B0
Timer A4
Timer A3
Timer A2
Timer A1
Timer A0
00FFC016
00FFFF16
INT2
INT1
INT0
NMI
Watchdog timer
FE000016
Bank FE16
DBC (Note 2)
FEFFFF16
FF000016
Bank FF16
FFFFFF16
BRK instruction (Note 2)
00FFFE16
Zero divide
RESET
Notes 1: Do not write to this address.
2: These are interrupts used only for debugging. Do not use these interrupts.
Fig. 1 Memory map
6
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
I
L
E
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
t
me
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
Address (Hexadecimal notation)
Address (Hexadecimal notation)
00000016 Reserved area (Note 1)
00000116 Reserved area (Note 1)
00000216 [Port P0 register] (Note 2)
00000316 [Port P1 register] (Note 2)
00000416 [Port P0 direction register] (Note 2)
00000516 [Port P1 direction register] (Note 2)
00000616 Port P2 register
00000716 Port P3 register
00000816 Port P2 direction register
00000916 Port P3 direction register
00000A16 Port P4 register
00000B16 Port P5 register
00000C16 Port P4 direction register
00000D16 Port P5 direction register
00000E16 Port P6 register
00000F16 Port P7 register
00001016 Port P6 direction register
00001116 Port P7 direction register
00001216 Port P8 register
00001316 Port P9 register
00001416 Port P8 direction register
00001516 Port P9 direction register
00001616 [Port P10 register] (Note 2)
00001716 [Port P11 register] (Note 2)
00001816 [Port P10 direction register] (Note 2)
00001916 [Port P11 direction register] (Note 2)
00001A16 Port P12 register
00001B16
00001C16 Port P12 direction register
00001D16
00001E16 A-D control register 0
00001F16 A-D control register 1
00002016
A-D register 0
00002116
00002216
A-D register 1
00002316
00002416
A-D register 2
00002516
00002616
A-D register 3
00002716
00002816
00002916
00002A16
00002B16
00002C16
00002D16
00002E16
00002F16
00003016 UART0 transmit/receive mode register
00003116 UART0 baud rate register (BRG0)
00003216
UART0 transmit buffer register
00003316
00003416 UART0 transmit/receive control register 0
00003516 UART0 transmit/receive control register 1
00003616
UART0 receive buffer register
00003716
00003816 UART1 transmit/receive mode register
00003916 UART1 baud rate register (BRG1)
00003A16
UART1 transmit buffer register
00003B16
00003C16 UART1 transmit/receive control register 0
00003D16 UART1 transmit/receive control register 1
00003E16
UART1 receive buffer register
00003F16
00004016
00004116
00004216
00004316
00004416
00004516
00004616
00004716
00004816
00004916
00004A16
00004B16
00004C16
00004D16
00004E16
00004F16
00005016
00005116
00005216
00005316
00005416
00005516
00005616
00005716
00005816
00005916
00005A16
00005B16
00005C16
00005D16
00005E16
00005F16
00006016
00006116
00006216
00006316
00006416
00006516
00006616
00006716
00006816
00006916
00006A16
00006B16
00006C16
00006D16
00006E16
00006F16
00007016
00007116
00007216
00007316
00007416
00007516
00007616
00007716
00007816
00007916
00007A16
00007B16
00007C16
00007D16
00007E16
00007F16
Count start register
One-shot start register
Up-down register
Timer A clock division select register
Timer A0 register
Timer A1 register
Timer A2 register
Timer A3 register
Timer A4 register
Timer B0 register
Timer B1 register
Timer B2 register
Timer A0 mode register
Timer A1 mode register
Timer A2 mode register
Timer A3 mode register
Timer A4 mode register
Timer B0 mode register
Timer B1 mode register
Timer B2 mode register
Processor mode register 0
Processor mode register 1
Watchdog timer register
Watchdog timer frequency select register
Particular function select register 0
Particular function select register 1
Particular function select register 2
Reserved area (Note 1)
Debug control register 0
Debug control register 1
Address comparison register 0
Address comparison register 1
INT3 interrupt control register
INT4 interrupt control register
A-D conversion interrupt control register
UART0 transmit interrupt control register
UART0 receive interrupt control register
UART1 transmit interrupt control register
UART1 receive interrupt control register
Timer A0 interrupt control register
Timer A1 interrupt control register
Timer A2 interrupt control register
Timer A3 interrupt control register
Timer A4 interrupt control register
Timer B0 interrupt control register
Timer B1 interrupt control register
Timer B2 interrupt control register
INT0 interrupt control register
INT1 interrupt control register
INT2 interrupt control register
Notes 1: Do not read/write to this address.
2: These registers are used in the bus fixation of the power saving function. For details, refer to the
section on the power saving function of the M37920F8CGP datasheet.
Fig. 2 Location of peripheral devices’ control registers (1)
7
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
ELI
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
met
ice:
Not e para
Som
PR
Address (Hexadecimal notation)
00008016
00008116
00008216
00008316
00008416
00008516
00008616
00008716
00008816
00008916
00008A16
00008B16
00008C16
00008D16
00008E16
00008F16
00009016
00009116
00009216
00009316
00009416
00009516
00009616
00009716
00009816
00009916
00009A16
00009B16
00009C16
00009D16
00009E16
00009F16
0000A016
0000A116
0000A216
0000A316
0000A416
0000A516
0000A616
0000A716
0000A816
0000A916
0000AA16
0000AB16
0000AC16
0000AD16
0000AE16
0000AF16
0000B016
0000B116
0000B216
0000B316
0000B416
0000B516
0000B616
0000B716
0000B816
0000B916
0000BA16
0000BB16
0000BC16
0000BD16
0000BE16
0000BF16
CS0 control register L
CS0 control register H
CS1 control register L
CS1 control register H
CS2 control register L
CS2 control register H
CS3 control register L
CS3 control register H
Area CS0 start address register
Area CS1 start address register
Area CS2 start address register
Area CS3 start address register
Reserved area (Note 1)
Reserved area (Note 1)
Reserved area (Note 1)
Real-time output control register
Pulse output data register 0
Pulse output data register 1
Reserved area (Note 1)
DRAM control register
Refresh timer
CTS/RTS separate select register
DMAC control register L
DMAC control register H
DMA0 interruput control register
DMA1 interruput control register
DMA2 interruput control register
DMA3 interruput control register
Reserved area (Note 1)
Reserved area (Note 1)
Reserved area (Note 1)
Reserved area (Note 1)
Note 1: Do not read/write to this address.
Fig. 3 Location of peripheral devices’ control registers (2)
8
16-BIT CMOS MICROCOMPUTER
Address (Hexadecimal notation)
0000C016
0000C116
0000C216
0000C316
0000C416
0000C516
0000C616
0000C716
0000C816
0000C916
0000CA16
0000CB16
0000CC16
0000CD16
0000CE16
0000CF16
0000D016
0000D116
0000D216
0000D316
0000D416
0000D516
0000D616
0000D716
0000D816
0000D916
0000DA16
0000DB16
0000DC16
0000DD16
0000DE16
0000DF16
0000E016
0000E116
0000E216
0000E316
0000E416
0000E516
0000E616
0000E716
0000E816
0000E916
0000EA16
0000EB16
0000EC16
0000ED16
0000EE16
0000EF16
0000F016
0000F116
0000F216
0000F316
0000F416
0000F516
0000F616
0000F716
0000F816
0000F916
0000FA16
0000FB16
0000FC16
0000FD16
0000FE16
0000FF16
Source address register 0 L
Source address register 0 M
Source address register 0 H
Destination address register 0 L
Destination address register 0 M
Destination address register 0 H
Transfer counter register 0 L
Transfer counter register 0 M
Transfer counter register 0 H
DMA0 mode register L
DMA0 mode register H
DMA0 control register
Source address register 1 L
Source address register 1 M
Source address register 1 H
Destination address register 1 L
Destination address register 1 M
Destination address register 1 H
Transfer counter register 1 L
Transfer counter register 1 M
Transfer counter register 1 H
DMA1 mode register L
DMA1 mode register H
DMA1 control register
Source address register 2 L
Source address register 2 M
Source address register 2 H
Destination address register 2 L
Destination address register 2 M
Destination address register 2 H
Transfer counter register 2 L
Transfer counter register 2 M
Transfer counter register 2 H
DMA2 mode register L
DMA2 mode register H
DMA2 control register
Source address register 3 L
Source address register 3 M
Source address register 3 H
Destination address register 3 L
Destination address register 3 M
Destination address register 3 H
Transfer counter register 3 L
Transfer counter register 3 M
Transfer counter register 3 H
DMA3 mode register L
DMA3 mode register H
DMA3 control register
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
I
L
E
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
t
me
ice:
Not e para
Som
PR
Processor mode
The M37920S4CGP operates only in the microprocessor mode exclusive for the external ROM. Be sure to fix the level at pin MD0 to
Vcc and the level at pin MD1 to Vss. Also, be sure to fix bits 1, 0 at
address 5E 16 (the processor mode register 0) to “1” and “0”, respectively.
16-BIT CMOS MICROCOMPUTER
Table 1. Relationship between pins MD0, MD1 and processor mode
Pin MD0
Pin MD1
VCC level
(5 V)
VSS level
(5 V)
Processor mode
After reset, the microcomputer
starts its operation in the microprocessor mode. (Be sure
to pin MD0 to Vcc level.)
Microprocessor mode
When the microcomputer starts its operation after reset with the level
at pin MD0 = Vcc level (5 V), the microcomputer is placed in the microprocessor mode.
9
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
ELI
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
met
ice:
Not e para
Som
PR
7
6
5
4
3
16-BIT CMOS MICROCOMPUTER
2
1
0
Processor mode register 0
Address
5E16
Processor mode bits
0 0 : Do not select.
0 1 : Do not select.
1 0 : Microprocessor mode
1 1 : Do not select.
External bus wait number select bits
0 0 : 0 wait
0 1 : 1 wait
1 0 : 2 wait
1 1 : ALE expansion wait
Interrupt priority detection time select bits
0 0 : 7 cycles of φ
0 1 : 4 cycles of φ
1 0 : 2 cycles of φ
1 1 : Do not select.
Software reset bit
By a write of “1” to this bit, the microcomputer will be reset, and then, restarted.
Clock φ1 output select bit
0 : φ1 output is disabled. (P41 functions as a programmable I/O port pin.)
1 : φ1 output is enabled. (P41 functions as the clock φ1 output pin.)
Fig. 4 Processor mode register 0’s bit configuration
10
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
I
L
E
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
t
me
ice:
Not e para
Som
PR
7
6
0
0
5
4
3
16-BIT CMOS MICROCOMPUTER
2
1
0
0
Processor mode register 1
Address
5F16
Fix this bit to “0”.
Direct page register switch bit
0 : Only DPR0 is used.
1 : DPR0 to DPR3 are used.
RDY input select bit
0 : RDY input is disabled. (P30 functions as a programmable I/O port pin.)
1 : RDY input is enabled. (P30 functions as pin RDY.)
ALE output select bit
0 : ALE output is disabled. (P40 functions as a programmable I/O port pin.)
1 : ALE output is enabled. (P40 functions as pin ALE.)
Recovery cycle insert select bit
0 : No recovery cycle is inserted at access to the external area.
1 : Recovery cycle is inserted at access to the external area.
HOLD input, HLDA output select bit
0 : HOLD input and HLDA output are disabled.
(P40 and P44 function as programmable I/O port pins.)
1 : HOLD input and HLDA output are enabled.
(P43 and P44 function as pins HOLD and HLDA, respectively.)
“0” at read.
Fig. 5 Processor mode register 1’s bit configuration
11
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
ELI
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
met
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
Address
Address
Port P0 direction register
(0416)···
0016
Processor mode register 0
(5E16)··· (Note 2) 0 0 0 1 0
Port P1 direction register
(0516)···
0016
Processor mode register 1
(5F16)··· 0 0
Port P2 direction register
(0816)···
0016
Watchdog timer
Port P3 direction register
(0916)···
0 0 0 0
Port P4 direction register
(0C16)···
Port P5 direction register
(0D16)···
Port P6 direction register
(1016)···
Port P7 direction register
(Note 2)
(6016)···
(Note 2)
0
0 0
FFF16
Watchdog timer frequency select register
(6116)···
0
0 0 0 0 0
Particular function select register 0
(6216)···
0 0
0016
Particular function select register 1
(6316)···
0 0 (Note 3)
0 0 0 0 0 0 0
Debug control register 0
(6616)··· 1
(Note 3)
(1116)···
0 0 0 0
Debug control register 1
(6716)··· 0 0 0
(Note 3)
Port P8 direction register
(1416)···
0 0 0 0 0 0 0
INT3 interrupt control register
(6E16)···
0 0 0 0
Port P9 direction register
(1516)···
0 0 0 0 0 0 0
INT4 interrupt control register
(6F16)···
0 0 0 0
Port P10 direction register
(1816)···
0016
A-D conversion interrupt control register
(7016)···
? 0 0 0
Port P11 direction register
(1916)···
0016
UART 0 transmit interrupt control register
(7116)···
0 0 0 0
Port P12 direction register
(1C16)···
0 0 0
UART 0 receive interrupt control register
(7216)···
0 0 0 0
A-D control register 0
(1E16)··· 0 0 0 0 0 ? ? ?
UART 1 transmit interrupt control register
(7316)···
0 0 0 0
A-D control register 1
(1F16)···
UART 1 receive interrupt control register
(7416)···
0 0 0 0
UART 0 Transmit/Receive mode register
(3016)···
0016
Timer A0 interrupt control register
(7516)···
0 0 0 0
UART 1 Transmit/Receive mode register
(3816)···
0016
Timer A1 interrupt control register
(7616)···
0 0 0 0
UART 0 Transmit/Receive control register 0
(3416)··· 0 0 0 0 1 0 0 0
Timer A2 interrupt control register
(7716)···
0 0 0 0
UART 1 Transmit/Receive control register 0
(3C16)··· 0 0 0 0 1 0 0 0
Timer A3 interrupt control register
(7816)···
0 0 0 0
UART 0 Transmit/Receive control register 1
(3516)··· 0 0 0 0 0 0 1 0
Timer A4 interrupt control register
(7916)···
0 0 0 0
UART 1 Transmit/Receive control register 1
(3D16)··· 0 0 0 0 0 0 1 0
Timer B0 interrupt control register
(7A16)···
0 0 0 0
Count start register
(4016)···
0016
Timer B1 interrupt control register
(7B16)···
0 0 0 0
One-shot start register
(4216)··· 0
0 0 0 0 0
Timer B2 interrupt control register
(7C16)···
0 0 0 0
Up-down register
(4416)··· 0 0 0 0 0 0 0 0
INT0 interrupt control register
(7D16)···
0 0 0 0 0 0
Timer A clock division select register
(4516)···
INT1 interrupt control register
(7E16)···
0 0 0 0 0 0
Timer A0 mode register
(5616)···
0016
INT2 interrupt control register
(7F16)···
0 0 0 0 0 0
Timer A1 mode register
(5716)···
0016
Processor status register PS
0 0 0 ? ? 0 0 0 1 ? ?
Timer A2 mode register
(5816)···
0016
Program bank register PG
Timer A3 mode register
(5916)···
0016
Program counter PCH
Contents at address FFFF16
Timer A4 mode register
(5A16)···
0016
Program counter PCL
Contents at address FFFE16
Timer B0 mode register
(5B16)··· 0 0 ?
0 0 0 0
Direct page registers DPR0 to DPR3
Timer B1 mode register
(5C16)··· 0 0 ?
0 0 0 0
Data bank register DT
Timer B2 mode register
(5D16)··· 0 0 ?
0 0 0 0
Stack pointer
0 0 0 0 0 0 1
0 0
0 0 0
(Note 3)
0016
000016
0016
FFF16
Notes 1: The contents of the other registers and RAM are undefined at reset and must be initialized by software.
2: The status just after reset depends on the voltage level applied to pin MD0.
3: At power-on reset, these bits are clear to “0”. At hardware or software reset, on the other hand, these bits retain the state just before reset.
Fig. 6 Microcomputer internal status just after reset (1)
12
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
I
L
E
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
t
me
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
Address
Address
CS0 control register L
(8016)···
CS0 control register H
(8116)···
CS1 control register L
(8216)··· 0 1 0 0 0
CS1 control register H
(8316)··· 0
CS2 control register L
(8416)··· 0 1 0 0 0
CS2 control register H
(8516)··· 0
CS3 control register L
(8616)··· 0 1 0 0 0
CS3 control register H
(8716)···
1 0
DMA0 interrupt control register
(B216)···
0 0 0 0
0 0 1
DMA1 interrupt control register
(B316)···
0 0 0 0
1 0
DMA2 interrupt control register
(B416)···
0 0 0 0
0 0 0
DMA3 interrupt control register
(B516)···
0 0 0 0
1 0
DMA0 mode register L
(CC16)··· 0 0 0 0 0 0 0 0
0 0 0
DMA0 mode register H
(CD16)··· 0 0 0 0 0 0 0 0
DMA0 control register
(CE16)··· 0 0 0 0 0 0 0 0
0 0 0
DMA1 mode register L
(DC16)··· 0 0 0 0 0 0 0 0
Area CS0 start address register
(8A16)··· 0 0 0 1 0 0 0 0
DMA1 mode register H
(DD16)··· 0 0 0 0 0 0 0 0
Area CS1 start address register
(8C16)··· 0 0 0 0 0 0 0 0
DMA1 control register
(DE16)··· 0 0 0 0 0 0 0 0
Area CS2 start address register
(8E16)··· 0 0 0 0 0 0 0 0
DMA2 mode register L
(EC16)··· 0 0 0 0 0 0 0 0
Area CS3 start address register
(9016)··· 0 0 0 0 0 0 0 0
DMA2 mode register H
(ED16)··· 0 0 0 0 0 0 0 0
Real-time output control register
(A016)··· 0 0 0 0 0 0 0 0
DMA2 control register
(EE16)··· 0 0 0 0 0 0 0 0
DRAM control register
(A816)··· 0 0 0 0 0 0 0 0
DMA3 mode register L
(FC16)··· 0 0 0 0 0 0 0 0
CTS/RTS separate select register
(AC16)··· 0 0 0 0 0 0 0 0
DMA3 mode register H
(FD16)··· 0 0 0 0 0 0 0 0
DMAC control register L
(B016)··· 0 0 0 0 0 0 0 0
DMA3 control register
(FE16)··· 0 0 0 0 0 0 0 0
DMAC control register H
(B116)··· 0 0 0 0 0 0 0 0
(Note 2)
1 0
0
(Note 3)
(Note 3)
(Note 3)
(Note 3)
1 0
Notes 1: The contents of the other registers and RAM are undefined at reset and must be initialized by software.
2: The status just after reset depends on the voltage level applied to pin MD0.
3: While Vss level voltage is applied to pin BYTE, these bits are “0”. While Vcc level voltage is applied to pin BYTE, on the other hand, these
bits are “1”.
Fig. 7 Microcomputer internal registers’ status just after reset (2)
13
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
ELI
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
met
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
INPUT/OUTPUT PINS
Each of ports P3 to P9 and P12 has an direction register, and each
bit can be programmed for input or output. A pin becomes an output
pin when the corresponding bit of direction register is “1”, and an input pin when it is “0”.
When a pin is programmed as an output pin, the data written to its
port latch is output to the output pin. When a pin is programmed as
an output pin, the contents of the port latch are read out instead of
the value of the pin. Accordingly, a previously output value can be
read out correctly even when the output “H” voltage is lowered or the
output “L” voltage is raised, owing to an external load, etc.
A pin programmed as an input pin is placed in the flooting state, and
the value input to the pin can be read out correctly. When a pin is programmed as an input pin, the data can be written only in the port
latch, and the pin remains floating.
Each of Figures 8 and 9 shows the block diagram for each port pin.
Table 2. Correspondence between external buses, bus control signals, and programmable I/O port pins
Standby state select bit
External buses,
Bus control signals
0
1
A0 to A7,
A8 to A15,
A16 to A23
A0 to A7,
A8 to A15,
A16 to A23
D0 to D7,
D8 to D15
D0 to D7,
P10 to P17 (Note 2),
D8 to D15 (Note 1) P20 to P27
RD, BLW,
BHW
RD, BLW,
BHW (Note 1)
P31, P32 (Note 2),
P33
CS0
CS0
P90 (Note 2)
P100 to P107 (Note 2),
P110 to P117 (Note 2),
P00 to P07 (Note 2)
Notes 1: When the external data bus width = 8 bits (BYTE = VCC level),
this becomes a programmable I/O port pin, regardless of the
standby state select bit’s contents.
2: Pin functions of port pins P0, P1, P31, P32, P90, P10, P11 are
not shown in the pin configuration. However, relationship with
corresponding bus signals and ports is listed in Table 2. For
the addresses of these port’s registers and direction registers,
refer to the location of the perpheral devices’ control registers
(Figures 2 and 3).
14
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
I
L
E
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
t
me
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
[Inside dotted-line not included]
P20/D8 to P27/D15, P33/BHW
[Inside dotted-line included]
P30/RDY, P43/HOLD,
P61/TA1IN /DMAREQ0,
P63/TA3IN /DMAREQ1,
P65/TA4IN /DMAREQ2, P66/DMAREQ3,
P81/RxD1, P85/RxD0, P120/INT0/TB0IN,
P121/INT1/TB1IN, P122/INT2/TB2IN
Direction register
Data bus
Port latch
Direction register
P40/ALE, P41/φ 1, P44/HLDA,
P60/TA1OUT/DMAACK0,
P62/TA3OUT/DMAACK1,
P64/TA4OUT/DMAACK2,
P80/TxD1, P84/TxD0,
P91/CS1/RAS1, P92/CS2/RAS2,
P93/CS3/RAS3, P94/CAS/W,
P95/WRL/LCAS, P96/WRH/UCAS
“1”
Output (Internal peripheral devices)
Data bus
Direction register
[Inside dotted-line not included]
P52/RTP02, P53/RTP03, P54/RTP10,
P55/RTP11
[Inside dotted-line included]
P51/TA0IN/RTP01, P57/TA2IN/RTP13
Port latch
Data bus
Port latch
Latch
Timer
underflow signal
P50/TA0OUT/RTP00, P56/TA2OUT/RTP12
Q
T
CK
Direction register
“1”
Output (Internal peripheral devices)
Data bus
Port latch
Latch
Timer
underflow signal
T
Q
CK
Fig. 8 Block diagram for each port pin (1)
15
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
ELI
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
met
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
[Inside dotted-line not included]
P70/AN0, P71/AN1
[Inside dotted-line included]
P72/AN2/INT3, P73/AN3/ADTRG /INT4
Direction register
Data bus
Port latch
Analog input
“1”
“0”
P82/CTS0/CLK1, P83/CTS0/RTS0,
P86/CLK0
Direction register
Output (Internal peripheral devices)
Data bus
P42/TC
Port latch
Direction register
“0”
Data bus
Output
(TC)
Port latch
RD, BLW, CS0, A0 to A23, D0 to D7
Direction register
“1”
Output (Internal peripheral devices)
Data bus
Fig. 9 Block diagram for each port pin (2)
16
Port latch
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
I
L
E
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
t
me
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
ABSOLUTE MAXIMUM RATINGS
Symbol
VCC
AVCC
VI
VO
Pd
Topr
Tstg
Parameter
Power source voltage
Analog power source voltage
Input voltage D0–D7, D 8/P20–D 15/P27, P30 , P33, P4 0–P44, P5 0–P57 ,
P60–P66 , P70–P7 3, P80–P8 6, P91 –P96, P12 0–P122,
VREF, X IN, RESET, BYTE, MD0, MD1, NMI
Output voltage A0–A23, RD, BLW, BHW/P33 , CS0,
D0–D7, D 8/P20–D 15/P27, P30 , P40–P4 4, P50–P5 7,
P60–P66 , P70–P7 3, P80–P8 6, P91 –P96, P12 0–P122, XOUT
Power dissipation
Operating temperature
Storage temerature
Ratings
–0.3 to 6.5
–0.3 to 6.5
Unit
V
V
–0.3 to VCC+0.3
V
–0.3 to VCC+0.3
V
300
–20 to 85
–40 to 150
mW
°C
°C
RECOMMENDED OPERATING CONDITIONS (Vcc = 5 V, Ta = –20 to 85 °C, unless otherwise noted)
Limits
Symbol
Parameter
VCC
AVCC
VSS
AVSS
VIH
Power source voltage
Analog power source voltage
Power source voltage
Analog power source voltage
High-level input voltage
VIH
VIL
High-level input voltage
Low-level input voltage
VIL
IOH (peak)
Low-level input voltage
High-level peak output current
IOH (avg)
High-level average output current
IOL (peak)
Low-level peak output current
IOL (avg)
Low-level average output current
f(XIN)
External clock input frequency
P20–P2 7, P30, P3 3, P40 –P44, P5 0–P57, P6 0–P66 ,
P70–P7 3, P80–P8 6, P91 –P96, P120 –P122,
XIN, RESET, BYTE, MD0, MD1, NMI
D0–D7 , D8–D 15
P20–P2 7, P30, P3 3, P40 –P44, P5 0–P57, P6 0–P66 ,
P70–P7 3, P80–P8 6, P91 –P96, P120 –P122,
XIN, RESET, BYTE, MD0, MD1, NMI
D0–D7 , D8–D 15
A0–A23, RD, BLW, BHW/P3 3, CS0,
D0–D7 , D8/P20–D 15/P27, P3 0, P40–P4 4, P50 –P57,
P60–P6 6, P70–P7 3, P80 –P86, P9 1–P96, P12 0–P122
A0–A23, RD, BLW, BHW/P3 3, CS0,
D0–D7 , D8/P20–D 15/P27, P3 0, P40–P4 4, P50 –P57,
P60–P6 6, P70–P7 3, P80 –P86, P9 1–P96, P12 0–P122
A0–A23, RD, BLW, BHW/P3 3, CS0,
D0–D7 , D8/P20–D 15/P27, P3 0, P40–P4 4, P50 –P57,
P60–P6 6, P70–P7 3, P80 –P86, P9 1–P96, P12 0–P122
A0–A23, RD, BLW, BHW/P3 3, CS0,
D0–D7 , D8/P20–D 15/P27, P3 0, P40–P4 4, P50 –P57,
P60–P6 6, P70–P7 3, P80 –P86, P9 1–P96, P12 0–P122
Min.
Typ.
Max.
4.5
5
VCC
0
0
5.5
Unit
0.8VCC
VCC
V
V
V
V
V
0.5VCC
0
VCC
0.2VCC
V
V
0
0.16VCC
–10
V
mA
–5
mA
10
mA
5
mA
20
MHz
Notes 1: Average output current is the average value of an interval of 100 ms.
2: The sum of I OL(peak) for A0–A23, D0–D 7, D8 /P20–D 15/P27, ports P8 0–P86 must be 80 mA or less, the sum of IOH(peak) for A0–A23,
D0 –D7, D8 /P20–D 15/P27, ports P80 –P86 must be 80 mA or less, the sum of IOL(peak) for ports P3 0, RD, BLW, BHW/P33, CS0,
P40 –P44, P5 0–P57 , P60–P66, P70–P73, P91–P96, P120 –P122 must be 80 mA or less, the sum of IOH(peak) for P30 , RD, BLW,
BHW/P33 , CS0 , P40–P44, P50–P57, P60–P66, P70–P73, P91–P96, P120 –P122 must be 80 mA or less.
17
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
ELI
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
met
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
DC ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –20 to 85 °C, f(XIN) = 20 MHz, unless otherwise noted)
Symbol
VOH
VOH
VOH
VOL
VOL
VOL
VT+ —VT –
VT+ —VT –
VT+ —VT –
IIH
IIL
VRAM
ICC
18
Parameter
High-level output voltage A0–A23, CS0, D0–D7,
D 8/P2 0–D15/P2 7, P30,
P40–P44, P50–P57 ,
P60–P6 6, P70–P7 3,
P80–P8 6, P91–P9 3,
P12 0–P122
High-level output voltage A0–A23, CS0, D0–D7,
D 8/P2 0–D15/P2 7, P40,
P44, P91–P93
High-level output voltage RD, BLW, BHW/P33,
P94/CAS/W, P95/WRL/LCAS,
P96/WRH/UCAS
Low-level output voltage A0–A23, CS0, D0–D7,
D 8/P2 0–D15/P2 7, P30,
P40–P44, P50–P57 ,
P60–P6 6, P70–P7 3,
P80–P8 6, P91–P9 3,
P12 0–P122
Low-level output voltage A0–A23, CS0, D0–D7,
D 8/P2 0–D15/P2 7, P40,
P44, P91–P93
Low-level output voltage RD, BLW, BHW/P33,
P94/CAS/W, P95/WRL/LCAS,
P96/WRH/UCAS
Hysteresis TA0IN–TA4IN, TB0 IN–TB2IN,
INT0–INT4, DMAREQ0–DMAREQ3,
ADTRG, CTS0, CLK0, CLK1,
NMI, RDY, HOLD, RxD0, RxD1
Hysteresis RESET
Hysteresis XIN
High-level input current D0–D 7, D8/P20 –D15/P27,
P30, P3 3, P40 –P44,
P50–P5 7, P60 –P66,
P70–P7 3, P80 –P86,
P91–P9 6, P120–P12 2,
XIN, RESET, BYTE,
MD0, MD1, NMI
Low-level input current D0–D 7, D8/P20 –D15/P27,
P30, P3 3, P40 –P44,
P50–P5 7, P60 –P66,
P70–P7 3, P80 –P86,
P91–P9 6, P120–P12 2,
XIN, RESET, BYTE,
MD0, MD1, NMI
RAM hold voltage
Power source current
Test conditions
Limits
Typ.
Max.
Unit
IOH = –10 mA
Min.
3
IOH = –400 µA
4.7
V
IOH = –10 mA
3.4
V
IOH = –400 µA
IOL = 10 mA
4.8
V
2
V
IOL = 2 mA
0.45
V
IOL = 10 mA
1.6
IOL = 2 mA
0.4
1
V
VI = 5.0 V
1.5
0.3
5
V
V
µA
VI = 0 V
–5
µA
50
V
mA
µA
V
0.4
0.5
0.1
When clock is stoped.
At reset in micro- f(X IN) = 20 MHz.
processor mode,
output-only pins Ta = 25 °C when
are open, and the clock is stopped.
other pins are con- Ta = 80 °C when
nected to Vss.
clock is stopped.
2
25
1
20
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
I
L
E
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
t
me
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
A-D CONVERTER CHARACTERISTICS
(VCC = AVCC = 5 V ± 10 %, VSS = AVSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
Parameter
Test conditions
—————
Resolution
VREF = VCC
—————
Absolute accuracy
VREF = VCC
Ladder resistance
VREF = VCC
RLADDER
tCONV
Conversion time
VREF
VIA
Reference voltage
Analog input voltage
f(XIN) ≤ 20 MHz
Limits
Min.
10-bit resolution mode
8-bit resolution mode
10-bit resolution mode
8-bit resolution mode
5
5.9
2.45 (Note)
2.7
0
Max.
10
±3
±2
Unit
Bits
LSB
LSB
kΩ
µs
VCC
VREF
V
V
Note: This is applied when A-D conversion freguency ( φAD) = f1(φ).
19
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
ELI
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
met
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
PERIPHERAL DEVICE INPUT/OUTPUT TIMING
(VCC = 5 V ± 10 %, VSS = 0 V, Ta = –20 to 85 °C, f(XIN) = 20 MHz unless otherwise noted)
For limits depending on f(XIN), their calculation formulas are shown below. Also, the values at f(XIN) = 20 MHz are shown in ( ).
∗
Timer A input (Count input in event counter mode)
Symbol
tc(TA)
tw(TAH)
tw(TAL)
Limits
Parameter
Min.
80
40
40
TAiIN input cycle time
TAiIN input high-level pulse width
TAiIN input low-level pulse width
Max.
Unit
ns
ns
ns
Timer A input (Gating input in timer mode)
Symbol
Parameter
t c(TA)
TAi IN input cycle time
f(XIN) ≤ 20 MHz
t w(TAH)
TAi IN input high-level pulse width
f(XIN) ≤ 20 MHz
t w(TAL)
TAi IN input low-level pulse width
f(XIN) ≤ 20 MHz
Limits
Min.
16 × 109
(800)
f(XIN)
9
8 × 10
(400)
f(XIN)
9
8 × 10
(400)
f(XIN)
Max.
Unit
ns
ns
ns
Note : The TAiIN input cycle time requires 4 or more cycles of a count source. The TAiIN input high-level pulse width and the TAiIN input low-level pulse width
respectively require 2 or more cycles of a count source. The limits in this table are applied when the count source = f 2 at f(XIN ) ≤ 20 MHz.
Timer A input (External trigger input in one-shot pulse mode)
Symbol
Limits
Parameter
tc(TA)
TAiIN input cycle time
tw(TAH)
tw(TAL)
TAiIN input high-level pulse width
TAiIN input low-level pulse width
Min.
f(X IN) ≤ 20 MHz
8 × 109
f(X IN)
Max.
(400)
Unit
ns
80
80
ns
ns
Timer A input (External trigger input in pulse width modulation mode)
Symbol
tw(TAH)
tw(TAL)
Parameter
TAiIN input high-level pulse width
TAiIN input low-level pulse width
Limits
Min.
80
80
Max.
Unit
ns
ns
Timer A input (Up-down input and Count input in event counter mode)
Symbol
tc(UP)
tw(UPH)
tw(UPL)
tsu(UP-TIN)
th(TIN-UP)
20
Parameter
TAi OUT input cycle time
TAi OUT input high-level pulse width
TAi OUT input low-level pulse width
TAi OUT input setup time
TAi OUT input hold time
Limits
Min.
2000
1000
1000
400
400
Max.
Unit
ns
ns
ns
ns
ns
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
I
L
E
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
t
me
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
Timer A input (Two-phase pulse input in event counter mode)
Symbol
tc(TA)
tsu(TAjIN-TAjOUT)
tsu(TAjOUT -TAjIN)
Limits
Parameter
Min.
800
200
200
TAiIN input cycle time
TAjIN input setup time
TAjOUT input setup time
Max.
Unit
ns
ns
ns
•Gating input in timer mode
•Count input in event counter mode
•External trigger input in one-shot pulse mode
•External trigger input in pulse width modulation mode
tc(TA)
tw(TAH)
TAiIN input
tw(TAL)
•Up-down input and Count input in event counter mode
tc(UP)
tw(UPH)
TAiOUT input
(Up-down input)
tw(UPL)
TAiOUT input
(Up-down input)
TAiIN input
(When count at falling)
th(TIN-UP)
tsu(UP-TIN)
TAiIN input
(When count at rising)
•Two-phase pulse input in event counter mode
tc(TA)
TAjIN input
tsu(TAjIN-TAjOUT)
tsu(TAjIN-TAjOUT)
tsu(TAjOUT-TAjIN)
TAjOUT input
tsu(TAjOUT-TAjIN)
Test conditions
•Vcc = 5 V ± 10 %, Ta = –20 to 85 °C
•Input timing voltage : VIL = 1.0 V, VIH = 4.0 V
21
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
ELI
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
met
ice:
Not e para
Som
PR
Timer B input
16-BIT CMOS MICROCOMPUTER
(Count input in event counter mode)
Symbol
t c(TB)
t w(TBH)
t w(TBL)
t c(TB)
t w(TBH)
t w(TBL)
Parameter
TBiIN input cycle time (one edge count)
TBiIN input high-level pulse width (one edge count)
TBiIN input low-level pulse width (one edge count)
TBiIN input cycle time (both edge count)
TBiIN input high-level pulse width (both edge count)
TBiIN input low-level pulse width (both edge count)
Timer B input
Limits
Min.
80
40
40
160
80
80
Max.
Unit
ns
ns
ns
ns
ns
ns
(Pulse period measurement mode)
Symbol
Parameter
t c(TB)
TBiIN input cycle time
f(X IN) ≤ 20 MHz
t w(TBH)
TBiIN input high-level pulse width
f(X IN) ≤ 20 MHz
t w(TBL)
TBiIN input low-level pulse width
f(X IN) ≤ 20 MHz
Limits
Min.
16 × 10 9
(800)
f(X IN)
8 × 109
(400)
f(X IN)
9
8 × 10
(400)
f(X IN)
Max.
Unit
ns
ns
ns
Note: The TBiIN input cycle time requires 4 or more cycles of a count source. The TBiIN input high-level pulse width and the TBiIN input low-level pulse width
respectively require 2 or more cycles of a count source. The limits in this table are applied when the count source = f 2 at f(XIN) ≤ 20 MHz.
Timer B input
(Pulse width measurement mode)
Symbol
Parameter
t c(TB)
TBiIN input cycle time
f(X IN) ≤ 20 MHz
t w(TBH)
TBiIN input high-level pulse width
f(X IN) ≤ 20 MHz
t w(TBL)
TBiIN input low-level pulse width
f(X IN) ≤ 20 MHz
Limits
Min.
16 × 10 9
(800)
f(X IN)
8 × 109
(400)
f(X IN)
9
8 × 10
(400)
f(X IN)
Max.
Unit
ns
ns
ns
Note: The TBiIN input cycle time requires 4 or more cycles of a count source. The TBiIN input high-level pulse width and the TBiIN input low-level pulse width
respectively require 2 or more cycles of a count source. The limits in this table are applied when the count source = f 2 at f(XIN) ≤ 20 MHz.
A-D trigger input
Symbol
tc(AD)
tw(ADL)
22
Parameter
ADTRG input cycle time (minimum allowable trigger)
ADTRG input low-level pulse width
Limits
Min.
1000
125
Max.
Unit
ns
ns
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
I
L
E
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
t
me
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
Serial I/O
Symbol
t c(CK)
t w(CKH)
t w(CKL)
t d(C-Q)
t h(C-Q)
t su(D-C)
t h(C-D)
Limits
Parameter
Min.
200
100
100
CLKi input cycle time
CLKi input high-level pulse width
CLKi input low-level pulse width
TXDi output delay time
TXDi hold time
RXDi input setup time
RXDi input hold time
Max.
80
0
20
90
Unit
ns
ns
ns
ns
ns
ns
ns
External interrupt (INTi) input, NMI input
Symbol
t w(INH)
t w(INL)
Limits
Parameter
Min.
250
250
INTi input/NMI input high-level pulse width
INTi input/NMI input low-level pulse width
Max.
Unit
ns
ns
tc(TB)
tw(TBH)
TBiIN input
tw(TBL)
tc(AD)
tw(ADL)
ADTRG input
tc(CK)
tw(CKH)
CLKi input
tw(CKL)
th(C-Q)
TxDi output
td(C-Q)
tsu(D-C)
th(C-D)
RxDi input
tw(INL)
INTi input
NMI input
tw(INH)
Test conditions
•Vcc = 5 V ± 10 %, Ta = –20 to 85 °C
•Input timing voltage : VIL = 1.0 V, VIH = 4.0 V
•Output timing voltage : VOL = 0.8 V, VOH = 2.0 V, CL = 50 pF
23
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
ELI
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
met
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
READY, HOLD TIMING
Timing requirements (VCC = 5 V ± 10 %, VSS = 0 V, Ta = –20 to 85 °C, f(X IN) = 20 MHz, unless otherwise noted)
Symbol
tsu(RDY-φ1)
tsu(HOLD-φ1)
t h(φ1-RDY)
th( φ1-HOLD)
Parameter
RDY input setup time
HOLD input setup time
RDY input hold time
HOLD input hold time
Limits
Min.
40
40
0
0
Max.
Switching characteristics (VCC = 5 V ± 10 %, VSS = 0 V, Ta = –20 to 85 °C, f(XIN) = 20 MHz, unless otherwise noted)
Limits
Symbol
Parameter
Min.
Max.
t d(φ1-HLDAL)
HLDA output delay time
20
t d(RDH-HLDAL) HLDA low-level output delay time after read
tc –15 (Note)
t d(BXWH-HLDAL) HLDA low-level output delay time after write
tc –15 (Note)
tpxz(HLDAL-RDZ) Floating start delay time
10
–15
tpxz(HLDAL-BXWZ) Floating start delay time
10
–15
tpxz(HLDAL-CSiZ) Floating start delay time
10
–15
tpxz(HLDAL-ALEZ) Floating start delay time
10
–15
t pxz(HLDAL-AZ) Floating start delay time
10
–15
tpzx(HLDAL-RDZ) Floating release delay time
0
tpzx(HLDAL-BXWZ) Floating release delay time
0
tpzx(HLDAL-CSiZ) Floating release delay time
0
tpzx(HLDAL-ALEZ) Floating release delay time
0
t pzx(HLDAL-AZ) Floating release delay time
0
Note: tc = 1/f(XIN).
24
Unit
ns
ns
ns
ns
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
I
L
E
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
t
me
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
RDY input
φ1
AAAA
RD
BLW
BHW
tsu(RDY-φ1)
RDY input
th(φ1-RDY)
AAA
: Wait inserted by software (The above is applied when 1 wait is selected.)
: Wait inserted by Ready function
HOLD input
φ1
tsu(HOLD-φ1)
th(φ1-HOLD)
HOLD input
td(φ1-HLDAL)
td(φ1-HLDAL)
HLDA output
td(RDH-HLDAL)
tpxz(HLDAL-RDZ)
tpzx(HLDAL-RDZ)
Hi-Z
RD
td(BXWH-HLDAL)
tpxz(HLDAL-BXWZ)
tpzx(HLDAL-BXWZ)
Hi-Z
BLW
BHW
tpxz(HLDAL-CSiZ)
tpzx(HLDAL-CSiZ)
Hi-Z
CSi
tpxz(HLDAL-ALEZ)
tpzx(HLDAL-ALEZ)
Hi-Z
ALE
tpxz(HLDAL-AZ)
A0–A23 output
tpzx(HLDAL-AZ)
Hi-Z
Test conditions
•Vcc = 5 V ± 10 %, Ta = –20 to 85 °C
•RDY input, HOLD input : VIL = 1.0 V, VIH = 4.0 V
•HLDA output : VOL = 0.8 V, VOH = 2.0 V, CL = 50 pF
25
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
ELI
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
met
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
External bus timing
For limits depending on f(X IN), their calculation formulas are shown below.
W = 0 (0 wait)
W = 1 (1 wait)
W = 2 (2 wait)
tc = 1/f(XIN).
Timing Requirements (V CC = 5 V ± 10 %, VSS = 0 V, Ta = –20 to 85 °C, f(X IN) = 20 MHz, unless otherwise noted)
Symbol
Limits
When 0/1/2 wait is selected When ALE expansion wait is selected Unit
Parameter
Min.
tc
t w(half)
t w(H)
t w(L)
tr
tf
t a(A-D)
t a(CSiL-D)
t a(RDL-D)
t su(D-RDL)
t h(RDH-D)
t a(BA-D)
t h(BA-D)
External clock input cycle time
External clock input pulse width with half input-volage
External clock input high-level pulse width
External clock input low-level pulse width
External clock input rise time
External clock input fall time
Address access time
Chip select access time
Read access time
Read data setup time
Data input hold time after read
Address access time at burst ROM access
Data hold time after address at burst ROM access
Max.
50
0.45tc
0.5tc – 8
0.5tc – 8
Min.
50
0.45tc
0.5tc – 8
0.5tc – 8
0.55tc
15
0
2tc – 35
(1 + W)tc – 35
0
0
External clock input
tw(L)
tw(H)
tr
f(XIN)
Test conditions
•Vcc = 5 V ± 10 %, Ta = –20 to 85 °C
•Input timing voltage : VIL = 1.0 V, VIH = 4.0 V (tw(H), tw(L), tr, tf)
•Input timing voltage : 2.5 V (tc, tw(half))
26
0.55tc
8
8
4tc – 45
3.5tc – 35
2tc – 30
8
8
(2 + W)tc – 45
(1.5 + W)tc – 35
(1 + W)tc – 30
15
0
Max.
tf
tc
tw(half)
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
I
L
E
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
t
me
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
Switching characteristics (V CC = 5 V ± 10 %, VSS = 0 V, Ta = –20 to 85 °C, f(X IN) = 20 MHz, unless otherwise noted)
Limits
Symbol
Parameter
td(φ1-RDL)
td(φ1-RDH)
td(φ1-BXWL)
td(φ1-BXWH)
tw(ALEH)
td(A-ALEL)
tw(RDL)
tw(RDH)
td(RDH-BXWH)
td(A-RDH)
th(RDH-A)
td(RDH-ALEL)
td(ALEL-RDH)
td(CSiL-RDH)
td(CSiL-RDL)
th(RDH-CSiL)
td(RDH-D)
Read low-level output delay time
Read high-level output delay time
Write low-level output delay time
Write high-level output delay time
ALE pulse width
ALE completion delay time after address stabilization
Read output pulse width
Read output high-level width (Note 1)
Write disable valid time after read (Note 2)
Address valid time before read
Address hold time after read (Note 3)
ALE completion delay time after read start
Read disable valid time after ALE completion
Chip select valid time before read
Chip select output valid time before read completion
Chip select hold time after read
Next write cycle data output delay time after read
(Note 2)
Write output pulse width
Write output high-level width (Note 1)
Read disable valid time after write (Note 2)
Address valid time before write
Address hold time after write (Note 3)
ALE completion delay time after write start
Write disable valid time after ALE completion
Chip select valid time before write
Chip select output valid time before write completion
Chip select hold time after write
Data output valid time before write completion
Data hold time after write
Floating start delay time after write
tw(BXWL)
tw(BXWH)
td(BXWH-RDH)
td(A-BXWH)
th(BXWH-A)
td(BXWH-ALEL)
td(ALEL-BXWH)
td(CSiL-BXWH)
td(CSiL-BXWL)
th(BXWH-CSiL)
td(D-BXWL)
th(BXWH-D)
tpxz(BXWH-DZ)
When 0/1/2 wait is selected When ALE expansion wait is selected Unit
Min.
Max.
Min.
Max.
–10
–10
–10
–10
0.5tc – 20
tc – 30
15
10
15
10
–10
–10
–10
–10
tc – 20
1.5tc – 30
2tc – 15
2tc – 15
tc – 15
2tc – 30
8
15
10
15
10
(1 + W)tc – 15
tc – 15
tc – 15
tc – 30
8
20
0.5tc – 20
(1.5 + W)tc – 20
0.5tc – 20
tc – 15
0.5tc – 20
1.5tc – 20
3.5tc – 20
0.5tc – 20
tc – 15
(1 + W)tc – 15
tc – 15
tc – 15
tc – 30
8
2tc – 15
2tc – 15
tc – 15
2tc-30
8
20
0.5tc – 20
1.5tc – 20
3.5tc – 20
0.5tc – 20
2tc – 20
0.5tc – 10
0.5tc – 20
(1.5 + W)tc – 20
0.5tc – 20
(1 + W)tc – 20
0.5tc – 10
0.5tc + 10
0.5tc + 10
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Notes 1: When the bus cycle just before this parameter is for the area where the recovery cycle insertion is selected, this parameter is extended by tc (ns).
2: When accessing the area where the recovery cycle insertion is selected, this parameter is extended by tc (ns).
3: When accessing the area where the recovery cycle insertion is selected, this parameter is extended by tc (ns). However, except for the case at
instruction prefetch.
27
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
ELI
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
met
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
Normal access: 0/1/2 wait
tc
f(XIN)
Bus cycle
<At read>
φ1
td(φ1-RDL)
td(φ1-RDH)
tw(ALEH)
ALE
td(A-ALEL)
tw(RDL)
tw(RDH)
RD
td(RDH-ALEL)
td(RDH-BXWH)
BLW
BHW
th(RDH-A)
td(A-RDH)
A0–A23
td(CSiL-RDH)
td(CSiL-RDL)
th(RDH-CSiL)
CSi
ta(A-D)
td(RDH-D)
tsu(D-RDL) th(RDH-D)
ta(CSiL-D)
ta(RDL-D)
D0–D7, D8–D15
Bus cycle
<At write>
φ1
td(φ1-BXWL)
td(φ1-BXWH)
tw(ALEH)
ALE
td(A-ALEL)
td(BXWH-RDH)
RD
tw(BXWH)
tw(BXWL)
BLW
BHW
td(A-BXWH)
td(BXWH-ALEL)
th(BXWH-A)
A0–A23
td(CSiL-BXWH)
td(CSiL-BXWL)
th(BXWH-CSiL)
CSi
td(D-BXWL)
th(BXWH-D)
D0–D7, D8–D15
tpxz(BXWH-DZ)
Test conditions
•Vcc = 5 V ± 10 %, Ta = –20 to 85 °C
•Input timing voltage : VIL = 0.8 V, VIH = 2.5 V
•Output timing voltage : VOL = 0.8 V, VOH = 2.0 V, CL = 15 pF (CSi)
•Output timing voltage : VOL = 0.8 V, VOH = 2.0 V, CL = 50 pF (except for CSi)
28
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
I
L
E
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
t
me
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
Normal access : ALE extension wait
tc
f(XIN)
Bus cycle
<At read>
φ1
td(φ1-RDL)
tw(ALEH)
td(φ1-RDH)
td(ALEL-RDH)
ALE
td(A-ALEL)
tw(RDH)
tw(RDL)
RD
td(RDH-BXWH)
BLW
BHW
th(RDH-A)
td(A-RDH)
A0–A23
td(CSiL-RDH)
th(RDH-CSiL)
td(CSiL-RDL)
CSi
ta(A-D)
td(RDH-D)
tsu(D-RDL) th(RDH-D)
ta(CSiL-D)
ta(RDL-D)
D0–D7, D8–D15
Bus cycle
<At write>
φ1
tw(ALEH)
ALE
td(φ1-BXWL)
td(φ1-BXWH)
td(ALEL-BXWH)
td(A-ALEL)
td(BXWH-RDH)
RD
tw(BXWH)
tw(BXWL)
BLW
BHW
th(BXWH-A)
td(A-BXWH)
A0–A23
td(CSiL-BXWH)
th(BXWH-CSiL)
td(CSiL-BXWL)
CSi
td(D-BXWL)
th(BXWH-D)
D0–D7, D8–D15
tpxz(BXWH-DZ)
Test conditions
•Vcc = 5 V ± 10 %, Ta = –20 to 85 °C
•Input timing voltage : VIL = 0.8 V, VIH = 2.5 V
•Output timing voltage : VOL = 0.8 V, VOH = 2.0 V, CL = 15 pF (CSi)
•Output timing voltage : VOL = 0.8 V, VOH = 2.0 V, CL = 50 pF (except for CSi)
29
30
ta(RDL-D)
ta(CSiL-D)
td(CSiL-RDH)
td(RDH-ALEL)
th(BA-D)
ta(BA-D)
th(BA-D)
ta(BA-D)
th(BA-D)
ta(BA-D)
th(RDH-D)
th(RDH-CSiL)
th(RDH-A)
td(RDH-BXWH)
MI
ELI
Test conditions
•Vcc = 5 V ± 10 %, Ta = –20 to 85 °C
•Input timing voltage : VIL = 0.8 V, VIH = 2.5 V
•Output timing voltage : VOL = 0.8 V, VOH = 2.0 V, CL = 15 pF (CSi)
•Output timing voltage : VOL = 0.8 V, VOH = 2.0 V, CL = 50 pF (except for CSi)
ta(A-D)
td(A-RDH)
td(A-ALEL)
tw(RDH)
PR
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
met
ice:
Not e para
Som
D0–D7, D8–D15
CSi
A0–A23
BLW
BHW
RD
ALE
tw(ALEH)
Burst ROM access : 0/1/2 wait at instruction prefetch
Y
NAR
MITSUBISHI MICROCOMPUTERS
M37920S4CGP
16-BIT CMOS MICROCOMPUTER
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
I
L
E
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
t
me
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
DRAM access
Timing Requirements (V CC = 5 V ± 10 %, VSS = 0 V, Ta = 0 to 70 °C, f(XIN) = 20 MHz, unless otherwise noted)
Symbol
ta(RASL-D)
ta(CASL-D)
th(CASH-D)
Parameter
RAS access time
CAS access time
Data input hold time after CAS
Limits
Min.
Max.
2.5tc – 35
tc – 30
0
Unit
ns
ns
ns
Switching characteristics (VCC = 5 V ± 10 %, VSS = 0 V, Ta = 0 to 70 °C, f(XIN) = 20 MHz, unless otherwise noted)
Symbol
Limits
Parameter
Min.
tw(RASH)
td(CASH-RASH)
th(RASL-CASH)
th(CASL-RASL)
tw(CASL)
td(RA-RASH)
th(RASL-RA)
td(CA-CASH)
th(CASH-CA)
td(WH-CASH)
td(WL-CASH)
th(CASL-WL)
td(D-CASH)
th(CASL-D)
tpxz(CASH-D)
td(CAF-CASH)
td(WFL-CASH)
td(DF-CASH)
tpxz(WH-D)
RAS high-level pulse width
CAS high-level valid time before RAS
CAS high-level hold time after RAS’s low level
RAS hold time after CAS’s low level
CAS low-level pulse width
Row address valid time before RAS
Row address hold time after RAS’s low level
Column address valid time before CAS
Column address hold time after CAS’s high level
W high-level valid time before CAS
W low-level valid time before CAS
W hold time after CAS’s low level
Data output valid time before CAS
Data output hold time after CAS’s low level
Floating start delay time after CAS
Column address valid time before CAS (When fast page access ON is selected)
W low-level valid time before CAS (When fast page access ON is selected)
Data output valid time before CAS (When fast page access ON is selected)
Floating start delay time after write
Max.
1.5tc – 20
1.5tc – 20
1.5tc – 20
tc – 15
tc – 15
0.5tc – 25
tc – 40
0.5tc – 20
0
3tc – 15
tc – 15
tc – 15
tc – 20
1.5tc – 15
0.5tc + 10
tc – 40
0.5tc – 20
0.5tc – 20
0.5tc + 10
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
31
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
ELI
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
met
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
DRAM access : fast page access = OFF
φ1
<At read>
tw(RASH)
RASi
th(RASL-CASH)
td(CASH-RASH)
th(CASL-RASL)
tw(CASL)
LCAS,UCAS
(CAS)
td(RA-RASH)
td(CA-CASH)
th(CASH-CA)
Row address
A0–A23
Column address
Row address
Column
address
th(RASL-RA)
td(WH-CASH)
W
(WRL,WRH)
ta(RASL-D)
th(CASH-D)
ta(CASL-D)
D0–D7, D8–D15
<At write>
tw(RASH)
RASi
th(RASL-CASH)
td(CASH-RASH)
th(CASL-RASL)
tw(CASL)
LCAS,UCAS
(CAS)
td(RA-RASH)
A0–A23
td(CA-CASH)
Row address
th(CASH-CA)
Column address
th(RASL-RA)
td(WL-CASH)
Row address
th(CASL-WL)
W
(WRL,WRH)
td(D-CASH)
th(CASL-D)
D0–D7, D8–D15
tpxz(CASH-D)
Test conditions
•Vcc = 5 V ± 10 %, Ta = 0 to 70 °C
•Input timing voltage : VIL = 0.8 V, VIH = 2.5 V
•Output timing voltage : VOL = 0.8 V, VOH = 2.0 V, CL = 15 pF (RASi)
•Output timing voltage : VOL = 0.8 V, VOH = 2.0 V, CL = 50 pF (except for RASi)
32
Column
address
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
I
L
E
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
t
me
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
DRAM access : fast page access = ON
φ1
<At read>
tw(RASH)
RASi
th(CASL-RASL)
td(CASH-RASH)
th(RASL-CASH)
tw(CASL)
tw(CASL)
tw(CASL)
LCAS,UCAS
(CAS)
td(RA-RASH)
td(CA-CASH)
Row address
A0–A23
th(CASH-CA)
td(CAF-CASH)
Column address
th(CASH-CA)
td(CAF-CASH)
Column address
th(CASH-CA)
Column address
th(RASL-RA)
td(WH-CASH)
W
(WRL,WRH)
ta(RASL-D)
th(CASH-D)
ta(CASL-D)
ta(CASL-D)
th(CASH-D)
ta(CASL-D)
th(CASH-D)
D0–D7, D8–D15
<At write>
tw(RASH)
RASi
th(CASL-RASL)
td(CASH-RASH)
th(RASL-CASH)
tw(CASL)
tw(CASL)
tw(CASL)
LCAS,UCAS
(CAS)
td(RA-RASH)
A0–A23
td(CA-CASH)
Row address
th(CASH-CA)
td(CAF-CASH)
Column address
th(CASH-CA)
Column address
td(CAF-CASH)
th(CASH-CA)
Column address
th(RASL-RA)
td(WL-CASH)
th(CASL-WL)
td(WFL-CASH)
th(CASL-WL)
td(WFL-CASH)
th(CASL-WL)
W
(WRL,WRH)
td(D-CASH)
th(CASL-D)
td(DF-CASH)
th(CASL-D)
td(DF-CASH)
th(CASL-D)
D0–D7, D8–D15
tpxz(WH-D)
Test conditions
•Vcc = 5 V ± 10 %, Ta = 0 to 70 °C
•Input timing voltage : VIL = 0.8 V, VIH = 2.5 V
•Output timing voltage : VOL = 0.8 V, VOH = 2.0 V, CL = 15 pF (RASi)
•Output timing voltage : VOL = 0.8 V, VOH = 2.0 V, CL = 50 pF (except for RASi)
33
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
ELI
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
met
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
DRAM refresh
Switching characteristics (VCC = 5 V ± 10 %, VSS = 0 V, Ta = 0 to 70 °C, f(XIN) = 20 MHz, unless otherwise noted)
Symbol
tw(RASCBRL)
tw(CASCBRL)
td(CASCBRL-RASCBRH)
td(RASCBRL-CASCBRL)
td(CASSLFRL-RASSLFR H)
th(RASSLFRH-CASSLFRL)
34
Parameter
RAS low-level pulse width (At CAS before RAS refresh)
CAS low-level pulse width (At CAS before RAS refresh)
RAS high-level valid time after CAS’s low level start (At CAS before RAS refresh)
CAS low-level valid time after RAS’s low level start (At CAS before RAS refresh)
RAS high-level valid time after CAS’s low level start (At self refresh)
CAS low-level hold time after RAS’s high level (At self refresh)
Limits
Min.
2tc – 15
2tc – 15
tc – 15
tc – 15
tc – 15
–15
Max.
15
Unit
ns
ns
ns
ns
ns
ns
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
I
L
E
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
t
me
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
DRAM refresh : CAS before RAS refresh
φ1
tw(RASCBRL)
RASi
td(CASCBRL-RASCBRH)
td(RASCBRL-CASCBRL)
tw(CASCBRL)
LCAS,UCAS
(CAS)
W
(WRL,WRH)
Refresh cycle
DRAM refresh : self refresh
φ1
RASi
td(CASSLFRL-RASSLFRH)
th(RASSLFRH-CASSLFRL)
LCAS,UCAS
(CAS)
W
(WRL,WRH)
Refresh cycle
Test conditions
•Vcc = 5 V ± 10 %, Ta = 0 to 70 °C
•Output timing voltage : VOL = 0.8 V, VOH = 2.0 V, CL = 15 pF (RASi)
•Output timing voltage : VOL = 0.8 V, VOH = 2.0 V, CL = 50 pF (except for RASi)
35
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
ELI
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
met
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
DMA transfer timing
Timing Requirements (V CC = 5 V ± 10 %, VSS = 0 V, Ta = –20 to 85 °C, f(XIN) = 20 MHz, unless otherwise noted)
Symbol
tsu(TCINL-φ1)
tw(TCINL)
tsu(DRQL-φ1)
tw(DRQL)
Limits
Parameter
Min.
TC input setup time
TC input pulse width
DMAREQi input setup time
DMAREQi input pulse width
Max.
Unit
ns
ns
ns
ns
40
tc + 20
40
tc
Switching characteristics (VCC = 5 V ± 10 %, VSS = 0 V, Ta = –20 to 85 °C, f(XIN) = 20 MHz, unless otherwise noted)
Symbol
tw(TCL)
td(RDH-TCL)
td(BXWH-TCL)
td(TCL-DMAACKL)
Limits
Parameter
Min.
TC output pulse width
TC output start delay time after read
TC output start delay time after write
DMAACK low-level output valid time after TC output start
Max.
Unit
ns
ns
ns
ns
tc – 20
tc – 15
tc – 15
2.5tc – 20
3 kΩ
TC
50 pF
Test circuit for TC output
36
MITSUBISHI MICROCOMPUTERS
Y
NAR
M37920S4CGP
MI
I
L
E
.
ion. hange
icat
ecif ct to c
p
s
al
bje
a fin are su
not
s
is is ric limit
h
T
t
me
ice:
Not e para
Som
PR
16-BIT CMOS MICROCOMPUTER
●TC input
φ1
tsu(TCINL-φ1)
tw(TCINL)
TC input
●DMAREQi input
φ1
tsu(DRQL-φ1)
tw(DRQL)
DMAREQi input
Test conditions
•Vcc = 5 V ± 10 %, Ta = –20 to 85 °C
•Input timing voltage : VIL = 1.0 V, VIH = 4.0 V
•Output timing voltage : VOL = 0.8 V, VOH = 2.0 V, CL = 50 pF
●Transfer terminate timing
Final tranfer cycle
Terminate processing
(Next bus cycle)
ALE
RD
BLW
BHW
A0–A23
CSi
D0–D7, D8–D15
tw(TCL)
TC
td(RDH-TCL)
td(BXWH-TCL)
td(TCL-DMAACKL)
DMAACKi
Test conditions
•Vcc = 5 V ± 10 %, Ta = –20 to 85 °C
•Output timing voltage : VOL = 0.8 V, VOH = 2.0 V, CL = 50 pF
37
MITSUBISHI MICROCOMPUTERS
Y
NAR
I
M37920S4CGP
.
e
n.
atio chang
cific
o
spe bject t
l
a
fin
su
ot a its are
is n
m
This etric li
:
e
m
ic
Not e para
Som
IM
REL
P
16-BIT CMOS MICROCOMPUTER
PACKAGE OUTLINE
100P6S-A
Plastic 100pin 14✕20mm body QFP
EIAJ Package Code
QFP100-P-1420-0.65
Weight(g)
1.58
Lead Material
Alloy 42
MD
e
JEDEC Code
–
ME
HD
D
81
b2
100
1
80
I2
E
HE
Recommended Mount Pad
Symbol
51
30
50
A
L1
e
y
b
F
A1
c
A2
31
L
Detail F
A
A1
A2
b
c
D
E
e
HD
HE
L
L1
y
b2
I2
MD
ME
Dimension in Millimeters
Min
Nom
Max
–
–
3.05
0.1
0.2
0
–
–
2.8
0.25
0.3
0.4
0.13
0.15
0.2
13.8
14.0
14.2
19.8
20.0
20.2
0.65
–
–
16.5
16.8
17.1
22.5
22.8
23.1
0.4
0.6
0.8
1.4
–
–
–
–
0.1
–
0°
10°
0.35
–
–
–
–
1.3
14.6
–
–
–
–
20.6
Keep safety first in your circuit designs!
•
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of
substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
•
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples
contained in these materials.
All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi
Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor
product distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss rising from these
inaccuracies or errors.
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the
approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.
Notes regarding these materials
•
•
•
•
•
•
© 1999 MITSUBISHI ELECTRIC CORP.
New publication, effective Sep. 1999.
Specifications subject to change without notice.
REVISION DESCRIPTION LIST
Rev.
No.
1.00
M37920S4CGP Datasheet
Revision Description
First Edition
Rev.
date
990916
(1/1)