Dat a Sh ee t, V1.0 , F eb rua ry 2 01 0 S m a r t L E W I S TM R X + TDA5225 En hanced Sensitivity M ulti-Cha nnel Qua d-C onfi gu rati on R ec ei ve r w ith Di gita l Sl icer Wi re less Co ntro l N e v e r s t o p t h i n k i n g . Edition February 19, 2010 Published by Infineon Technologies AG, Am Campeon 1 - 12 85579 Neubiberg, Germany © Infineon Technologies AG February 19, 2010. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or the Infineon Technologies Companies and our Infineon Technologies Representatives worldwide (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Dat a Sh ee t, V1.0 , F eb rua ry 2 01 0 S m a r t L E W I S TM R X + TDA5225 En hanced Sensitivity M ulti-Cha nnel Qua d-C onfi gu rati on R ec ei ve r w ith Di gita l Sl icer Wi re less Co ntro l N e v e r s t o p t h i n k i n g . TDA5225 Revision Number: Revision History: 010 2010-02-19 Previous Version: TDA5225_v0.2 V1.0 Page Subjects (major changes since last revision) Page 26 Update of Figure 9 Page 28 Update of Figure 10 Page 30 AFC limitation added Page 32 AGC setting proposal added Page 33 New Section 2.4.6.5 ADC added Page 34 Additional information on RSSIPRX register inserted Page 40 Update of Figure 19 Page 41 Update of Figure 20 Page 45 Additional hint on clock and data recovery algorithm of the user software inserted Page 49 Limitation for ISx readout and Burst-read function added Page 51 Limitation for Burst-read function added Page 77 Additional hints added Page 79 Adaption of Section 4.1 Page 82 Page 90 f New item C7 added Comments added for items I6, I7, I8, I9, J11, J12 Page 90 Item J1 updated Page 95 BOM components C7, C8, L1, R2 and R3 updated We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] TDA5225 Table of Contents Page 1 1.1 1.2 1.3 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 2.2 2.3 2.4 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.5.1 2.4.5.2 2.4.6 2.4.6.1 2.4.6.2 2.4.6.3 2.4.6.4 2.4.6.5 2.4.7 2.4.8 2.4.8.1 2.4.8.2 2.4.9 2.4.9.1 2.4.9.2 2.5 2.5.1 2.5.1.1 2.5.1.2 2.5.2 2.5.3 2.5.4 2.5.4.1 2.5.5 2.6 2.6.1 2.6.1.1 2.6.1.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin Definition and Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Functional Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Block Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 RF/IF Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Crystal Oscillator and Clock Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Sigma-Delta Fractional-N PLL Block . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 PLL Dividers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Digital Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 ASK and FSK Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 ASK Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 FSK Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Automatic Frequency Control Unit (AFC) . . . . . . . . . . . . . . . . . . . . . 27 Digital Automatic Gain Control Unit (AGC) . . . . . . . . . . . . . . . . . . . . 29 Analog to Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 RSSI Peak Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Digital Baseband (DBB) Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Data Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Wake-Up Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Power Supply Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Chip Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 System Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Interfacing to the TDA5225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Digital Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Interrupt Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Digital Control (4-wire SPI Bus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Chip Serial Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 System Management Unit (SMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Master Control Unit (MCU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Run Mode Slave (RMS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Data Sheet 5 7 7 8 8 V1.0, 2010-02-19 TDA5225 Table of Contents Page 2.6.1.3 2.6.1.4 2.6.1.5 2.6.1.6 2.6.1.7 2.6.1.8 2.6.2 2.6.2.1 2.6.2.2 2.6.2.3 2.7 2.7.1 2.7.2 2.7.3 2.7.4 2.8 2.8.1 2.8.2 HOLD Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SLEEP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self Polling Mode (SPM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Automatic Modulation Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multi-Channel in Self Polling Mode . . . . . . . . . . . . . . . . . . . . . . . . . . Run Mode Self Polling (RMSP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Polling Timer Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self Polling Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Constant On-Off Time (COO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Active Idle Period Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition of Bit Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition of Manchester Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition of Power Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols of SFR Registers and Control Bits . . . . . . . . . . . . . . . . . . . . . Digital Control (SFR Registers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SFR Address Paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SFR Register List and Detailed SFR Description . . . . . . . . . . . . . . . . . 59 60 60 64 64 64 67 68 68 71 72 72 72 75 75 76 76 76 3 3.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4 4.1 4.1.1 4.1.2 4.1.3 4.2 4.3 4.4 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Test Circuit - Evaluation Board v1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Test Board Layout - Evaluation Board v1.0 . . . . . . . . . . . . . . . . . . . . . . . . 99 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Appendix - Registers Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Data Sheet 6 V1.0, 2010-02-19 TDA5225 Product Description 1 Product Description 1.1 Overview The IC is a low power ASK/FSK Receiver for the frequency bands 300-320, 425-450, 863-870 and 902-928 MHz. The chip offers a very high level of integration and needs only a few external components. The device is qualified to automotive quality standards and operates between -40 and +105°C at supply voltage ranges of 3.0-3.6 Volts or 4.5-5.5 Volts. The receiver is realized as a double down conversion super-heterodyne/low-IF architecture each with image rejection. A fully integrated Sigma-Delta Fractional-N PLL Synthesizer allows for high-resolution frequency generation and uses a crystal oscillator as the reference. The on-chip temperature sensor may be utilized for temperature drift compensation via the crystal oscillator. The high performance down converter is the key element for the exceptional sensitivity performance of the device which take it close to the theoretical top-performance limits. It demodulates the received ASK or FSK data stream independently which can then be accessed via separate pins. The RSSI output signal is converted to the digital domain with an ADC. All these signals are accessible via the 4-wire SPI interface bus. Up to 4 pre-configured telegram parameters can be stored into the device offering independent pre-processing of the received data to an extent not available till now. The down converter can be also configured in single-conversion mode at moderately reduced selectivity performance but at the advantage of omitting the IF ceramic filter. Data Sheet 7 V1.0, 2010-02-19 TDA5225 Product Description 1.2 • • • • • • • • • • • • • • • • • • • • • • • Enhanced sensitivity receiver Multi-band/Multi-Channel (300-320, 425-450, 863-870 and 902-928 MHz) One crystal frequency for all supported frequency bands 21-bit Sigma-Delta Fractional-N PLL synthesizer with high resolution of 10.5 Hz Up to 4 parallel parameter sets for autonomous scanning and receiving from different sources Up to 12 different frequency channels are supported with 10.5 Hz resolution each Ultrafast Wake-up on RSSI Selectable IF filter bandwidth and optional external filters possible Double down conversion image reject mixer ASK and FSK capability Automatic Frequency Control (AFC) for carrier frequency offset compensation NRZ data processing capability Sliced data output RSSI peak detectors Wake-up generator and polling timer unit Unique 32-bit serial number On-chip temperature sensor Integrated timer usable for external watch unit Integrated 4-wire SPI interface bus Supply voltage range 3.0 Volts to 3.6 Volts or 4.5 Volts to 5.5 Volts Operating temperature range -40 to +105°C ESD protection +/- 2 kV on all pins Package PG-TSSOP-28 1.3 • • • • • • • Features Applications Remote keyless entry systems Remote start applications Tire pressure monitoring Short range radio data transmission Remote control units Cordless alarm systems Remote metering Data Sheet 8 V1.0, 2010-02-19 TDA5225 Functional Description 2 Functional Description 2.1 Pin Configuration IFBUF_IN 1 28 IF _OUT IFBUF_OUT 2 27 VDDA GNDA 3 26 RSSI IFMIX _INP 4 25 PP3 IFMIX _INN 5 24 GNDRF VDD5V 6 23 LNA_INP VDDD 7 22 LNA_INN VDDD1V5 8 21 T2 GNDD 9 20 T1 PP0 10 19 SDO PP1 11 18 SDI PP2 12 17 SCK P_ON 13 16 NCS XTAL1 14 15 XTAL2 Figure 1 Data Sheet TDA5225 Pin-out 9 V1.0, 2010-02-19 TDA5225 Functional Description 2.2 Pin Definition and Pin Functionality Table 1 Pin Definition and Function Pin Pad name No. 1 Equivalent I/O Schematic Function IFBUF_IN VDDA Analog input IF Buffer input VDDA 330Ω IFBUF IFBUF_IN Note: Input is biased at VDDA/2 VDDA 330Ω MIX2BUF IFMIX_INN 2 IFBUF_OUT Analog output IF Buffer output VDDA VDDA 330Ω IFBUF_OUT IFBUF GNDA GNDA 3 GNDA Analog ground 4 IFMIX_INP Analog input + IF mixer input VDDA VDDA 330Ω IFMIX_INP MIX2BUF Note: Input is biased at VDDA/2 IFMIX_INN 5 IFMIX_INN 6 VDD5V Data Sheet see schematic of Pin 1 and 4 Analog input. - IF mixer input Analog input 5 Volt supply input 10 V1.0, 2010-02-19 TDA5225 Functional Description Pin Pad name No. 7 Equivalent I/O Schematic Function VDDD VDD5V Analog input digital supply input + VReg = - VDDD GNDD 8 VDDD1V5 VDDD Analog output 1.5 Volt voltage regulator + VReg = - VDD1V5 GNDD 9 GNDD Digital ground 10 PP0 VDD5V VDD5V PPx SDO GNDD Data Sheet 11 GNDD Digital output CLK_OUT, RX_RUN, NINT, LOW, HIGH, DATA and DATA_MATCHFIL are programmable via a SFR (Special Function Register), default = CLK_OUT V1.0, 2010-02-19 TDA5225 Functional Description Pin Pad name No. Equivalent I/O Schematic Function 11 PP1 see schematic of Pin 10 Digital output CLK_OUT, RX_RUN, NINT, LOW, HIGH, DATA and DATA_MATCHFIL are programmable via a SFR, default = DATA 12 PP2 see schematic of Pin 10 Digital output CLK_OUT, RX_RUN, NINT, LOW, HIGH, DATA and DATA_MATCHFIL are programmable via a SFR, default = NINT 13 P_ON VDD5V Digital input power-on reset VDDD P_ON NCS SCK SDI GNDD GNDD 14 XTAL1 VDDD VDDD Analog input crystal oscillator input XTAL1 GNDD .... GNDD GNDD Data Sheet 12 V1.0, 2010-02-19 TDA5225 Functional Description Pin Pad name No. Equivalent I/O Schematic Function 15 XTAL2 VDDD Analog output crystal oscillator output VDDD XTAL2 .... GNDD GNDD GNDD 16 NCS see schematic of Pin 13 Digital input SPI enable 17 SCK see schematic of Pin 13 Digital input SPI clock 18 SDI see schematic of Pin 13 Digital input SPI data in 19 SDO see schematic of Pin 10 Digital output SPI data out 20 T1 Digital input, connect to Digital Ground 21 T2 Digital input, connect to Digital Ground 22 LNA_INN Analog input LNA - RF input LNA_INN GNDRF 23 LNA_INP Analog input LNA + RF input LNA_INP GNDRF 24 GNDRF Data Sheet RF analog ground 13 V1.0, 2010-02-19 TDA5225 Functional Description Pin Pad name No. 25 PP3 Equivalent I/O Schematic Function see schematic of Pin 10 Digital output RX_RUN, NINT, LOW, HIGH, DATA and DATA_MATCHFIL are programmable via a SFR, default = RX_RUN 26 RSSI VDDA VDDA Analog output analog RSSI output/ analog test pin ANA_TST 500Ω RSSI GNDA GNDA 27 VDDA VDD5V Analog input Analog supply + VReg = - VDDA GNDA 28 IF_OUT VDDA Analog output IF output VDDA 330Ω IF_OUT PPFBUF GNDA Data Sheet GNDA 14 V1.0, 2010-02-19 Figure 2 Data Sheet XTAL 21.948717 MHz 15 GNDD (9) XTAL2 (15) XTAL1 (14) PP3 (25) [RX_RUN] VDDA (27) Vreg 3V3 3.3V-Analog VDD5V (6) XOSC Vreg 3V3 1st LO-Q ΣΔ PLL 1st LO-I wide narrow VDDD (7) nd 3.3V Dig-I/O 5V Dig-O Clock for Digital Core 2nd LO-Q 2nd LO-I T2 (21) Reset Generator to RX PPF 2 Reset for Digital Core nd IR-Mix2, 2 IF: 274.35897 kHz 1.5V Dig-Core 2 LO Div 2 MIX2 BUF VDDD1V5 P_ON T1 (8) (13) (20) Vreg 1V5 1s t IF = 10.7 MHz 2nd IF = 1st IF / 39 fcrystal = 2nd IF * 80 double/single conversion (SDCSEL) IFBUF IFBUF_IN (1) PPF BUF IFBUF_OUT (2) GNDRF (24) LNA GNDA (3) PPF IFMIX_INN (5) LNA_INN (22) LNA_INP (23) IF_OUT (28) IR-Mix, 1st IF: 10.7 MHz IFMIX_INP (4) matching + SAW Antenna 10.7 MHz narrow ( opt ) VDDD AAF LP D AFC Digital Demod PP0 (10) [CLK_OUT] ADC I/F MUX PP2 (12) [NINT] Interrupt Generator Peripheral Bus PLL Control I/F Clock Generator to PLL A ADC-MUX RSSI System Management RX Control I/F Temp.Sensor BPF select BW Limiter RSSI (26) Slicer NCS SCK SDI SDO (16) (17) (18) (19) SPI Interface Serial Number Peak Detector Data Filter PP1 (11) [DATA] TDA5225 2.3 (CERFSEL) 10.7 MHz wide TDA5225 Functional Description Functional Block Diagram TDA5225 Block Diagram1) 1) The function on each PPx port pin can be programmed via SFR (see also Table 1). Default values are given in squared brackets in Figure 2. V1.0, 2010-02-19 TDA5225 Functional Description 2.4 Functional Block Description 2.4.1 Architecture Overview A fully integrated Sigma-Delta Fractional-N PLL Synthesizer covers the frequency bands 300-320 MHz, 425-450 MHz, 863-870 MHz, 902-928 MHz with a high frequency resolution, using only one VCO running at around 3.6 GHz. This makes the IC most suitable for Multi-Band/Multi-Channel applications. For Multi-Channel applications a very good channel separation is essential. To achieve the necessary high sensitivity and selectivity a double down conversion superheterodyne architecture is used. The first IF frequency is located around 10.7 MHz and the second IF frequency around 274 kHz. For both IF frequencies an adjustment-free image frequency rejection feature is realized. In the second IF domain the filtering is done with an on-chip third order bandpass polyphase filter. A multi-stage bandpass limiter completes the RF/IF path of the receiver. For Single-Channel applications with relaxed requirements to selectivity, a single down conversion low-IF scheme can be selected. For Multi-Channel systems where even higher channel separation is required, up to two (switchable) external ceramic (CER) filters can be used to improve the selectivity. An RSSI generator delivers a DC signal proportional to the applied input power and is also used as an ASK demodulator. Via an anti-aliasing filter this signal feeds an ADC with 10 bits resolution. The harmonic suppressed limiter output signal feeds a digital FSK demodulator. This block demodulates the FSK data and delivers an AFC signal which controls the divider factor of the PLL synthesizer. A digital receiver, which comprises RSSI peak detectors, a matched data filter and a data slicer, decodes the received ASK or FSK data stream. The received data signal is accessible via one of the port pins. The crystal oscillator serves as the reference frequency for the PLL phase detector, the clock signal of the Sigma-Delta modulator and divided by two as the 2nd local oscillator signal. To accelerate the start up time of the crystal oscillator two modes are selectable: a Low Power Mode (with lower precision) and a High Precision Mode. Data Sheet 16 V1.0, 2010-02-19 TDA5225 Functional Description 2.4.2 Block Overview The TDA5225 is separated into the following main blocks: • • • • • • • • • RF / IF Receiver Crystal Oscillator and Clock Divider Sigma-Delta Fractional-N PLL Synthesizer ASK / FSK Demodulator incl. AFC, AGC and ADC RSSI Peak Detector Digital Baseband Receiver Power Supply Circuitry System Interface System Management Unit 2.4.3 RF/IF Receiver The receiver path uses a double down conversion super-heterodyne/low-IF architecture, where the first IF frequency is located around 10.7 MHz and the second IF frequency around 274 kHz. For the first IF frequency an adjustment-free image frequency rejection is realized by means of two low-side injected I/Q-mixers followed by a second order passive polyphase filter centered at 10.7 MHz (PPF). The I/Q-oscillator signals for the first down conversion are delivered from the PLL synthesizer. The frequency selection in the first IF domain is done by an external CER filter (optionally by two, decoupled by a buffer amplifier). For moderate or low cost applications, this ceramic filter can be substituted by a simple LC Pi-filter or completely by-passed using the receiver as a single down conversion low-IF scheme with 274 kHz IF frequency. The down conversion to the second IF frequency is done by means of two high-side injected I/Q-mixers together with an on-chip third order bandpass polyphase filter (PPF2 + BPF). The I/Qoscillator signals for the second down conversion are directly derived by division of two from the crystal oscillator frequency. The bandwidth of the bandpass filter (BPF) can be selected from 50 kHz to 300 kHz in 5 steps. For a frequency offset of -150 kHz to -120 kHz, the AFC (Automatic Frequency Control) function is mandatory. Activated AFC option might require a longer preamble sequence in the receive data stream. The receiver enable signal (RX_RUN) can be offered at each of the port pins to control external components. Whenever the receiver is active, the RX_RUN output signal is active. Active high or active low is configurable via PPCFG2 register. Data Sheet 17 V1.0, 2010-02-19 TDA5225 Functional Description The frequency relations are calculated with the following formulas: f IF1 = 10.7MHz f IF1 f IF2 = --------39 f crystal = f IF2 × 80 f crystal f LO2 = ---------------2 f LO1 = f crystal × NF divider Lim ite r QMix2 3rd order BP /PP F2 IF2 = 274 kH z IF Attenuation adjust IMix2 SDCSEL-MUX MIX2BUF (var. gain) CERFilter IF1 10.7 MHz optional CERFSEL-MUX Q-Mix CERFilter IF1 10 .7 MHz IFBUF LNA PPFBUF MUX RX Input 2nd order PPF 10.7 MHz I-Mix RSSI Generator LP harm sup digital FSK Demod LP alias sup ASK / RSSI ADC RX FSK Data RX ASK Data Divider :N IQ :2 Channel Filter Bandwidth select N AFC Filter ΣΔ Modulator Channel select VCO :1/:2/:3 IQ Divider : 4 Multi Modulos Divider : N_FN PD Crystal oscil lator Band select Channel select LF select Channel Filter select Band select Loop Filter Front end control unit IF Attenuation adjust RSSI Gain/ Offset adjust LF select Figure 3 Block Diagram RF Section The front end of the receiver comprises an LNA, an image reject mixer and a digitally gain controlled buffer amplifier. This buffer amplifier allows the production spread of the on-chip signal strip, of external matching circuitry and RF SAW and ceramic IF filters to be trimmed. The second image reject mixer down converts the first IF to the second IF. Data Sheet 18 V1.0, 2010-02-19 TDA5225 Functional Description The bandpass filter follows the subsequent formula: f center = f corner, low × f corner, high Therefore asymmetric corner frequencies can be observed. The use of AFC results in more symmetry. A multi-stage bandpass limiter at a center frequency of 274 kHz completes the receiver chain. The -3dB corner frequencies of the bandpass limiter are typically at 75 kHz and at 520 kHz. An RSSI generator delivers a DC signal proportional to the applied input power and is also used as an ASK demodulator. Via a programmable anti-aliasing filter this signal is converted to the digital domain by means of a 10-bit ADC. The limiter output signal is connected to a digital FSK demodulator. The immunity against strong interference frequencies (so called blockers) is determined by the available filter bandwidth, the filter order and the 3rd order intercept point of the front end stages. For Single-Channel applications with moderate requirements to the selectivity the performance of the on-chip 3rd order bandpass polyphase filter might be sufficient. In this case no external filters are necessary and a single down conversion architecture can be used, which converts the input signal frequency directly to the 2nd IF frequency of 274 kHz. IF Attenuation adjust RSSI Generator LP harm sup LP alias sup RX FSK Data digital FSK Demod ASK / RSSI ADC RX ASK Data Divider :N Channel Filter Bandwidth select 1st LO Figure 4 L im ite r QMix2 3 rd o rd e r B P /P P F 2 I F2 = 2 7 4 k H z IMix2 S D C S E L -M U X Q-Mix M IX 2 B U F ( va r. g a i n ) C E RF S E L - M UX IFB U F LNA PPF BU F MUX RX Input 2nd order PPF 1 0 .7 M H z I-Mix 2nd LO Single Down Conversion (SDC, no external filters required) For Multi-Channel applications or systems which demand higher selectivity the double down conversion scheme together with one or two external CER filters can be selected. The order of such ceramic filters is in a range of 3, so the selectivity is further improved and a better channel separation is guaranteed. Data Sheet 19 V1.0, 2010-02-19 TDA5225 Functional Description IF Attenuation adjust RSSI Generator LP harm sup LP alias sup RX FSK Data digital FSK Demod ASK / RSSI ADC RX ASK Data Divider :N Channel Filter Bandwidth select 1st LO Figure 5 L im ite r QMix2 3 r d o r d e r B P /P P F 2 IF2 = 2 7 4 k H z IMix2 S D C S E L -M U X Q-Mix M IX 2 B U F ( va r. g a in ) C E RF S E L-M UX CERFilter IF1 10.7 MHz IFB U F LNA PPFBUF MUX RX Input 2 nd ord er P P F 1 0 .7 M H z I-Mix 2nd LO Double Down Conversion (DDC) with one external filter For applications which demand very high selectivity and/or channel separation even two CER filters may be used. Also in applications where one channel requires a wider bandwidth than the other (e.g. TPMS and RKE) the second filter can be by-passed. IF Attenuation adjust Data Sheet RSSI Generator LP harm sup LP alias sup RX FSK Data digital FSK Demod ASK / RSSI ADC RX ASK Data Divider :N Channel Filter Bandwidth select 1st LO Figure 6 L im ite r QMix2 3 rd o rde r B P /P P F2 I F2 = 2 7 4 k H z IMix2 S D C S E L -M U X M IX 2 B U F ( va r. g a in ) CERFilter IF1 10.7 MHz optional C E RF S E L -M UX Q-Mix CERFilter IF1 10.7 MHz IFB U F LNA PPF BU F MUX RX Input 2nd order PPF 1 0 .7 M H z I-Mix 2nd LO Double Down Conversion (DDC) with two external filters 20 V1.0, 2010-02-19 TDA5225 Functional Description 2.4.4 Crystal Oscillator and Clock Divider The crystal oscillator is a Pierce type oscillator which operates together with the crystal in parallel resonance mode. An automatic amplitude regulation circuitry allows the oscillator to operate with minimum current consumption. In SLEEP Mode, where the current consumption should be as low as possible, the load capacitor must be small and the frequency is slightly detuned, therefore all internal trim capacitors are disconnected. The internal capacitors are controlled by the crystal oscillator calibration registers XTALCALx. With a binary weighted capacitor array the necessary load capacitor can be selected. Whenever a XTALCALx register value is updated, the selected trim capacitors are automatically connected to the crystal so that the frequency is precise at the desired value. The SFR control bit XTALHPMS can be used to activate the High Precision Mode also during SLEEP Mode. fsys 9 Setting automatically controlled ( ≤ 1pF steps ) XTALCAL0 XTALCAL1 Oscillator -Core XTAL1 Figure 7 Data Sheet Binary weighted Capacitor-Array Binary weighted Capacitor-Array (DGND) XTALHPMS XTAL2 Crystal Oscillator 21 V1.0, 2010-02-19 TDA5225 Functional Description Recommended Trimming Procedure • Set the registers XTALCAL0 and XTALCAL1 to the expected nominal values • Set the TDA5225 to Run Mode Slave • Wait for 0.5ms minimum • Trim the oscillator by increasing and decreasing the values of XTALCAL0/1 • Register changes larger than 1 pF are automatically handled by the TDA5225 in 1 pF steps • After the Oscillator is trimmed, the TDA5225 can be set to SLEEP mode and keeps these values during SLEEP mode • Add the settings of XTALCAL0/1 to the configuration. It must be set after every power up or brownout! Using the High Precision Mode As discussed earlier, the TDA5225 allows the crystal oscillator to be trimmed by the use of internal trim capacitors. It is also possible to use the trim functionality to compensate temperature drift of crystals. During Run Mode (always when the receiver is active) the capacitors are automatically connected and the oscillator is working in the High Precision Mode. On entering SLEEP Mode, the capacitors are automatically disconnected to save power. If the High Precision Mode is also required for SLEEP Mode, the automatic disconnection of trim capacitors can be avoided by setting XTALHPMS to 1 (enable XTAL High Precision Mode during SLEEP Mode). External Clock Generation Unit A built in programmable frequency divider can be used to generate an external clock source out of the crystal reference. The 20 bit wide division factor is stored in the registers CLKOUT0, CLKOUT1 and CLKOUT2. The minimum value of the programmable frequency divider is 2. This programmable divider is followed by an additional divider by 2, which generates a 50% duty cycle of the CLK_OUT signal. So the maximum frequency at the CLK_OUT signal is the crystal frequency divided by 4. The minimum CLK_OUT frequency is the crystal frequency divided by 221. To save power, this programmable clock signal can be disabled by the SFR control bit CLKOUTEN. In this case the external clock signal is set to low. Data Sheet 22 V1.0, 2010-02-19 TDA5225 Functional Description The resulting CLK_OUT frequency can be calculated by: CLKOUTEN CLKOUT2 CLKOUT1 CLKOUT0 f sys f CLKOUT = --------------------------------------------2 ⋅ divisionfactor Enable fsys Enable 2 x f C LK_OU T 20 Bit Counter Figure 8 Divide by 2 fC LK _OU T External Clock Generation Unit The maximum CLK_OUT frequency is limited by the driver capability of the PPx pin and depends on the external load connected to this pin. Please be aware that large loads and/or high clock frequencies at this pin may interfere with the receiver and reduce performance. After Reset the PPx pin is activated and the division factor is initialized to 11 (equals fCLK_OUT = 998 kHz). A clock output frequency higher than 1 MHz is not supported. For high sensitivity applications, the use of the external clock generation unit is not recommended. Data Sheet 23 V1.0, 2010-02-19 TDA5225 Functional Description 2.4.5 Sigma-Delta Fractional-N PLL Block The Sigma-Delta Fractional-N PLL is fully integrated on chip. The Voltage Controlled Oscillator (VCO) with on-chip LC-tank runs at approximately 3.6 GHz and is first divided with a band select divider by 1, 2 or 3 and then with an I/Q-divider by 4 which provides an orthogonal local oscillator signal for the first image reject mixer with the necessary high accuracy. The multi-modulus divider determines the channel selection and is controlled by a 3rd order Sigma-Delta Modulator (SDM). A type IV phase detector, a charge pump with programmable current and an on-chip loop filter closes the phase locked loop. To 1 st mixer 3.6 GHz VCO Loop Filter IQ Divider ÷4 Band Select ÷1/÷2/÷3 Multimodulus Divider Channel FN CP PFD ΣΔ Modulator QOSC 22MHz AFC filter AFC-data Figure 9 Data Sheet Synthesizer Block Diagram 24 V1.0, 2010-02-19 TDA5225 Functional Description When defining a Multi-Channel system, the correct selection of channel spacing is extremely important. A general rule is not possible, but following must be considered: • If an additional SAW filter is used, all channels including their tolerances have to be inside the SAW filter bandwidth. • The distance between channels must be high enough, that no overlapping can occur. Strong input signals may still appear as recognizable input signal in the neighboring channel because of the limited suppression of IF Filters. Example: a typical 330kHz IF filter has at 10.3 MHz ( 10.7 MHz - 0.4 MHz ) only 30 dB suppression. A -70 dBm input signal appears like a -100 dBm signal, which is inside the receiver sensitivity. In critical cases the use of two IF filters must be considered. See also Chapter 2.4.3 RF/IF Receiver. 2.4.5.1 PLL Dividers The divider chain consists of a band select divider 1/2/3, an I/Q-divider by 4 which provides an orthogonal 1st local oscillator signal for the first image reject mixer with the necessary high accuracy and a multi-modulus divider controlled by the Sigma-Delta Modulator. With the band select divider, the wanted frequency band is selected. Divide by 1 selects the 915 MHz and 868 MHz band, divide by 2 selects the 434 MHz band and divide by 3 selects the 315 MHz band. The ISM band selection is done via bit group BANDSEL in x_PLLINTC1 register. 2.4.5.2 Digital Modulator The 3rd order Sigma-Delta Modulator (SDM) has a 22 bit wide input word, however the LSB is always high, and is clocked by the XTAL oscillator. This determines the achievable frequency resolution. The Automatic Frequency Control Unit filters the actual frequency offset from the FSK demodulator data and calculates the necessary correction of the divider factor to achieve the nominal IF center frequency. Data Sheet 25 V1.0, 2010-02-19 TDA5225 Functional Description 2.4.6 ASK and FSK Demodulator B = 50..300kHz channel filter FM limiter image suppression / band limitation (noise) FSK PPF2 BP 2nd conversion 33 / 46 / 65 / 93 / 132 / 190 / 239 / 282 kHz (2sided PDF BW) RSSI FSK demodulator FSK demodulator AFC track/freeze AFC loop filter RF PLL ctrl FSK/ASK Rate adapter Demodulated Data Bypass Rate doubler Decimation 8 … 16 samples /chip (data rate dependent ) Temp VDDD/2 Mux ADC RSSI Slope RSSI Offset Dig. Gain Control Peak Memory Filter delog ASK buffer Div fSystem RSSI AGC RSSI Peak Detector register RSSIPMF register RSSIPWU (internal signal) Begin of config / channel , x*WULOT Figure 10 Analog Gain Control RSSIPWU register End of config/ channel > WU event TH, BL, BH Functional Block Diagram ASK/FSK Demodulator The IC comprises two separate demodulators for ASK and FSK. After combining FSK and ASK data path, a sampling rate adaptation follows to meet an output oversampling between 8 and 16 samples per chip. Finally, an oversampling of 8 samples per chip can be achieved using a fractional sample rate converter (SRC) with linear interpolation (for further details see Figure 15). 2.4.6.1 ASK Demodulator The RSSI generator delivers a DC signal proportional to the applied input power at a logarithmic scale (dBm) and is also used as an ASK demodulator. Via a programmable anti-aliasing filter this signal is converted to the digital domain by means of a 10-bit ADC. For the AM demodulation a signal proportional to the linear power is required. Therefore a conversion from logarithmic scale to linear scale is necessary. This is done in the digital domain by a nonlinear filter together with an exponential function. The analog RSSI signal after the anti-aliasing filter is available at the RSSI pin via a buffer amplifier. To enable this buffer the SFR control bit RSSIMONEN must be set. The anti-aliasing filter can be by-passed for visualization on the RSSI pin (see AAFBYP control bit). Data Sheet 26 V1.0, 2010-02-19 TDA5225 Functional Description 2.4.6.2 FSK Demodulator The limiter output signal, which has a constant amplitude over a wide range of the input signal, feeds the FSK demodulator. There is a configurable lowpass filter in front of the FSK demodulation to suppress the down conversion image and noise/limiter harmonics (FSK Pre-Demodulation Filter, PDF). This is realized as a 3rd order digital filter. The sampling rate after FSK demodulation is fixed and independent from the target data rate. 2.4.6.3 Automatic Frequency Control Unit (AFC) In front of the image suppression filter a second FSK demodulator is used to derive the control signal for the Automatic Frequency Control Unit, which is actually the DC value of the FSK demodulated signal. This makes the AFC loop independent from signal path filtering and allow so a wider frequency capture range of the AFC. The derivation of the AFC control signal is preferably done during the DC free preamble and is then frozen for the rest of the datagram. Since the digital FSK demodulator determines the exact frequency offset between the received input frequency and the programmed input center frequency of the receiver, this offset can be corrected through the sigma delta control of the PLL. As shown in Figure 10, for AFC purposes a parallel demodulation path is implemented. This path does not contain the digital low pass filter (PDF, Pre-Demodulation Filter). The entire IF bandwidth, filtered by the analog bandpass filter only, is processed by the AFC demodulator. There are two options for the active time of the AFC loop: • • 1. always on 2. active for a programmable time relative to a signal identification event In the latter case the AFC can either be started or frozen relative to the signal identification. After the active time the offset for the sigma-delta PLL (SD PLL) is frozen. The programming of the active time is especially necessary in case the expected frame structure contains a gap (noise) between wake-up and payload in order to avoid the AFC from drifting. AFC works both for FSK and ASK. In the latter case the AFC loop only regulates during ASK data = high. The maximum frequency offset generated by the AFC can be limited by means of the x_AFCLIMIT register. This limit can be used to avoid the AFC from drifting in the presence of interferers or when no RF input signal is available (AFC wander). A maximum AFC limit of 42 kHz is recommended. AFC wandering needs to be kept in mind especially when using Run Mode Slave. Data Sheet 27 V1.0, 2010-02-19 TDA5225 Functional Description K1 = integrator1 gain x_AFCLIMIT x_AFCK1CFG0/1 integrator 1 K1 x16 limit + AFC Demod out integrator 2 hold K2 x4 limit SDPLL scaling & limiting FreqOffset HOLD hold Freeze* / Track Delay x_AFCK2CFG0/1 x_AFCAGCD K2 = integrator 2 gain Figure 11 AFC Loop Filter (I-PI Filtering and Mapping) The bandwidth (and thus settling time) of the loop is programmed by means of the integrator gain coefficients K1 and K2 (x_AFCK1CFG and x_AFCK2CFG register). K1 mainly determines the bandwidth. K2 influences the dynamics/damping (overshoot) - smaller K2 means smaller overshoot, but slower dynamics. The bandwidth of the AFC loop is approximately 1.3*K1. To avoid residual FM, limiting the AFC BW to 1/20 ~ 1/40 of the bit rate is suggested, therefore K1 must be set to approximately 1/50 ~ 1/100 of the bit rate. For most applications K2 can be set equal to K1 (overshoot is then <25%). When very fast settling is necessary K1 and K2 can be increased up to bit rate/10, however, in this case approximately 1dB sensitivity loss is to be expected due to the AFC counteracting the input FSK signal. AFC limitation at Local Oscillator (LO) frequencies at multiples of reference frequency (f_xtal). When AFC is activated and AFC drives the wanted LO frequency over the integer limit of Sigma Delta (SD) modulator, the SD modulator stucks at frac=1.0 or frac=0.0 due to saturation. So when AFC can change the integer value for the LO (register x_PLLINTCy) within the frequency range LO-frequency +/- AFC-limit, a change of the LO injection side or a smaller AFC-limit is recommended. The frequency offset found by AFC (AFC loop filter output) can be readout via register AFCOFFSET, when AFC is activated. The value is in signed representation and has a frequency resolution of 2.68 kHz/digit. The output can be limited by the x_AFCLIMIT register. Data Sheet 28 V1.0, 2010-02-19 TDA5225 Functional Description 2.4.6.4 Digital Automatic Gain Control Unit (AGC) Automatic Gain Control (AGC) is necessary mainly because of the limited dynamic range of the on-chip bandpass filter (BPF). The dynamic range reduces to less than 60dB in case of minimum BPF bandwidth. AGC is used to cover the following cases: 1. ASK demodulation at large input signals 2. RSSI reading at large input signals 3. Improve IIP3 performance in either FSK or ASK mode The 1st IF buffer (PPFBUF, see Figure 3) can be fine tuned "manually" by means of 4 bits thus optimizing the overall gain to the application (attenuation of 0dB to -12dB by means of IFATT0 to IFATT15 in DDC mode; SDC mode has lower IFATT range). This buffer allows the production spread of external components to be trimmed. The gain of the 2nd IF path is set to three different values by means of an AGC algorithm. Depending on whether the receiver is used in single down conversion or in double down conversion mode the gain control in the 2nd IF path is either after the 2nd poly-phase network or in front of the 2nd mixer. The AGC action is illustrated in the RSSI curve below: Analog (blue) & digital (black ) RSSI output Mixer2 saturation BPF bypassed AGC OFF Max. B W BPF saturation AGC ON Min. B W margin Analog AGC attack point hysteresis Analog AGC decay point Max. B W Front- end noise x gain Max . FE gain (IFA TT 0) Min. B W Min. FE gain (IFA TT 15) AGCTUP Data Sheet AGCTLO AGCTHOFFS Figure 12 AGCHYS AGCHYS Limiter noise floor Input power Analog RSSI output curve with AGC action ON (blue) vs. OFF (black) 29 V1.0, 2010-02-19 TDA5225 Functional Description Digital RSSI, AGC and Delog: In order to match the analog RSSI signal to the digital RSSI output a correction is necessary. It adds an offset (RSSIOFFS) and modifies the slope (RSSISLOPE) such that standardized AGC levels and an appropriate DELOG table can be applied. Upon entering the AGC unit the digital RSSI signal is passed through a Peak Memory Filter (PMF). This filter has programmable up and down integration time constants (PMFUP, PMFDN) to set attack respectively decay time. The integration time for decay time must be significantly longer than the attack time in order to avoid the AGC interfering with the ASK modulation. The integrator is followed by two digital Schmitt triggers with programmable thresholds (AGCTLO; AGCTUP) - one Schmitt trigger for each of the two attack thresholds (two digital AGC switching points). The hysteresis of the Schmitt triggers is programmable (AGCHYS) and sets the decay threshold. The Schmitt triggers control both the analog gain as well as the corresponding (programmable) digital gain correction (DGC). The difference ("error") signal in the PMF is actually a normalized version of the modulation. This signal is then used as input for the DELOG table. AGC threshold programming The SFR description for the AGC thresholds are in dBs. The first value to set is the AGC threshold offset in AGCTHOFFS. This value is the offset relative to 0 input (no noise, no signal), which for the default setting of gain, and assuming typical insertion loss of matching network and ceramic filter, can be extrapolated to be approximately -143dBm. In this case the default setting of the AGCTHOFFS of 63.9dB corresponds to an input power of approximately -79dBm (= -143dBm + 63.9dB). The low (digital) AGC threshold is then -79 + 12.8dB (default AGCTLO) = -66dBm and the upper (digital) AGC threshold is -79 + 25.6 (default AGCTUP) = -53dBm. Therefore a margin of about 6dB is indicated before a degradation of the linearity of the 2nd IF can be observed when using the 50kHz BPF or even about 16dB when using the 300kHz BPF. The input power level at which the AGC switches back to maximum gain is -66dBm 21.3dB (default AGCHYS) = -87dBm. This provides enough margin against the minimum sensitivity. Data Sheet 30 V1.0, 2010-02-19 TDA5225 Functional Description When AGC is activated, RSSI is untrimmed, IFATT <= 5.6dB and the same RSSI offset should be applied for all bandpass filter settings, then the settings in Table 2 can be applied, where a small reduction of the RSSI input range can be observed. Table 2 AGC Settings 1 AGC Threshold Hysteresis = 21.3 dB AGC Digital RSSI Gain Correction = 15.5 dB AGC AGC AGC Threshold Threshold Threshold Offset Low Up BPF RSSI Offset Compensation (untrimmed) 1) 300 kHz 32 63.9 dB 8 4 5 dB 200 kHz 32 63.9 dB 6 2 5 dB 125 kHz 32 63.9 dB 5 0 5 dB 80 kHz 32 51.1 dB 11 6 2.8 dB 50 kHz 32 51.1 dB 9 5 0 dB RSSI Input Range Reduction 1) Note: This value needs to be used for calculating the register value For the full RSSI input range, the values in Table 3 can be applied. Table 3 AGC Settings 2 AGC Threshold Hysteresis = 21.3 dB AGC Digital RSSI Gain Correction = 15.5 dB AGC AGC AGC Threshold Threshold Threshold Offset Low Up BPF RSSI Offset Compensation (untrimmed) 1) 300 kHz -18 63.9 dB 5 1 200 kHz -18 51.1 dB 11 7 125 kHz -18 51.1 dB 10 5 80 kHz 4 51.1 dB 9 5 50 kHz 32 51.1 dB 9 5 1) Note: This value needs to be used for calculating the register value Data Sheet 31 V1.0, 2010-02-19 TDA5225 Functional Description Attack and Decay coefficients PMF-UP & PMF-DOWN: The settling time of the loop is determined by means of the integrator gain coefficients PMFUP and PMFDN, which need to be calculated from the wanted attack and decay times. The ADC is running at a fixed sampling frequency of 274kHz. Therefore the integrator is integrating with PMFUP*274k per second, i.e. time constant is 1/(PMFUP*274k). The attack times are typically 16 times faster than the decay times. Typical calculation of the coefficients by means of an example: • • PMFUP = 2^-round( ln(AttTime / BitRate * 274kHz) / ln(2) ) PMFDN = 2^-round( ln(DecTime / BitRate * 274kHz) / ln(2) ) / PMFUP where AttTime, DecTime = attack, decay time in number of bits Note: PMFDN = overall_PMFDN / PMFUP Example: BitRate = 2kbps AttTime = 0.1 bits => PMFUP = 2^-round(ln(0.1bit/2kbps*274kHz)/ln(2)) = 2^-round(3.8) = 2^-4 DecTime = 2 bits => PMFDN = 2^-round(ln(2bit/2kbps*274kHz)/ln(2))/PMFUP = 2^-round(8.1)/2^-4 = 2^-4 Note: In case of ASK with large modulation index the attack time (PMFUP) can be up to a factor 2 slower due to the fact that the ASK signal has a duty cycle of 50% - during the ASK low duration the integrator is actually slightly discharged due to the decay set by PMFDN. The AGC start and freeze times are programmable. The same conditions can be used as in the corresponding AFC section above. They will however, be programmed in separate SFR registers. Data Sheet 32 V1.0, 2010-02-19 TDA5225 Functional Description 2.4.6.5 Analog to Digital Converter (ADC) In front of the AD converter there is a multiplexer so that also temperature and VDDD can be measured (see Figure 10). The default value of the ADC-MUX is RSSI (register ADCINSEL: 000 for RSSI; 001 for Temperature; 010 for VDDD/2). After switching ADC-MUX to a value other than RSSI in SLEEP Mode, the internal references are activated and this ADC start-up lasts 100µs. So after this ADC start-up time the readout measurements may begin. The chip stays in this mode until reconfiguration of register ADCINSEL to setting RSSI. However, it is recommended to measure temperature during SLEEP mode (This is also valid for VDDD). Readout of the 10-bit ADC has to be done via ADCRESH register (the lower 2 bits in ADCRESL register can be inconsistent and should not be used). Typical the ADC refresh rate is 3.7 µs. Time duration between two ADC readouts has to be at least 3.7 µs, so this is already achieved due to the maximum SPI rate (16 bit for SPI command and address last 8µs at an SPI rate of 2MBit/s). The EOC bit (end of conversion) indicates a successful conversion additionally. Repetition of the readout measurement for several times is for averaging purpose. The input voltage of the ADC is in the range of 1 .. 2 V. Therefore VDDD/2 (= 1.65 V typical) is used to monitor VDDD. Further details on the measurement and calibration procedure for temperature and VDDD can be taken from the corresponding application note. Data Sheet 33 V1.0, 2010-02-19 TDA5225 Functional Description 2.4.7 RSSI Peak Detector The IC possesses digital RSSI peak level detectors. The RSSI level is averaged over 4 samples before it is fed to the peak detectors. This prevents the evaluated peak values to be dominated by single noise peaks. f sys ADC Sampling Clock Generation Divide by 4 fAD C Integrate A from RSSI Generator RSSI Slope D fAD C/4 Dump RSSI I&D Averaging Filter RSSI Offset Compare Peak Detector Update Peak Value RSSIPRX Load RX_RUN & to ASK path Read Access to Register RSSIPRX from FSM from SPI Controller RSSIRX Figure 13 Peak Detector Unit Peak Detector is used to measure RSSI independent of a data transfer and to digitally trim RSSI. It is read via SFR RSSIPRX. Observation of the RSSI signal is active whenever the RX_RUN signal is high. The RSSIPRX register is refreshed and the Peak Detector is reset after every read access to RSSIPRX. It may be required to read RSSIPRX twice to obtain the required result. This is because, for example, during a trim procedure in which the input signal power is reduced, after reading RSSIPRX, the peak detector will still hold the higher RSSI level. After reading RSSIPRX the lower RSSI level is loaded into the Peak Detector and can be read by reading RSSIPRX again. Register RSSIPRX should not be read-out faster than 41µs in case AGC is ON (as register value would not represent the actual, but a lower value). When the RX_RUN signal is inactive, a read access has no influence to the peak detector value. The register RSSIPRX is reset to 0 at power up reset. Peak Detector Wake-Up RSSIPWU (see Figure 10) is used to measure the input signal power during Wake-Up search. The internal signal RSSIPWU gets initialized to 0 at start of the first observation time window at the beginning of each configuration/channel. The peak value of this signal is tracked during Wake-Up search. Data Sheet 34 V1.0, 2010-02-19 TDA5225 Functional Description In case of a Wake-Up, the actual peak value is written in the RSSIPWU register. Even in case no Wake-Up occurred, actual peak value is written in the RSSIPWU register at the end of the actual configuration/channel of the Self Polling period. So if no Wake-Up occurred, then the RSSIPWU register contains the peak value of the last configuration/channel of the Self Polling period, even in a Multi-Configuration/MultiChannel setup. This functionality can be used to track RSSI during unsuccessful WakeUp search due to no input signal or due to blocking RSSI detection. For further details please refer to Chapter 2.4.8.2 Wake-Up Generator and Chapter 2.6.2 Polling Timer Unit. Input Data Pattern Noise Run-In Data Noise Run-In Data SPI read out RSSIPRX internal RSSIPRX = RSSIPRX Register internal RSSI SPI Reset Figure 14 Peak Detector Behavior Recommended Digital Trimming Procedure • • • • • • • • • • Download configuration file (Run Mode Slave; RSSISLOPE, RSSIOFFS set to default, i.e. RSSISLOPE=1, RSSIOFFS=0) Turn off AGC (AGCSTART=0) and set gain to AGCGAIN=0 Apply PIN1 = -85 dBm RF input signal Read RSSIRX eleven times (minimum 10 ms in-between readings), use average of last ten readings (always), store as RSSIM1 Apply PIN2 = -65 dBm RF input signal Read RSSIRX eleven times (minimum 10 ms in-between readings), use average of last ten readings (always), store as RSSIM2 Calculate measured RSSI slope SLOPEM=(RSSIM2-RSSIM1)/(PIN2-PIN1) Adjust RSSISLOPE for required RSSI slope SLOPER as follows: RSSISLOPE=SLOPER/SLOPEM Adjust RSSIOFFS for required value RSSIR2 at PIN2 as follows: RSSIOFFS=(RSSIR2-RSSIM2)+(SLOPEM-SLOPER)*PIN2 The new values for RSSISLOPE and RSSIOFFS have to be added to the configuration! Data Sheet 35 V1.0, 2010-02-19 TDA5225 Functional Description Notes: 1. The upper RF input level must stay well below the saturation level of the receiver (see Chapter 2.4.6.4 Digital Automatic Gain Control Unit (AGC)) 2. The lower RF input level must stay well above the noise level of the receiver 3. If IF Attenuation is trimmed, this has to be done before trimming of RSSI 4. If RSSI needs to be trimmed in a higher input power range the AGCGAIN must be set accordingly 2.4.8 Digital Baseband (DBB) Receiver adjust_length SRC bypass 8 to 16 samples per chip Matched Filter fractional SRC From ASK/ FSK Demodulator fs out / fs in = 0.5 … 1.0 MUX RAW Data Slicer for external processing SIGN Data Invert DINVEXT DATA (Sliced RAW Data for external processing ) Figure 15 Data Invert DATA_MATCHFIL (Matched Filtered Data for external processing ) Functional Block Diagram Digital Baseband Receiver The digital baseband receiver comprises a matched data filter and a data slicer. The received data signal is accessible via one of the port pins. 2.4.8.1 Data Filter The data filter is a matched filter (MF). The frequency response of a matched filter has ideally the same shape as the power spectral density (PSD) of the originally transmitted signal, therefore the signal-to-noise ratio (SNR) at the output of the matched filter becomes maximum. The input sampling rate of the baseband receiver has to be Data Sheet 36 V1.0, 2010-02-19 TDA5225 Functional Description between 8 and 16 samples per chip. The oversampling factor within this range is depending on the data rate (see Figure 10). The MF has to be adjusted accordingly to this oversampling. After the MF a fractional sample rate converter (SRC) is applied using linear interpolation. Depending on the data rate decimation is adjusted within the range 1...2. Finally, at the output of the fractional SRC the sampling rate is adjusted to 8 samples per chip for further processing. 2.4.8.2 Wake-Up Generator A wake-up generation unit is used only in the Self Polling Mode for the detection of exceeding a predefined level for RSSI, which then leads to a wake-up and to a change to Run Mode Self Polling. A configurable observation time for Wake-up on RSSI can be set in the x_WULOT register. The Wake-up on RSSI criterion can be handled very quickly for FSK modulation, while in case of ASK the nature of this modulation type has to be kept in mind. RSSI Level WU x_WURSSIBHy Exceeding Threshold Compare x_WURSSIBLy Wake-up Generation FSM No WU x_WURSSITHy Figure 16 Wake-Up Generation Unit The threshold x_WURSSITHy is used to decide whether the actual signal is a wanted signal or just noise. Any kind of interfering RSSI level can be blocked by using an RSSI blocking window. This window is determined by the thresholds x_WURSSIBLy and x_WURSSIBHy, where y represents the actual RF channel. These two thresholds can be evaluated during normal operation of the application to handle the actual interferer environment. The blocking window can be disabled by setting x_WURSSIBHy to the minimum value and x_WURSSIBLy to the maximum value. Data Sheet 37 V1.0, 2010-02-19 TDA5225 RSSI magnitude Functional Description wanted signal x_WURSSIBHy interferer x_WURSSIBLy wanted signal x_WURSSITHy noise floor Figure 17 RSSI Blocking Thresholds Threshold evaluation procedure A statistical noise floor evaluation using read register RSSIPMF (RMS operation) leads to the threshold x_WURSSITHy. The interferer thresholds x_WURSSIBLy and x_WURSSIBHy are disabled when they are set to their default values. For evaluation of the interferer thresholds, either use register RSSIPMF for RMS operation or during SPM and WU (Wake-Up) on RSSI use register RSSIPWU to statistically evaluate the interferer band. Finally the thresholds x_WURSSIBLy and x_WURSSIBHy can be set. Further details can be seen in Figure 10, Chapter 2.4.7 RSSI Peak Detector and Chapter 2.6.2.2 Constant On-Off Time (COO). NOTE: If e.g. an interferer ends/starts too close after/to the beginning/end of the observation time, then a decision level error can arise. This is due to the filter dynamics (settling time). Further, for interferer thresholds evaluation in SPM this changes interferer statistics. Several interferer measurements are recommended to suppress this, what makes sense anyway for a better distribution. Data Sheet 38 V1.0, 2010-02-19 TDA5225 Functional Description 2.4.9 Power Supply Circuitry The chip may be operated within a 5 Volts or a 3.3 Volts environment. VDD5V En able IN En able IN Voltage Regulator 5 → 3.3 V RX_RUN OUT Voltage Regulator 5 → 3.3 V OUT VDDA VDDD E nable IN Analog Section RF Section Voltage Regulator 3.3 → 1.5 V Digital-I/O OUT GNDA VDDD1V5 E na ble GNDRF P_ON Power-Up ResetCircuit Internal Reset Digital-Core Brownout Detector GNDD Figure 18 Power Supply For operation within a 5 Volts environment (supply voltage range 1), the chip is supplied via the VDD5V pin. In this configuration the digital I/O pads are supplied via VDD5V and a 5 V to 3.3 V voltage regulator supplies the analog/RF section (only active in Run Modes). When operating within a 3.3 Volts environment (supply voltage range 2), the VDD5V, VDDA and VDDD pins must be supplied. The 5 V to 3.3 V voltage regulators are inactive in this configuration. The internal digital core is supplied by an additional 3.3 V to 1.5 V regulator. The regulators for the digital section are controlled by the signal at P_ON (Power On) pin. A low signal at P_ON disables all regulators and set the IC in Power Down Mode. A low to high transition at P_ON enables the regulators for the digital section and initiates a power on reset. The regulator for the analog section is controlled by the Master Control Unit and is active only when the RF section is active. To provide data integrity within the digital units, a brownout detector monitors the digital supply. In case a voltage drop of VDDD below approximately 2.45 V is detected a RESET will be initiated. Data Sheet 39 V1.0, 2010-02-19 TDA5225 Functional Description A typical power supply application for a 3.3 Volts and a 5 Volts environment is shown in the figure below. *) 22Ω 4.7Ω TDA5225 4.7Ω TDA5225 10Ω VDD5V VDDA VDD5V VDDD VDDA 100n 100n 100n GNDRF Supply -Application in 3.3V environment *) 1μ 100n GNDA GNDD 5V 100n VDDD1V5 100n GNDA VDDD 100n 100n VDDD1V5 GNDRF 3.3V GNDD Supply-Application in 5V environment *) When operating in a 5V environment, the voltage-drop across the voltage regulators 5 Æ 3.3V has to be limited , to keep the regulators in a safe operating range. Resistive or capacitive loads (in excess to the scheme shown above) on pins VDDA and VDDD are not recommended. Figure 19 Data Sheet 3.3 Volts and 5 Volts Applications 40 V1.0, 2010-02-19 TDA5225 Functional Description 2.4.9.1 Supply Current In SLEEP Mode, the Master Control Unit switches the crystal oscillator into Low Power Mode (all internal load capacitors are disconnected) to minimize power consumption. This is also valid for Self Polling Mode during Off time (SPM_OFF). Whenever the chip leaves the SLEEP Mode/SPM_OFF (t1), the crystal oscillator resumes operation in High Precision Mode and requires tCOSCsettle to settle at the trimmed frequency. At t2 the analog signal path (RF and IF section) and the RF PLL are activated. At t3 the chip is ready to receive data. The chip requires tRXstartup when leaving SLEEP Mode/SPM_OFF until the receiver is ready to receive data. A transient supply current peak may occur at t1, depending on the selected trimming capacitance. The average supply current drawn during tRFstartdelay is IRF-FE-startup,BPFcal. Run Mode*) SLEEP Mode**) SPM OFF Time RX_RUN Signal Supply Current I Run IRF-FE-startup ,BPFcal Isleep_low t1 t2 t3 t tRFstartdelay tCOSCsettle tRXstartup (To ff ) Ton (Toff ) *) Run Mode covers the global chip states : Run Mode Slave/ Receiver active in Self Polling Mode/ Run Mode Self Polling **) Isleep_low is valid in the chip states: SLEEP / Off time during Self Polling Mode Figure 20 Supply Current Ramp Up/Down If the IF buffer amplifier or the clock generation feature (PPx pin active) are enabled, the respective currents must be added. Data Sheet 41 V1.0, 2010-02-19 TDA5225 Functional Description 2.4.9.2 Chip Reset Power down and power on are controlled by the P_ON pin. A LOW at this pin keeps the IC in Power Down Mode. All voltage regulators and the internal biasing are switched off. A high transition at P_ON pin activates the appropriate voltage regulators and the internal biasing of the chip. A power up reset is generated at the same time. Supply Voltage at VDDD Pin 3V Reset- / BrownoutThreshold (typ . 2.45V) Functional Threshold (typ . 2V) t tR eset Internal Reset Voltage at PP2 Pin (NINT Signal) 3V Reset- / BrownoutThreshold (typ . 2.45V) Functional Threshold (typ . 2V) Level on NINT signal is undefined Supply voltage falls below Reset- / Brownout-Threshold Supply voltage falls below Functional- Threshold A ‚LOW’ is generated at NINT signal Figure 21 A ‚LOW’ is generated at PP2 pin (NINT signal) Supply voltage rises above Functional-Threshold t A ‚HIGH’ is generated at PP2 pin (NINT signal) µC reads InterruptStatus-Register A ‚LOW’ is generated at PP2 pin (NINT signal) Reset Behavior A second source that can trigger a reset is a brownout event. Whenever the integrated brownout detector measures a voltage drop below the brownout threshold on the digital Data Sheet 42 V1.0, 2010-02-19 TDA5225 Functional Description supply, the integrity of the stored data and configuration can no longer be guaranteed; thus a reset is generated. While the supply voltage stays between the brownout and the functional threshold of the chip, the NINT signal is forced to low. When the supply voltage drops below the functional threshold, the levels of all digital output pins are undefined. When the supply voltage raises above the brownout threshold, the IC generates a high pulse at NINT and remains in the reset state for the duration of the reset time. When the IC leaves the reset state, the Interrupt Status registers (IS0 and IS1) are set to 0xFF and the NINT signal is forced to low. Now, the IC starts operation in the SLEEP Mode, ready to receive commands via the SPI interface. The NINT signal will go high, when one of the Interrupt Status registers is read for the first time. Data Sheet 43 V1.0, 2010-02-19 TDA5225 Functional Description 2.5 System Interface In all applications, the TDA5225 receiver IC is attached to an external microcontroller. This so-called Application Controller executes a firmware which governs the TDA5225 by reading data from the receiver when data has been received on the RF channel and by configuring the receiver device. The TDA5225 features an easy to use System Interface, which is described in this chapter. The TDA5225 supports the so-called Transparent Mode, which provides a rather rudimentary interface by which the incoming RF signal is demodulated and the corresponding data is made available to the Application Controller. The usage of the Transparent Mode will be described in Chapter 2.5.1.2. 2.5.1 Interfacing to the TDA5225 The TDA5225 is interfacing with an application by three logical interfaces, see Figure 22. The RF/IF interface handles the reception of RF signals and is responsible for the demodulation. Its physical implementation has been described in Chapter 2.4.3 and Chapter 2.4.8, respectively. The other two logical interfaces establish the connection to the Application Controller. For the sake of clarity, the communication between the TDA5225 and the Application Controller is split into control flow and data flow. This separation leads to an independent definition of the data interface and the control interface, respectively. dig. Out data interface RX data RF interface SPI & dig. Out TDA5225 configuration status & alerts Application Controller (µC) control interface Figure 22 Data Sheet Logical and electrical System Interfaces of the TDA5225 44 V1.0, 2010-02-19 TDA5225 Functional Description 2.5.1.1 Control Interface The control interface is used in order to configure the TDA5225 after start-up or to reconfigure it during run-time, as well as to properly react on changes in the status of the receiver in the Application Controller’s firmware. The control interface offers a bidirectional communication link by which • • • configuration data is sent from the Application Controller to the TDA5225, the receiver provides status information (e.g. information about the source of a received data stream, by reading out the interrupt status registers) as response to a request it has received from the Application Controller, and the TDA5225 autonomously alerts the Application Controller that a certain, configurable event has occurred (e.g. that a received signal is above a certain power level). Configuration and status information are sent via the 4-wire SPI interface as described in Chapter 2.5.4. The configuration data determines the behavior of the receiver, which comprises • • • scheduling the inactive power-saving phases as well as the active receive phases, selecting the properties of the RF/IF interface configuration (e.g. carrier frequency selection, filter settings), configuring the properties of a received message (e.g. if the received signal strength is above a certain configurable RSSI threshold level). Note that the TDA5225 receiver IC supports reception of multiple configuration sets on multiple channels in a time-based manner without reconfiguration. Thus, the RF/IF interface as well as the message properties support alternative settings, which can be activated autonomously by the receiver as part of the scheduling process. In contrast to the high-level interface used for communicating configuration instructions and status information, alerts are emitted by the receiver on a digital output pin that may trigger external interrupts in the Application Controller. Note that the alerting conditions as well as the polarity of the output pin are configurable, see Chapter 2.5.3. 2.5.1.2 Data Interface The data interface between the Application Controller and the TDA5225 receiver IC is used for the transport of the received data, see Figure 22. The features of the data interface depend on the selected mode of operation. There are two possible receive modes: • • Transparent Mode - Matched Filter (TMMF) Transparent Mode - Raw Data Slicer (TMRDS) Access points for these receive modes can be seen in Figure 15. Data Sheet 45 V1.0, 2010-02-19 TDA5225 Functional Description Transparent Mode - Matched Filter (TMMF) The received data after the Matched Filter (Two-Chip Matched Filter) with an additional SIGN function is provided via the DATA_MATCHFIL signal (PPx pin). In this mode sensitivity measurements with ideal data clock can be performed very simple. For further details see the block diagram in Figure 15. Sensitivity in this transparent mode is significantly depending on the implemented clock and data recovery algorithm of the user software in the application controller. data interface RF Interface RX data Application Controller TDA5225 scheduler Figure 23 Data interface for the Transparent Mode Transparent Mode - Raw Data Slicer (TMRDS) This mode supports processing of data even without bi-phase encoding (e.g. NRZ encoding) by providing the received data via the One-Chip Matched Filter on the DATA signal (PPx pin). See more details in the block diagram in Figure 15. Sensitivity in this transparent mode is significantly depending on the implemented clock and data recovery algorithm of the user software in the application controller. The data interface can be seen from Figure 23. Self Polling capabilities are possible as well, so Constant On-Off Mode and Wake-up on RSSI can be used. See also example for Configuration B in Figure 24. The needed On time (latency through TDA5225) is configured in the corresponding On time registers of the chip. The interrupt for Wake-Up Config B (WUB) is enabled and suitable RSSI thresholds are set. If the RSSI signal is in a valid threshold area, the TDA5225 changes to Run Mode Self Polling and an interrupt can be signaled to the Application Controller. In case the RSSI signal is outside the valid threshold area, the chip stays in Self Polling Mode and the external controller gets no interrupt (as the desired RSSI level is not reached). Data Sheet 46 V1.0, 2010-02-19 TDA5225 Functional Description When the actual processed configuration is the last configuration before the Off time, then the next programmed channel within the polling cycle would be the sequence of the Off time. When data is available and the RSSI is within a valid threshold area, an interrupt is generated (NINT). So the Application Controller can process the data and decide about valid data. In case the controller decides that wrong data was sent, the microcontroller can send the register command "EXTTOTIM" (see Figure 43 and EXTPCMD register). When the microcontroller detects valid data, then the controller can send the register command "EXTEOM found" (see Figure 43 and EXTPCMD register) after completing the data reception. The functionality described above can also be used for the receive mode TMMF, where the external microcontroller takes on responsibility for further data processing. Good input signal Wrong input signal No input signal SelfPolling Mode SelfPolling scenario Sleep Mode Figure 24 Data Sheet ConfigA ConfigB OFF-time RSSI level too low Î Chip stays in Self Polling Mode and sends no interrupt Interrupt signal for RSSI RunMode SelfPolling SelfPolling / Sleep Interrupt signal for RSSI RunMode SelfPolling µC detects invalid data and sends „EXTTOTIM“Î goto SPM SelfPolling / Sleep Interrupt signal for RSSI µC finished data reception, sends „EXTEOM found“ RunMode SelfPolling SelfPolling / Sleep External Data Processing 47 V1.0, 2010-02-19 TDA5225 Functional Description 2.5.2 Digital Output Pins As long as the P_ON pin is high, all digital output pins operate as described. If the P_ON pin is low, all digital output pins are switched to high impedance mode. The digital outputs PP0, PP1, PP2 and PP3 are configurable, where each of the signals CLK_OUT, RX_RUN, NINT, a LOW level (GND) and a HIGH level, DATA and DATA_MATCHFIL can be routed to any of the four output pins. There is only one exception, CLK_OUT is not available on PP3. The default configuration for these four output pins can be seen in Table 1. Each port pin can be inverted by usage of PPCFG2 register. The RX_RUN signal is active high for all Configurations by default. It can be deactivated for every Configuration separately. Every PPx can be configured with an individual RX_RUN setup. This can be set in RXRUNCFG0 and RXRUNCFG1 registers. Interfacing to 3.3V Logic: The TDA5225 is able to interface directly to a 3.3V logic, when chip is operated in 3.3V environment. Interfacing to 5V Logic: The TDA5225 is able to interface directly to a 5V logic, when chip is operated in 5V environment. EMC Reduction of Digital I/Os: Because electromagnetic distortion generated by digital I/Os may interfere with the high sensitivity radio receiver, it is recommended that all inputs are filtered by adding an RC low pass circuit. 2.5.3 Interrupt Generation Unit The TDA5225 is able to signal interrupts (NINT signal) to the external Application Controller on one of the PPx port pins (for further details see Chapter 2.5.2 Digital Output Pins). The Interrupt Generation Unit receives all possible interrupts and sets the NINT signal based on the configuration of the Interrupt Mask registers (IM0 and IM1). The Interrupt Status registers (IS0 and IS1) are set from the Interrupt Generation Unit, depending on which interrupt occurred. The polarity of the interrupt can be changed in the PPCFG2 register. Please note that during power up and brownout reset, the polarity of NINT signal is always as described in Chapter 2.4.9.2 Chip Reset. A Reset event has the highest priority. It sets all bits in the Status registers to “1” and sets the interrupt signal to “0”. The first interrupt after the Reset event will clear the Status registers and will set the interrupt signal to “1”, even if this interrupt is masked. An WU interrupt clears the complementary flags for WU. Data Sheet 48 V1.0, 2010-02-19 TDA5225 Functional Description The Interrupt Status register is always cleared after read out via SPI. WU Cfg A WUA WU Cfg B WUB WU Cfg C WUC WUD WU Cfg D Power-Up / Brownout It is not possible to disable the Power On Reset Indicator Interrupt using the Interrupt Mask registers. Interrupt-Mask IS1 + IS0 IM1 + IM0 NINT Reset Interrupt-Signalling NINT signal Figure 25 Interrupt Generation Unit RESET PP2_select=NINT PP2INV SPI READ IS0 IS0 X FF 01 10 00 PP2(NINT) WU(A,B) ConfigA Figure 26 Data Sheet ConfigB Interrupt Generation Waveform (Example for Configuration A+B) 49 V1.0, 2010-02-19 TDA5225 Functional Description The following handling mechanism for read-clear registers was chosen due to implementation of the Burst Read command: • • the current Interrupt Status (ISx) register 8-bit content is latched into the SPI shift register after the last address bit is clocked-in (point A in Figure 27) the IS register is then cleared after last IS register bit is clocked out of the SPI interface (point B in Figure 27) Consequence: any interrupt event occurring in the window-time between points A and B is cleared at point B and not stored/shown in an later readout of ISx. (However: NINT signal is toggling in any case, if occurring interrupt is not masked in IMx register) A B 8-bit @2MHz = 4us irq1 (masked?) irq2 (masked?) nint ncs SPI IF inst addr read /readb data = IS(t+0) read/capture IS* content SFR IS* IS(t-1) IS(t+0) SFR IS* read clear @end of data frame IS(t+1) 0x00 NOTE: SFR IS(j) status flag is cleared before it can be read if an IRQ occurs during SPI data frame Figure 27 ISx Readout Set Clear Collision Please see also the IMPORTANT NOTE in the Burst Read section ! Data Sheet 50 V1.0, 2010-02-19 TDA5225 Functional Description 2.5.4 Digital Control (4-wire SPI Bus) The control interface used for device control is a 4-wire SPI interface. • • • • NCS - select input, active low SDI - data input SDO - data output SCK - clock input: Data bits on SDI are read in at rising SCK edges and written out on SDO at falling SCK edges. Level definition: logic 0 = low voltage level logic 1 = high voltage level Note for non-Burst modes: It is possible to send multiple frames while the device is selected. It is also possible to change the access mode while the device is selected by sending a different instruction. Note: In all bus transfers MSB is sent first. To read from the device, the SPI master has to select the SPI slave unit first. Therefore, the master must set the NCS line to low. After this, the instruction byte and the address byte are shifted in on SDI and stored in the internal instruction and address register. The data byte at this address is then shifted out on SDO. After completing the read operation, the master sets the NCS line to high. NCS Frame 1 8 1 Frame 8 1 8 1 8 1 8 1 8 SCK Instruction SDI SDO Register Address Instruction I7 I6 I5 I4 I3 I2 I1 I0 A7 A6 A5 A4 A3 A2 A1 A0 high impedance Z Figure 28 Data Sheet Register Address I7 I6 I5 I4 I3 I2 I1 I0 A7 A6 A5 A4 A3 A2 A1 A0 Data Out Data Out D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Read Register 51 V1.0, 2010-02-19 TDA5225 Functional Description To read from the device in Burst mode, the SPI master has to select the SPI slave unit first. Therefore the master has to drive the NCS line to low. After the instruction byte and the start address byte have been transferred to the SPI slave (MSB first), the slave unit will respond by transferring the register contents beginning from the given start address (MSB first). Driving the NCS line to high will end the Burst frame. NCS 1 8 1 8 1 8 1 8 1 8 SCK Instruction SDI Register Start Address I7 I6 I5 I4 I3 I2 I1 I0 A7 A6 A5 A4 A3 A2 A1 A0 Data Out (i) SDO high impedance Z Figure 29 Data Out (i+1) D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 Data Out (i+x) D0 D7 D6 D5 D4 D3 D2 D1 D0 Burst Read Registers IMPORTANT NOTE - for being upwards compatible with further versions of the product, we give following strong recommendation: For read-clear registers at address (N), no read-burst access stopping at address (N-1) is allowed, because read-clear register will be cleared without being read out. Use single read command to read out the register at address (N-1) or extend the burst read to include the read-clear register at address (N). To write to the device, the SPI master has to select the SPI slave unit first. Therefore, the master must set the NCS line to low. After this, the instruction byte and the address byte are shifted in on SDI and stored in the internal instruction and address register. The following data byte is then stored at this address. After completing the writing operation, the master sets the NCS line to high. Additionally the received address byte is stored into the register SPIAT and the received data byte is stored into the register SPIDT. These two trace registers are readable. Therefore, an external controller is able to check the correct address and data transmission by reading out these two registers after each write instruction. The trace Data Sheet 52 V1.0, 2010-02-19 TDA5225 Functional Description registers are updated at every write instruction, so only the last transmission can be checked by a read out of these two registers. NCS Frame 1 8 1 Frame 8 1 8 1 8 1 8 1 8 SCK Instruction SDI SDO Register Address Data Byte Instruction I7 I6 I5 I4 I3 I2 I1 I0 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Register Address Data Byte I7 I6 I5 I4 I3 I2 I1 I0 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 high impedance Z Figure 30 Write Register To write to the device in Burst mode, the SPI master has to select the SPI slave unit first. Therefore the master has to drive the NCS line to low. After the instruction byte and the start address byte have been transferred to the SPI slave (MSB first) the successive data bytes will be stored into the automatically addressed registers. To verify the SPI Burst Write transfer, the current address (start address, start address + 1, etc.) is stored in register SPIAT and the current data field of the frame is stored in register SPIDT. At the end of the Burst Write frame the latest address as well as the latest data field can be read out to verify the transfer. Note that some error in one of the intermediate data bytes can not be detected by reading SPIDT. Driving the NCS line to high will end the Burst frame. A single SPI Burst Write command can be applied very efficiently for data transfer either within a register block of configuration dependent registers or within the block of configuration independent registers. NCS 1 8 1 8 1 8 1 8 1 8 SCK Instruction SDI SDO Register Start Address Data Byte (i) Data Byte (i+1) I7 I6 I5 I4 I3 I2 I1 I0 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Data Byte (i+x) D7 D6 D5 D4 D3 D2 D1 D0 high impedance Z Figure 31 Data Sheet Burst Write Registers 53 V1.0, 2010-02-19 TDA5225 Functional Description The SPI also includes a safety feature by which the checksum is calculated with an XOR operation from the address and the data when writing SFR registers. The checksum is in fact an XOR of the data 8-bitwise after every 8 bits of the SPI write command. The calculated checksum value is automatically written in the SPICHKSUM register and can be compared with the expected value. After the SPICHKSUM register is read, its value is cleared. In case of an SPI Burst Write frame, a checksum is calculated from the SPI start address and consecutive data fields. enable every 8 bit SPI shift register Checksum SFR XOR Figure 32 SPI Checksum Generation Table 4 Instruction Set read/clear Instruction Description Instruction Format WR Write to chip 0000 0010 RD Read from chip 0000 0011 WRB Write to chip in Burst mode 0000 0001 RDB Read from chip in Burst mode 0000 0101 Data Sheet 54 V1.0, 2010-02-19 TDA5225 Functional Description 2.5.4.1 Timing Diagrams tDeselect NCS tnot_hold tSetup tCLK_H thold tnot_setup SCK tSDI_setup tSDI_hold tCLK_L SDI high impedance Z SDO Figure 33 Serial Input Timing NCS tCLK_H SCK tCLK_SDO tCLK_SDO tCLK_L tSDO_r tSDO_disable tSDO_f Z SDO SDI Z ADDR LSB Figure 34 Data Sheet Serial Output Timing 55 V1.0, 2010-02-19 TDA5225 Functional Description Table 5 SPI Bus Timing Parameter Symbol Parameter fclock Clock frequency tCLK_H Clock High time tCLK_L Clock Low time tsetup Active setup time tnot_setup Not active setup time thold Active hold time tnot_hold Not active hold time tDeselect Deselect time tSDI_setup SDI setup time tSDI_hold SDI hold time tCLK_SDO Clock low to SDO valid tSDO_r SDO rise time tSDO_f SDO fall time tSDO_disable SDO disable time 2.5.5 Chip Serial Number Every device contains a unique, preprogrammed 32-bit wide serial number. This number can be read out from SN3, SN2, SN1 and SN0 registers via the SPI interface. The TDA5225 always has SN0.6 set to 0 and SN0.5 set to 1. SN0 ...... ...... Fuses FuseReadoutInterface SN1 SN2 SN3 Figure 35 Data Sheet Chip Serial Number 56 V1.0, 2010-02-19 TDA5225 Functional Description 2.6 System Management Unit (SMU) The System Management Unit consists of two main units: • • Master Control Unit, where the various operating modes can be configured. Polling Timer Unit, where the receiver’s On and Off times and modes are defined. The Polling Timer Unit is only working in the Self Polling Mode. 2.6.1 Master Control Unit (MCU) 2.6.1.1 Overview The Master Control Unit controls the operation modes and the global states. The transparent data stream can be processed externally by the Application Controller (see Chapter 2.5.1.2 Data Interface). The following operation modes and the behavior of the Master Control Unit are fully automatic and only influenced by SFR settings and by incoming RF data streams. The TDA5225 has two major operation modes, which are switched by SFR bit MSEL. In Slave Mode the device is controlled via SPI by the external microcontroller. This mode supports: • • • Run Mode Slave (RMS), where the receiver is continuously active SLEEP Mode, where the receiver is switched off for power saving. This mode can also be used to change register settings HOLD Mode, allows register settings to be changed. The change to HOLD Mode and back to RMS is faster than changing to SLEEP Mode and back to RMS. In Slave Mode, switching between configurations and channels, as well as between Run and SLEEP Mode must be initiated by the microcontroller. In Self Polling Mode, TDA5225 autonomously polls for incoming RF signals. The receiver switches automatically between up to four configurations (Configuration A, B, C and D) and up to 3 channels per configuration (Further information can be found in Chapter 2.6.2). Between the RF signal scans, the receiver is automatically switched to Low Power Mode for reducing the average power consumption. If an incoming signal fulfills the selected wake-up criterion an interrupt can be generated and Run Mode Self Polling will be entered. Data Sheet 57 V1.0, 2010-02-19 TDA5225 Functional Description Init Reset Bit:SLRXEN == 1 Bit:MSEL == 0 Bit:SLRXEN == 0 Bit:MSEL == 0 Sleep Mode Initialize RX-Part Bit:SLRXEN == 0 or Bit:MSEL == 1 Chip is idle Bit:SLRXEN == 0 or Bit:MSEL == 1 Bit:SLRXEN == 1 Bit:MSEL == 0 Run Mode Slave Bit:SLRXEN == 1 Bit:MSEL == 0 Chip is permanently active Bit:SLRXEN == X Bit:MSEL == 1 Bit:SLRXEN == X Bit:MSEL == 0 Init Initialize RX-Part Bit:SLRXEN == X Bit:MSEL == 0 Bit:SLRXEN == X Bit:MSEL == 1 Bit:SLRXEN == X Bit:MSEL == 0 ToTim Timeout == X Self Polling Mode Bit:SLRXEN == X Bit:MSEL == 1 EOM found == 1 Chip is periodically active and searching for WU criteria Bit:SLRXEN == X Bit:MSEL == 1 ToTim Timeout == 1 Run Mode Self Polling Chip is permanently active Figure 36 2.6.1.2 Bit:SLRXEN == X Bit:MSEL == 1 WUC found == 0 Bit:SLRXEN == X Bit:MSEL == 1 WUC found == 1 Bit:SLRXEN == X Bit:MSEL == 1 ToTim Timeout == 0 Global State Diagram Run Mode Slave (RMS) In Run Mode Slave, the receiver is able to continuously scan for incoming data streams. Detection and validation of a wake-up criterion are not performed. The transparent data stream can be processed externally by the Application Controller (see Chapter 2.5.1.2 Data Interface). Run Mode Slave is entered by setting SFR CMC0 bits MSEL to 0 and SLRXEN to 1. Configurations are switched via SFR bit group MCS in the CMC0 register. The RF channel in use can be selected in the x_CHCFG register, the frequency selection is defined by SFRs x_PLLINTCy, x_PLLFRAC0Cy, x_PLLFRAC1Cy, x_PLLFRAC2Cy, where x = A, B, C or D and y = 1, 2 or 3. The configuration may be changed only in SLEEP or in HOLD Mode before returning to the previously selected operation mode. This is necessary to restart the state machine Data Sheet 58 V1.0, 2010-02-19 TDA5225 Functional Description with defined settings at a defined state. Otherwise the state machine may hang up. Reconfigurations in HOLD Mode are faster, because there is no Start-Up sequence. The following flowchart and explanation show and help to understand the internal behavior of the Finite State Machine (FSM) in Run Mode Slave. 1 Wait Startup Finished == 0 Wait Till Startup Has Finished Startup Finished == 1 2 INIT 3 Receive Hold == 0 4 Hold Ready for reconfiguration Figure 37 2.6.1.3 Hold == 1 No Change in Operating Mode Data Available At Port Pin Run Mode Slave HOLD Mode This state (item 4 in Figure 37) is used for fast reconfiguration of the chip in Run Mode Slave. HOLD state can be reached after the Start-Up Sequencer and Initialization of the chip have been completed and the chip is working in state 3. To reconfigure the chip the SFR control bit HOLD must be set. After reconfiguration in this state the SFR control bit HOLD must be cleared again. After leaving the HOLD state, the INIT state is entered and the receiver can work with the new settings. Be aware that the time between changing the configuration and reinitialization of the chip has to be at least 40us. Take note that one SPI command for clearing the SFR control bit HOLD needs 24 bits or 12μs at an SPI data rate of 2.0Mbit/s. The remaining 28μs must be guaranteed by the application. FSM State SPI Command Data available at Port Pin Instruction Address Write CMC0 0x02 Data HOLD=1 HOLD Instruction Address Data Write x_CHCFG/ (sel. other 0x02 x_PLL.. channel) INIT Instruction Address Write CMC0 0x02 Data available at Port Pin Data HOLD=0 12us @ 2. 0MHz 40us Figure 38 Data Sheet HOLD State Behavior (INITPLLHOLD disabled) 59 V1.0, 2010-02-19 TDA5225 Functional Description In case of large frequency steps, an additional VAC routine (VCO Automatic Calibration) has to be activated when recovering from HOLD Mode (INITPLLHOLD bit). The maximum allowed frequency step in HOLD Mode without activation of VAC routine is depending on the selected frequency band. The limits are +/- 1 MHz for the 315 MHz band, +/- 1.5 MHz for the 434 MHz band and +/- 3 MHz for the 868/915 MHz band. When this additional VAC routine is enabled, the TDA5225 starts initialization of the Digital Receiver block after release from HOLD and an additional Channel Hop time. FSM State SPI Command Data available at Port Pin Instruction Address Write CMC0 0x02 Data HOLD=1 VAC HOLD Instruction Address Data Write x_CHCFG/ (sel. other 0x02 x_PLL.. channel) Instruction Address Write CMC0 0x02 VAC INIT Data available at Port Pin Data HOLD=0 12us @ 2.0MHz t C_ Hop 40us Figure 39 HOLD State Behavior (INITPLLHOLD enabled) HOLD Mode is only available in Run Mode Slave. Configuration changes in Self Polling Mode have to be done by switching to SLEEP Mode and returning to Self Polling Mode after reconfiguration. 2.6.1.4 SLEEP Mode The SLEEP Mode is a power save mode. The complete RF part is switched off and the oscillator is in Low Power Mode. As in HOLD Mode, the chip can be reconfigured. When switching from SLEEP to Run Mode Slave, the state machine starts with the internal Start-Up Sequence. 2.6.1.5 Self Polling Mode (SPM) In Self Polling Mode TDA5225 autonomously polls for incoming RF wake-up data streams. At that time there is no processing load on the host microcontroller. When a wake-up criterion has been found, an interrupt can be generated and the TDA5225 mode will be changed to Run Mode Self Polling. A general overview on a typically transmitted protocol and the behaviour of the TDA5225 is given in Figure 40. Data Sheet 60 V1.0, 2010-02-19 TDA5225 Functional Description TX - RX interaction in RX - Self Polling Mode TX Telegram: Wake-up Frame Wake-up Frame continued RUNIN + Wake-up sequence or Gap 1) Data Frame (RUNIN) TSI PAYLOAD EOM RX Mode: On time 2) Self Polling Mode On time 2) Self Polling Mode a b Run Mode Self Polling Legend: 1) There can either be a Wake -up Frame directly followed by a Data Frame or the Wake -up Frame is separated from the Data Frame by a Gap in -between . 2) The position of the O n time can vary (a, b, ...) as there is no synchronization between transmitted telegram and start of the receiver’s On time. Figure 40 SPM - TX-RX Interaction The transparent data stream can be processed externally by the Application Controller (see Chapter 2.5.1.2 Data Interface). Self Polling Mode is entered by setting the MSEL register bit to 1. Configuration changes are allowed only by switching to SLEEP Mode, and returning to Self Polling Mode after reconfiguration. The Polling Timer Unit controls the timing for scanning (On time) and sleeping (Off time, SPM_OFF). Up to four independent configuration sets (A, B, C and D) can automatically be processed, thus enabling scanning from different transmit sources. Additionally, up to 3 different frequency channels within each configuration may be scanned to support Multi-Channel applications. See also Chapter 2.6.2 Polling Timer Unit. So a total number of up to 12 different frequency channels is supported. The Wake-Up Generation Unit identifies, whether an incoming data stream matches the configurable wake-up criterion. After fulfillment of the wake-up criterion, modulation can be switched automatically. See also Chapter 2.6.1.6 Automatic Modulation Switching and Chapter 2.5.1.2 Data Interface (in Subsection TMRDS). The following state diagrams and explanations help to illustrate the behavior during Self Polling Mode. First there is a search for a wake-up criterion according to Configuration A on up to three different channels. Then, there is an optional search for a wake-up criterion according to Configuration B, C and D, again including up to 3 channels. In applications using only Single-Configuration, settings are always taken from Configuration A. Data Sheet 61 V1.0, 2010-02-19 TDA5225 Functional Description RX_RUN=0 RX_RUN == 0 1 IDLE Chip is idle RX_RUN == 1 2 Wait Startup Finished == 0 Wait Till Startup Has Finished From Run Mode Self Polling Startup Finished == 1 Init Loop Counter 3 CfgLoopCounter , Loop Counter is Initialized WU Search With Configuration A Modulation Switching CFG A 4 Modulation Selection Depending On Register Setting Init With CFG A 5 Initialize RX- Part Configuration A Loop Counter == 10 Load Channel 1 6 11 Initialize RX- Part Multi Channel A Load Channel 2 Initialize RX-Part Multi Channel A Loop Counter == 11 11 Load Channel 3 Initialize RX-Part Multi Channel A Const On Time 7 ON Time elapsed == 0 WU Found == 0 WU Search CFG A COOT Search For A Configurated Wake Up Criteria Const On Off ON Time elapsed == 1 WU Found == 0 ON Time elapsed == X WU Found == 1 9 10 Compare Compare Loop Counter Against Number Of Channels Loop Counter Equal ANOC == 1 CfgLoopCounter <> CfgNr Loop Counter <> ANOC Increment Loop Counter Incrementation Of The Loop Counter Loop Counter == ANOC CfgLoopCounter == CfgNr 8 Store Channel Store The Current Channel Configuration Into Actual Channel Register 12 Generating CFG A Interrupt If Not Masked Run Mode Self Polling Chip is permanently active To Init Loop Counter of Config B Figure 41 Data Sheet From Compare of Config B, C, D Wake-up Search with Configuration A 62 V1.0, 2010-02-19 TDA5225 Functional Description From Compare of Config A, B, C To Idle of Config A WU Search With Configuration B, C, D 3 Init Loop Counter Loop Counter Is Initialized 4 Modulation Switching CFG B,C,D Modulation Selection Depending On Register Setting 5 Init With CFG B,C,D Initialize RX-Part Configuration B ,C,D Loop Counter == 10 6 Load Channel 1 11 Initialize RX-Part Multi Channel B,C,D Load Channel 2 Loop Counter == 11 11 Initialize RX- Part Multi Channel B,C,D Load Channel 3 Initialize RX-Part Multi Channel B,C,D Const On Time 7 ON Time elapsed == 0 WU Found == 0 WU Search CFG B,C,D COOT Search For A Configurated Wake Up Criteria Const On Off ON Time elapsed == X WU Found == 1 ON Time elapsed == 1 WU Found == 0 9 10 Compare Compare Loop Counter Against Number Of Channels Loop Counter Equal (B,C,D)NOC == 1 CfgLoopCounter <> CfgNr Incrementation Of The Loop Counter Store Channel Store The Current Channel Configuration Into Actual Channel Register 12 Generating CFG B ,C,D Interrupt If Not Masked Run Mode Self Polling Chip is permanently active To Init Loop Counter of Config C,D Data Sheet Increment Loop Counter Loop Counter == (B,C,D)NOC CfgLoopCounter == CfgNr 8 Figure 42 Loop Counter <> (B,C,D)NOC Wake-up Search with Configuration B, C, D 63 V1.0, 2010-02-19 TDA5225 Functional Description 2.6.1.6 Automatic Modulation Switching In Self Polling Mode, the chip is able to automatically change the type of modulation after a wake-up criterion was fulfilled in a received data stream. The type of modulation used in the different operational modes is selected by the SFR control bit MT. 2.6.1.7 Multi-Channel in Self Polling Mode As previously mentioned, in Self Polling Mode the TDA5225 allows RF scans on up to three RF channels per configuration, this can be defined in the x_CHCFG register. Channel frequencies are defined in registers x_PLLINTCy, x_PLLFRAC0Cy, x_PLLFRAC1Cy, x_PLLFRAC2Cy, where x = A, B, C or D and y = 1, 2 or 3. The channel number at which a wake-up criterion has been found is available in register RFPLLACC. See also Chapter 2.4.5 Sigma-Delta Fractional-N PLL Block. 2.6.1.8 Run Mode Self Polling (RMSP) Wake-Up criterion fulfillment in Self Polling Mode for RSSI leads to a change to Run Mode Self Polling and a transparent data stream can be processed externally by the Application Controller (see Chapter 2.5.1.2 Data Interface). Modulation switching is performed automatically, depending on register settings (see Chapter 2.6.1.6 Automatic Modulation Switching) Depending on interrupt masking, the host microcontroller is alerted when the level criterion RSSI is fulfilled. See also Chapter 2.5.3 Interrupt Generation Unit Run Mode Self Polling is left, when the timeout timer command “EXTTOTIM” is sent by the Application Controller, or when an “EXTEOM found” command is sent by the microcontroller and the SFR bit EOM2SPM is activated, or when the operating mode is switched to SLEEP or Run Mode Slave by the host microcontroller. When the TDA5225 gets the “EXTTOTIM” command, the receiver proceeds with Self Polling Mode and with searching for a suitable wake-up criterion on the next programmed channel (either next RF channel or next configuration, depending on the selected mode - Multi-Configuration or Multi-Channel or a mix of both) or a search for a wake-up criterion in Configuration A is initiated. As long as the chip is in Run Mode Self Polling, the transparent data stream can be processed externally by the Application Controller. After an EOM was found, the information about the RF channel and the configuration of the actual payload data is saved in the RFPLLACC register. After receiving the “EXTEOM found” command the TDA5225 can either proceed with a search for a wake-up criterion in the next configuration or a search for wake-up in Data Sheet 64 V1.0, 2010-02-19 TDA5225 Functional Description Configuration A can follow or the TDA5225 can proceed receiving another (redundant) payload data frame within the same configuration. The transparent data stream has to be processed externally by the Application Controller. Therefore the external controller needs the possibility to send following commands (see Figure 43 and EXTPCMD register as well): • • EXTTOTIM: So the TDA5225 can proceed with Self Polling Mode (either with the next programmed channel or with Configuration A). EXTEOM found: In this case the TDA5225 can either proceed with Self Polling Mode (either with the next configuration or with Configuration A) or stay in Run Mode Self Polling. When the actual processed configuration is right before the Off time and the Application Controller sends one of the above mentioned commands, then the TDA5225 can proceed with the Off time (in case next configuration is selected). In Constant On-Off Time Mode the Polling Timer is always initialized after a TOTIM or EOM event. This means a new On period is always started. Data Sheet 65 V1.0, 2010-02-19 TDA5225 Functional Description 1 10 Modulation Switching Modulation Selection Depending On Register Setting INIT All Operations Are Done With The Wake Up Configuration INITDRXES==1 Init Digital Receiver 2 INIT To Self Polling Mode (WU Search With Configuration A ) INITDRXES==0 To Self Polling Mode (WU Search With Configuration A) EOM2nCfg == 0 To Self Polling Mode (WU Search With Next Configuration) Receive Data Avaialble At Port Pin EOM2nCfg == 1 9 To Self Polling Mode (WU Search With Next Programmed Channel) 3 Goto Next Config After EOM TOTIM2nCH == 0 5 TOTIM2nCH == 1 Goto SP Next Programmed Channel No Change in Operating Mode EOM2SPM == 0 EOM2SPM == 1 8 Goto SelfPolling After EOM 7 Save Channel and Configuration Information 4 6 EOM Found == 1 Figure 43 Data Sheet EXTEOM Found EXTTOTIM Command Sent by External Controller Command Sent by External Controller ToTim Timeout == 1 Run Mode Self Polling 66 V1.0, 2010-02-19 TDA5225 Functional Description SPMIP Timer-Status Timer-Status SPM Active-Idle Period Timer (5 / 8 Bit) Timer-Control fOnOff Receiver-Enable Self-Polling-Mode (SPM) FSM No WU SPMC Polling Mode Figure 44 SPMAP SPMOFFT1 SPMOFFT0 SPM On-Off-Timer (14 Bit) fRT Timer-Control SPM Reference-Timer (8 Bit) Timer-Control f sys / 64 SPMONTx1 SPMONTx0 Polling Timer Unit SPMRT 2.6.2 to Master-Control-Unit Polling Timer Unit The Polling Timer Unit consists of a Counter Stage and a Control FSM (Finite State Machine). The Counter Stage is divided into three sub-modules. The Reference Timer is used to divide the state machine clock (fsys/64) into the slower clock required for the SPM timers. The On-Off Timer and the Active Idle Period Timer are used to generate the polling signal. The entire unit is controlled by the SPM FSM. The TDA5225 is able to handle up to four different sets of configurations automatically. However, the example and figure in this subsection only show up to two configuration sets for the sake of clarity. Data Sheet 67 V1.0, 2010-02-19 TDA5225 Functional Description 2.6.2.1 Self Polling Mode An actual value for RSSI exceeding a certain adjustable threshold forces the TDA5225 into Run Mode Self Polling. The timing resolution is defined by the Reference Timer, which scales the incoming frequency (fsys/64) corresponding to the value, which is defined in the Self Polling Mode Reference Timer (SPMRT) register. Changing values of SPMRT helps to fit the final OnOff timing to the calculated ideal timing. 2.6.2.2 Constant On-Off Time (COO) In this mode there is a constant On and a constant Off time. Therefore also the resulting master period time is constant. The On and Off time are set in the SPMONTA0, SPMONTA1, SPMONTB0, SPMONTB1, SPMONTC0, SPMONTC1, SPMONTD0, SPMONTD1, SPMOFFT0 and SPMOFFT1 registers. The On time configuration is done separately for Configuration A, B, C and D. When Single-Configuration is selected then only Configuration A is used. The number of RF channels is defined in the A_CHCFG register (Single-Channel or Multi-Channel Mode). Multi-Configuration Mode allows reception of up to 4 different transmit sources. The corresponding RF channels can be defined in the A_CHCFG, B_CHCFG, C_CHCFG and D_CHCFG registers. In the case of Multi-Channel or combination of Multi-Channel and Multi-Configuration Mode, the configured On time is used for each RF channel in a configuration. The diagram below shows possible scenarios. All receive modes described in Chapter 2.5.1.2 Data Interface can be used. Data Sheet 68 V1.0, 2010-02-19 TDA5225 Functional Description Single Channel, Single Config run mode RX polling sleep mode A 1 TAON Channels = 1 TMasterPeriod = TAON + TOFF TOFF TMasterPeriod Multi Channel, Single Config run mode RX polling sleep mode A 1 A 2 A 3 TAON T AON TAON Channels = m TMasterPeriod = m*TAON + TOFF TOFF TMasterPeriod Multi Channel, Multi Config run mode RX polling sleep mode A 1 A 2 A 3 B 1 TAON T AON TAON TBON B 2 TBON Channels Config A = m Channels Config B = n TMasterPeriod = m*TAON + n*T BON+ TOFF TOFF TMasterPeriod Figure 45 Constant On-Off Time Calculation of the On time: The On time for each channel must be long enough to ensure proper detection of a specified wake-up criterion. Therefore the On time depends on the wake-up pattern. It has to include transmitter data rate tolerances. TON also must include the relevant start-up times. In case of the first channel after TOFF, this is the Receiver Start-Up Time. In case of following channels (RF Receiver is already on, there is only a change of the channel or the configuration), e.g. if Configuration B is used, this is the Channel Hop Latency Time. Calculation of the Off time: The longer the Off time, the lower the average power consumption in Self Polling Mode. On the other hand, the Off time has to be short enough that no transmitted wake-up pattern is missed. Therefore the Off time depends mainly on the duration of the expected wake-up pattern. If there are further channels scanned, TOFF has to be reduced by the related additional On times. Data Sheet 69 V1.0, 2010-02-19 TDA5225 Functional Description For basic timing of WU on RSSI in COO mode, please see Figure 46. RF signal e.g . ASK t RX ON SLEEP t t WULOT t WULOT t Startup 1 t WULOT t WULOT_part n-1 2 npartially last observation time window is forced to end by end of t ON latest decision here ! tON Figure 46 COO Polling in WU on RSSI Mode Always check at the end of the current observation time window, if there is a WU (WakeUp) event or NOT. This means, in algorithmic description (see also Figure 10, Chapter 2.4.7 RSSI Peak Detector and Chapter 2.4.8.2 Wake-Up Generator): if (RSSIPWU_value > x_WURSSITHy) and (RSSIPWU_value > x_WURSSIBHy) then WU else NOT Here, ‘NOT‘ means to keep on evaluating and move on to the next observation time window, also keep on peak value tracking of RSSIPWU signal. Keep on walking through the observation time windows until there is a WU event from the algorithm above or finally decide at the end of the On time with the following algorithm: if (RSSIPWU_value > x_WURSSITHy) and (RSSIPWU_value < x_WURSSIBLy or RSSIPWU_value > x_WURSSIBHy) then WU else NOT If there is a WU event at the end of an observation time window while walking through the observation time windows, freeze/hold this decision/peak value in register RSSIPWU for optional read out and switch to run mode self polling. Data Sheet 70 V1.0, 2010-02-19 TDA5225 Functional Description 2.6.2.3 Active Idle Period Selection This mode is used to deactivate some polling periods and can additionally be applied to the above mentioned Polling Mode. Normally, polling starts again after the TMasterPeriod. With this Active Idle Period selection some of the polling periods can be deactivated, independent from the Polling Mode. The active and the idle sequence is set with the SPMAP and the SPMIP registers. The values of these registers determine the factor M and N. run mode RX polling sleep mode TOn TOff TMasterPeriod Figure 47 Data Sheet M*TMasterPeriod N*TMasterPeriod Active Idle Active Idle Period 71 V1.0, 2010-02-19 TDA5225 Functional Description 2.7 Definitions 2.7.1 Definition of Bit Rate The definition for the bit rate in the following description is: symbols bitrate = ---------------------s If a symbol contains n chips (for Manchester n=2; for NRZ n=1) the chip rate is n times the bit rate: chiprate = n × bitrate 2.7.2 Definition of Manchester Duty Cycle Several different definitions for the Manchester duty cycle (MDC) are in place. To avoid wrong interpretation some of the definitions are given below. Level-based Definition MDC = Duration of H-level / Symbol period bit = 1 1 0 0 1 0 1 1. chip 2. chip Tb it Tc hip MDC < 50% 1 1 0 TH ΔT TH Tb it Tc hip Tb it MDC > 50% ΔT Tc hip Figure 48 TH TH Tb it Tb it Definition A: Level-based definition This definition determinates the duty cycle to be the ratio of the high pulse width and the ideal symbol period. The DC content is constant and directly proportional to the specified duty cycle. For ΔT > 0 the high period is longer than the chip-period and for ΔT < 0 the high period is shorter than the chip-period. Data Sheet 72 V1.0, 2010-02-19 TDA5225 Functional Description Depending on the bit content, the same type of edge (e.g. rising edge) is sometimes shifted and sometimes not. With this definition the Manchester duty cycle is calculated to T chip + ΔT TH MDC A = --------- = --------------------------T bit T bit Chip-based Definition MDC = Duration of the first chip / Symbol period bit = 1 1 0 0 1 0 1 1. chip 2. chip Tb it Tc hip MDC < 50% 1 1 ΔT 0 T1 .ch ip T1.ch ip Tb it Tc hip Tbit MDC > 50% ΔT Tc hip Figure 49 T1.ch ip T1 .chip Tb it Tbit Definition B: Chip-based definition This definition determinates the duty cycle to be the ratio of the first symbol chip and the ideal symbol period independently of the information bit content. The DC content depends on the information bit and it is balanced only if the message itself is balanced. For ΔT > 0 the first chip-period is longer than the ideal chip-period and for ΔT < 0 the first chip-period is shorter than the ideal chip-period. Depending on the bit content, the same type of edge (e.g. rising edge) is sometimes shifted and sometimes not. Data Sheet 73 V1.0, 2010-02-19 TDA5225 Functional Description With this definition the Manchester duty cycle is calculated to T chip + ΔT T 1.chip MDC B = ---------------- = -------------------------T bit T bit Edge delay Definition MDC = Duration delayed edge / Symbol period bit = 1 1 0 0 1 1 1. chip 2. chip Tb it Tc hip MDC < 50% Tf = 0 1 Tr ΔT 1 0 0 Tb it Tbit Tb it TH Tc hip Tr TH MDC > 50% Tr = 0 1 1 ΔT Tc hip Figure 50 0 0 Tf 1 Tf TH TH Tb it Tbit Tb it Definition C: Edge delay definition This definition determinates the duty cycle to be the ratio of the duration of the delayed high-chip and the ideal symbol period independently of the information bit content. The position of the high-chip is determined by the delayed rising edge and/or the delayed falling edge. For ΔT = Tfall -Trise the Manchester duty cycle is calculated to T chip + ΔT T chip + T fall – T rise T delayedHighchip MDC C = ---------------------------------------- = -------------------------- = -----------------------------------------------T bit T bit T bit Independent on the bit content, the same type of edge (rising edge and/or falling edge) is shifted. Data Sheet 74 V1.0, 2010-02-19 TDA5225 Functional Description 2.7.3 Definition of Power Level The reference plane for the power level is the input of the receiver board. This means, the power level at this point (Pr) is corrected for all offsets in the signal path (e.g. attenuation of cables, power combiners etc.). The specification value of power levels in terms of sensitivity is related to the peak power of Pr in case of On-Off Keying (OOK). This is noted by the unit dBm peak. Specification value of power levels is related to a Manchester encoded signal with a Manchester duty cycle of 50% in case of ASK modulation. An RF signal generator usually displays the level of the unmodulated carrier (Pcarrier). This has following consequences for the different modulation types: Table 6 Power Level Modulation scheme Realization with RF signal generator Power level specification value ASK AM 100% Pr = Pcarrier + 6dB ASK Pulse modulation (=OOK) Pr = Pcarrier FSK FM with deviation Δf: f1 = fcarrier - Δf f2 = fcarrier + Δf Pr = Pcarrier For power levels in sensitivity parameters given as average power, this is noted by the unit dBm. Peak power can be calculated by adding 3 dB to the average power level in case of ASK modulation and a Manchester duty cycle of 50%. 2.7.4 Figure 51 Data Sheet Symbols of SFR Registers and Control Bits CONTROL Symbolizes unique SFR registers or SFR control bit (s), which are common for all configuration sets . CONTROL Symbolizes SFR registers or SFR control bit (s) with Multi-Configuration capability (protocol specific). In case of SFR register, the name starts with A _, B_, C_ or D_, depending on the selected configuration. This is generally noted by the prefix „x _“. SFR Symbols 75 V1.0, 2010-02-19 TDA5225 Functional Description 2.8 Digital Control (SFR Registers) 2.8.1 SFR Address Paging An SPI instruction allows a maximum address space of 8 bit. The address space for supporting more than one configuration set is exceeding this 8 bit address room. Therefore a page switch is introduced, which can be applied via register SFRPAGE (see Figure 52). logical address space 0x000 Configuration A 1) - Page 0 physical address space 0 d Reserved 2) 0x080 0x0FF 0x100 Common Registers Reserved Reserved 2) 3) 4) Configuration B 1) - Page 1 128 d 255 d 256 d Reserved 2) 0x180 0x1FF 0x200 Common Registers 3) Reserved 4) Configuration C 1) - Page 2 0x2FF 0x300 Common Registers 3) Reserved 4) Configuration D 1) - Page 3 0x3FF 1) 2), 4) 3) Figure 52 2.8.2 Reserved 4) Configuration B 1) - Page 1 384 d 511 d 512 d Configuration C 1) - Page 2 Reserved 2) 640 d 767 d 768 d Reserved 2) 0x380 Common Registers 3) Reserved 2) Reserved 2) 0x280 Configuration A 1) - Page 0 Configuration D 1) - Page 3 Reserved 2) Common Registers 3) 896 d Reserved 4) 1023 d Configuration dependent register block (4 protocol specific sets) page switch via SFRPAGE register Reserved – Forbidden area Configuration independent registers (common for all configurations ) map (“mirror“ ) to the same physical address space SFR Address Paging SFR Register List and Detailed SFR Description The register list is attached in the Appendix at the end of the document. Registers for Configurations B, C and D are equivalent and not shown in detail. All registers with prefix “A_” are related to Configuration A. All these registers are also available for Configuration B, C and D having the prefix “B_”, “C_” and “D_”. Data Sheet 76 V1.0, 2010-02-19 TDA5225 Applications 3 Applications RF in SAW filter to µC SPI Bus SDI 18 SCK 17 NCS 16 XTAL2 15 11 PP1 12 PP2 13 P_ON 14 XTAL1 SDO 19 T1 20 T2 21 LNA_INN 22 LNA_INP 23 GNDRF 24 PP3 25 RSSI 26 IFMIX_INP IFMIX_INN VDD5V VDDD VDDD1V5 GNDD 4 5 6 7 8 9 10 PP0 GNDA TDA5225 3 IFBUF_OUT 2 VDDA 27 IFBUF_IN 1 IF CER filter (opt.) IF_OUT 28 VS IF CER filter (opt.) VS to/from µC Figure 53 Typical Application Schematic Note: As a good practice in any RF design, shielding around sensitive nodes can improve the EMC performance of the application. For achieving the best sensitivity results the following has to be kept in mind. Every digital system generates certain frequencies (fSRC, e.g. the crystal frequency or a microcontroller clock) and harmonics (N * fSRC) of it, which can act as interferer (EMI source) and therefore sensitivity can be reduced. Data Sheet 77 V1.0, 2010-02-19 TDA5225 Applications There are two different cases, which need to be checked for the desired receive channel(s): Elimination of in-band EMI mixing with (2*M + 1) * fLO, where M > 0: A square wave is used as LO (Local Oscillator) for the switching-type mixer, which also has odd harmonics. When the harmonics of the EMI source are exactly the IF frequency away from the harmonics of the LO, these spurs will be down-converted to the IF frequency and act as a co-channel interferer within the receiver’s channel bandwidth mainly in the 315 MHz band. In this case a change of the LO injection side (high side or low side injection) can be applied. Example (Low Side LO-injection): Wanted channel fRF = 314.233MHz ==> fLO = 303.533MHz ==> 3*fLO = 910.599MHz fXOSC = 21.948717 MHz ==> 41 * fXOSC = 899.8974 MHz Resulting IF = 910.599 - 899.8974 MHz = 10.702 MHz ==> co-channel interferer within the receiver’s channel bandwidth ==> change LO injection side Example (High Side LO-injection): Wanted channel fRF = 314.233 MHz ==> fLO = 324.933 MHz ==> 3*fLO = 974.799 MHz fXOSC = 21.948717 MHz ==> 44 * fXOSC = 965.744 MHz; 45 * fXOSC = 987.692 MHz ==> both XOSC harmonics are not generating a co-channel interferer at 10.7 MHz A final sensitivity measurement on the application hardware is recommended. Elimination of in-band EMI mixing with 1 * fLO: Assuming a harmonic (N * fSRC) is falling within the BW of the wanted channel and has an impact on the sensitivity there. In this case another XTAL frequency shall be selected, e.g. 10 kHz away | N * fSRC - fLocalOscillator | < BWChannel Example (e.g. EMI source TDA5225 XOSC): fXOSC = 21.948717 MHz ==> 42 * fXOSC = 921.846114 MHz For further details please refer to the corresponding application note or to the latest configuration software. 3.1 Configuration Example Please see configuration files supplied with the Explorer tool. Data Sheet 78 V1.0, 2010-02-19 TDA5225 Reference 4 Reference 4.1 Electrical Data 4.1.1 Absolute Maximum Ratings Attention: The maximum ratings must not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the IC may result. Table 7 # Absolute Maximum Ratings Parameter Symbol Limit Values min. max. Unit Remarks A1 Supply Voltage at VDD5V pin Vsmax -0.3 +6 V A2 Supply Voltage at VDDD, VDDA pin Vsmax -0.3 +4 V A3 Voltage between VDD5V vs VDDD and VDD5V vs VDDA Vsmax -0.3 +4 V A4 Junction Temperature Tj -40 +125 °C A5 Storage Temperature Ts -40 +150 °C A6 Thermal resistance junction to air Rth(ja) 140 K/W A7 Total power dissipation at Tamb = 105°C Ptot 100 mW A8 ESD HBM integrity VHBMRF -2 2 KV A9 ESD SDM integrity (All pins except corner pins) VSDM -500 500 V A10 ESD SDM integrity (All corner pins) VSDM -750 750 V A11 Latch up ILU 100 A12 Maximum input voltage at digital input pins Vinmax -0.3 A13 Maximum current into digital input and output pins IIOmax Data Sheet 79 According to ESD Standard JEDEC EIA / JESD22-A114-B mA AEC-Q100 (transient current) VDD5V+0.5 or 6.0 V whichever is lower 4 mA V1.0, 2010-02-19 TDA5225 Reference 4.1.2 Operating Range Table 8 # Supply Operating Range and Ambient Temperature Parameter Symbol Limit Values min. max. Unit Remarks B1 Supply voltage at pin VDD5V VDD5V 4.5 5.5 V Supply voltage range 1 B2 Supply voltage at pin VDD5V=VDDD=VDDA VDD3V3 3.0 3.6 V Supply voltage range 2 B3 Ambient temperature Tamb -40 105 °C Data Sheet 80 V1.0, 2010-02-19 TDA5225 Reference 4.1.3 AC/DC Characteristics Supply voltage VDD5V = 4.5 to 5.5 Volt or VDD5V = VDDA = VDDD = 3.0 to 3.6 Volt Ambient temperature Tamb = -40...105oC; Tamb = +25oC and VDD5V = 5.0V or VDD5V = VDDA = VDDD = 3.3V for typical parameters, unless otherwise specified. ■ not subject to production test - verified by characterization/design Table 9 # AC/DC Characteristics Parameter Symbol Limit Values min. typ. Unit Test Conditions Remarks max. General DC Characteristics C1.1 Supply Current in Run Mode and Double Down Conversion Mode IRun, Double 12 15 mA ASK or FSK mode Pin < -50dBm C1.2 Supply Current in Run Mode and Single Down Conversion Mode IRun, Single 10.5 14 mA ASK or FSK mode Pin < -50dBm C2 Supply current in Sleep Mode Isleep_low crystal oscillator in Low Power Mode; clock generator off; valid for SLEEP Mode and during SPM Off time Tamb = 25 °C 40 50 µA Tamb = 85 °C 60 110 µA Tamb = 105 °C 90 160 µA 115 350 µA Tamb = 25 °C 0.8 1.5 µA Tamb = 85 °C 3.7 13 µA ■ Tamb = 105 °C 9.0 27 µA ■ C3 Supply current in Sleep Mode Isleep_high C4 Supply current IPDN in Power Down Mode ■ ■ crystal oscillator in High Precision Mode Cload = 25 pF; clock generator off; valid for SLEEP Mode and during SPM Off time C5 Supply current clock generator Iclock 23 27 µA fclockout = 1 kHz Cload = 10 pF ■ C6 Supply current IF-Buffer IBuffer 0.5 0.7 mA fIF_1 = 10.7 MHz Rload = 330 Ω no AC signal ■ Data Sheet 81 V1.0, 2010-02-19 TDA5225 Reference # Parameter Symbol Limit Values min. typ. Supply current during RF-FE startup / BPF calibration IRF-FE- C8 Brownout detector threshold VBOR 2.3 C9 Receiver reset time tReset 1.0 C10 Receiver startup time tRXstartup 455 C11 RF Channel Hop Latency Time and Configuration (Hop) Change Latency Time (e.g. Cfg A to Cfg B) tC_Hop C12 RF Frontend startup delay C13 C7 Unit Test Conditions Remarks max. ■ 2.2 2.9 mA 2.45 2.6 V 3.0 ms Note: No SPI communication is allowed before XOSC start-up is finished and chip reset is already finished 455 455 µs Time to startup RF frontend (comprises time required to switch crystal oscillator from Low Power Mode to High Precision Mode ■ 111 111 111 µs Time to switch RF PLL between different RF Channels (does not include settling of Data Clock Recovery) and time to change Configuration ■ tRFstartdelay 350 350 350 µs Delay of startup of RF frontend ■ P_ON pulse width tP_ON 15 µs Minimal pulse width to reset the chip ■ C14 NINT pulse length tNINT_Pulse µs Pulse width of interrupt ■ C15 Accuracy of Temperature Sensor startup,BPFcal 12 Valid for temperature range -40°C .. +105°C; using upper 8 ADC bits (ADCRESH) C15.1 uncalibrated TError, uncal +/- 23 °C uncalibrated (3 sigma) value ■ C15.2 calibrated TError, cal +/- 4.5 °C after 1-point calibration at room temperature (3 sigma) ■ C16 Accuracy of VDDD readout C16.1 uncalibrated Valid for temperature range -40°C .. +105°C; using upper 8 ADC bits (ADCRESH) VDDD, Error, +/- 200 mV uncalibrated (3 sigma) value ■ +/- 25 mV after 1-point calibration at room temperature (3 sigma) ■ uncal C16.2 calibrated VDDD, Error, cal Data Sheet 82 V1.0, 2010-02-19 TDA5225 Reference # Parameter Symbol Limit Values min. typ. Unit Test Conditions Remarks 1st Local Oscillator Low Side LO-injection and High Side LOinjection allowed; See also Chapter 3 max. General RF Characteristics (overall) D1 Frequency Range 1 fband_1 300 320 MHz Range 2 fband_2 425 450 MHz Range 3 fband_3 863 870 MHz Range 4 fband_4 902 928 MHz D2 Frequency step of Sigma-Delta PLL fstep 10.5 D3 ASK Demodulation Data Rate Rdata 0.5 40 kchip/s ■ Data rate tol. Rdata_tol -10 +10 % ■ Modulation index mASK 50 100 % ASK ■ mOOK 99 100 % ON-OFF keying ■ Data Rate Rdata 0.5 112 kchip/s including tolerance ■ Data rate tol. Rdata_tol -10 +10 % Frequency deviation Δf 1 64 kHz Modulation index mFSK 1.0 D4 D5 Hz fstep = fXTAL / 221 ■ FSK Demodulation ■ frequency deviation zero-peak ■ m = frequency_ deviationzero-peak / maximum_occuring_data _frequency; m >= 1.25 is recommended at small frequency deviation ■ Decoding schemes Manchester, differential Manchester, Bi-phase Mark / Bi-phase Space D6 Duty cycle ASK Tchip/ Tdata 35 55 % see Chapter 2.7.2 Definition C ■ Duty cycle FSK Tchip/ Tdata 45 55 % see Chapter 2.7.2 Definition B ■ Overall noise figure Noise figure Data Sheet NF 6 83 8 dB RF input matched to 50 Ω @ Tamb = 25 °C ■ V1.0, 2010-02-19 TDA5225 Reference # Parameter Symbol Limit Values min. typ. D7 Unit Test Conditions Remarks max. BER Sensitivity (FSK) Manchester coding; for additional test conditions see right after this table BER = 2*10-3 RF input matched to 50 Ω @ Tamb = 25 °C; Single-Ended Matching without SAW; Insertion loss of input matching network = 1dB; Receive Mode = TMMF (sampled with ideal data clock); Double Down Conversion D7.1 Data Rate 2 kBit/s; Δf = 10 kHz SFSK1BER -119 -116 dBm 2nd IF BW = 50 kHz PDF = 33 kHz, AFC off, IFATT=0 ■ D7.2 Data Rate 10 kBit/s; Δf = 14 kHz SFSK2BER -114 -111 dBm 2nd IF BW = 50 kHz PDF = 65 kHz, AFC off, IFATT=0 ■ D7.3 Data Rate 10 kBit/s; Δf = 50 kHz SFSK3BER -112 -109 dBm 2nd IF BW = 125 kHz PDF = 132 kHz, AFC off, IFATT=0 ■ D7.4 Data Rate 50 kBit/s; Δf = 50 kHz SFSK4BER -105 -102 dBm 2nd IF BW = 300 kHz PDF = 239 kHz, AFC off, IFATT=0 ■ D7.5 Data Rate 2 kBit/s; Δf = 10 kHz SFSK5BER -110 -107 dBm 2nd IF BW = 300 kHz PDF = 282kHz, IFATT=7 ■ Note: 3dB sensitivity loss @ foffset=+/-90kHz @ AFC on D7.6 Data Rate 10 kBit/s; Δf = 14 kHz SFSK6BER -106 -103 dBm 2nd IF BW = 300 kHz PDF = 282kHz, IFATT=7 ■ Note: 3dB sensitivity loss @ foffset=+/-90kHz @ AFC on D7.7 Data Rate 10 kBit/s; Δf = 50 kHz SFSK7BER -110 -107 dBm 2nd IF BW = 300 kHz PDF = 282kHz, IFATT=7 ■ Note: 3dB sensitivity loss @ foffset=+/-90kHz @ AFC on Data Sheet 84 V1.0, 2010-02-19 TDA5225 Reference # Parameter Symbol Limit Values min. typ. D8 Unit Test Conditions Remarks max. BER Sensitivity (OOK) Manchester coding; for additional test conditions see right after this table BER = 2*10-3 RF input matched to 50 Ω @ Tamb = 25 °C, peak power level (see Chapter 2.7.3); Single-Ended Matching without SAW; Insertion loss of input matching network = 1dB; Receive Mode = TMMF (sampled with ideal data clock); Double Down Conversion D8.1 Data Rate 0.5 kBit/s SASK1BER -120 -117 dBm peak m = 100%, IFATT=0 2nd IF BW = 50 kHz ■ D8.2 Data Rate 2 kBit/s SASK2BER -116 -113 dBm peak m = 100%, IFATT=0 2nd IF BW = 50 kHz ■ D8.3 Data Rate 10 kBit/s SASK3BER -111 -108 dBm peak m = 100%, IFATT=0 2nd IF BW = 50 kHz ■ D8.4 Data Rate 16 kBit/s SASK4BER -109 -106 dBm peak m = 100%, IFATT=0 2nd IF BW = 80 kHz ■ D8.5 Data Rate 0.5 kBit/s SASK5BER -115 -112 dBm peak m = 100%, IFATT=7 2nd IF BW = 300 kHz; ■ Note: 3dB sensitivity loss @ foffset = +/-100 kHz D8.6 Data Rate 2 kBit/s -112 SASK6BER -109 dBm peak m = 100%, IFATT=7 2nd IF BW = 300 kHz; ■ Note: 3dB sensitivity loss @ foffset = +/-100 kHz D8.7 Data Rate 10 kBit/s -106 SASK7BER -103 dBm peak m = 100%, IFATT=7 2nd IF BW = 300 kHz; ■ Note: 3dB sensitivity loss @ foffset = +/-100 kHz D8.8 Data Rate 16 kBit/s -104 SASK8BER -101 dBm peak m = 100%, IFATT=7 2nd IF BW = 300 kHz; ■ Note: 3dB sensitivity loss @ foffset = +/-100 kHz D9.1 Sensitivity increase for Single Down Conversion mode ΔSSDC D9.2 Double Down Conversion sensitivity decrease for higher blocking performance (IFATT=0 => IFATT=7) ΔSDDC, Data Sheet 0 0.5 1 dB ■ 1 2 dB ■ IFATT7 85 V1.0, 2010-02-19 TDA5225 Reference # Parameter Symbol Limit Values min. typ. D9.3 Single Down Conversion sensitivity decrease for higher blocking performance (IFATT=4 => IFATT=7) ΔSSDC, 0.5 Unit Test Conditions Remarks max. 1 dB ■ IFATT7 D10.1 Sensitivity variation due to temperature (-40...+105°C) ΔPin 2 dB relative to Tamb = 25 °C; temperature drift of crystal not considered ■ D10.2 Sensitivity variation due to frequency offset 1) ΔPin 3 dB AFC inactive; For Sensitivity Bandwidth see Table 10 ■ D10.3 Sensitivity variation due to frequency offset ΔPin 3 dB AFC active, slow AFC; For Sensitivity Bandwidth see Table 10 and applied AFCLIMIT ■ D10.4 Sensitivity loss when AFC active at center frequency ΔPin 1 dB AFC active; center frequency - no AFC wander (see Chapter 2.4.6.3) ■ D11 3rd order intercept IIP3 PIIP3 -16 -14 dBm input matched to 50 Ω; Insertion loss of input matching network = 1dB; IFATT = 7; valid for Single and Double Down Conversion Mode ■ D12 1 dB compression point CP1dB PCP1dB -27 -25 dBm input matched to 50 Ω; Insertion loss of input matching network = 1dB; IFATT = 7; valid for Single and Double Down Conversion Mode ■ D13 1st IF image rejection dimage1 30 40 dB 1st IF = 10.7 MHz without front end SAW filter; valid for Double Down Conversion Mode D14 2nd IF image rejection 30 34 dB 2nd IF = 274 kHz without 1st IF CER filter; valid for Single and Double Down Conversion Mode Data Sheet dimage2 86 V1.0, 2010-02-19 TDA5225 Reference # Parameter Symbol Limit Values min. typ. Unit Test Conditions Remarks max. RF Front End Characteristics (Unless otherwise noted, all values apply for the specified frequency ranges) E1 LNA input impedance E1.1 fRF = 315 MHz E1.2 E1.3 E1.4 E1.5 E1.6 E1.7 E1.8 fRF = 434MHz fRF = 868MHz fRF = 915MHz fRF = 315 MHz fRF = 434MHz fRF = 868MHz fRF = 915MHz Rin_p,diff 680 Ω Cin_p,diff 1.05 pF Rin_p,diff 570 Ω ■ Cin_p,diff 0.87 pF ■ Rin_p,diff 550 Ω ■ Cin_p,diff 0.63 pF ■ Rin_p,diff 540 Ω ■ Cin_p,diff 0.63 pF ■ Rin_p, SE 500 Ω Cin_p, SE 1.87 pF Rin_p, SE 400 Ω Cin_p, SE 1.63 pF ■ Rin_p, SE 322 Ω ■ Cin_p, SE 1.59 pF ■ Rin_p, SE 312 Ω ■ Cin_p, SE 1.56 pF ■ differential parallel equivalent input between LNA_INP and LNA_INN single-ended parallel equivalent input between LNA_INP and GNDRF / LNA_INN and GNDRF E2 FE output impedance Rout_IF 290 330 380 Ω fIF = 10.7 MHz E3 FE voltage conversion gain AVFE, max 34 36 38 dB min. IF attenuation (IFATT = 0); input matched to 50 Ω; Insertion loss of input matching network = 1dB Rload_IF = 330 Ω; tested at 434 MHz E4 FE voltage conversion gain AVFE_7 29 31 33 dB IF attenuation (IFATT = 7); input matched to 50 Ω; Insertion loss of input matching network = 1dB Rload_IF = 330 Ω; tested at 434 MHz Data Sheet 87 ■ ■ ■ ■ ■ ■ V1.0, 2010-02-19 TDA5225 Reference # Parameter E5 FE voltage conversion gain E6 FE voltage conversion gain step Symbol AVFE, min Limit Values min. typ. max. 22 26 24 0.8 Unit Test Conditions Remarks dB max. IF attenuation (IFATT = 15); input matched to 50 Ω; Insertion loss of input matching network = 1dB Rload_IF = 330 Ω; tested at 434 MHz dB 12dB / 15 = 0.8dB/step ■ Double Down Conversion: 16 gain settings (4 bit) Single Down Conversion: 7 gain settings E7 1st Local Oscillator SSB Noise E7.1 PLL loop Bandwidth BW E7.2 fin_R1 = 315MHz dSSB_LO E7.3 E7.4 E7.5 fin_R2 = 434MHz fin_R3 = 868MHz fin_R4 = 915MHz dSSB_LO dSSB_LO dSSB_LO closed loop 100 150 200 kHz BW and its tolerances ■ -81 -76 dBc/Hz @ foffset = 1 kHz ■ -85 -80 @ foffset = 10 kHz ■ -82 -77 @ foffset = 100 kHz ■ -120 -115 @ foffset = 1 MHz ■ -130 -125 @ foffset => 10 MHz ■ -78 -73 @ foffset = 1 kHz ■ -83 -78 @ foffset = 10 kHz ■ -82 -77 @ foffset = 100 kHz ■ -117 -112 @ foffset = 1 MHz ■ -130 -125 @ foffset => 10 MHz ■ -75 -70 @ foffset = 1 kHz ■ -79 -74 @ foffset = 10 kHz ■ -77 -72 @ foffset = 100 kHz ■ -114 -109 @ foffset = 1 MHz ■ -130 -125 @ foffset => 10 MHz ■ -71 -66 @ foffset = 1 kHz ■ -79 -74 @ foffset = 10 kHz ■ -77 -72 @ foffset = 100 kHz ■ -116 -111 @ foffset = 1 MHz ■ -130 -125 @ foffset => 10 MHz ■ dBc/Hz dBc/Hz dBc/Hz E8.1 Spurious emission < 1 GHz -57 dBm ■ E8.2 Spurious emission > 1 GHz -47 dBm ■ Data Sheet 88 V1.0, 2010-02-19 TDA5225 Reference # Parameter Symbol Limit Values min. typ. E9 Inband fractional spur E10 3dB Overall Analog Frontend Bandwidth Test Conditions Remarks max. -40 ■ dBc 230 BWANA Unit kHz LNA input to Limiter output, excluding external CER filter ■ 1st IF Buffer Characteristics F1 Input impedance Rin_IF 290 330 370 Ω fIF = 10...12 MHz ■ F2 Output impedance Rout_IF 290 330 370 Ω fIF = 10...12 MHz ■ F3 Voltage gain AVBuffer 3 4 5 dB fIF = 10...12 MHz Zsource = 330 Ω Zload = 330 Ω F4 Buffer switch disolation isolation (CERFSEL) dB fIF = 10...12 MHz see Figure 6 ■ Ω fIF = 10...12 MHz ■ 60 2nd IF Mixer, RSSI and Filter Characteristics G1 Mixer input impedance G6 RSSI G2.1 Dynamic range (Linearity +/- 2 dB) Rin_IF 290 330 390 Related to RF input matched to 50 Ω DRRSSI -110 -30 dBm applies for digital RSSI; AGC on ■ -115 -60 dBm applies for analog RSSI @ 50kHz BPF, AFGC off ■ -110 -50 dBm applies for analog RSSI ■ @ 300kHz BPF, AFGC off G2.2 Linearity DRLIN -1 +1 dB -95 dBm...-35 dBm; applies for digital RSSI ■ G2.3 Temperature drift within linear dynamic range DRTEMP -2.5 +1.5 dB -95 dBm...-35 dBm; applies for digital RSSI ■ G2.4 Output dynamic range VRSSI+ 0.8 2.0 V G2.5 analog RSSI error, untrimmed DRSSIana -4 +2 dB at RSSI pin G2.6 analog RSSI slope, untrimmed dVRSSI/ dVmix_in 8 12 mV/dB at RSSI pin; typical 600 mV/60 dB = 10 mV/dB G2.7 digital RSSI error, untrimmed DRSSIdig_u -4 +2 dB RSSI register readout Data Sheet 10 89 V1.0, 2010-02-19 TDA5225 Reference # Parameter Symbol Limit Values Unit Test Conditions Remarks min. typ. max. +1 dB RSSI register readout G2.8 digital RSSI error, user trimmed via SFRs RSSISLOPE and RSSIOFFS DRSSIdig_t -1 G2.9 digital RSSI slope, untrimmed dVRSSI/ dVmix_in 2 2.5 3 LSB /dB RSSI register readout; typical 600 mV/60 dB = 10 mV/dB, 1mV = 1 LSB (10-bit ADC) 8-bit readout: 4mV=1LSB G2.10 digital RSSI slope, user trimmed via SFRs RSSISLOPE and RSSIOFFS dVRSSI/ dVmix_in 2.35 2.5 2.65 LSB /dB RSSI register readout; typical 600 mV/60 dB = 10 mV/dB, 1mV = 1 LSB (10-bit ADC) 8-bit readout: 4mV=1LSB G2.11 Resistive load at RSSI pin RL,RSSImax 100 G2.12 Capacitive load at RSSI pin CL,RSSI ■ ■ kΩ ■ 20 pF ■ 288 kHz G3 2nd IF Filter (3rd order Bandpass Filter) G3.1 Center frequency fcenter G3.2 -3 dB BW BW-3dB G3.3 -3 dB BW tolerance tol_BW-3dB -5 +5 % For BW = 125, 200, 300 kHz ■ G3.4 -3 dB BW tolerance tol_BW-3dB -6 +6 % For BW = 50, 80 kHz ■ Data Sheet 262 274 ■ kHz 50 80 125 200 300 90 Asymmetric BPF corners: f_center=sqrt(flow * fhigh); Use AFC for more symmetry V1.0, 2010-02-19 TDA5225 Reference # Parameter Symbol Limit Values min. typ. Unit Test Conditions Remarks max. Crystal Oscillator Characteristics H1 Frequency range fXTAL H2 Crystal parameters H2.1 Motional capacitance C1 H2.2 Motional resistance H2.3 MHz 21.948 717 6 10 fF ■ R1 18 80 Ω ■ Shunt capacitance C0 2 4 pF ■ H2.4 Load capacitance CLoad 12 H2.5 Initial frequency tolerance fXTAL_Tol -30 H2.6 Frequency trimming range ΔfXTAL -50 H2.7 Trimming step ΔfX_step H3 Clock output fclock_out frequency at PPx pin H4 Crystal oscillator settling time (switching from Low Power to High Precision Mode) tCOSCsettle H5 Start up time tstart_up Data Sheet 3 pF nominal value ■ +30 ppm oscillator untrimmed (trim capacitor default settings, usage of recommended crystal); not including crystal tolerances ■ +50 ppm larger trimming range possible via SD PLL 4 ppm see also step size of SD PLL 5.5M Hz 10pF load 292 292 µs 0.45 1 ms 1 11 292 91 ■ ■ crystal type: NDK NX5032SD; See also BOM for ext. load caps; Note: No SPI communication is allowed before XOSC start-up is finished and chip reset is already finished V1.0, 2010-02-19 TDA5225 Reference # Parameter Symbol Limit Values min. typ. Unit Test Conditions Remarks max. Digital Inputs/Outputs Characteristics I1 High level input voltage VIn_High I2 High level input leakage current IIn_High I3 Low level input voltage (except P_ON pin) VIn_Low I4 0.7* VDDD VDD5V V +0.1 5 µA 0 0.8 V Low level input voltage (at P_ON pin) VIn_Low_PON 0 0.5 V I5 Low level input leakage current IIn_Low -5 I6 High level output voltage 1 VOut_High1 VDD5V -0.4 VDD5V V IOH=-500 µA, static driver capability; Normal Pad Mode (see register PPCFG2 and CMC0) I7 Low level output voltage 1 VOut_Low1 0 0.4 IOL=500 µA, static driver capability; Normal Pad Mode (see register PPCFG2 and CMC0) I8 High level output voltage 2 VOut_High2 VDD5V -0.8 VDD5V V IOH=-4 mA, static driver capability; High Power Pad Mode (see register PPCFG2 and CMC0) I9 Low level output voltage 2 VOut_Low2 0 0.8 IOL=4 mA, static driver capability; High Power Pad Mode (see register PPCFG2 and CMC0) Data Sheet µA 92 V V V1.0, 2010-02-19 TDA5225 Reference # Parameter Symbol Limit Values min. typ. Unit Test Conditions Remarks MHz Note: A high SPI clock rate during data reception can reduce sensitivity max. Timing SPI-Bus Characteristics J1 Clock frequency fclock 2.2 J2 Clock High time tCLK_H 200 ns ■ J3 Clock Low time tCLK_L 200 ns ■ J4 Active setup time tsetup 200 ns ■ J5 Not active setup time tnot_setup 200 ns ■ J6 Active hold time thold 200 ns ■ J7 Not active hold time tnot_hold 200 ns ■ J8 Deselect time tDeselect 200 ns ■ J9 SDI setup time tSDI_setup 100 ns ■ J10 SDI hold time tSDI_hold 100 ns ■ J11 Clock low to SDO valid tCLK_SDO 145 ns @ Cload = 80 pF High Power Pad not enabled (Normal Mode) (see register PPCFG2 and CMC0) J12 Clock low to SDO valid tCLK_SDO 40 ns @ Cload = 10 pF High Power Pad not enabled (Normal Mode) (see register PPCFG2 and CMC0) J13 SDO rise time tSDO_r 90 ns @ Cload = 80 pF ■ J14 SDO fall time tSDO_f 90 ns @ Cload = 80 pF ■ J15 SDO rise time tSDO_r 15 ns @ Cload = 10 pF ■ J16 SDO fall time tSDO_f 15 ns @ Cload = 10 pF ■ J17 SDO disable time tSDO_disable 25 ns ■ ■ 1) Please note that the system bandwidth is smaller than the smallest bandwidth in the signal path. Data Sheet 93 V1.0, 2010-02-19 TDA5225 Reference Unless explicitly otherwise noted, the following test conditions apply to the given specification values in the items D7 and D8: * Hardware: TDA5240 Platform Testboard V1.0 * Single-Ended Matching for 315.0 MHz / 433.92 MHz / 868.3 MHz / 915.0 MHz * RF input matched to 50 Ω; Insertion loss of input matching network = 1dB * Receive Frequency 315.0 MHz / 433.92 MHz / 868.3 MHz / 915.0 MHz; Lo-Side LO-Injection * Reference Clock: XTAL=21.948717 MHz * IF-Gain: Attenuation set to default value (IFATT = 7) * Double Down Conversion * 1 IF-Filter: Center=10.7MHz; BW=330kHz; Connected between IF_OUT and IFBUF_IN * 2nd IF Filter BW: Depending on Data Rate and FSK Deviation * Received Signal at zero Offset to IF Center Frequency * RSSI trimmed * FSK Pre-Demodulation Filter (PDF) BW: Depending on Data Rate and FSK Deviation * No SPI-traffic during telegram reception, CLK_OUT disabled * AFC and AGC are OFF, unless otherwise noted BER sensitivity measurements use Receive Mode TMMF (sampled with ideal data clock) * DRE ... Data Date Error of received telegram vs. adjusted Data Rate * DC ... Duty Cycle * BER ... Bit Error Rate (using a PRBS9 Pseudo-Random Binary Sequence) [BER = 1 - (number_of_correctly_received_bits / number_of_transmitted bits)] Data Sheet 94 V1.0, 2010-02-19 TDA5225 Reference Table 10 Typical Achievable Sensitivity Bandwidth [kHz] Ceramic Filter BW = 330 kHz Table is valid for DDC (Double Down Conversion) and SDC (Single Down Conversion) Valid for AFC=off; For FSK & AFC=on the BW can be increased by 2*AFCLIMIT, where AFCLIMIT < 43 kHz BPF/PDF Filter [Hz] BPF = 300 k PDF = 282 k Modulation FSK Deviation [+/- Hz] ASK FSK - 0.5 k 1k 5k 10 k 15 k 20 k 40 k 50 k Data Sheet Sensitivity Loss Data Rate [bit/s], Manchester 0.5 k 1k 5 10 k 20 k 50 k 3 dB 230 230 230 230 230 - 6 dB 280 280 280 280 280 - 3 dB 160 150 - - - - 6 dB 230 220 - - - - 3 dB 140 160 - - - - 6 dB 220 230 - - - - 3 dB 120 130 150 140 - - 6 dB 200 210 220 220 - - 3 dB 120 120 140 140 150 - 6 dB 180 190 210 210 210 - 3 dB - - 130 140 150 - 6 dB - - 200 200 210 - 3 dB 110 - 130 130 140 - 6 dB 160 - 190 190 190 - 3 dB - - - 120 - - 6 dB - - - 160 - - 3 dB 110 110 110 110 100 100 6 dB 140 140 140 140 140 140 95 V1.0, 2010-02-19 TDA5225 Reference Table 10 Typical Achievable Sensitivity Bandwidth [kHz] Ceramic Filter BW = 330 kHz Table is valid for DDC (Double Down Conversion) and SDC (Single Down Conversion) Valid for AFC=off; For FSK & AFC=on the BW can be increased by 2*AFCLIMIT, where AFCLIMIT < 43 kHz BPF/PDF Filter [Hz] BPF = 200 k PDF = 239 k Modulation FSK Deviation [+/- Hz] ASK FSK - 0.5 k 1k 5k 10 k 15 k 20 k 40 k 50 k Data Sheet Sensitivity Loss Data Rate [bit/s], Manchester 0.5 k 1k 5 10 k 20 k 50 k 3 dB 180 180 180 180 180 - 6 dB 220 220 220 220 220 - 3 dB 140 140 - - - - 6 dB 190 190 - - - - 3 dB 130 130 - - - - 6 dB 180 190 - - - - 3 dB 100 120 130 130 - - 6 dB 160 170 180 180 - - 3 dB 100 100 120 120 140 - 6 dB 140 150 170 170 170 - 3 dB - - 110 110 120 - 6 dB - - 150 150 160 - 3 dB 90 - 100 100 110 - 6 dB 130 - 140 150 150 - 3 dB - - - 90 - - 6 dB - - - 120 - - 3 dB - - - - - - 6 dB - - - - - - 96 V1.0, 2010-02-19 TDA5225 Reference Table 10 Typical Achievable Sensitivity Bandwidth [kHz] Ceramic Filter BW = 330 kHz Table is valid for DDC (Double Down Conversion) and SDC (Single Down Conversion) Valid for AFC=off; For FSK & AFC=on the BW can be increased by 2*AFCLIMIT, where AFCLIMIT < 43 kHz BPF/PDF Filter [Hz] BPF = 125 k PDF = 132 k Modulation FSK Deviation [+/- Hz] ASK FSK - 0.5 k 1k 5k 10 k 15 k 20 k 40 k 50 k Data Sheet Sensitivity Loss Data Rate [bit/s], Manchester 0.5 k 1k 5 10 k 20 k 50 k 3 dB 120 120 120 120 120 - 6 dB 150 150 150 150 150 - 3 dB 100 100 - - - - 6 dB 120 120 - - - - 3 dB 90 100 - - - - 6 dB 120 120 - - - - 3 dB 70 80 80 90 - - 6 dB 100 110 110 110 - - 3 dB 70 70 80 80 80 - 6 dB 90 100 100 100 100 - 3 dB - - 70 80 80 - 6 dB - - 90 90 100 - 3 dB 60 - 70 70 70 - 6 dB 80 - 90 90 90 - 3 dB - - - - - - 6 dB - - - - - - 3 dB - - - - - - 6 dB - - - - - - 97 V1.0, 2010-02-19 TDA5225 Reference 4.2 Figure 54 Data Sheet Test Circuit - Evaluation Board v1.0 Test Circuit Schematic 98 V1.0, 2010-02-19 TDA5225 Reference 4.3 Test Board Layout - Evaluation Board v1.0 Figure 55 Test Board Layout, Top View Figure 56 Test Board Layout, Bottom View Data Sheet 99 V1.0, 2010-02-19 TDA5225 Reference Figure 57 Data Sheet Test Board Layout, Component View 100 V1.0, 2010-02-19 TDA5225 Reference 4.4 Bill of Materials Pos Part Value 1 IC1 TDA5225 PG-TSSOP-28 2 C1 3.9 pF 0603 C0G +/- 0.1 pF crystal oscillator load 3 C2 3.9 pF 0603 C0G +/- 0.1 pF crystal oscillator load 4 C3 100 nF 0603 X7R +/- 10 % 5 C4 100 nF 0603 X7R +/- 10 % 6 C5 100 nF / ( 1 µF ) 0603 X7R / X5R +/- 10 % 7 C6 100 nF 0603 X7R +/- 10 % 8 C7 1 pF 0603 C0G +/- 0.1 pF matching for 315MHz 0.5 pF 0603 C0G +/- 0.1 pF matching for 434MHz open 0603 C0G 1 pF 0603 C0G open 0603 C0G matching for 315MHz open 0603 C0G matching for 434MHz 2.7 pF 0603 C0G +/- 0.1 pF matching for 868MHz 5.1 pF 0603 C0G +/- 0.1 pF matching for 915MHz polarized capacitor 9 C8 Package Device / Type Tolerance Manufacturer Remark/Options (RF+supply variant) Infineon 3.3V / ( 5 V environment) matching for 868MHz +/- 0.1 pF matching for 915MHz 10 C9 1 µF SMC-A Tantal +/- 10% 11 C10 100 nF 0603 X7R +/- 10% 12 C11 10 nF 0603 X7R +/- 10% 13 L1 68 nH 0603 +/- 2% matching for 315MHz 39 nH 0603 +/- 2% matching for 434MHz 22 nH 0603 +/- 2% matching for 868MHz 15 nH 0603 +/- 2% matching for 915MHz 14 R1 10 Ohm / (open) 0603 +/- 5% 3.3 V / ( 5 V environment) 15 R2 4.7 Ohm / (open) 0603 +/- 5% 3.3 V / ( 5 V environment) 16 R3 4.7 Ohm / (22 Ohm) 0603 +/- 5% 3.3 V / ( 5 V environment) 17 R4 0 Ohm 0603 18 IF1 SFECF10 M7EA00 19 Q1 21.948717 NX5032SD MHz Data Sheet C0=1.7 pF C1=7 fF CL=12 pF 101 Murata BW = 330 kHz NDK (Frischer Electronic), EXS00ACS01580 SMD crystal V1.0, 2010-02-19 TDA5225 Reference Pos Part Value Package Device / Type Tolerance Manufacturer Remark/Options (RF+supply variant) Interface / optional 20 IC2 AT24C32 SOIC8 C-SH-B or AT24C512 EEPROM for board detection 21 C12 open 0603 X7R +/- 10% 22 C13 100 nF 0603 X7R +/- 10% 23 C14 1 µF SMC-A Tantal +/- 10% polarized capacitor 24 C15 10 nF 0603 X7R +/- 10% filter network on supply line 25 C16 10 nF 0603 X7R +/- 10% filter network on supply line 26 L2 0 Ohm 0603 no filter network on supply line 27 R5 open 0603 RSSI measurement low pass 28 R6 1 kOhm 0603 29 R7 0 Ohm 0603 30 D1 LED 31 IF2 open 32 X1 SMA socket RF input 33 X2 3 pins Board supply 34 X3 2 pins Chip supply current (jumper closed) 35 X4 50 pins 36 X5 2 pins RSSI measuring point 37 X6 12 pins Interface line measuring point 38 X7 4 pins GND 39 X8 4 pins GND 40 Jumper 1 2 pins Jumper for X3 41 Jumper 2 2 pins Jumper for X2 Supply by interface RSSI measurement low pass write protection for EEPROM LS M676P251-1 status indication LED Murata SIB-QTS-02501-X-D-RA Samtec 2nd IF filter is optional Connector to PC/µC/Interface Board material 1.5mm FR4 with 35µm copper on both sides Data Sheet 102 V1.0, 2010-02-19 TDA5225 Package Outlines Package Outlines 0˚...8˚ B -0.035 1.2 MAX. 1 +0.05 -0.2 0.1 ±0.05 4.4 ±0.1 1) 0.125 +0.075 5 0.65 0.22 +0.08 -0.03 C 2) 0.1 0.6 +0.15 -0.1 0.1 M A C 28x 28 6.4 15 1 0.2 B 28x 14 9.7 ±0.1 1) A Index Marking 1) 2) Does not include plastic or metal protrusion of 0.15 max. per side Does not include dambar protrusion Figure 58 PG-TSSOP-28 Package Outline (green package) Table 11 Order Information Type TDA5225 Ordering Code Package SP000507672 PG-TSSOP-28 You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”:http://www.infineon.com/products Dimensions in mm SMD = Surface Mounted Device Data Sheet 103 V1.0, 2010-02-19 TDA5225 List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Data Sheet Page Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 AGC Settings 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 AGC Settings 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 SPI Bus Timing Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Power Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Supply Operating Range and Ambient Temperature . . . . . . . . . . . . . . 80 AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Typical Achievable Sensitivity Bandwidth [kHz] . . . . . . . . . . . . . . . . . . 95 Order Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 104 V1.0, 2010-02-19 TDA5225 List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 31 Figure 32 Figure 33 Figure 34 Figure 35 Figure 36 Figure 37 Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Data Sheet Page Pin-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 TDA5225 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Block Diagram RF Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Single Down Conversion (SDC, no external filters required) . . . . . . . . 19 Double Down Conversion (DDC) with one external filter . . . . . . . . . . . 20 Double Down Conversion (DDC) with two external filters . . . . . . . . . . 20 Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 External Clock Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Synthesizer Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Functional Block Diagram ASK/FSK Demodulator . . . . . . . . . . . . . . . 26 AFC Loop Filter (I-PI Filtering and Mapping) . . . . . . . . . . . . . . . . . . . . 28 Analog RSSI output curve with AGC action ON (blue) vs. OFF (black) 29 Peak Detector Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Peak Detector Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Functional Block Diagram Digital Baseband Receiver. . . . . . . . . . . . . 36 Wake-Up Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 RSSI Blocking Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 Volts and 5 Volts Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Supply Current Ramp Up/Down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Reset Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Logical and electrical System Interfaces of the TDA5225 . . . . . . . . . . 44 Data interface for the Transparent Mode . . . . . . . . . . . . . . . . . . . . . . . 46 External Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Interrupt Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Interrupt Generation Waveform (Example for Configuration A+B). . . . 49 ISx Readout Set Clear Collision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Burst Read Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Write Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Burst Write Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 SPI Checksum Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Serial Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Serial Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Chip Serial Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Global State Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Run Mode Slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 HOLD State Behavior (INITPLLHOLD disabled) . . . . . . . . . . . . . . . . . 59 HOLD State Behavior (INITPLLHOLD enabled) . . . . . . . . . . . . . . . . . 60 SPM - TX-RX Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Wake-up Search with Configuration A . . . . . . . . . . . . . . . . . . . . . . . . . 62 Wake-up Search with Configuration B, C, D . . . . . . . . . . . . . . . . . . . . 63 105 V1.0, 2010-02-19 TDA5225 Figure 43 Figure 44 Figure 45 Figure 46 Figure 47 Figure 48 Figure 49 Figure 50 Figure 51 Figure 52 Figure 53 Figure 54 Figure 55 Figure 56 Figure 57 Figure 58 Data Sheet Run Mode Self Polling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Polling Timer Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Constant On-Off Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 COO Polling in WU on RSSI Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Active Idle Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Definition A: Level-based definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Definition B: Chip-based definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Definition C: Edge delay definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 SFR Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 SFR Address Paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Test Circuit Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Test Board Layout, Top View. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Test Board Layout, Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Test Board Layout, Component View . . . . . . . . . . . . . . . . . . . . . . . . 100 PG-TSSOP-28 Package Outline (green package). . . . . . . . . . . . . . . 103 106 V1.0, 2010-02-19 TDA5225 Appendix - Registers Chapter Data Sheet 107 V1.0, 2010-02-19 TDA5225 Appendix Register Overview Appendix - Registers Chapter Register Overview Table 1 Register Overview Register Short Name Register Long Name Offset Address Page Number Appendix - Registers Chapter, Register Description A_IF1 IF1 Register 016H 122 A_WURSSITH1 RSSI Wake-Up Threshold for Channel 1 Register 01BH 122 A_WURSSIBL1 RSSI Wake-Up Blocking Level Low Channel 1 Register 01CH 123 A_WURSSIBH1 RSSI Wake-Up Blocking Level High Channel 1 Register 01DH 123 A_WURSSITH2 RSSI Wake-Up Threshold for Channel 2 Register 01EH 124 A_WURSSIBL2 RSSI Wake-Up Blocking Level Low Channel 2 Register 01FH 124 A_WURSSIBH2 RSSI Wake-Up Blocking Level High Channel 2 Register 020H 124 A_WURSSITH3 RSSI Wake-Up Threshold for Channel 3 Register 021H 125 A_WURSSIBL3 RSSI Wake-Up Blocking Level Low Channel 3 Register 022H 125 A_WURSSIBH3 RSSI Wake-Up Blocking Level High Channel 3 Register 023H 126 A_WULOT Wake-up on Level Observation Time Register 025H 126 A_AFCLIMIT AFC Limit Configuration Register 02AH 127 A_AFCAGCD AFC/AGC Freeze Delay Register 02BH 127 A_AFCSFCFG AFC Start/Freeze Configuration Register 02CH 128 A_AFCK1CFG0 AFC Integrator 1 Gain Register 0 02DH 129 A_AFCK1CFG1 AFC Integrator 1 Gain Register 1 02EH 129 A_AFCK2CFG0 AFC Integrator 2 Gain Register 0 02FH 129 A_AFCK2CFG1 AFC Integrator 2 Gain Register 1 030H 130 A_PMFUDSF Peak Memory Filter Up-Down Factor Register 031H 130 A_AGCSFCFG AGC Start/Freeze Configuration Register 032H 131 A_AGCCFG0 AGC Configuration Register 0 033H 132 A_AGCCFG1 AGC Configuration Register 1 034H 133 A_AGCTHR AGC Threshold Register 035H 133 A_DIGRXC Digital Receiver Configuration Register 036H 134 A_ISUPFCSEL Image Supression Fc Selection Register 038H 134 A_PDECF Pre Decimation Factor Register 039H 135 A_PDECSCFSK Pre Decimation Scaling Register FSK Mode 03AH 135 A_PDECSCASK Pre Decimation Scaling Register ASK Mode 03BH 136 Data Sheet 108 V1.0, 2010-02-19 TDA5225 Appendix Register Overview Table 1 Register Overview (cont’d) Register Short Name Register Long Name Offset Address Page Number A_MFC Matched Filter Control Register 03CH 136 A_SRC Sampe Rate Converter NCO Tune 03DH 137 A_EXTSLC Externel Data Slicer Configuration 03EH 137 A_CHCFG Channel Configuration Register 058H 138 A_PLLINTC1 PLL MMD Integer Value Register Channel 1 059H 139 A_PLLFRAC0C1 PLL Fractional Division Ratio Register 0 Channel 1 05AH 139 A_PLLFRAC1C1 PLL Fractional Division Ratio Register 1 Channel 1 05BH 140 A_PLLFRAC2C1 PLL Fractional Division Ratio Register 2 Channel 1 05CH 140 A_PLLINTC2 PLL MMD Integer Value Register Channel 2 05DH 141 A_PLLFRAC0C2 PLL Fractional Division Ratio Register 0 Channel 2 05EH 141 A_PLLFRAC1C2 PLL Fractional Division Ratio Register 1 Channel 2 05FH 142 A_PLLFRAC2C2 PLL Fractional Division Ratio Register 2 Channel 2 060H 142 A_PLLINTC3 PLL MMD Integer Value Register Channel 3 061H 143 A_PLLFRAC0C3 PLL Fractional Division Ratio Register 0 Channel 3 062H 143 A_PLLFRAC1C3 PLL Fractional Division Ratio Register 1 Channel 3 063H 143 A_PLLFRAC2C3 PLL Fractional Division Ratio Register 2 Channel 3 064H 144 SFRPAGE Special Function Register Page Register 080H 144 PPCFG0 PP0 and PP1 Configuration Register 081H 145 PPCFG1 PP2 and PP3 Configuration Register 082H 146 PPCFG2 PPx Port Configuration Register 083H 147 RXRUNCFG0 RX RUN Configuration Register 0 084H 148 RXRUNCFG1 RX RUN Configuration Register 1 085H 149 CLKOUT0 Clock Divider Register 0 086H 150 CLKOUT1 Clock Divider Register 1 087H 150 CLKOUT2 Clock Divider Register 2 088H 151 RFC RF Control Register 089H 151 BPFCALCFG0 BPF Calibration Configuration Register 0 08AH 152 BPFCALCFG1 BPF Calibration Configuration Register 1 08BH 152 XTALCAL0 XTAL Coarse Calibration Register 08CH 153 XTALCAL1 XTAL Fine Calibration Register 08DH 153 RSSIMONC RSSI Monitor Configuration Register 08EH 154 ADCINSEL ADC Input Selection Register 08FH 155 RSSIOFFS RSSI Offset Register 090H 155 RSSISLOPE RSSI Slope Register 091H 156 IM0 Interrupt Mask Register 0 094H 156 IM1 Interrupt Mask Register 1 095H 157 SPMAP Self Polling Mode Active Periods Register 096H 157 SPMIP Self Polling Mode Idle Periods Register 097H 158 Data Sheet 109 V1.0, 2010-02-19 TDA5225 Appendix Register Overview Table 1 Register Overview (cont’d) Register Short Name Register Long Name Offset Address Page Number SPMC Self Polling Mode Control Register 098H 158 SPMRT Self Polling Mode Reference Timer Register 099H 159 SPMOFFT0 Self Polling Mode Off Time Register 0 09AH 159 SPMOFFT1 Self Polling Mode Off Time Register 1 09BH 160 SPMONTA0 Self Polling Mode On Time Config A Register 0 09CH 160 SPMONTA1 Self Polling Mode On Time Config A Register 1 09DH 161 SPMONTB0 Self Polling Mode On Time Config B Register 0 09EH 161 SPMONTB1 Self Polling Mode On Time Config B Register 1 09FH 162 SPMONTC0 Self Polling Mode On Time Config C Register 0 0A0H 162 SPMONTC1 Self Polling Mode On Time Config C Register 1 0A1H 163 SPMONTD0 Self Polling Mode On Time Config D Register 0 0A2H 163 SPMONTD1 Self Polling Mode On Time Config D Register 1 0A3H 164 EXTPCMD External Processing Command Register 0A4H 164 CMC1 Chip Mode Control Register 1 0A5H 165 CMC0 Chip Mode Control Register 0 0A6H 166 RSSIPWU Wakeup Peak Detector Readout Register 0A7H 167 IS0 Interrupt Status Register 0 0A8H 167 IS1 Interrupt Status Register 1 0A9H 168 RFPLLACC RF PLL Actual Channel and Configuration Register 0AAH 169 RSSIPRX RSSI Peak Detector Readout Register 0ABH 169 ADCRESH ADC Result High Byte Register 0AEH 170 ADCRESL ADC Result Low Byte Register 0AFH 170 VACRES VCO Autocalibration Result Readout Register 0B0H 171 AFCOFFSET AFC Offset Read Register 0B1H 171 AGCGAINR AGC Gain Readout Register 0B2H 172 SPIAT SPI Address Tracer Register 0B3H 172 SPIDT SPI Data Tracer Register 0B4H 172 SPICHKSUM SPI Checksum Register 0B5H 173 SN0 Serial Number Register 0 0B6H 173 SN1 Serial Number Register 1 0B7H 174 SN2 Serial Number Register 2 0B8H 174 SN3 Serial Number Register 3 0B9H 174 RSSIRX RSSI Readout Register 0BAH 175 RSSIPMF RSSI Peak Memory Filter Readout Register 0BBH 175 B_IF1 IF1 Register 116H B_WURSSITH1 RSSI Wake-Up Threshold for Channel 1 Register 11BH B_WURSSIBL1 RSSI Wake-Up Blocking Level Low Channel 1 Register Data Sheet 110 11CH V1.0, 2010-02-19 TDA5225 Appendix Register Overview Table 1 Register Overview (cont’d) Register Short Name Register Long Name Offset Address B_WURSSIBH1 RSSI Wake-Up Blocking Level High Channel 1 Register 11DH B_WURSSITH2 RSSI Wake-Up Threshold for Channel 2 Register 11EH B_WURSSIBL2 RSSI Wake-Up Blocking Level Low Channel 2 Register 11FH B_WURSSIBH2 RSSI Wake-Up Blocking Level High Channel 2 Register 120H B_WURSSITH3 RSSI Wake-Up Threshold for Channel 3 Register 121H B_WURSSIBL3 RSSI Wake-Up Blocking Level Low Channel 3 Register 122H B_WURSSIBH3 RSSI Wake-Up Blocking Level High Channel 3 Register 123H B_WULOT Wake-Up on Level Observation Time Register 125H B_AFCLIMIT AFC Limit Configuration Register 12AH B_AFCAGCD AFC/AGC Freeze Delay Register 12BH B_AFCSFCFG AFC Start/Freeze Configuration Register 12CH B_AFCK1CFG0 AFC Integrator 1 Gain Register 0 12DH B_AFCK1CFG1 AFC Integrator 1 Gain Register 1 12EH B_AFCK2CFG0 AFC Integrator 2 Gain Register 0 12FH B_AFCK2CFG1 AFC Integrator 2 Gain Register 1 130H B_PMFUDSF Peak Memory Filter Up-Down Factor Register 131H B_AGCSFCFG AGC Start/Freeze Configuration Register 132H B_AGCCFG0 AGC Configuration Register 0 133H B_AGCCFG1 AGC Configuration Register 1 134H B_AGCTHR AGC Threshold Register 135H B_DIGRXC Digital Receiver Configuration Register 136H B_ISUPFCSEL Image Supression Fc Selection Register 138H B_PDECF Pre Decimation Factor Register 139H B_PDECSCFSK Pre Decimation Scaling Register FSK Mode 13AH B_PDECSCASK Pre Decimation Scaling Register ASK Mode 13BH B_MFC Matched Filter Control Register 13CH B_SRC Sampe Rate Converter NCO Tune 13DH B_EXTSLC Externel Data Slicer Configuration 13EH B_CHCFG Channel Configuration Register 158H B_PLLINTC1 PLL MMD Integer Value Register Channel 1 159H B_PLLFRAC0C1 PLL Fractional Division Ratio Register 0 Channel 1 15AH B_PLLFRAC1C1 PLL Fractional Division Ratio Register 1 Channel 1 15BH B_PLLFRAC2C1 PLL Fractional Division Ratio Register 2 Channel 1 15CH B_PLLINTC2 PLL MMD Integer Value Register Channel 2 Data Sheet 111 Page Number 15DH V1.0, 2010-02-19 TDA5225 Appendix Register Overview Table 1 Register Overview (cont’d) Register Short Name Register Long Name B_PLLFRAC0C2 PLL Fractional Division Ratio Register 0 Channel 2 15EH B_PLLFRAC1C2 PLL Fractional Division Ratio Register 1 Channel 2 15FH B_PLLFRAC2C2 PLL Fractional Division Ratio Register 2 Channel 2 160H B_PLLINTC3 PLL MMD Integer Value Register Channel 3 B_PLLFRAC0C3 PLL Fractional Division Ratio Register 0 Channel 3 162H B_PLLFRAC1C3 PLL Fractional Division Ratio Register 1 Channel 3 163H B_PLLFRAC2C3 PLL Fractional Division Ratio Register 2 Channel 3 164H C_IF1 IF1 Register C_WURSSITH1 RSSI Wake-Up Threshold for Channel 1 Register 21BH C_WURSSIBL1 RSSI Wake-Up Blocking Level Low Channel 1 Register 21CH C_WURSSIBH1 RSSI Wake-Up Blocking Level High Channel 1 Register 21DH C_WURSSITH2 RSSI Wake-Up Threshold for Channel 2 Register 21EH C_WURSSIBL2 RSSI Wake-Up Blocking Level Low Channel 2 Register 21FH C_WURSSIBH2 RSSI Wake-Up Blocking Level High Channel 2 Register 220H C_WURSSITH3 RSSI Wake-Up Threshold for Channel 3 Register 221H C_WURSSIBL3 RSSI Wake-Up Blocking Level Low Channel 3 Register 222H C_WURSSIBH3 RSSI Wake-Up Blocking Level High Channel 3 Register 223H C_WULOT Wake-Up on Level Observation Time Register 225H C_AFCLIMIT AFC Limit Configuration Register 22AH C_AFCAGCD AFC/AGC Freeze Delay Register 22BH C_AFCSFCFG AFC Start/Freeze Configuration Register 22CH C_AFCK1CFG0 AFC Integrator 1 Gain Register 0 22DH C_AFCK1CFG1 AFC Integrator 1 Gain Register 1 22EH C_AFCK2CFG0 AFC Integrator 2 Gain Register 0 22FH C_AFCK2CFG1 AFC Integrator 2 Gain Register 1 230H C_PMFUDSF Peak Memory Filter Up-Down Factor Register 231H C_AGCSFCFG AGC Start/Freeze Configuration Register 232H C_AGCCFG0 AGC Configuration Register 0 233H C_AGCCFG1 AGC Configuration Register 1 234H C_AGCTHR AGC Threshold Register 235H C_DIGRXC Digital Receiver Configuration Register 236H C_ISUPFCSEL Image Supression Fc Selection Register 238H C_PDECF Pre Decimation Factor Register 239H C_PDECSCFSK Pre Decimation Scaling Register FSK Mode 23AH Data Sheet Offset Address Page Number 161H 216H 112 V1.0, 2010-02-19 TDA5225 Appendix Register Overview Table 1 Register Overview (cont’d) Register Short Name Register Long Name Offset Address C_PDECSCASK Pre Decimation Scaling Register ASK Mode 23BH C_MFC Matched Filter Control Register 23CH C_SRC Sampe Rate Converter NCO Tune 23DH C_EXTSLC Externel Data Slicer Configuration 23EH C_CHCFG Channel Configuration Register 258H C_PLLINTC1 PLL MMD Integer Value Register Channel 1 259H C_PLLFRAC0C1 PLL Fractional Division Ratio Register 0 Channel 1 25AH C_PLLFRAC1C1 PLL Fractional Division Ratio Register 1 Channel 1 25BH C_PLLFRAC2C1 PLL Fractional Division Ratio Register 2 Channel 1 25CH C_PLLINTC2 PLL MMD Integer Value Register Channel 2 C_PLLFRAC0C2 PLL Fractional Division Ratio Register 0 Channel 2 25EH C_PLLFRAC1C2 PLL Fractional Division Ratio Register 1 Channel 2 25FH C_PLLFRAC2C2 PLL Fractional Division Ratio Register 2 Channel 2 260H C_PLLINTC3 PLL MMD Integer Value Register Channel 3 C_PLLFRAC0C3 PLL Fractional Division Ratio Register 0 Channel 3 262H C_PLLFRAC1C3 PLL Fractional Division Ratio Register 1 Channel 3 263H C_PLLFRAC2C3 PLL Fractional Division Ratio Register 2 Channel 3 264H D_IF1 IF1 Register D_WURSSITH1 RSSI Wake-Up Threshold for Channel 1 Register 31BH D_WURSSIBL1 RSSI Wake-Up Blocking Level Low Channel 1 Register 31CH D_WURSSIBH1 RSSI Wake-Up Blocking Level High Channel 1 Register 31DH D_WURSSITH2 RSSI Wake-Up Threshold for Channel 2 Register 31EH D_WURSSIBL2 RSSI Wake-Up Blocking Level Low Channel 2 Register 31FH D_WURSSIBH2 RSSI Wake-Up Blocking Level High Channel 2 Register 320H D_WURSSITH3 RSSI Wake-Up Threshold for Channel 3 Register 321H D_WURSSIBL3 RSSI Wake-Up Blocking Level Low Channel 3 Register 322H D_WURSSIBH3 RSSI Wake-Up Blocking Level High Channel 3 Register 323H D_WULOT Wake-Up on Level Observation Time Register 325H D_AFCLIMIT AFC Limit Configuration Register 32AH D_AFCAGCD AFC/AGC Freeze Delay Register 32BH D_AFCSFCFG AFC Start/Freeze Configuration Register 32CH D_AFCK1CFG0 AFC Integrator 1 Gain Register 0 32DH D_AFCK1CFG1 AFC Integrator 1 Gain Register 1 32EH D_AFCK2CFG0 AFC Integrator 2 Gain Register 0 32FH Data Sheet Page Number 25DH 261H 316H 113 V1.0, 2010-02-19 TDA5225 Appendix Register Overview Table 1 Register Overview (cont’d) Register Short Name Register Long Name Offset Address D_AFCK2CFG1 AFC Integrator 2 Gain Register 1 330H D_PMFUDSF Peak Memory Filter Up-Down Factor Register 331H D_AGCSFCFG AGC Start/Freeze Configuration Register 332H D_AGCCFG0 AGC Configuration Register 0 333H D_AGCCFG1 AGC Configuration Register 1 334H D_AGCTHR AGC Threshold Register 335H D_DIGRXC Digital Receiver Configuration Register 336H D_ISUPFCSEL Image Supression Fc Selection Register 338H D_PDECF Pre Decimation Factor Register 339H D_PDECSCFSK Pre Decimation Scaling Register FSK Mode 33AH D_PDECSCASK Pre Decimation Scaling Register ASK Mode 33BH D_MFC Matched Filter Control Register 33CH D_SRC Sampe Rate Converter NCO Tune 33DH D_EXTSLC Externel Data Slicer Configuration 33EH D_CHCFG Channel Configuration Register 358H D_PLLINTC1 PLL MMD Integer Value Register Channel 1 359H D_PLLFRAC0C1 PLL Fractional Division Ratio Register 0 Channel 1 35AH D_PLLFRAC1C1 PLL Fractional Division Ratio Register 1 Channel 1 35BH D_PLLFRAC2C1 PLL Fractional Division Ratio Register 2 Channel 1 35CH D_PLLINTC2 PLL MMD Integer Value Register Channel 2 D_PLLFRAC0C2 PLL Fractional Division Ratio Register 0 Channel 2 35EH D_PLLFRAC1C2 PLL Fractional Division Ratio Register 1 Channel 2 35FH D_PLLFRAC2C2 PLL Fractional Division Ratio Register 2 Channel 2 360H D_PLLINTC3 PLL MMD Integer Value Register Channel 3 D_PLLFRAC0C3 PLL Fractional Division Ratio Register 0 Channel 3 362H D_PLLFRAC1C3 PLL Fractional Division Ratio Register 1 Channel 3 363H D_PLLFRAC2C3 PLL Fractional Division Ratio Register 2 Channel 3 364H Table 2 Page Number 35DH 361H Register Overview and Reset Value Register Short Name Register Long Name Offset Address Reset Value Appendix - Registers Chapter, Register Description A_IF1 IF1 Register 016H 20H A_WURSSITH1 RSSI Wake-Up Threshold for Channel 1 Register 01BH 00H A_WURSSIBL1 RSSI Wake-Up Blocking Level Low Channel 1 Register 01CH FFH A_WURSSIBH1 RSSI Wake-Up Blocking Level High Channel 1 Register 01DH 00H A_WURSSITH2 RSSI Wake-Up Threshold for Channel 2 Register 01EH 00H Data Sheet 114 V1.0, 2010-02-19 TDA5225 Appendix Register Overview Table 2 Register Overview and Reset Value (cont’d) Register Short Name Register Long Name Offset Address Reset Value A_WURSSIBL2 RSSI Wake-Up Blocking Level Low Channel 2 Register 01FH FFH A_WURSSIBH2 RSSI Wake-Up Blocking Level High Channel 2 Register 020H 00H A_WURSSITH3 RSSI Wake-Up Threshold for Channel 3 Register 021H 00H A_WURSSIBL3 RSSI Wake-Up Blocking Level Low Channel 3 Register 022H FFH A_WURSSIBH3 RSSI Wake-Up Blocking Level High Channel 3 Register 023H 00H A_WULOT Wake-up on Level Observation Time Register 025H 00H A_AFCLIMIT AFC Limit Configuration Register 02AH 02H A_AFCAGCD AFC/AGC Freeze Delay Register 02BH 00H A_AFCSFCFG AFC Start/Freeze Configuration Register 02CH 00H A_AFCK1CFG0 AFC Integrator 1 Gain Register 0 02DH 00H A_AFCK1CFG1 AFC Integrator 1 Gain Register 1 02EH 00H A_AFCK2CFG0 AFC Integrator 2 Gain Register 0 02FH 00H A_AFCK2CFG1 AFC Integrator 2 Gain Register 1 030H 00H A_PMFUDSF Peak Memory Filter Up-Down Factor Register 031H 42H A_AGCSFCFG AGC Start/Freeze Configuration Register 032H 00H A_AGCCFG0 AGC Configuration Register 0 033H 2BH A_AGCCFG1 AGC Configuration Register 1 034H 03H A_AGCTHR AGC Threshold Register 035H 08H A_DIGRXC Digital Receiver Configuration Register 036H 40H A_ISUPFCSEL Image Supression Fc Selection Register 038H 07H A_PDECF Pre Decimation Factor Register 039H 00H A_PDECSCFSK Pre Decimation Scaling Register FSK Mode 03AH 00H A_PDECSCASK Pre Decimation Scaling Register ASK Mode 03BH 20H A_MFC Matched Filter Control Register 03CH 07H A_SRC Sampe Rate Converter NCO Tune 03DH 00H A_EXTSLC Externel Data Slicer Configuration 03EH 02H A_CHCFG Channel Configuration Register 058H 44H A_PLLINTC1 PLL MMD Integer Value Register Channel 1 059H 93H A_PLLFRAC0C1 PLL Fractional Division Ratio Register 0 Channel 1 05AH F3H A_PLLFRAC1C1 PLL Fractional Division Ratio Register 1 Channel 1 05BH 07H A_PLLFRAC2C1 PLL Fractional Division Ratio Register 2 Channel 1 05CH 09H A_PLLINTC2 PLL MMD Integer Value Register Channel 2 05DH 13H A_PLLFRAC0C2 PLL Fractional Division Ratio Register 0 Channel 2 05EH F3H A_PLLFRAC1C2 PLL Fractional Division Ratio Register 1 Channel 2 05FH 07H A_PLLFRAC2C2 PLL Fractional Division Ratio Register 2 Channel 2 060H 09H Data Sheet 115 V1.0, 2010-02-19 TDA5225 Appendix Register Overview Table 2 Register Overview and Reset Value (cont’d) Register Short Name Register Long Name Offset Address Reset Value A_PLLINTC3 PLL MMD Integer Value Register Channel 3 061H 13H A_PLLFRAC0C3 PLL Fractional Division Ratio Register 0 Channel 3 062H F3H A_PLLFRAC1C3 PLL Fractional Division Ratio Register 1 Channel 3 063H 07H A_PLLFRAC2C3 PLL Fractional Division Ratio Register 2 Channel 3 064H 09H SFRPAGE Special Function Register Page Register 080H 00H PPCFG0 PP0 and PP1 Configuration Register 081H 50H PPCFG1 PP2 and PP3 Configuration Register 082H 12H PPCFG2 PPx Port Configuration Register 083H 00H RXRUNCFG0 RX RUN Configuration Register 0 084H FFH RXRUNCFG1 RX RUN Configuration Register 1 085H FFH CLKOUT0 Clock Divider Register 0 086H 0BH CLKOUT1 Clock Divider Register 1 087H 00H CLKOUT2 Clock Divider Register 2 088H 00H RFC RF Control Register 089H 07H BPFCALCFG0 BPF Calibration Configuration Register 0 08AH 07H BPFCALCFG1 BPF Calibration Configuration Register 1 08BH 04H XTALCAL0 XTAL Coarse Calibration Register 08CH 10H XTALCAL1 XTAL Fine Calibration Register 08DH 00H RSSIMONC RSSI Monitor Configuration Register 08EH 01H ADCINSEL ADC Input Selection Register 08FH 00H RSSIOFFS RSSI Offset Register 090H 80H RSSISLOPE RSSI Slope Register 091H 80H IM0 Interrupt Mask Register 0 094H 00H IM1 Interrupt Mask Register 1 095H 00H SPMAP Self Polling Mode Active Periods Register 096H 01H SPMIP Self Polling Mode Idle Periods Register 097H 01H SPMC Self Polling Mode Control Register 098H 00H SPMRT Self Polling Mode Reference Timer Register 099H 01H SPMOFFT0 Self Polling Mode Off Time Register 0 09AH 01H SPMOFFT1 Self Polling Mode Off Time Register 1 09BH 00H SPMONTA0 Self Polling Mode On Time Config A Register 0 09CH 01H SPMONTA1 Self Polling Mode On Time Config A Register 1 09DH 00H SPMONTB0 Self Polling Mode On Time Config B Register 0 09EH 01H SPMONTB1 Self Polling Mode On Time Config B Register 1 09FH 00H SPMONTC0 Self Polling Mode On Time Config C Register 0 0A0H 01H SPMONTC1 Self Polling Mode On Time Config C Register 1 0A1H 00H SPMONTD0 Self Polling Mode On Time Config D Register 0 0A2H 01H SPMONTD1 Self Polling Mode On Time Config D Register 1 0A3H 00H Data Sheet 116 V1.0, 2010-02-19 TDA5225 Appendix Register Overview Table 2 Register Overview and Reset Value (cont’d) Register Short Name Register Long Name Offset Address Reset Value EXTPCMD External Processing Command Register 0A4H 00H CMC1 Chip Mode Control Register 1 0A5H 04H CMC0 Chip Mode Control Register 0 0A6H 10H RSSIPWU Wakeup Peak Detector Readout Register 0A7H 00H IS0 Interrupt Status Register 0 0A8H FFH IS1 Interrupt Status Register 1 0A9H FFH RFPLLACC RF PLL Actual Channel and Configuration Register 0AAH 00H RSSIPRX RSSI Peak Detector Readout Register 0ABH 00H ADCRESH ADC Result High Byte Register 0AEH 00H ADCRESL ADC Result Low Byte Register 0AFH 00H VACRES VCO Autocalibration Result Readout Register 0B0H 00H AFCOFFSET AFC Offset Read Register 0B1H 00H AGCGAINR AGC Gain Readout Register 0B2H 00H SPIAT SPI Address Tracer Register 0B3H 00H SPIDT SPI Data Tracer Register 0B4H 00H SPICHKSUM SPI Checksum Register 0B5H 00H SN0 Serial Number Register 0 0B6H 00H SN1 Serial Number Register 1 0B7H 00H SN2 Serial Number Register 2 0B8H 00H SN3 Serial Number Register 3 0B9H 00H RSSIRX RSSI Readout Register 0BAH 00H RSSIPMF RSSI Peak Memory Filter Readout Register 0BBH 00H B_IF1 IF1 Register 116H 20H B_WURSSITH1 RSSI Wake-Up Threshold for Channel 1 Register 11BH 00H B_WURSSIBL1 RSSI Wake-Up Blocking Level Low Channel 1 Register 11CH FFH B_WURSSIBH1 RSSI Wake-Up Blocking Level High Channel 1 Register 11DH 00H B_WURSSITH2 RSSI Wake-Up Threshold for Channel 2 Register 11EH 00H B_WURSSIBL2 RSSI Wake-Up Blocking Level Low Channel 2 Register 11FH FFH B_WURSSIBH2 RSSI Wake-Up Blocking Level High Channel 2 Register 120H 00H B_WURSSITH3 RSSI Wake-Up Threshold for Channel 3 Register 121H 00H B_WURSSIBL3 RSSI Wake-Up Blocking Level Low Channel 3 Register 122H FFH B_WURSSIBH3 RSSI Wake-Up Blocking Level High Channel 3 Register 123H 00H B_WULOT Wake-Up on Level Observation Time Register 125H 00H Data Sheet 117 V1.0, 2010-02-19 TDA5225 Appendix Register Overview Table 2 Register Overview and Reset Value (cont’d) Register Short Name Register Long Name Offset Address Reset Value B_AFCLIMIT AFC Limit Configuration Register 12AH 02H B_AFCAGCD AFC/AGC Freeze Delay Register 12BH 00H B_AFCSFCFG AFC Start/Freeze Configuration Register 12CH 00H B_AFCK1CFG0 AFC Integrator 1 Gain Register 0 12DH 00H B_AFCK1CFG1 AFC Integrator 1 Gain Register 1 12EH 00H B_AFCK2CFG0 AFC Integrator 2 Gain Register 0 12FH 00H B_AFCK2CFG1 AFC Integrator 2 Gain Register 1 130H 00H B_PMFUDSF Peak Memory Filter Up-Down Factor Register 131H 42H B_AGCSFCFG AGC Start/Freeze Configuration Register 132H 00H B_AGCCFG0 AGC Configuration Register 0 133H 2BH B_AGCCFG1 AGC Configuration Register 1 134H 03H B_AGCTHR AGC Threshold Register 135H 08H B_DIGRXC Digital Receiver Configuration Register 136H 40H B_ISUPFCSEL Image Supression Fc Selection Register 138H 07H B_PDECF Pre Decimation Factor Register 139H 00H B_PDECSCFSK Pre Decimation Scaling Register FSK Mode 13AH 00H B_PDECSCASK Pre Decimation Scaling Register ASK Mode 13BH 20H B_MFC Matched Filter Control Register 13CH 07H B_SRC Sampe Rate Converter NCO Tune 13DH 00H B_EXTSLC Externel Data Slicer Configuration 13EH 02H B_CHCFG Channel Configuration Register 158H 44H B_PLLINTC1 PLL MMD Integer Value Register Channel 1 159H 93H B_PLLFRAC0C1 PLL Fractional Division Ratio Register 0 Channel 1 15AH F3H B_PLLFRAC1C1 PLL Fractional Division Ratio Register 1 Channel 1 15BH 07H B_PLLFRAC2C1 PLL Fractional Division Ratio Register 2 Channel 1 15CH 09H B_PLLINTC2 PLL MMD Integer Value Register Channel 2 15DH 13H B_PLLFRAC0C2 PLL Fractional Division Ratio Register 0 Channel 2 15EH F3H B_PLLFRAC1C2 PLL Fractional Division Ratio Register 1 Channel 2 15FH 07H B_PLLFRAC2C2 PLL Fractional Division Ratio Register 2 Channel 2 160H 09H B_PLLINTC3 PLL MMD Integer Value Register Channel 3 161H 13H B_PLLFRAC0C3 PLL Fractional Division Ratio Register 0 Channel 3 162H F3H B_PLLFRAC1C3 PLL Fractional Division Ratio Register 1 Channel 3 163H 07H B_PLLFRAC2C3 PLL Fractional Division Ratio Register 2 Channel 3 164H 09H C_IF1 IF1 Register 216H 20H C_WURSSITH1 RSSI Wake-Up Threshold for Channel 1 Register 21BH 00H C_WURSSIBL1 RSSI Wake-Up Blocking Level Low Channel 1 Register 21CH FFH C_WURSSIBH1 RSSI Wake-Up Blocking Level High Channel 1 Register 21DH 00H Data Sheet 118 V1.0, 2010-02-19 TDA5225 Appendix Register Overview Table 2 Register Overview and Reset Value (cont’d) Register Short Name Register Long Name C_WURSSITH2 RSSI Wake-Up Threshold for Channel 2 Register 21EH 00H C_WURSSIBL2 RSSI Wake-Up Blocking Level Low Channel 2 Register 21FH FFH C_WURSSIBH2 RSSI Wake-Up Blocking Level High Channel 2 Register 220H 00H C_WURSSITH3 RSSI Wake-Up Threshold for Channel 3 Register 221H 00H C_WURSSIBL3 RSSI Wake-Up Blocking Level Low Channel 3 Register 222H FFH C_WURSSIBH3 RSSI Wake-Up Blocking Level High Channel 3 Register 223H 00H C_WULOT Wake-Up on Level Observation Time Register 225H 00H C_AFCLIMIT AFC Limit Configuration Register 22AH 02H C_AFCAGCD AFC/AGC Freeze Delay Register 22BH 00H C_AFCSFCFG AFC Start/Freeze Configuration Register 22CH 00H C_AFCK1CFG0 AFC Integrator 1 Gain Register 0 22DH 00H C_AFCK1CFG1 AFC Integrator 1 Gain Register 1 22EH 00H C_AFCK2CFG0 AFC Integrator 2 Gain Register 0 22FH 00H C_AFCK2CFG1 AFC Integrator 2 Gain Register 1 230H 00H C_PMFUDSF Peak Memory Filter Up-Down Factor Register 231H 42H C_AGCSFCFG AGC Start/Freeze Configuration Register 232H 00H C_AGCCFG0 AGC Configuration Register 0 233H 2BH C_AGCCFG1 AGC Configuration Register 1 234H 03H C_AGCTHR AGC Threshold Register 235H 08H C_DIGRXC Digital Receiver Configuration Register 236H 40H C_ISUPFCSEL Image Supression Fc Selection Register 238H 07H C_PDECF Pre Decimation Factor Register 239H 00H C_PDECSCFSK Pre Decimation Scaling Register FSK Mode 23AH 00H C_PDECSCASK Pre Decimation Scaling Register ASK Mode 23BH 20H C_MFC Matched Filter Control Register 23CH 07H C_SRC Sampe Rate Converter NCO Tune 23DH 00H C_EXTSLC Externel Data Slicer Configuration 23EH 02H C_CHCFG Channel Configuration Register 258H 44H C_PLLINTC1 PLL MMD Integer Value Register Channel 1 259H 93H C_PLLFRAC0C1 PLL Fractional Division Ratio Register 0 Channel 1 25AH F3H C_PLLFRAC1C1 PLL Fractional Division Ratio Register 1 Channel 1 25BH 07H C_PLLFRAC2C1 PLL Fractional Division Ratio Register 2 Channel 1 25CH 09H C_PLLINTC2 PLL MMD Integer Value Register Channel 2 25DH 13H C_PLLFRAC0C2 PLL Fractional Division Ratio Register 0 Channel 2 25EH F3H C_PLLFRAC1C2 PLL Fractional Division Ratio Register 1 Channel 2 25FH 07H Data Sheet Offset Address 119 Reset Value V1.0, 2010-02-19 TDA5225 Appendix Register Overview Table 2 Register Overview and Reset Value (cont’d) Register Short Name Register Long Name C_PLLFRAC2C2 PLL Fractional Division Ratio Register 2 Channel 2 260H 09H C_PLLINTC3 PLL MMD Integer Value Register Channel 3 261H 13H C_PLLFRAC0C3 PLL Fractional Division Ratio Register 0 Channel 3 262H F3H C_PLLFRAC1C3 PLL Fractional Division Ratio Register 1 Channel 3 263H 07H C_PLLFRAC2C3 PLL Fractional Division Ratio Register 2 Channel 3 264H 09H D_IF1 IF1 Register 316H 20H D_WURSSITH1 RSSI Wake-Up Threshold for Channel 1 Register 31BH 00H D_WURSSIBL1 RSSI Wake-Up Blocking Level Low Channel 1 Register 31CH FFH D_WURSSIBH1 RSSI Wake-Up Blocking Level High Channel 1 Register 31DH 00H D_WURSSITH2 RSSI Wake-Up Threshold for Channel 2 Register 31EH 00H D_WURSSIBL2 RSSI Wake-Up Blocking Level Low Channel 2 Register 31FH FFH D_WURSSIBH2 RSSI Wake-Up Blocking Level High Channel 2 Register 320H 00H D_WURSSITH3 RSSI Wake-Up Threshold for Channel 3 Register 321H 00H D_WURSSIBL3 RSSI Wake-Up Blocking Level Low Channel 3 Register 322H FFH D_WURSSIBH3 RSSI Wake-Up Blocking Level High Channel 3 Register 323H 00H D_WULOT Wake-Up on Level Observation Time Register 325H 00H D_AFCLIMIT AFC Limit Configuration Register 32AH 02H D_AFCAGCD AFC/AGC Freeze Delay Register 32BH 00H D_AFCSFCFG AFC Start/Freeze Configuration Register 32CH 00H D_AFCK1CFG0 AFC Integrator 1 Gain Register 0 32DH 00H D_AFCK1CFG1 AFC Integrator 1 Gain Register 1 32EH 00H D_AFCK2CFG0 AFC Integrator 2 Gain Register 0 32FH 00H D_AFCK2CFG1 AFC Integrator 2 Gain Register 1 330H 00H D_PMFUDSF Peak Memory Filter Up-Down Factor Register 331H 42H D_AGCSFCFG AGC Start/Freeze Configuration Register 332H 00H D_AGCCFG0 AGC Configuration Register 0 333H 2BH D_AGCCFG1 AGC Configuration Register 1 334H 03H D_AGCTHR AGC Threshold Register 335H 08H D_DIGRXC Digital Receiver Configuration Register 336H 40H D_ISUPFCSEL Image Supression Fc Selection Register 338H 07H D_PDECF Pre Decimation Factor Register 339H 00H D_PDECSCFSK Pre Decimation Scaling Register FSK Mode 33AH 00H D_PDECSCASK Pre Decimation Scaling Register ASK Mode 33BH 20H D_MFC Matched Filter Control Register 33CH 07H Data Sheet Offset Address 120 Reset Value V1.0, 2010-02-19 TDA5225 Appendix Register Overview Table 2 Register Overview and Reset Value (cont’d) Register Short Name Register Long Name Offset Address Reset Value D_SRC Sampe Rate Converter NCO Tune 33DH 00H D_EXTSLC Externel Data Slicer Configuration 33EH 02H D_CHCFG Channel Configuration Register 358H 44H D_PLLINTC1 PLL MMD Integer Value Register Channel 1 359H 93H D_PLLFRAC0C1 PLL Fractional Division Ratio Register 0 Channel 1 35AH F3H D_PLLFRAC1C1 PLL Fractional Division Ratio Register 1 Channel 1 35BH 07H D_PLLFRAC2C1 PLL Fractional Division Ratio Register 2 Channel 1 35CH 09H D_PLLINTC2 PLL MMD Integer Value Register Channel 2 35DH 13H D_PLLFRAC0C2 PLL Fractional Division Ratio Register 0 Channel 2 35EH F3H D_PLLFRAC1C2 PLL Fractional Division Ratio Register 1 Channel 2 35FH 07H D_PLLFRAC2C2 PLL Fractional Division Ratio Register 2 Channel 2 360H 09H D_PLLINTC3 PLL MMD Integer Value Register Channel 3 361H 13H D_PLLFRAC0C3 PLL Fractional Division Ratio Register 0 Channel 3 362H F3H D_PLLFRAC1C3 PLL Fractional Division Ratio Register 1 Channel 3 363H 07H D_PLLFRAC2C3 PLL Fractional Division Ratio Register 2 Channel 3 364H 09H Data Sheet 121 V1.0, 2010-02-19 TDA5225 Appendix Register Description Register Description IF1 Register A_IF1 Offset IF1 Register Reset Value 016H 8186(' 66%6(/ Z 20H %3)%:6(/ 6'&6(/ ,)%8)(1 &(5)6(/ Z Z Z Z Field Bits Type Description UNUSED 7 - UNUSED Reset: 0H SSBSEL 6 w RXRF Receive Side Band Select 0B RF = LO + IF1 (Lo-side LO-injection) 1B RF = LO - IF1 (Hi-side LO-injection) Reset: 0H BPFBWSEL 5:3 w Band Pass Filter Bandwidth Selection 000B 50 kHz 001B 80 kHz 010B 125 kHz 011B 200 kHz 100B 300 kHz 101B not used 110B not used 111B not used Reset: 4H SDCSEL 2 w Single / Double Conversion Selection 0B Double Conversion (10.7 MHz/274 kHz) 1B Single Conversion (274 kHz) Reset: 0H IFBUFEN 1 w IF Buffer Enable 0B Disabled 1B Enabled Reset: 0H CERFSEL 0 w Number of external Ceramic Filters 0B 1 Ceramic Filter 1B 2 Ceramic Filters Reset: 0H RSSI Wake-Up Threshold for Channel 1 Register Data Sheet 122 V1.0, 2010-02-19 TDA5225 Appendix Register Description A_WURSSITH1 Offset Reset Value RSSI Wake-Up Threshold for Channel 1 Register 01BH 00H :8566,7+ Z Field Bits Type Description WURSSITH1 7:0 w Wake Up on RSSI Threshold level for Channel 1 Wake Up Request generated when actual RSSI level is above this threshold Reset: 00H RSSI Wake-Up Blocking Level Low Channel 1 Register A_WURSSIBL1 Offset Reset Value RSSI Wake-Up Blocking Level Low Channel 1 Register 01CH FFH :8566,%/ Z Field Bits Type Description WURSSIBL1 7:0 w Wake Up on RSSI Blocking Level LOW for Channel 1 Reset: FFH RSSI Wake-Up Blocking Level High Channel 1 Register A_WURSSIBH1 Offset Reset Value RSSI Wake-Up Blocking Level High Channel 1 Register 01DH 00H :8566,%+ Z Data Sheet 123 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description WURSSIBH1 7:0 w Wake Up on RSSI Blocking Level HIGH for Channel 1 Reset: 00H RSSI Wake-Up Threshold for Channel 2 Register A_WURSSITH2 Offset RSSI Wake-Up Threshold for Channel 2 Register Reset Value 01EH 00H :8566,7+ Z Field Bits Type Description WURSSITH2 7:0 w Wake Up on RSSI Threshold level for Channel 2 Wake Up Request generated when actual RSSI level is above this threshold Reset: 00H RSSI Wake-Up Blocking Level Low Channel 2 Register A_WURSSIBL2 Offset RSSI Wake-Up Blocking Level Low Channel 2 Register Reset Value 01FH FFH :8566,%/ Z Field Bits Type Description WURSSIBL2 7:0 w Wake Up on RSSI Blocking Level LOW for Channel 2 Reset: FFH RSSI Wake-Up Blocking Level High Channel 2 Register Data Sheet 124 V1.0, 2010-02-19 TDA5225 Appendix Register Description A_WURSSIBH2 Offset RSSI Wake-Up Blocking Level High Channel 2 Register Reset Value 020H 00H :8566,%+ Z Field Bits Type Description WURSSIBH2 7:0 w Wake Up on RSSI Blocking Level HIGH for Channel 2 Reset: 00H RSSI Wake-Up Threshold for Channel 3 Register A_WURSSITH3 Offset RSSI Wake-Up Threshold for Channel 3 Register Reset Value 021H 00H :8566,7+ Z Field Bits Type Description WURSSITH3 7:0 w Wake Up on RSSI Threshold level for Channel 3 Wake Up Request generated when actual RSSI level is above this threshold Reset: 00H RSSI Wake-Up Blocking Level Low Channel 3 Register A_WURSSIBL3 RSSI Wake-Up Blocking Level Low Channel 3 Register Offset Reset Value 022H FFH :8566,%/ Z Data Sheet 125 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description WURSSIBL3 7:0 w Wake Up on RSSI Blocking Level LOW for Channel 3 Reset: FFH RSSI Wake-Up Blocking Level High Channel 3 Register A_WURSSIBH3 Offset RSSI Wake-Up Blocking Level High Channel 3 Register Reset Value 023H 00H :8566,%+ Z Field Bits Type Description WURSSIBH3 7:0 w Wake Up on RSSI Blocking Level HIGH for Channel 3 Reset: 00H Wake-up on Level Observation Time Register A_WULOT Offset Wake-up on Level Observation Time Register Reset Value 025H 00H :8/2736 :8/27 Z Z Field Bits Type Description WULOTPS 7:5 w Wake-Up Level Observation Time PreScaler 000B 4 001B 8 010B 16 011B 32 100B 64 101B 128 110B 256 111B 512 Reset: 0H Data Sheet 126 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description WULOT 4:0 w Wake-Up Level Observation Time Min. 01h : Twulot = 1 * WULOTPS * 64 / Fsys Max 1Fh : Twulot = 31 * WULOTPS * 64 / Fsys Value 00h : Twulot = 32 * WULOTPS * 64 / Fsys Reset: 00H AFC Limit Configuration Register A_AFCLIMIT Offset Reset Value AFC Limit Configuration Register 02AH 02H 8186(' $)&/,0,7 Z Field Bits Type Description UNUSED 7:4 - UNUSED Reset: 0H AFCLIMIT 3:0 w AFC Frequency Offset Saturation Limit ==> 1...15 x 21.4 kHz Min: 1h = +/- Fsys / 2^(22-12) Hz Max: Fh = +/- 15 * Fsys / 2^(22-12) Hz Reg. value 0h = 0 Hz - no AFC correction Reset: 2H AFC/AGC Freeze Delay Register A_AFCAGCD Offset Reset Value AFC/AGC Freeze Delay Register 02BH 00H $)&$*&' Z Field Bits Type Description AFCAGCD 7:0 w AFC/AGC Freeze Delay Counter Division Ratio The base period for the delay counter is the 8-16 samples/chip (predecimation strobe) divided by 4 Reset: 00H Data Sheet 127 V1.0, 2010-02-19 TDA5225 Appendix Register Description AFC Start/Freeze Configuration Register A_AFCSFCFG Offset Reset Value AFC Start/Freeze Configuration Register 02CH 00H 8186(' $)&%/$6 . $)&5(6$ 7&& $)&)5((=( $)&67$57 Z Z Z Z Field Bits Type Description UNUSED 7 - UNUSED Reset: 0H AFCBLASK 6 w AFC blocking during a low phase in the ASK signal 0B Disabled 1B Enabled Reset: 0H AFCRESATC C 5 w Enable AFC Restart at Channel Change and at the beginning of the current configuration in Self Polling Mode and at leaving the HOLD state (when bit CMC0.INITPLLHOLD is set) in Run Mode Slave 0B Disabled 1B Enabled Reset: 0H AFCFREEZE 4:2 w AFC Freeze Configuration When selecting a Level criterion here, please note to use the same Level criterion as for Wake-Up 000B Stay ON 001B Freeze on RSSI Event + Delay (AFCAGCDEL) 010B not used 011B not used 100B SPI Command - write to EXTPCMD.AFCMANF bit 101B n.u. 110B n.u. 111B n.u. Reset: 0H AFCSTART 1:0 w AFC Start Configuration When selecting a Level criterion here, please note to use the same Level criterion as for Wake-Up 00B OFF 01B Direct ON 10B Start on RSSI event 11B not used Reset: 0H Data Sheet 128 V1.0, 2010-02-19 TDA5225 Appendix Register Description AFC Integrator 1 Gain Register 0 A_AFCK1CFG0 Offset Reset Value AFC Integrator 1 Gain Register 0 02DH 00H $)&.B Z Field Bits Type Description AFCK1_0 7:0 w AFC Filter coefficient K1, AFCK1(11:0) = AFCK1_1(MSB) & AFCK1_0(LSB) Reset: 00H AFC Integrator 1 Gain Register 1 A_AFCK1CFG1 Offset AFC Integrator 1 Gain Register 1 Reset Value 02EH 00H 8186(' $)&.B Z Field Bits Type Description UNUSED 7:4 - UNUSED Reset: 0H AFCK1_1 3:0 w AFC Filter coefficient K1, AFCK1(11:0) = AFCK1_1(MSB) & AFCK1_0(LSB) Reset: 0H AFC Integrator 2 Gain Register 0 A_AFCK2CFG0 Offset AFC Integrator 2 Gain Register 0 02FH Data Sheet 129 Reset Value 00H V1.0, 2010-02-19 TDA5225 Appendix Register Description $)&.B Z Field Bits Type Description AFCK2_0 7:0 w AFC Filter coefficient K2, AFCK2(11:0) = AFCK2_1(MSB) & AFCK2_0(LSB) Reset: 00H AFC Integrator 2 Gain Register 1 A_AFCK2CFG1 Offset AFC Integrator 2 Gain Register 1 Reset Value 030H 00H 8186(' $)&.B Z Field Bits Type Description UNUSED 7:4 - UNUSED Reset: 0H AFCK2_1 3:0 w AFC Filter coefficient K2, AFCK2(11:0) = AFCK2_1(MSB) & AFCK2_0(LSB) Reset: 0H Peak Memory Filter Up-Down Factor Register A_PMFUDSF Offset Peak Memory Filter Up-Down Factor Register Reset Value 031H 42H 8186(' 30)83 8186(' 30)'1 Z Z Field Bits Type Description UNUSED 7 - UNUSED Reset: 0H Data Sheet 130 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description PMFUP 6:4 w Peak Memory Filter Attack (Up) Factor 000B 2^-1 001B 2^-2 010B 2^-3 011B 2^-4 100B 2^-5 101B 2^-6 110B 2^-7 111B 2^-8 Reset: 4H UNUSED 3 - UNUSED Reset: 0H PMFDN 2:0 w Peak Memory Filter Decay (Down) Factor (additional to Attack Factor) 000B 2^-2 001B 2^-3 010B 2^-4 011B 2^-5 100B 2^-6 101B 2^-7 110B 2^-8 111B 2^-9 Reset: 2H AGC Start/Freeze Configuration Register A_AGCSFCFG Offset AGC Start/Freeze Configuration Register Reset Value 032H 00H 8186(' $*&5(6$ 7&& $*&)5((=( $*&67$57 Z Z Z Field Bits Type Description UNUSED 7:6 - UNUSED Reset: 0H AGCRESATC C 5 w Enable AGC Restart at Channel Change and at the beginning of the current configuration in Self Polling Mode and at leaving the HOLD state (when bit CMC0.INITPLLHOLD is set) in Run Mode Slave 0B Disabled 1B Enabled Reset: 0H Data Sheet 131 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description AGCFREEZE 4:2 w AGC Freeze Configuration When selecting a Level criterion here, please note to use the same Level criterion as for Wake-Up 000B Stay ON 001B Freeze on RSSI Event + Delay (AFCAGCDEL) 010B not used 011B not used 100B SPI Command - write to EXTPCMD.AGCMANF bit 101B n.u. 110B n.u. 111B n.u. Reset: 0H AGCSTART 1:0 w AGC Start Configuration When selecting a Level criterion here, please note to use the same Level criterion as for Wake-Up 00B OFF 01B Direct ON 10B Start on RSSI event 11B not used Reset: 0H AGC Configuration Register 0 A_AGCCFG0 Offset AGC Configuration Register 0 Reset Value 033H 2BH 8186(' $*&'*& $*&+<6 $*&*$,1 Z Z Z Field Bits Type Description UNUSED 7 - UNUSED Reset: 0H AGCDGC 6:4 w AGC Digital RSSI Gain Correction Tuning 000B 14.5 dB 001B 15.0 dB 010B 15.5 dB 011B 16.0 dB 100B 16.5 dB 101B 17.0 dB 110B 17.5 dB 111B 18.0 dB Reset: 2H Data Sheet 132 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description AGCHYS 3:2 w AGC Threshold Hysteresis 00B 12.8 dB 01B 17.1 dB 10B 21.3 dB 11B 25.6 dB Reset: 2H AGCGAIN 1:0 w AGC Gain Control 00B 0 dB 01B -15 dB 10B -30 dB 11B Automatic Reset: 3H AGC Configuration Register 1 A_AGCCFG1 Offset AGC Configuration Register 1 Reset Value 034H 03H 8186(' $*&7+2))6 Z Field Bits Type Description UNUSED 7:2 - UNUSED Reset: 00H AGCTHOFFS 1:0 w AGC Threshold Offset 00B 25.5 dB 01B 38.3 dB 10B 51.1 dB 11B 63.9 dB Reset: 3H AGC Threshold Register A_AGCTHR Offset AGC Threshold Register 035H Data Sheet Reset Value 08H $*&783 $*&7/2 Z Z 133 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description AGCTUP 7:4 w AGC Upper Attack Threshold [dB] AGC Upper Threshold = A_AGCCFG1.AGCTHOFFS + 25.6 + AGCTUP*1.6 Reset: 0H AGCTLO 3:0 w AGC Lower Attack Threshold [dB] AGC Lower Threshold = A_AGCCFG1.AGCTHOFFS + AGCTLO*1.6 Reset: 8H Digital Receiver Configuration Register A_DIGRXC Offset Digital Receiver Configuration Register Reset Value 036H 40H ,1,7'5; (6 8186(' ',19(;7 $$)%<3 $$))&6( / Z Z Z Z Z Field Bits Type Description INITDRXES 7 w Init the Digital Receiver at EOM signal (e.g. for initialization of the Peak Memory Filter) 0B Disabled 1B Enabled Reset: 0H UNUSED 6:3 w UNUSED Reset: 8H DINVEXT 2 w Data Inversion of signal DATA and DATA_MATCHFIL for External Processing 0B Not inverted 1B Inverted Reset: 0H AAFBYP 1 w Anti-Alliasing Filter Bypass for RSSI pin 0B Not bypassed 1B Bypassed Reset: 0H AAFFCSEL 0 w Anti-Alliasing Filter Corner Frequency Select 0B 40 kHz 1B 80 kHz Reset: 0H Image Supression Fc Selection Register Data Sheet 134 V1.0, 2010-02-19 TDA5225 Appendix Register Description A_ISUPFCSEL Offset Image Supression Fc Selection Register Reset Value 038H 07H 5HV 8186(' )&6(/ Z Field Bits Type Description UNUSED 7:4 - UNUSED Reset: 0H FCSEL 2:0 w Image Supression Filter Corner Frequency Selection for FSK signal path 000B 33 kHz 001B 46 kHz 010B 65 kHz 011B 93 kHz 100B 132 kHz 101B 190 kHz 110B 239 kHz 111B 282 kHz Reset: 7H Pre Decimation Factor Register A_PDECF Offset Pre Decimation Factor Register Reset Value 039H 00H 8186(' 35('(&) Z Field Bits Type Description UNUSED 7 - UNUSED Reset: 0H PREDECF 6:0 w Predecimation Filter Decimation Factor Predecimation Factor = PREDECF + 1 Reset: 00H Pre Decimation Scaling Register FSK Mode Data Sheet 135 V1.0, 2010-02-19 TDA5225 Appendix Register Description A_PDECSCFSK Offset Reset Value Pre Decimation Scaling Register FSK Mode 03AH 00H 5HV ,1732/( 1) 3'6&$/() Z Z Field Bits Type Description INTPOLENF 5 w FSK Data Interpolation Enable 0B Disabled 1B Enabled Reset: 0H PDSCALEF 4:0 w Predecimation Block Scaling Factor for FSK Min 00h : 2^-10 Max 17h : 2^13 Reset: 00H Pre Decimation Scaling Register ASK Mode A_PDECSCASK Offset Reset Value Pre Decimation Scaling Register ASK Mode 03BH 20H 8186(' 5HV ,1732/( 1$ 3'6&$/($ Z Z Field Bits Type Description UNUSED 7 - UNUSED Reset: 0H INTPOLENA 5 w ASK Data Interpolation Enable 0B Disabled 1B Enabled Reset: 1H PDSCALEA 4:0 w Predecimation Block Scaling Factor for ASK Min 00h : 2^-10 Max 17h : 2^13 Reset: 00H Matched Filter Control Register Data Sheet 136 V1.0, 2010-02-19 TDA5225 Appendix Register Description A_MFC Offset Reset Value Matched Filter Control Register 03CH 07H 8186(' 0)/ Z Field Bits Type Description UNUSED 7:4 - UNUSED Reset: 0H MFL 3:0 w Matched Filter Length MF Length = MFL + 1 Reset: 7H Sampe Rate Converter NCO Tune A_SRC Offset Reset Value Sampe Rate Converter NCO Tune 03DH 00H 65&1&2 Z Field Bits Type Description SRCNCO 7:0 w Sample Rate Converter NCO Tune Min 00h : Fout = Fin Max FFh : Fout = Fin / 2 Reset: 00H Externel Data Slicer Configuration A_EXTSLC Offset Externel Data Slicer Configuration 8186(' Data Sheet 5HV Reset Value 03EH 02H (6/&6&$ (6/&%: Z Z 137 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description UNUSED 7 - UNUSED Reset: 0H ESLCSCA 4:3 w External Slicer BW Selection Scaling 00B 1/2 01B 1/4 10B 1/8 11B 1/16 Reset: 0H ESLCBW 2:0 w External Slicer Manual BW Selection 000B 1/8 001B 1/16 010B 1/24 011B 1/32 100B 1/40 101B 1/48 110B n.u. 111B n.u. Reset: 2H Channel Configuration Register A_CHCFG Offset Channel Configuration Register Reset Value 058H 44H 8186(' (20630 12& 07 Z Z Z Field Bits Type Description UNUSED 7:5 - UNUSED Reset: 2H EOM2SPM 4 w Continue with Self Polling Mode after EOM detected in Run Mode Self Polling 0B Disabled - stay in Run Mode Self Polling (next Payload Frame is expected) 1B Enabled - leave Run Mode Self Polling after EOM Reset: 0H Data Sheet 138 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description NOC 3:2 w Number of Channels (Run Mode Slave / Self Polling Mode - Run Mode Self Polling) 00B Channel 1 / Channel 1 01B Channel 1 / Channel 1 10B Channel 2 / Channel 1 + 2 11B Channel 3 / Channel 1 + 2 + 3 Reset: 1H MT 1:0 w Modulation Type (Run Mode Slave / Self Polling Mode - Run Mode Self Polling) 00B ASK / ASK - ASK 01B FSK / FSK - FSK 10B ASK / FSK - ASK 11B FSK / ASK - FSK Reset: 0H PLL MMD Integer Value Register Channel 1 A_PLLINTC1 Offset PLL MMD Integer Value Register Channel 1 Reset Value 059H 93H %$1'6(/ 3//,17& Z Z Field Bits Type Description BANDSEL 7:6 w Frequency Band Selection 00B not used 01B 915MHz/868MHz 10B 434MHz 11B 315MHz Reset: 2H PLLINTC1 5:0 w SDPLL Multi Modulus Divider Integer Offset value for Channel 1 PLLINT(5:0) = dec2hex(INT(f_LO / f_XTAL)) Reset: 13H PLL Fractional Division Ratio Register 0 Channel 1 A_PLLFRAC0C1 Offset Reset Value PLL Fractional Division Ratio Register 0 Channel 1 05AH F3H Data Sheet 139 V1.0, 2010-02-19 TDA5225 Appendix Register Description 3//)5$&& Z Field Bits PLLFRAC0C1 7:0 Type Description w Synthesizer channel frequency value (21 bits, bits 7:0), fractional division ratio for Channel 1 PLLFRAC(20:0) = dec2hex(((f_LO / f_XTAL) - PLLINT) * 2^21) Reset: F3H PLL Fractional Division Ratio Register 1 Channel 1 A_PLLFRAC1C1 Offset Reset Value PLL Fractional Division Ratio Register 1 Channel 1 05BH 07H 3//)5$&& Z Field Bits PLLFRAC1C1 7:0 Type Description w Synthesizer channel frequency value (21 bits, bits 15:8), fractional division ratio for Channel 1 PLLFRAC(20:0) = dec2hex(((f_LO / f_XTAL) - PLLINT) * 2^21) Reset: 07H PLL Fractional Division Ratio Register 2 Channel 1 A_PLLFRAC2C1 Offset Reset Value PLL Fractional Division Ratio Register 2 Channel 1 05CH 09H 8186(' 3//)&20 3& 3//)5$&& Z Z Data Sheet 140 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description UNUSED 7:6 - UNUSED Reset: 0H PLLFCOMPC1 5 w Fractional Spurii Compensation enable for Channel 1 0B Disabled 1B Enabled Reset: 0H PLLFRAC2C1 4:0 w Synthesizer channel frequency value (21 bits, bits 20:16), fractional division ratio for Channel 1 PLLFRAC(20:0) = dec2hex(((f_LO / f_XTAL) - PLLINT) * 2^21) Reset: 09H PLL MMD Integer Value Register Channel 2 A_PLLINTC2 Offset Reset Value PLL MMD Integer Value Register Channel 2 05DH 13H 8186(' 3//,17& Z Field Bits Type Description UNUSED 7:6 - UNUSED Reset: 0H PLLINTC2 5:0 w SDPLL Multi Modulus Divider Integer Offset value for Channel 2 PLLINT(5:0) = dec2hex(INT(f_LO / f_XTAL)) Reset: 13H PLL Fractional Division Ratio Register 0 Channel 2 A_PLLFRAC0C2 PLL Fractional Division Ratio Register 0 Channel 2 Offset Reset Value 05EH F3H 3//)5$&& Z Data Sheet 141 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits PLLFRAC0C2 7:0 Type Description w Synthesizer channel frequency value (21 bits, bits 7:0), fractional division ratio for Channel 2 PLLFRAC(20:0) = dec2hex(((f_LO / f_XTAL) - PLLINT) * 2^21) Reset: F3H PLL Fractional Division Ratio Register 1 Channel 2 A_PLLFRAC1C2 Offset PLL Fractional Division Ratio Register 1 Channel 2 Reset Value 05FH 07H 3//)5$&& Z Field Bits PLLFRAC1C2 7:0 Type Description w Synthesizer channel frequency value (21 bits, bits 15:8), fractional division ratio for Channel 2 PLLFRAC(20:0) = dec2hex(((f_LO / f_XTAL) - PLLINT) * 2^21) Reset: 07H PLL Fractional Division Ratio Register 2 Channel 2 A_PLLFRAC2C2 Offset PLL Fractional Division Ratio Register 2 Channel 2 Reset Value 060H 09H 8186(' 3//)&20 3& 3//)5$&& Z Z Field Bits Type Description UNUSED 7:6 - UNUSED Reset: 0H w Fractional Spurii Compensation enable for Channel 2 0B Disabled 1B Enabled Reset: 0H PLLFCOMPC2 5 Data Sheet 142 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits PLLFRAC2C2 4:0 Type Description w Synthesizer channel frequency value (21 bits, bits 20:16), fractional division ratio for Channel 2 PLLFRAC(20:0) = dec2hex(((f_LO / f_XTAL) - PLLINT) * 2^21) Reset: 09H PLL MMD Integer Value Register Channel 3 A_PLLINTC3 Offset PLL MMD Integer Value Register Channel 3 Reset Value 061H 13H 8186(' 3//,17& Z Field Bits Type Description UNUSED 7:6 - UNUSED Reset: 0H PLLINTC3 5:0 w SDPLL Multi Modulus Divider Integer Offset value for Channel 3 PLLINT(5:0) = dec2hex(INT(f_LO / f_XTAL)) Reset: 13H PLL Fractional Division Ratio Register 0 Channel 3 A_PLLFRAC0C3 Offset PLL Fractional Division Ratio Register 0 Channel 3 Reset Value 062H F3H 3//)5$&& Z Field Bits PLLFRAC0C3 7:0 Type Description w Synthesizer channel frequency value (21 bits, bits 7:0), fractional division ratio for Channel 3 PLLFRAC(20:0) = dec2hex(((f_LO / f_XTAL) - PLLINT) * 2^21) Reset: F3H PLL Fractional Division Ratio Register 1 Channel 3 Data Sheet 143 V1.0, 2010-02-19 TDA5225 Appendix Register Description A_PLLFRAC1C3 Offset PLL Fractional Division Ratio Register 1 Channel 3 Reset Value 063H 07H 3//)5$&& Z Field Bits PLLFRAC1C3 7:0 Type Description w Synthesizer channel frequency value (21 bits, bits 15:8), fractional division ratio for Channel 3 PLLFRAC(20:0) = dec2hex(((f_LO / f_XTAL) - PLLINT) * 2^21) Reset: 07H PLL Fractional Division Ratio Register 2 Channel 3 A_PLLFRAC2C3 Offset PLL Fractional Division Ratio Register 2 Channel 3 Reset Value 064H 09H 8186(' 3//)&20 3& 3//)5$&& Z Z Field Bits Type Description UNUSED 7:6 - UNUSED Reset: 0H PLLFCOMPC3 5 w Fractional Spurii Compensation enable for Channel 3 0B Disabled 1B Enabled Reset: 0H PLLFRAC2C3 4:0 w Synthesizer channel frequency value (21 bits, bits 20:16), fractional division ratio for Channel 3 PLLFRAC(20:0) = dec2hex(((f_LO / f_XTAL) - PLLINT) * 2^21) Reset: 09H Special Function Register Page Register Data Sheet 144 V1.0, 2010-02-19 TDA5225 Appendix Register Description SFRPAGE Offset Special Function Register Page Register Reset Value 080H 00H 8186(' 6)53$*( Z Field Bits Type Description UNUSED 7:2 - UNUSED Reset: 00H SFRPAGE 1:0 w Selection of Register Page File (Configuration A..D) for SPI communication 00B Page 0 (Config. A, start address: 000H) 01B Page 1 (Config. B, start address: 100H) 10B Page 2 (Config. C, start address: 200H) 11B Page 3 (Config. D, start address: 300H) Reset: 0H PP0 and PP1 Configuration Register PPCFG0 Offset PP0 and PP1 Configuration Register Reset Value 081H 50H 8186(' 33&)* 8186(' 33&)* Z Z Z Z Field Bits Type Description UNUSED 7 w UNUSED Reset: 0H PP1CFG 6:4 w Port Pin 1 Output Signal Selection 000B CLK_OUT 001B RX_RUN 010B NINT 011B LOW 100B HIGH 101B DATA 110B DATA_MATCHFIL 111B n.u. Reset: 5H Data Sheet 145 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description UNUSED 3 w UNUSED Reset: 0H PP0CFG 2:0 w Port Pin 0 Output Signal Selection 000B CLK_OUT 001B RX_RUN 010B NINT 011B LOW 100B HIGH 101B DATA 110B DATA_MATCHFIL 111B n.u. Reset: 0H PP2 and PP3 Configuration Register PPCFG1 Offset PP2 and PP3 Configuration Register Reset Value 082H 12H 8186(' 33&)* 8186(' 33&)* Z Z Z Z Field Bits Type Description UNUSED 7 w UNUSED Reset: 0H PP3CFG 6:4 w Port Pin 3 Output Signal Selection 000B n.u. 001B RX_RUN 010B NINT 011B LOW 100B HIGH 101B DATA 110B DATA_MATCHFIL 111B n.u. Reset: 1H UNUSED 3 w UNUSED Reset: 0H Data Sheet 146 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description PP2CFG 2:0 w Port Pin 2 Output Signal Selection 000B CLK_OUT 001B RX_RUN 010B NINT 011B LOW 100B HIGH 101B DATA 110B DATA_MATCHFIL 111B n.u. Reset: 2H PPx Port Configuration Register PPCFG2 Offset PPx Port Configuration Register Reset Value 083H 00H 33+33( 1 33+33( 1 33+33( 1 33+33( 1 33,19 33,19 33,19 33,19 Z Z Z Z Z Z Z Z Field Bits Type Description PP3HPPEN 7 w PP3 High Power Pad Enable 0B Normal 1B High Power Reset: 0H PP2HPPEN 6 w PP2 High Power Pad Enable 0B Normal 1B High Power Reset: 0H PP1HPPEN 5 w PP1 High Power Pad Enable 0B Normal 1B High Power Reset: 0H PP0HPPEN 4 w PP0 High Power Pad Enable 0B Normal 1B High Power Reset: 0H PP3INV 3 w PP3 Inversion Enable 0B Not Inverted 1B Inverted Reset: 0H Data Sheet 147 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description PP2INV 2 w PP2 Inversion Enable 0B Not Inverted 1B Inverted Reset: 0H PP1INV 1 w PP1 Inversion Enable 0B Not Inverted 1B Inverted Reset: 0H PP0INV 0 w PP0 Inversion Enable 0B Not Inverted 1B Inverted Reset: 0H RX RUN Configuration Register 0 RXRUNCFG0 Offset RX RUN Configuration Register 0 Reset Value 084H FFH 5;58133 ' 5;58133 & 5;58133 % 5;58133 $ 5;58133 ' 5;58133 & 5;58133 % 5;58133 $ Z Z Z Z Z Z Z Z Field Bits Type Description RXRUNPP1D 7 w RXRUN Active Level on PP1 for Configuration D 0B Active Low 1B Active High Reset: 1H RXRUNPP1C 6 w RXRUN Active Level on PP1 for Configuration C 0B Active Low 1B Active High Reset: 1H RXRUNPP1B 5 w RXRUN Active Level on PP1 for Configuration B 0B Active Low 1B Active High Reset: 1H RXRUNPP1A 4 w RXRUN Active Level on PP1 for Configuration A 0B Active Low 1B Active High Reset: 1H RXRUNPP0D 3 w RXRUN Active Level on PP0 for Configuration D 0B Active Low 1B Active High Reset: 1H Data Sheet 148 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description RXRUNPP0C 2 w RXRUN Active Level on PP0 for Configuration C 0B Active Low 1B Active High Reset: 1H RXRUNPP0B 1 w RXRUN Active Level on PP0 for Configuration B 0B Active Low 1B Active High Reset: 1H RXRUNPP0A 0 w RXRUN Active Level on PP0 for Configuration A 0B Active Low 1B Active High Reset: 1H RX RUN Configuration Register 1 RXRUNCFG1 Offset RX RUN Configuration Register 1 Reset Value 085H FFH 5;58133 ' 5;58133 & 5;58133 % 5;58133 $ 5;58133 ' 5;58133 & 5;58133 % 5;58133 $ Z Z Z Z Z Z Z Z Field Bits Type Description RXRUNPP3D 7 w RXRUN Active Level on PP3 for Configuration D 0B Active Low 1B Active High Reset: 1H RXRUNPP3C 6 w RXRUN Active Level on PP3 for Configuration C 0B Active Low 1B Active High Reset: 1H RXRUNPP3B 5 w RXRUN Active Level on PP3 for Configuration B 0B Active Low 1B Active High Reset: 1H RXRUNPP3A 4 w RXRUN Active Level on PP3 for Configuration A 0B Active Low 1B Active High Reset: 1H RXRUNPP2D 3 w RXRUN Active Level on PP2 for Configuration D 0B Active Low 1B Active High Reset: 1H Data Sheet 149 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description RXRUNPP2C 2 w RXRUN Active Level on PP2 for Configuration C 0B Active Low 1B Active High Reset: 1H RXRUNPP2B 1 w RXRUN Active Level on PP2 for Configuration B 0B Active Low 1B Active High Reset: 1H RXRUNPP2A 0 w RXRUN Active Level on PP2 for Configuration A 0B Active Low 1B Active High Reset: 1H Clock Divider Register 0 CLKOUT0 Offset Clock Divider Register 0 Reset Value 086H 0BH &/.287 Z Field Bits Type Description CLKOUT0 7:0 w Clock Out Divider: CLKOUT(19:0) = CLKOUT2(MSB) & CLKOUT1 & CLKOUT0(LSB) Min: 00002h = Clock divided by 2*2 Max: FFFFFh = Clock divided by ((2^20)-1)*2 Reg. value 00000h = Clock divided by (2^20)*2 Reset: 0BH Clock Divider Register 1 CLKOUT1 Clock Divider Register 1 Offset Reset Value 087H 00H &/.287 Z Data Sheet 150 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description CLKOUT1 7:0 w Clock Out Divider: CLKOUT(19:0) = CLKOUT2(MSB) & CLKOUT1 & CLKOUT0(LSB) Min: 00002h = Clock divided by 2*2 Max: FFFFFh = Clock divided by ((2^20)-1)*2 Reg. value 00000h = Clock divided by (2^20)*2 Reset: 00H Clock Divider Register 2 CLKOUT2 Offset Clock Divider Register 2 Reset Value 088H 00H 8186(' &/.287 Z Field Bits Type Description UNUSED 7:4 - UNUSED Reset: 0H CLKOUT2 3:0 w Clock Out Divider: CLKOUT(19:0) = CLKOUT2(MSB) & CLKOUT1 & CLKOUT0(LSB) Min: 00002h = Clock divided by 2*2 Max: FFFFFh = Clock divided by ((2^20)-1)*2 Reg. value 00000h = Clock divided by (2^20)*2 Reset: 0H RF Control Register RFC Offset RF Control Register 089H 07H 8186(' 5)2)) ,)$77 Z Z Field Bits Type Description UNUSED 7:5 - UNUSED Reset: 0H Data Sheet Reset Value 151 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description RFOFF 4 w Switch off RF-path (for RSSI trimming) 0B RF path enabled 1B RF path disabled Reset: 0H IFATT 3:0 w Adjust IF attenuation from LNA_IN to IF_OUT (Double-Down Conversion / Single-Down Conversion) Used to trim out external component tolerances. 0000B 0 dB / n.u. 0001B 0.8 dB / n.u. 0010B 1.6 dB / n.u. 0011B 2.4 dB / n.u. 0100B 3.2 dB / 0 dB 0101B 4.0 dB / 0.8 dB 0110B 4.8 dB / 1.6 dB 0111B 5.6 dB / 2.4 dB 1000B 6.4 dB / 3.2 dB 1001B 7.2 dB / 4.0 dB 1010B 8.0 dB / 4.8 dB 1011B 8.8 dB / n.u. 1100B 9.6 dB / n.u. 1101B 10.4 dB / n.u. 1110B 11.2 dB / n.u. 1111B 12.0 dB / n.u. Reset: 7H BPF Calibration Configuration Register 0 BPFCALCFG0 Offset Reset Value BPF Calibration Configuration Register 0 08AH 07H 5HV 8186(' %3)&$/67 Z Field Bits Type Description UNUSED 7:5 - UNUSED Reset: 0H BPFCALST 3:0 w BPF Calibration Time (use default = 07H) Min: 0h= Txtal * 80 * 7 * (0 + 4) Max: Fh= Txtal * 80 * 7 * (15 + 4) Reset: 7H BPF Calibration Configuration Register 1 Data Sheet 152 V1.0, 2010-02-19 TDA5225 Appendix Register Description BPFCALCFG1 Offset Reset Value BPF Calibration Configuration Register 1 08BH 04H 8186(' %3)&$/%: Z Field Bits Type Description UNUSED 7:6 - UNUSED Reset: 0H BPFCALBW 5:0 w Band Pass Filter Bandwidth Selection during Calibration 04H - 50 kHz (=default) 0DH - 80 kHz 16H - 125 kHz 1FH - 200 kHz 27H - 300 kHz Reset: 04H XTAL Coarse Calibration Register XTALCAL0 Offset Reset Value XTAL Coarse Calibration Register 08CH 10H 8186(' ;7$/6:& Z Field Bits Type Description UNUSED 7:5 - UNUSED Reset: 0H XTALSWC 4:0 w Xtal Trim Capacitor Value Min 00h: 0pF Value 01h: 1pF Max 18h: 24pF higher values than 18h are automatically mapped to 24pF Reset: 10H XTAL Fine Calibration Register Data Sheet 153 V1.0, 2010-02-19 TDA5225 Appendix Register Description XTALCAL1 Offset Reset Value XTAL Fine Calibration Register 08DH 00H 8186(' ;7$/6:) ;7$/6:) ;7$/6:) ;7$/6:) Z Z Z Z Field Bits Type Description UNUSED 7:4 - UNUSED Reset: 0H XTALSWF3 3 w Connect 500 fF XTAL Trim capacitor 0B not connected 1B connected Reset: 0H XTALSWF2 2 w Connect 250 fF XTAL Trim capacitor 0B not connected 1B connected Reset: 0H XTALSWF1 1 w Connect 125 fF XTAL Trim capacitor 0B not connected 1B connected Reset: 0H XTALSWF0 0 w Connect 62.5 fF XTAL Trim capacitor 0B not connected 1B connected Reset: 0H RSSI Monitor Configuration Register RSSIMONC Offset RSSI Monitor Configuration Register 08EH 01H 5HV 8186(' 566,021 (1 Z Field Bits Type Description UNUSED 7:3 - UNUSED Reset: 00H Data Sheet Reset Value 154 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description RSSIMONEN 0 w Enable Buffer for RSSI pin 0B Disabled 1B Enabled Reset: 1H ADC Input Selection Register ADCINSEL Offset ADC Input Selection Register Reset Value 08FH 00H 8186(' $'&,16(/ Z Field Bits Type Description UNUSED 7:3 - UNUSED Reset: 00H ADCINSEL 2:0 w ADC Input Selection 000B RSSI 001B Temperature 010B VDDD / 2 011B n.u. 100B n.u. 101B n.u. 110B n.u. 111B n.u. Reset: 0H RSSI Offset Register RSSIOFFS RSSI Offset Register Offset Reset Value 090H 80H 566,2))6 Z Data Sheet 155 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description RSSIOFFS 7:0 w RSSI Offset Compensation Value Min: 00h= -256 Max: FFh= 254 Reset: 80H RSSI Slope Register RSSISLOPE Offset RSSI Slope Register Reset Value 091H 80H 566,6/23( Z Field Bits Type Description RSSISLOPE 7:0 w RSSI Slope Compensation Value (Multiplication Value) Multiplication Factor = RSSISLOPE * 2^-7 Min: 00h= 0.0 Max: FFh= 1.992 Reset: 80H Interrupt Mask Register 0 IM0 Offset Interrupt Mask Register 0 Reset Value 094H 00H 8186(' ,0:8% 8186(' ,0:8$ Z Z Field Bits Type Description UNUSED 7:5 - UNUSED Reset: 0H IMWUB 4 w Mask Interrupt on "Wake-up" for Configuration B 0B Interrupt enabled 1B Interrupt disabled Reset: 0H Data Sheet 156 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description UNUSED 3:1 - UNUSED Reset: 0H IMWUA 0 w Mask Interrupt on "Wake-up" for Configuration A 0B Interrupt enabled 1B Interrupt disabled Reset: 0H Interrupt Mask Register 1 IM1 Offset Interrupt Mask Register 1 Reset Value 095H 00H 8186(' ,0:8' 8186(' ,0:8& Z Z Field Bits Type Description UNUSED 7:5 - UNUSED Reset: 0H IMWUD 4 w Mask Interrupt on "Wake-up" for Configuration D 0B Interrupt enabled 1B Interrupt disabled Reset: 0H UNUSED 3:1 - UNUSED Reset: 0H IMWUC 0 w Mask Interrupt on "Wake-up" for Configuration C 0B Interrupt enabled 1B Interrupt disabled Reset: 0H Self Polling Mode Active Periods Register SPMAP Offset Self Polling Mode Active Periods Register Data Sheet Reset Value 096H 01H 8186(' 630$3 Z 157 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description UNUSED 7:5 - UNUSED Reset: 0H SPMAP 4:0 w Self Polling Mode Active Periods value Min: 01h = 1 (Master) Period Max: 1Fh = 31(Master) Periods Reg. value 00h = 32 (Master) Periods Reset: 01H Self Polling Mode Idle Periods Register SPMIP Offset Self Polling Mode Idle Periods Register Reset Value 097H 01H 630,3 Z Field Bits Type Description SPMIP 7:0 w Self Polling Mode Idle Periods value Min: 01h = 1 (Master) Period Max: FFh = 255 (Master) Periods Reg. value 00h = 256 (Master) Periods Reset: 01H Self Polling Mode Control Register SPMC Offset Self Polling Mode Control Register 098H 00H 8186(' 630$,(1 8186(' Z Z Field Bits Type Description UNUSED 7:3 - UNUSED Reset: 00H Data Sheet Reset Value 158 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description SPMAIEN 2 w Self Polling Mode Active Idle Enable 0B Disabled 1B Enabled Reset: 0H UNUSED 1:0 w UNUSED Reset: 0H Self Polling Mode Reference Timer Register SPMRT Offset Self Polling Mode Reference Timer Register Reset Value 099H 01H 63057 Z Field Bits Type Description SPMRT 7:0 w Self Polling Mode Reference Timer value The output of this timer is used as input for the On/Off Timer Incoming Periodic Time = 64 / fsys Output Periodic Time = TRT = (64 * SPMRT) / fsys Min: 01h = (64*1) / fsys Max: 00h = (64 * 256) / fsys Reset: 01H Self Polling Mode Off Time Register 0 SPMOFFT0 Offset Reset Value Self Polling Mode Off Time Register 0 09AH 01H 6302))7 Z Data Sheet 159 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description SPMOFFT0 7:0 w Self Polling Mode Off Time value: SPMOFFT(13:0) = SPMOFFT1(MSB) & SPMOFFT0(LSB) Off -Time = TRT * SPMOFFT Min: 0001h = 1 * TRT Reg.Value 3FFFh = 16383 * TRT Max: 0000h = 16384 * TRT Reset: 01H Self Polling Mode Off Time Register 1 SPMOFFT1 Offset Reset Value Self Polling Mode Off Time Register 1 09BH 00H 8186(' 6302))7 Z Field Bits Type Description UNUSED 7:6 - UNUSED Reset: 0H SPMOFFT1 5:0 w Self Polling Mode Off Time value: SPMOFFT(13:0) = SPMOFFT1(MSB) & SPMOFFT0(LSB) Off -Time = TRT * SPMOFFT Min: 0001h = 1 * TRT Reg.Value 3FFFh = 16383 * TRT Max: 0000h = 16384 * TRT Reset: 00H Self Polling Mode On Time Config A Register 0 SPMONTA0 Offset Reset Value Self Polling Mode On Time Config A Register 0 09CH 01H 630217$ Z Data Sheet 160 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description SPMONTA0 7:0 w Set Value Self Polling Mode On Time: SPMONTA(13:0) = SPMONTA1(MSB) & SPMONTA0(LSB) On-Time = TRT *SPMONTA Min: 0001h = 1*TRT Reg.Value: 3FFFh = 16383*TRT Max: 0000h = 16384*TRT Reset: 01H Self Polling Mode On Time Config A Register 1 SPMONTA1 Offset Reset Value Self Polling Mode On Time Config A Register 1 09DH 00H 8186(' 630217$ Z Field Bits Type Description UNUSED 7:6 - UNUSED Reset: 0H SPMONTA1 5:0 w Set Value Self Polling Mode On Time: SPMONTA(13:0) = SPMONTA1(MSB) & SPMONTA0(LSB) On-Time = TRT *SPMONTA Min: 0001h = 1*TRT Reg.Value: 3FFFh = 16383*TRT Max: 0000h = 16384*TRT Reset: 00H Self Polling Mode On Time Config B Register 0 SPMONTB0 Self Polling Mode On Time Config B Register 0 Offset Reset Value 09EH 01H 630217% Z Data Sheet 161 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description SPMONTB0 7:0 w Set Value Self Polling Mode On Time: SPMONTB(13:0) = SPMONTB1(MSB) & SPMONTB0(LSB) On-Time = TRT *SPMONTB Min: 0001h = 1*TRT Reg.Value: 3FFFh = 16383*TRT Max: 0000h = 16384*TRT Reset: 01H Self Polling Mode On Time Config B Register 1 SPMONTB1 Offset Self Polling Mode On Time Config B Register 1 Reset Value 09FH 00H 8186(' 630217% Z Field Bits Type Description UNUSED 7:6 - UNUSED Reset: 0H SPMONTB1 5:0 w Set Value Self Polling Mode On Time: SPMONTB(13:0) = SPMONTB1(MSB) & SPMONTB0(LSB) On-Time = TRT *SPMONTB Min: 0001h = 1*TRT Reg.Value: 3FFFh = 16383*TRT Max: 0000h = 16384*TRT Reset: 00H Self Polling Mode On Time Config C Register 0 SPMONTC0 Offset Reset Value Self Polling Mode On Time Config C Register 0 0A0H 01H 630217& Z Data Sheet 162 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description SPMONTC0 7:0 w Set Value Self Polling Mode On Time: SPMONTC(13:0) = SPMONTC1(MSB) & SPMONTC0(LSB) On-Time = TRT *SPMONTC Min: 0001h = 1*TRT Reg.Value: 3FFFh = 16383*TRT Max: 0000h = 16384*TRT Reset: 01H Self Polling Mode On Time Config C Register 1 SPMONTC1 Offset Reset Value Self Polling Mode On Time Config C Register 1 0A1H 00H 8186(' 630217& Z Field Bits Type Description UNUSED 7:6 - UNUSED Reset: 0H SPMONTC1 5:0 w Set Value Self Polling Mode On Time: SPMONTC(13:0) = SPMONTC1(MSB) & SPMONTC0(LSB) On-Time = TRT *SPMONTC Min: 0001h = 1*TRT Reg.Value: 3FFFh = 16383*TRT Max: 0000h = 16384*TRT Reset: 00H Self Polling Mode On Time Config D Register 0 SPMONTD0 Offset Reset Value Self Polling Mode On Time Config D Register 0 0A2H 01H 630217' Z Data Sheet 163 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description SPMONTD0 7:0 w Set Value Self Polling Mode On Time: SPMONTD(13:0) = SPMONTD1(MSB) & SPMONTD0(LSB) On-Time = TRT *SPMONTD Min: 0001h = 1*TRT Reg.Value: 3FFFh = 16383*TRT Max: 0000h = 16384*TRT Reset: 01H Self Polling Mode On Time Config D Register 1 SPMONTD1 Offset Reset Value Self Polling Mode On Time Config D Register 1 0A3H 00H 8186(' 630217' Z Field Bits Type Description UNUSED 7:6 - UNUSED Reset: 0H SPMONTD1 5:0 w Set Value Self Polling Mode On Time: SPMONTD(13:0) = SPMONTD1(MSB) & SPMONTD0(LSB) On-Time = TRT *SPMONTD Min: 0001h = 1*TRT Reg.Value: 3FFFh = 16383*TRT Max: 0000h = 16384*TRT Reset: 00H External Processing Command Register EXTPCMD Offset Reset Value External Processing Command Register 0A4H 00H 5HV Data Sheet 8186(' $*&0$1) $)&0$1) (;7727, 0 (;7(20 ZF ZF ZF ZF 164 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description UNUSED 6:4 - UNUSED Reset: 0H AGCMANF 3 wc AGC Manual Freeze When *_AGCSFCFG.AGCFREEZE set to SPI Command, this bit sets the AGC to freeze mode 0B Inactive 1B Active Reset: 0H AFCMANF 2 wc AFC Manual Freeze When *_AFCSFCFG.AFCFREEZE set to SPI Command, this bit sets the AFC to freeze mode 0B Inactive 1B Active Reset: 0H EXTTOTIM 1 wc Force TOTIM signal 0B no external TOTIM signal forced 1B external TOTIM signal forced Reset: 0H EXTEOM 0 wc Force EOM signal 0B no external EOM signal forced 1B external EOM signal forced Reset: 0H Chip Mode Control Register 1 CMC1 Offset Reset Value Chip Mode Control Register 1 0A5H 04H 8186(' (201&) * 727,01 &+ 8186(' ;7$/+30 6 Z Z Z Z Field Bits Type Description UNUSED 7:6 - UNUSED Reset: 0H EOM2NCFG 5 w Continue with next Configuration in Self Polling Mode after EOM detected in Run Mode Self Polling 0B Continue with Configuration A in Self Polling Mode 1B Continue with next Configuration in Self Polling Mode Reset: 0H Data Sheet 165 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description TOTIM2NCH 4 w Continue with next RF channel in Self Polling Mode after TOTIM detected in Run Mode Self Polling. In case of single RF channel application this means "continue with next Configuration" instead of "continue with next RF channel". 0B Continue with Configuration A in Self Polling Mode 1B Continue with next RF channel in Self Polling Mode Reset: 0H UNUSED 3:1 w UNUSED Reset: 2H XTALHPMS 0 w XTAL High Precision Mode in Sleep Mode 0B Disabled 1B Enabled Reset: 0H Chip Mode Control Register 0 CMC0 Offset Reset Value Chip Mode Control Register 0 0A6H 10H 6'2+33( 1 ,1,73// +2/' +2/' &/.287( 1 Z Z Z Z 0&6 6/5;(1 06(/ Z Z Z Field Bits Type Description SDOHPPEN 7 w SDO High Power Pad Enable 0B Normal 1B High Power Reset: 0H INITPLLHOLD 6 w Init PLL after coming from HOLD (when new channel programmed). This requires an additional Channel Hop Time before initialization of the Digital Receiver. 0B No init of PLL 1B Init of PLL Reset: 0H HOLD 5 w Holds the chip in the Register Configuration state (only in Run Mode Slave) 0B Normal Operation 1B Jump into the Register Config state Hold Reset: 0H CLKOUTEN 4 w CLK_OUT Enable 0B Disabled 1B Enable programmable clock output Reset: 1H Data Sheet 166 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description MCS 3:2 w Multi Configuration Selection (Run Mode Slave / Self Polling Mode) 00B Config A / Config A 01B Config B / Config A + B 10B Config C / Config A + B + C 11B Config D / Config A + B + C + D Reset: 0H SLRXEN 1 w Slave Receiver Enable This Bit is only used in Operating Mode Run Mode Slave / Sleep Mode 0B Receiver is in Sleep Mode 1B Receiver is in Run Mode Slave Reset: 0H MSEL 0 w Operating Mode Selection 0B Run Mode Slave / Sleep Mode 1B Self Polling Mode Reset: 0H Wakeup Peak Detector Readout Register RSSIPWU Offset Reset Value Wakeup Peak Detector Readout Register 0A7H 00H 566,3:8 U Field Bits Type Description RSSIPWU 7:0 r Peak Detector Level at Wakeup Set at every WU event and also set at the end of every configuration/channel cycle within a Self Polling period. Cleared at Reset only. Reset: 00H Interrupt Status Register 0 IS0 Offset Reset Value Interrupt Status Register 0 0A8H FFH Data Sheet 8186(' :8% 8186(' :8$ UF UF UF UF 167 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description UNUSED 7:5 rc UNUSED Reset: 7H WUB 4 rc Interrupt Request by "Wake Up" from Configuration B (Reset event sets all Bits to 1) 0B Not detected 1B Detected Reset: 1H UNUSED 3:1 rc UNUSED Reset: 7H WUA 0 rc Interrupt Request by "Wake Up" from Configuration A (Reset event sets all Bits to 1) 0B Not detected 1B Detected Reset: 1H Interrupt Status Register 1 IS1 Offset Reset Value Interrupt Status Register 1 0A9H FFH 8186(' :8' 8186(' :8& UF UF UF UF Field Bits Type Description UNUSED 7:5 rc UNUSED Reset: 7H WUD 4 rc Interrupt Request by "Wake Up" from Configuration D (Reset event sets all Bits to 1) 0B Not detected 1B Detected Reset: 1H UNUSED 3:1 rc UNUSED Reset: 7H WUC 0 rc Interrupt Request by "Wake Up" from Configuration C (Reset event sets all Bits to 1) 0B Not detected 1B Detected Reset: 1H Data Sheet 168 V1.0, 2010-02-19 TDA5225 Appendix Register Description RF PLL Actual Channel and Configuration Register RFPLLACC Offset Reset Value RF PLL Actual Channel and Configuration Register 0AAH 00H 8186(' 5063$&)* 8186(' 630$& U U U U Field Bits Type Description UNUSED 7:6 r UNUSED Reset: 0H RMSPACFG 5:4 r RF PLL Run Mode Self Polling Actual Configuration 00B Configuration A 01B Configuration B 10B Configuration C 11B Configuration D Reset: 0H UNUSED 3:2 r UNUSED Reset: 0H SPMAC 1:0 r RF PLL Self Polling Mode Actual Channel 00B No Wake Up from any Channel was actually found 01B Wake Up was found from Channel 1 10B Wake Up was found from Channel 2 11B Wake Up was found from Channel 3 Reset: 0H RSSI Peak Detector Readout Register RSSIPRX Offset Reset Value RSSI Peak Detector Readout Register 0ABH 00H 566,35; UF Data Sheet 169 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description RSSIPRX 7:0 rc RSSI Peak Level during Receiving Tracking is active when Digital Receiver is enabled Set at higher peak levels than stored Cleared at Reset and SPI read out Reset: 00H ADC Result High Byte Register ADCRESH Offset Reset Value ADC Result High Byte Register 0AEH 00H $'&5(6+ UF Field Bits Type Description ADCRESH 7:0 rc ADC Result Value ADCRES(9:0) = ADCRESH(7:0) & ADCRESL(1:0) Note: RC for control signal generation only, no clear Reset: 00H ADC Result Low Byte Register ADCRESL Offset Reset Value ADC Result Low Byte Register 0AFH 00H 8186(' $'&(2& $'&5(6/ U U Field Bits Type Description UNUSED 7:3 - UNUSED Reset: 00H ADCEOC 2 r ADC End of Conversion detected 0B not detected 1B detected Reset: 0H Data Sheet 170 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description ADCRESL 1:0 r ADC Result Value ADCRES(9:0) = ADCRESH(7:0) & ADCRESL(1:0) The 2 LSBs of the ADC result are captured when the SFR register ADCRESH is readout. Reset: 0H VCO Autocalibration Result Readout Register VACRES Offset Reset Value VCO Autocalibration Result Readout Register 0B0H 00H 5HV 8186(' 9$&5(6 U Field Bits Type Description UNUSED 7:5 - UNUSED Reset: 0H VACRES 3:0 r VCO Autocalibration Result Returns the VCO range selected by VCO Autocalibration Reset: 0H AFC Offset Read Register AFCOFFSET Offset Reset Value AFC Offset Read Register 0B1H 00H $)&2))6 U Field Bits Type Description AFCOFFS 7:0 r Readout of the Frequency Offset found by AFC (AFC loop filter output). Value is in signed representation. Frequency resolution is 2.68 kHz/digit Output can be limited by x_AFCLIMIT register Update rate is 548 kHz Reset: 00H Data Sheet 171 V1.0, 2010-02-19 TDA5225 Appendix Register Description AGC Gain Readout Register AGCGAINR Offset Reset Value AGC Gain Readout Register 0B2H 00H 8186(' ,)*$,1 0,;*$, 1 U U Field Bits Type Description UNUSED 7:3 - UNUSED Reset: 00H IF2GAIN 2:1 r AGC IF2 Gain Readout 00B 0 dB 01B -15 dB 10B -30 dB 11B n.u. Reset: 0H MIX2GAIN 0 r AGC MIX2 Gain Readout 0B 0 dB 1B -15 dB Reset: 0H SPI Address Tracer Register SPIAT Offset Reset Value SPI Address Tracer Register 0B3H 00H 63,$7 U Field Bits Type Description SPIAT 7:0 r SPI Address Tracer, Readout of the last address of a SFR Register written by SPI Reset: 00H SPI Data Tracer Register Data Sheet 172 V1.0, 2010-02-19 TDA5225 Appendix Register Description SPIDT Offset Reset Value SPI Data Tracer Register 0B4H 00H 63,'7 U Field Bits Type Description SPIDT 7:0 r SPI Data Tracer, Readout of the last written data to a SFR Register by SPI Reset: 00H SPI Checksum Register SPICHKSUM Offset Reset Value SPI Checksum Register 0B5H 00H 63,&+.680 UF Field Bits Type Description SPICHKSUM 7:0 rc SPI Checksum Readout Reset: 00H Serial Number Register 0 SN0 Offset Reset Value Serial Number Register 0 0B6H 00H 61 U Data Sheet 173 V1.0, 2010-02-19 TDA5225 Appendix Register Description Field Bits Type Description SN0 7:0 r Serial Number: SN(31:0) = SN3(MSB) & SN2 & SN1 & SN0(LSB) Reset: 00H Serial Number Register 1 SN1 Offset Reset Value Serial Number Register 1 0B7H 00H 61 U Field Bits Type Description SN1 7:0 r Serial Number: SN(31:0) = SN3(MSB) & SN2 & SN1 & SN0(LSB) Reset: 00H Serial Number Register 2 SN2 Offset Reset Value Serial Number Register 2 0B8H 00H 61 U Field Bits Type Description SN2 7:0 r Serial Number: SN(31:0) = SN3(MSB) & SN2 & SN1 & SN0(LSB) Reset: 00H Serial Number Register 3 SN3 Offset Reset Value Serial Number Register 3 0B9H 00H Data Sheet 174 V1.0, 2010-02-19 TDA5225 Appendix Register Description 61 U Field Bits Type Description SN3 7:0 r Serial Number: SN(31:0) = SN3(MSB) & SN2 & SN1 & SN0(LSB) Reset: 00H RSSI Readout Register RSSIRX Offset Reset Value RSSI Readout Register 0BAH 00H 566,5; U Field Bits Type Description RSSIRX 7:0 r RSSI value after averaging over 4 samples Reset: 00H RSSI Peak Memory Filter Readout Register RSSIPMF Offset Reset Value RSSI Peak Memory Filter Readout Register 0BBH 00H 566,30) U Field Bits Type Description RSSIPMF 7:0 r RSSI Peak Memory Filter Level Reset: 00H Data Sheet 175 V1.0, 2010-02-19 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG