TDA5340 Datasheet

S m a r t L E W I S TM T R X
TDA5340
High Sensitivity Multi-Channel Transceiver
Data Sheet
Revision 1.2, 13.06.2012
Wireless Sense & Control
Edition 13.06.2012
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2012 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
TDA5340
SmartLEWISTM TRX
Revision History
Page or Item
Subjects (major changes since previous revisions)
Revision 1.2, 13.06.2012
Page 62
Package Outline Information added
Revision 1.1, 30.05.2012
Page 40
Voltage at PA Pin changed to Peak Voltage at pin RFOUT with max 10% TX Duty Cycle
Page 40
Inserted maximum Peak Voltage at pin RFOUT with TX Duty Cycle above 10%
Page 40
Inserted maximum DC Voltage at pin RFOUT
Page 54
Inserted Definition for reception parameters
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,
CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™,
EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™,
ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, PRIMARION™, PrimePACK™, PrimeSTACK™,
PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™,
SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics
Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™
of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc.,
OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc.
RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc.
SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden
Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA.
UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™
of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of
Diodes Zetex Limited.
Last Trademarks Update 2011-02-24
Data Sheet
3
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Table of Contents
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1
1.1
1.2
1.3
1.4
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Key Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2
2.1
2.1.1
2.2
2.3
2.4
2.5
2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.6.6.1
2.6.6.2
2.6.7
2.6.8
2.6.8.1
2.6.8.2
2.6.8.3
2.6.8.4
2.6.8.5
2.6.8.6
2.6.8.7
2.6.8.8
2.6.8.9
2.6.8.10
2.6.9
2.6.9.1
2.6.10
Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Supply Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chip Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF / IF Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Crystal Oscillator and Clock Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sigma-Delta Fractional-N PLL Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PLL Dividers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Decoding/Encoding Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ASK and FSK Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ASK Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FSK Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Automatic Frequency Control Unit (AFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital Automatic Gain Control Unit (AGC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital Baseband (DBB) Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clock and Data Recovery (CDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Wake-Up Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frame Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Message ID Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RUNIN, Synchronization Search Time and Inter-Frame Time . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital Control (4-wire SPI Bus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chip Serial Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12
12
13
20
20
21
22
23
23
23
24
25
25
26
27
27
27
29
29
29
29
30
31
31
32
32
33
33
34
34
38
3
3.1
3.1.1
3.1.2
3.1.3
3.2
3.3
3.4
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Test Circuitry Evaluation Board V1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Test Board Layout, Evaluation Board V1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bill of Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
39
39
39
40
41
56
57
57
Data Sheet
4
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Table of Contents
4
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Data Sheet
5
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
List of Figures
List of Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Application Example optimized for System Costs (3V3 Supply). . . . . . . . . . . . . . . . . . . . . . . . . . .
Application Example optimized for RF performance (5V Supply). . . . . . . . . . . . . . . . . . . . . . . . . .
Pin-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TDA5340 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Main State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Volts and 5 Volts Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reset Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram RF Receiver Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Crystal Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Clock Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Synthesizer Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Encoding/Decoding Schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Block Diagram ASK/FSK Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analog RSSI output curve with AGC action ON (blue) vs. OFF (black) . . . . . . . . . . . . . . . . . . . . .
Functional Block Diagram Digital Baseband Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clock Recovery (ADPLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Structure of Payload Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Burst Write Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Write Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Read Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Burst Read Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Read FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Write TX FIFO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transparent TX Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI Checksum Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chip Serial Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10dBm Matching, Output Power and Supply Current in TX vs. Output power stages . . . . . . . . . .
13dBm Matching, Output Power and Supply Current in TX vs. Output power stages . . . . . . . . . .
Test CircuitSchematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Test Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PG-TSSOP-28 Package Outline (green package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Sheet
6
10
11
12
20
22
23
24
25
26
26
27
28
29
30
31
31
33
35
35
36
36
36
37
37
38
38
55
55
56
57
62
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
List of Tables
List of Tables
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Pin Definition and Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Instruction Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Transceiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receive Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmit Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Synthesizer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receiver Frontend Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receiver 2nd IF Mixer, RSSI and Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Crystal Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timing SPI-Bus Charcteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Sheet
7
13
22
34
39
40
41
43
46
46
48
49
50
51
52
57
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Product Description
1
Product Description
1.1
Overview
The IC is a low power ASK/FSK/GFSK Transceiver for the frequency bands 300-320, 415-495, 863-960 MHz. Biphase modulation schemes, like Manchester, bi-phase mark, bi-phase space and differential Manchester as well
as NRZ are supported.
The chip offers a high level of integration and needs only a few external components, like a crystal, several
blocking capacitors and the necessary matching elements. The IF-filter is integrated but depending on the
performance requirements an external ceramic IF-filter can be used. For low cost applications an external passive
antenna switch configuration can be used.
The device is qualified according to automotive quality standards and operates between -40 and +110 °C at supply
voltage ranges of 3.0-3.6 Volts or 4.5-5.5 Volts.
A fully integrated Sigma-Delta Fractional-N PLL Synthesizer, with high frequency resolution and a crystal oscillator
as reference, generates the necessary frequencies for the power amplifier or down conversion mixers. The onchip temperature sensor may be utilized for temperature drift compensation of the crystal oscillator.
The receiver portion is realized as a double down conversion super-heterodyne / low-IF architecture each with
image rejection supplemented by digital signal processing in the baseband. This architecture enables outstanding
sensitivity performance in combination with very good blocking performance values.
The transmitter section comprises a class C/E power amplifier with a high efficiency and an output power level of
up to 14 dBm. A tuning feature for the output power is possible via several switchable parallel output stages, of
course matching to lower power levels is always possible. For higher power applications an external power
amplifier can be used and the internal PA serves as a power driver. For ASK modulation a programmable data
shaping is provided. With the fractional-N PLL synthesizer and a selectable Gaussian data shaping filter a very
accurate and precise FSK modulation is achieved. The transmit data can be either stored in a separate FIFO data
buffer or directly provided via the bus interface.
The receiver portion is able to scan autonomuosly for incoming data by using the self polling feature while the host
micro controller can stay in power down mode, which reduces the system current consumption significanty.
The digital baseband processing unit together with the high performance downconverter is the key element for the
exceptional sensitivity performance of the device which take it close to the theoretical top-performance limits. It
comprises signal and noise detectors, matched data filter, clock and data recovery, data slicer and a format
decoder. It demodulates the received ASK or FSK data stream and recovers the data clock out of the received
data with very fast synchronziation times which can then be either accessed via separate pins or used for further
processing like frame synchronization and intermediate storage in the on-chip FIFO.
The RSSI output signal is converted to the digital domain with an ADC. All these signals are accessible via the 4wire SPI interface bus.
Up to 4 pre-configured telegram formats with different data rates and filter bandwidths can be stored into the
device offering independent pre-processing of the received and transmitted data. The downconverter can be also
configured to single-conversion mode at moderately reduced selectivity and image rejection performance but at
the advantage of saving the external IF filter.
Data Sheet
8
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Product Description
1.2
Key Features
Transceiver
•
•
•
•
•
•
•
•
•
Multiband / Multichannel (300-320 MHz, 415-495 MHz, 863-960 MHz )
High receiver sensitivity better than -116 dBm
Power amplifier with up to 14 dBm output power
Very Low Current consumption:
– Receive Mode: 12 mA (typ)
– Transmit Mode at 10 dBm and 434 MHz: 12 mA (typ)
– Sleep Mode (XTAL ON): 40 uA (typ)
– Deep Sleep Mode (XTAL OFF): 7 µA (typ)
– Power down Mode: 0.9 uA (typ)
ASK and FSK capability with programmable Gaussian data shaping
20 dB programable output power range
On-chip IF filter with selectable bandwidth (optional an external CER-filter is possible)
Sigma-delta fractional-N PLL synthesizer with high resolution
Automatic Frequency Control function (AFC) for offset carrier frequency
Digital Baseband
•
•
•
•
•
•
•
Multi protocol handling: Up to 4 parallel parameter sets for autonomous scanning and receiving from different
sources
Integrated data and clock recovery
Autonomous receive functionality: Frame synchronisation, format decoding, message ID screening
288 Bit RX/TX-FIFO for receive and transmit data
Wake-up generator and polling timer unit
Ultra-fast wake-up on RSSI
Supports all bi-phase format schemes and NRZ
General
•
•
•
•
•
•
•
•
Operating temperature range -40 to +110°C
Supply voltage range 3.0 to 3.6 V or 4.5 to 5.5 V
Brownout detector
Integrated 4-wire SPI bus interface
32-bit wide Unique ID on chip
On-chip temperature sensor
ESD protection +/- 2 kV on all pins (HBM)
PG-TSSOP-28 package
1.3
•
•
•
•
•
•
•
•
•
Target Applications
Remote keyless entry (RKE)
Remote start applications
Passive Keyless Entry (PKE)
Security Alarm Systems
Automatic Meter Reading (AMR) and Infrastructure (AMI)
Home Automation
Remote Control
Sensor Networks
Short range radio data transmission
Data Sheet
9
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Product Description
1.4
Application Example
The Application examples within this section where optimezed for performance and sytem costs. Of course there
exists several steps inbetween which can be realized by the customer to fullfill the application specific needs.
+3V3
supply
+3V3
supply
1 RSSI
IF_OUT 28
2 VDDA
VDDRF 27
3 GNDA
PPRF 26
4,7 Ω
0.1µF
0.1µF
10 Ω
0.1µF
10 Ω
4 IF_IN
RFOUT 25
5 GND_IF
GNDRF 24
6 VDD5V
LNA_INP 23
7 VDDD
LNA_INN 22
8 VDDD1V5
0.1µF
Choke
GNDRF 21
0.1µF
9 GNDD
10 PP0
NINT to μC
P_ON from μC
TM 20
TDA5340
SDO 19
to μC
11 PP1
SDI 18
from μC
12 PP2
SCK 17
from μC
13 P_ON
NCS 16
from μC
14 XTAL1
XTAL2 15
21.948717 MHz XTAL
Figure 1
Application Example optimized for System Costs (3V3 Supply)
Data Sheet
10
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Product Description
10.7 MHz CERFIL
control line
+5V
supply
1 RSSI
IF_OUT 28
2 VDDA
VDDRF 27
3 GNDA
PPRF 26
control line
0.1µF
0.470 µF
4 IF_IN
RFOUT 25
5 GND_IF
GNDRF 24
Choke
ANT
Antenna Switch
2.2 Ω
10µF
0.1µF
6 VDD5V
LNA_INP 23
7 VDDD
LNA_INN 22
0.1µF
SAW
Filter
GNDRF 21
8 VDDD1V5
0.1µF
TM 20
9 GNDD
10 PP0
NINT to μC
P_ON from μC
TDA5340
to μC
SDO 19
11 PP1
SDI 18
from μC
12 PP2
SCK 17
from μC
13 P_ON
NCS 16
from μC
14 XTAL1
XTAL2 15
21.948717 MHz XTAL
Figure 2
Application Example optimized for RF performance (5V Supply)
Data Sheet
11
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
2
Functional Overview
2.1
Pin Configuration
Figure 3
PPRF_RSSI
1
28
IF_OUT
VDDA
2
27
VDDRF
GNDA
3
26
PPRF
IF_IN
4
25
RFOUT
GNDIF
5
24
GNDRF
VDD5V
6
23
LNA_INP
VDDD
7
22
LNA_INN
VDDD1V5
8
21
GNDRF
GNDD
9
20
TM
PP0
10
19
SDO
PP1
11
18
SDI
PP2
12
17
SCK
P_ON
13
16
NCS
XTAL1
14
15
XTAL2
TDA5340
Pin-Out
Data Sheet
12
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
2.1.1
Pin Definition
Table 1
Pin Definition and Function
Pin Nr
Pad Name
1
PPRF_RSSI
Equivalent I/O Schematic
Function
VDDRF
VDDA
VDDA
vm_p
500Ω
RSSI
vm_n
GNDA
GNDA
GNDRF
2
VDDA
Analog output
Digital output with weak driver
capability, always in 3V domain
CLK_OUT, RX_RUN, NINT,
ANT_EXTSW1,
ANT_EXTSW1, DATA,
DATA_MATCHFIL, CH_DATA,
CH_STR, RXD, RXSTR,
TXSTR and TRISTATE are
programmable via SFR
default: TRISTATE
Analog input
Analog supply
VDD5V
+
VReg
=
-
VDDA
GNDA
3
GNDA
Analog Ground
VDDA
GNDA
analog ground
Data Sheet
13
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
Table 1
Pin Definition and Function
Pin Nr
Pad Name
4
IF_IN
Equivalent I/O Schematic
Function
VDDA
VDDA
Analog input
IF mixer input
not sel_inp
mimCAP 10p
320Ω
_IN
sel_inp
GNDIF
GNDIF
VDDA
NAND2
GNDIF
5
GND_IF
Analog Ground
GNDIF
GNDA
6
VDD5V
Analog input
5 Volt supply input
VDD5V
GNDD GNDD
5V supply
7
VDDD
Analog input
digital supply input
VDD5V
+
VReg
=
-
VDDD
GNDD
Data Sheet
14
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
Table 1
Pin Definition and Function
Pin Nr
Pad Name
8
VDDD1V5
Equivalent I/O Schematic
Function
Analog output
1.5V regulator
VDDD
+
VReg
=
-
GNDD
9
VDD1V5
GNDD
Digital ground
VDDD
GNDD
10
PP0
VDD5V
VDD5V
vm_p
PP0-PP2
vm_n
Digital output
CLK_OUT, RX_RUN, NINT,
ANT_EXTSW1,
ANT_EXTSW1, DATA,
DATA_MATCHFIL, CH_DATA,
CH_STR, RXD, RXSTR,
TXSTR and TRISTATE are
programmable via SFR
default: CLK_OUT
GNDD
GNDD
11
PP1
Data Sheet
same as PP0
Digital output
CLK_OUT, RX_RUN, NINT,
ANT_EXTSW1,
ANT_EXTSW1, DATA,
DATA_MATCHFIL, CH_DATA,
CH_STR, RXD, RXSTR,
TXSTR and TRISTATE are
programmable via SFR
default: DATA
15
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
Table 1
Pin Definition and Function
Pin Nr
Pad Name
Equivalent I/O Schematic
Function
12
PP2
same as PP0
Digital output
CLK_OUT, RX_RUN, NINT,
ANT_EXTSW1,
ANT_EXTSW1, DATA,
DATA_MATCHFIL, CH_DATA,
CH_STR, RXD, RXSTR,
TXSTR and TRISTATE are
programmable via SFR
default: NINT
13
P_ON
VDD5V
500Ω
P-ON
GNDD
14
Digital input
power-on reset
VDDD
GNDD
XTAL1
Analog input
crystal oscillator input
VDDD
VDDD
XTAL1
....
GNDD
15
GNDD
GNDD
XTAL2
VDDD
Analog output
crystal oscillator output
VDDD
XTAL2
....
GNDD
16
GNDD
GNDD
NCS
VDD5V
VDDD
500Ω
NCS
GNDD
Data Sheet
Digital input
SPI Not Chip select
GNDD
16
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
Table 1
Pin Definition and Function
Pin Nr
Pad Name
17
SCK
Equivalent I/O Schematic
Function
VDD5V
500Ω
SCK
GNDD
18
SDI
GNDD
VDD5V
Digital input
SPI data in
VDDD
500Ω
SDI
GNDD
19
Digital input
SPI clock
VDDD
GNDD
SDO
Digital output
SPI data out
VDD5V
VDD5V
vm_p
SDO
noRC
vm_n
GNDD
GNDD
20
TM
VDD5V
VDDD
500Ω
TM
GNDD
Data Sheet
Digital input
connect to digital ground
GNDD
17
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
Table 1
Pin Definition and Function
Pin Nr
Pad Name
21
GNDRF
Equivalent I/O Schematic
Function
Analog ground
VDDRF
GNDRF
22
LNA_INN
LNA_INN
LNA
Analog input
- RF input
LNA
Analog input
+RF input
GNDRF
23
LNA_INP
LNA_INP
GNDRF
24
GNDRF
Analog ground
VDDRF
GNDRF
25
RFOUT
RFOUT
Analog output
power amplifier output
GNDRF
Data Sheet
18
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
Table 1
Pin Definition and Function
Pin Nr
Pad Name
26
PPRF
Equivalent I/O Schematic
Function
VDDRF
VDDRF
vm_p
PPRF
vm_n
Digital output
always in 3V domain
CLK_OUT, RX_RUN, NINT,
ANT_EXTSW1,
ANT_EXTSW1, DATA,
DATA_MATCHFIL, CH_DATA,
CH_STR, RXD, RXSTR,
TXSTR and TRISTATE are
programmable via SFR
default: TRISTATE
GNDRF
GNDRF
27
VDDRF
Analog input
RF supply
VDD5V
+
VReg
=
-
VDDRF
GNDRF
28
IF_OUT
VDDRF
VDDRF
Analog output
Mixer output
330Ω
IF-OUT
50Ω
3pF
GNDRF
Data Sheet
GNDRF
19
GNDRF
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
2.2
Functional Block Diagram
CER (opt.)
IF_OUT
IF_IN
BUF
RSSI
XTAL1
BUF
LNA
PA
PLL
ΣΔ
VDD
Temp
Div
by 2
XTAL2
fsys
fsys
Envelope
Shaping
Gauss Filter
Encoding
Baud Rate
Generator
TX FIFO
Interrupt Control
A
Finite State Machine
fsys
VDDRF
VDDA
P_ON
21.948
MHz
IR
IR
RF_OUT
Limiter
BPF
LNA_INP
LNA_INN
D
AFC / AGC
PDF /
FM Demodulator
Antenna
Diversity
RSSI
avg/peak
Data Filter
Polling Timer
Slicer / CDR
Decoding
RX FIFO
Power Supply
Port Pin Control
VDD5V, VDDD,
VDDD1V5
SPI Interface
PP0..PP2,
PPRF
Figure 4
TDA5340 Block Diagram
2.3
Architecture Overview
NCS, SDI,
SDO, SCK
A fully integrated Sigma-Delta Fractional-N PLL Synthesizer covers the frequency bands 300-320 MHz, 415-495
MHz, 860-960 MHz with a high frequency resolution, using only one VCO running at around 3.6 GHz. This makes
the IC most suitable for Multi-Band/Multi-Channel applications. For Multi-Channel applications a very good
channel separation is essential. To achieve the necessary high sensitivity and selectivity a double down
conversion super-heterodyne architecture is used. The first IF frequency is located at 10.7 MHz and the second
IF frequency at 274 kHz. For both IF frequencies an adjustment-free image frequency rejection feature is realized.
In the second IF domain the filtering is done with an on-chip third order bandpass polyphase filter. A multi-stage
bandpass limiter completes the RF/IF path of the receiver. For Single-Channel applications with relaxed
requirements to selectivity, a single down conversion low-IF scheme can be selected.
A highly efficient Class C/E Power amplifier with an output level of +14dBm combined with a Gaussian Filter for
GFSK and amplitude ramping functions for shaped ASK is implemented. A high resolution power adjustment can
be done to trim the output power for highest system power savings. The data can be either shifted out of a on-chip
transmit FIFO or directly provided on an input pin.
An RSSI generator delivers a DC signal proportional to the applied input power and is also used as an ASK
demodulator. Via an anti-aliasing filter this signal feeds an ADC with 10 bits resolution. The limiter output signal
Data Sheet
20
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
feeds a digital FSK demodulator. This block demodulates the FSK data and delivers an AFC signal which controls
the divider factor of the PLL synthesizer. A digital receiver, which comprises RSSI peak detectors, a matched data
filter, a clock and data recovery, a data slicer, a frame synchronization and a data FIFO, decodes the received
ASK or FSK data stream. The recovered data and clock signals are accessible via 2 separate pins. The FIFO data
buffer is accessible via the SPI bus interface.The crystal oscillator serves as the reference frequency for the PLL
phase detector, the clock signal of the Sigma-Delta modulator and divided by two as the 2nd local oscillator signal.
To accelerate the start up of the crystal oscillator two modes are selectable: a Low Power Mode (with lower
precision) and a High Precision Mode.
2.4
Block Overview
The TDA5340 is separated into the following main blocks:
•
•
•
•
•
•
•
•
•
•
•
RF / IF Receiver
Power Amplifier
Crystal Oscillator and Clock Divider
Sigma-Delta Fractional-N PLL Synthesizer
ASK / FSK Demodulator incl. AFC and AGC
RSSI Peak Detector
Digital Baseband Receiver
Digital Baseband Transmitter
Power Supply Circuitry
System Interface
System Management Unit
Data Sheet
21
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
2.5
Operating Modes
The transceiver has three different power saving modes, two receive modes and a transmit mode. The different
operating modes are used to adjust the transceiver functionality to the needs of the application. Depending on the
used communication protocols the appropriate power saving mode can be selected. In the table below all different
modes are listed and corresponding to the modes the active blocks and current consumptions are shown.
Table 2
Operating Modes
Operating Mode
Transceiver Blocks
Dig. Vreg
Ana. Vreg XTAL
SFR
SPI
PLL
PA
RX
typ. Current
Consumption
Power Down
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
0.9 µA
Deep Sleep
ON
OFF
OFF
ON
OFF
OFF
OFF
OFF
7 µA
1)
ON
ON
OFF
OFF
OFF
40 µA2)
Sleep
ON
OFF
ON
Sleep ADC enabled
ON
ON
ON1)
ON
ON
OFF
OFF
OFF
1 mA
Transmit Ready
ON
ON
ON
ON
ON
ON
OFF
OFF
5.8 mA
Transmit Idle
ON
ON
ON
ON
ON
OFF
OFF
OFF
<3 mA
Transmit
ON
ON
ON
ON
ON
ON
ON
OFF
12.5 mA3)
Receive
ON
ON
ON
ON
ON
ON
OFF
ON
11 mA4)
1)
2)
3)
4)
selectable between XTAL in high or low precision mode
XTAL in low precision mode
10dBm Output power at 434MHz
single down conversion Mode (no external CER Filter used)
P_ON Pin
low
P_ON Pin
low
NCS line to low
+ SPI: disable
Deep Sleep
Deep Sleep
SPI: enable
Deep Sleep +
NCS line to high
Sleep
SPI: Receive
Mode
SPI: Transmit
Mode
SPI: Sleep
Mode
Run Mode
Slave
Receive
Hold
P_ON Pin
low
P_ON Pin
high
SPI: Sleep
Mode
Self Polling
Power Down
P_ON Pin
low
Ready
(TRM)
SPI: Transmit
Mode
Transmit
Idle
(TIM)
Run Mode
Self Polling
Active
(TAM)
SPI: Receive
Mode
Figure 5
Main State Diagram
Data Sheet
22
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
2.6
Block Description
2.6.1
Power Supply Circuitry
The chip may be operated within a 5 Volts or a 3.3 Volts environment.
For operation within a 5 Volts environment (supply voltage range 1), the chip is supplied via the VDD5V pin. In this
configuration the digital I/O pads are supplied via VDD5V and a 5 V to 3.3 V voltage regulator supplies the
analog/RF section (only active in Run Modes). When operating within a 3.3 Volts environment (supply voltage
range 2), the VDD5V, VDDA, VDDD and VDDRF pins must be supplied. The 5 V to 3.3 V voltage regulators are
inactive in this configuration.The internal digital core is supplied by an additional 3.3 V to 1.5 V regulator.The
regulators for the digital section are controlled by the signal at P_ON (Power On) pin. A low signal at P_ON
disables all regulators and set the IC in Power Down Mode. A low to high transition at P_ON enables the regulators
for the digital section and initiates a power on reset. The regulator for the analog section is controlled by the Master
Control Unit and is active only when the RF section is active.To provide data integrity within the digital units, a
brownout detector monitors the digital supply. In case a voltage drop of VDDD below approximately 2.45 V is
detected a RESET will be initiated. A typical power supply application for a 3.3 Volts and a 5 Volts environment is
shown in the figure below.
*)
2,2Ω
PA
10Ω
4.7Ω
TDA5340
VDDRF
TDA5340
10Ω
0Ω
PA
VDD5V
100n
VDDA
VDDD
3.3V
100n
VDDA
VDD5V
VDDD
5V
100n
100n
VDDD1V5
VDDD1V5
100n
GNDA
GNDRF
VDDRF
330/
470n
0Ω
GNDRF
GNDD
Supply-Application in 3.3V environment
100n
100n
GNDA
*)
10μ
GNDD
Supply-Application in 5V environment
*)
When operating in a 5V environment, the voltage-drop across the voltage
regulators 5 Æ 3.3V has to be limited , to keep the regulators in a safe
operating range. Resistive or capacitive loads (in excess to the scheme
shown above) on pins VDDA and VDDD are not recommended.
Figure 6
3.3 Volts and 5 Volts Applications
2.6.2
Chip Reset
Power down and power on are controlled by the P_ON pin. A LOW at this pin keeps the IC in Power Down Mode.
All voltage regulators and the internal biasing are switched off. A high transition at P_ON pin activates the
appropriate voltage regulators and the internal biasing of the chip. A power up reset is generated at the same time.
Data Sheet
23
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
Supply Voltage
at VDDD Pin
3V
Reset- / BrownoutThreshold (typ . 2 .45V)
Functional Threshold (typ . 2V)
t
tR eset
Internal Reset
Voltage at PP2 Pin
(NINT Signal)
3V
Reset- / BrownoutThreshold (typ . 2 .45V)
Functional Threshold (typ . 2V)
Level on
NINT signal
is undefined
Supply voltage falls below
Reset- / Brownout-Threshold
Supply voltage
falls below
Functional- Threshold
A ‚LOW’ is generated
at NINT signal
Figure 7
A ‚LOW’ is
generated at
PP2 pin
(NINT signal)
Supply voltage
rises above
Functional-Threshold
t
A ‚HIGH’ is
generated at
PP2 pin
(NINT signal)
µC reads
InterruptStatus-Register
A ‚LOW’ is
generated at
PP2 pin
(NINT signal)
Reset Behavior
A second source that can trigger a reset is a brownout event. Whenever the integrated brownout detector
measures a voltage drop below the brownout threshold on the digital supply, the integrity of the stored data and
configuration can no longer be guaranteed; thus a reset is generated. While the supply voltage stays between the
brownout and the functional threshold of the chip, the NINT signal is forced to low. When the supply voltage drops
below the functional threshold, the levels of all digital output pins are undefined. When the supply voltage raises
above the brownout threshold, the IC generates a high pulse at NINT and remains in the reset state for the duration
of the reset time. When the IC leaves the reset state, the Interrupt Status registers are set to 0xFF and the NINT
signal is forced to low. Now, the IC starts operation in the SLEEP Mode, ready to receive commands via the SPI
interface. The NINT signal will go high, when one of the Interrupt Status registers is read for the first time.
2.6.3
RF / IF Receiver
The receiver path uses a double down conversion super-heterodyne/low-IF architecture, where the first IF
frequency is located at 10.7 MHz and the second IF frequency at 274 kHz. For the first IF frequency an adjustmentfree image frequency rejection is realized by means of two I/Q-mixers followed by a second order passive
polyphase filter centered at 10.7 MHz (PPF). The I/Q-oscillator signals for the first down conversion are delivered
from the PLL synthesizer. The frequency selection in the first IF domain is done by an external CER filter. For
moderate or low performance applications, this ceramic filter can be substituted by a simple LC Pi-filter or
completely by-passed using the receiver as a single down conversion low-IF scheme with 274 kHz IF frequency.
Data Sheet
24
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
The down conversion to the second IF frequency is done by means of two high-side injected I/Q-mixers together
with an on-chip third order bandpass polyphase filter (PPF2 + BPF). The I/Q-oscillator signals for the second down
conversion are directly derived by division of two from the crystal oscillator frequency. The bandwidth of the
bandpass filter (BPF) can be selected from 50 kHz to 300 kHz in 5 steps. For a frequency offset of 150 kHz to
120 kHz, the AFC (Automatic Frequency Control) function is mandatory. Activated AFC option might require a
longer preamble sequence in the receive data stream.
The receiver enable signal (RX_RUN) can be offered at each of the port pins to control external components.
Whenever the receiver is active, the RX_RUN output signal is active. Active high or active low is configurable via
PPCFG2 register.
Limite r
QMix2
3rd order BP /PP F2
IF2 = 274 kHz
IF
Attenuation
adjust
IMix2
SDCSEL-MUX
Q-Mix
MIX2BUF
(var. gain)
LNA
CERFilter
IF1
10.7 MHz
PPFBUF
MUX
RX
Input
2nd order PPF
10.7 MHz
I-Mix
RSSI Generator
IQ :2
Channel Filter
Bandwidth select
N
LP
harm sup
digital
FSK Demod
LP
alias sup
ASK /
RSSI
ADC
RX
FSK Data
RX
ASK Data
Divider
:N
AFC
Filter
ΣΔ Modulator
Channel select
VCO
:1/:2/:3
IQ Divider : 4
Multi Modulos
Divider : N_FN
PD
Crystal
oscil lator
Band select
Channel select
LF select
Channel Filter select
Band select
Loop
Filter
Front end
control unit
IF Attenuation adjust
RSSI Gain/ Offset adjust
LF select
Figure 8
Block Diagram RF Receiver Section
2.6.4
Transmitter
A highly efficient Class C/E Power amplifier with output levels of +14 dBm combined with a Gaussian Filter for
GFSK and amplitude ramping functions for shaped ASK is implemented. A high resolution power adjustment can
be done to trim the output power for highest system power savings. The data can be either shifted out of a on-chip
transmit FIFO or directly provided on an input pin.
2.6.5
Crystal Oscillator and Clock Divider
The crystal oscillator is a Pierce type oscillator. An automatic amplitude regulation circuitry allows the oscillator to
operate with minimum current consumption. In SLEEP Mode, where the current consumption should be as low as
possible, the load capacitor must be small and the frequency is slightly detuned, therefore all internal trim
capacitors are disconnected. The internal capacitors are controlled by the crystal oscillator calibration registers
XTALCALx. With a binary weighted capacitor array the necessary load capacitor can be selected.
Whenever a XTALCALx register value is updated, the selected trim capacitors are automatically connected to the
crystal so that the frequency is precise at the specified value. Step size is 1 pF. The SFR control bit XTALHPMS
can be used to activate the High Precision Mode also during SLEEP Mode.
Data Sheet
25
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
fsys
Setting
automatically
controlled
(1pF step size)
9
XTALCAL0
XTALCAL1
Oscillator -Core
XTAL1
Figure 9
XTALHPMS
Binary weighted
Capacitor-Array
Binary weighted
Capacitor-Array
(DGND)
XTAL2
Crystal Oscillator
External Clock Generation Unit
A built-in programmable frequency divider can be used to generate an external clock source out of the crystal
reference. The 20 bit wide division factor is stored in the registers CLKOUT0, CLKOUT1 and CLKOUT2. The
minimum value of the programmable frequency divider is 1. This programmable divider is followed by an additional
divider by 2, which generates a 50% duty cycle of the CLK_OUT signal. So the maximum frequency at the
CLK_OUT signal is the crystal frequency divided by 4. The minimum CLK_OUT frequency is the crystal frequency
divided by 221.
CLKOUTEN
CLKOUT2
CLKOUT1
CLKOUT0
To save power, this programmable clock signal can be disabled by the SFR control bit CLKOUTEN. In this case
the external clock signal is set to low.
Enable
fsys
20 Bit Counter
Enable
2 x f C LK_OU T
Figure 10
External Clock Generation Unit
2.6.6
Sigma-Delta Fractional-N PLL Block
Divide
by 2
fC LK _OU T
The Sigma-Delta Fractional-N PLL is fully integrated on chip. The Voltage Controlled Oscillator (VCO) with on-chip
LC-tank runs at approximately 3.6 GHz and is first divided with a band select divider by 1, 2 or 3 and then with an
I/Q-divider by 4 which provides an orthogonal local oscillator signal for the first image reject mixer with the
necessary high accuracy.
Data Sheet
26
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
The multi-modulus divider determines the channel selection and is controlled by a 3rd order Sigma-Delta
Modulator (SDM). A type IV phase detector, a charge pump with programmable current and an on-chip loop filter
closes the phase locked loop.
To 1 st mixer
3.6 GHz VCO Loop Filter
To DCC / PA
IQ Divider
÷4
CP
Band Select
÷1/÷2/÷3
Multimodulus
Divider
Channel FN
FSK Modulation
PFD
ΣΔ Modulator
QOSC
22MHz
AFC filter
AFC-data
Figure 11
Synthesizer Block Diagram
2.6.6.1
PLL Dividers
The divider chain consists of a band select divider 1/2/3, an I/Q-divider by 4 which provides an orthogonal 1st local
oscillator signal for the first image reject mixer with the necessary high accuracy and a multi-modulus divider
controlled by the Sigma-Delta Modulator. With the band select divider, the wanted frequency band is selected.
Divide by 1 selects the 915 MHz and 868 MHz band, divide by 2 selects the 434 MHz band and divide by 3 selects
the 315 MHz band. The ISM band selection is done via bit group BANDSEL in x_PLLINTC1 register.
2.6.6.2
Digital Modulator
rd
The 3 order Sigma-Delta Modulator (SDM) has a 22 bit wide input word, however the LSB is always high, and is
clocked by the XTAL oscillator. This determines the achievable frequency resolution.
The Automatic Frequency Control (AFC) Unit filters the actual frequency offset from the FSK demodulator data
and calculates the necessary correction of the divider factor to achieve the nominal IF center frequency.
2.6.7
Decoding/Encoding Modes
The IC supports the following Bi-phase encodings:
•
•
Manchester code
Differential Manchester code
Data Sheet
27
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
•
•
•
•
Bi-phase space code
Bi-phase mark code
Miller code (TX only)
NRZ
The encoding mode is set and enabled by bit group CODE in x_DIGRXC (receiver) and x_TXCFG (transmitter)
configuration register.
Data
1
0
1
0
0
1
1
0
Clock
Manchester
Differential Manchester
Biphase Space
Biphase Mark
Miller
NRZ
PRBS
Scrambling
Figure 12
Encoding/Decoding Schemes
Data Sheet
28
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
2.6.8
ASK and FSK Demodulator
The IC comprises two separate demodulators for ASK and FSK.
After combining FSK and ASK data path, a sampling rate adaptation follows to meet an output oversampling
between 8 and 16 samples per chip. Finally, an oversampling of 8 samples per chip can be achieved using a
fractional sample rate converter (SRC) with linear interpolation
FSK
demodulator
AFC track/freeze
PPF2
BP
2nd
conversion
image suppression /
band limitation (noise)
FSK
33 / 46 / 65 / 93 / 132 /
190 / 239 / 282 kHz
(2sided PDF BW)
RSSI
ASK
ADC
RSSI Slope
RSSI Offset
Div
buffer
f System
Peak Memory
Filter
RSSI Peak
Detector
register
RF PLL ctrl
FSK/ASK
FSK
demodulator
B = 50..300kHz
channel filter FM limiter
AFC
loop filter
Rate adapter
Demodulated
Data
Bypass
Rate doubler
Decimation
8 … 16 samples /chip
(data rate dependent )
delog
AGC
RSSIPMF
register
RSSIPWU
register
RSSI
RSSIPWU
(internal
signal)
Begin of config /
channel ,
x*WULOT
End of config/
channel
>
WU event
TH, BL, BH
Figure 13
Functional Block Diagram ASK/FSK Demodulator
2.6.8.1
ASK Demodulator
The RSSI generator delivers a DC signal proportional to the applied input power at a logarithmic scale (dBm) and
is also used as an ASK demodulator. Via a programmable anti-aliasing filter this signal is converted to the digital
domain by means of a 10-bit ADC. For the AM demodulation a signal proportional to the linear power is required.
Therefore a conversion from logarithmic scale to linear scale is necessary. This is done in the digital domain by a
nonlinear filter together with an exponential function. The analog RSSI signal after the anti-aliasing filter is
available at the RSSI pin via a buffer amplifier. To enable this buffer the SFR control bit RSSIMONEN must be set.
The anti-aliasing filter can be by-passed for visualization on the RSSI pin (see AAFBYP control bit).
2.6.8.2
FSK Demodulator
The limiter output signal, which has a constant amplitude over a wide range of the input signal, feeds the FSK
demodulator. There is a configurable lowpass filter in front of the FSK demodulation to suppress the down
conversion image and noise/limiter harmonics (FSK Pre-Demodulation Filter, PDF). This is realized as a 3rd order
digital filter. The sampling rate after FSK demodulation is fixed and independent from the target data rate.
2.6.8.3
Automatic Frequency Control Unit (AFC)
In front of the image suppression filter a second FSK demodulator is used to derive the control signal for the
Automatic Frequency Control Unit, which is actually the DC value of the FSK demodulated signal. This makes the
AFC loop independent from signal path filtering and allow so a wider frequency capture range of the AFC. The
derivation of the AFC control signal is preferably done during the DC-free preamble and is then frozen for the rest
of the datagram.
Data Sheet
29
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
Since the digital FSK demodulator determines the exact frequency offset between the received input frequency
and the programmed input center frequency of the receiver, this offset can be corrected through the sigma delta
control of the PLL.
2.6.8.4
Digital Automatic Gain Control Unit (AGC)
Automatic Gain Control (AGC) is necessary mainly because of the limited dynamic range of the on-chip bandpass
filter (BPF). The BPF dynamic range reduces to less than 60dB in case of minimum BPF bandwidth.
AGC is used to cover the following cases:
•
•
•
1. ASK demodulation at large input signals
2. RSSI reading at large input signals
3. Improve IIP3 performance in either FSK or ASK mode
The 1st IF buffer can be fine tuned "manually" by means of 4 bits thus optimizing the overall gain to the application
(attenuation of 0dB to -12dB by means of IFATT0 to IFATT15). This buffer allows the production spread of external
components to be trimmed.
The gain of the 2nd IF path is set to three different values by means of an AGC algorithm. Depending on whether
the receiver is used in single down conversion or in double down conversion mode the gain control in the 2nd IF
path is either after the 2nd poly-phase network or in front of the 2nd mixer.
The AGC action is illustrated in the RSSI curve below:
Analog (blue) &
digital (black )
RSSI output
Mixer2
saturation
BPF bypassed
AGC OFF
Max. B W
BPF
saturation
AGC ON
Min. B W
margin
Analog AGC
attack point
hys teresis
Analog AGC
decay point
Max . B W
Front- end
noise x gain
Max. FE gain
(IFA TT 0)
Min. B W
Min. FE gain
(IFA TT 15)
AGCT UP
AGCTLO
AGCTHOF FS
Figure 14
AGCHYS
AGCHYS
Limiter
noise floor
Input power
Analog RSSI output curve with AGC action ON (blue) vs. OFF (black)
Data Sheet
30
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
2.6.8.5
Digital Baseband (DBB) Receiver
Blind Sync
Initial Phase & Data rate
FSK
detector
CR PLL
Slicer
CDR PLL
sync
chip_data_clock
adjust_length
CH_STR
SRC
bypass
8 to 16
samples
per chip
Matched Filter
Signal
Detector
fractional SRC
From ASK/
FSK
Demodulator
Data
Slicer
Chip Data
Decoder
chip_data
CH_DATA
fs out / fs in = 0.5 … 1.0
CHIPDINV
MUX
RAW Data Slicer
for external
processing
Decoder
SIGN
Data
Invert
DINVEXT
DATA
(Sliced RAW Data for
external processing )
Figure 15
Chip
Data
Invert
Framer
(TSI Detector)
WU Unit
Data
Invert
data_clk
data
eom
fsync
FIFO
wakeup
RXSTR RXD
DATA_MATCHFIL
(Matched Filtered Data
for external processing )
Functional Block Diagram Digital Baseband Receiver
The digital baseband receiver comprises a matched data filter, a clock and data recovery, a data slicer, a line
decoder, a wake-up generator, a frame synchronization and a data FIFO. The recovered data and clock signals
are accessible via 2 separate pins. The FIFO data buffer is accessible via the SPI bus interface.
2.6.8.6
Clock and Data Recovery (CDR)
CDRDRTHRN
CDRDRTHRP
x_CDRRI
x_CDRTOLB
x_CDRTOLC
An all-digital PLL (ADPLL) recovers the data clock from the incoming data stream. The second main function is
the generation of a signal indicating symbol synchronization. Synchronization on the incoming data stream
generally occurs within the first 4 bits of a telegram.
Tnom / 16
EOM
from Clock
Recovery Slicer
Symbol
Sync found
Timing Extrapolation
Phase
Detector
PI
Loop Filter
Digital
Controlled
Oscillator
Tnom / 2
x_TSIGAP
(GAPVAL)
x_CDRI
x_CDRP
x_TSIMODE
(TSIGRSYN)
Tnom / 2
x_TVWIN
Figure 16
Recovered
Clock
Clock Recovery (ADPLL)
Data Sheet
31
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
Clock Recovery is implemented as standard ADPLL PI regulator with Timing Extrapolation Unit for fast settling. In
the unlocked state, the Timing Extrapolation Unit calculates the frequency offset for the incoming data stream. If
the defined number of Bi-phase encoded bits are detected (the RUNIN length can be set in the x_CDRRI register),
the I-part and the PLL oscillator will be set and the PLL will be locked. When x_CDRRI.RUNLEN is set to small
values, then the I-part is less accurate (residual error) and can lead to a longer needed PLL settling time and worse
performance in the first following bits. Therefore the selected default value is a good compromise between fast
symbol synchronization and accuracy/performance. Duty cycle and data rate acceptance limits are adjustable via
registers. After locking, the clock must be stable and must follow the reference input. Therefore, a rapid settling
procedure (Timing Extrapolation Unit) and a slow PLL are implemented. If the PLL is locked, the reference signal
from the Clock Recovery Slicer is used in the phase detector block to compute the actual error. The error is used
in the PI loop filter to set the digital controlled oscillator running frequency. For the P, I and Timing Extrapolation
Unit settings, the default values for the x_CDRP and x_CDRI control registers are recommended.The PLL will be
unlocked, if a code violation of more than the defined length is detected, which is set in the x_TVWIN control
register. Another criterion for PLL resynchronization is an End Of Message (EOM) signalled by the Framer block.
The PLL oscillator generates the chip clock frequency is equal to 2 times the data rate.
2.6.8.7
Wake-Up Generator
A wake-up generation unit is used only in the Self Polling Mode for the detection of a predefined wake-up criterion
in the received pattern. There are two groups of configurable wake-up criteria:
•
•
Wake-up on Level criteria
Wake-up on Data criteria
The search for the wake-up data criterion is started if data chip synchronization has occurred within the predefined
number of symbols, otherwise the wake-up search is aborted. Several different wake-up patterns, like random bit,
equal bit, bit pattern or bit synchronization, are programmable.Additional level criterion fulfilment for RSSI or Signal
Recognition can lead to a fast wake-up and to a change to Run Mode Self Polling. Whenever one of these Wakeup Level criteria is enabled and exceeds a programmable threshold, a wake-up has been detected.The Wake-up
Level criterion can be used very effectively in combination with the Ultrafast Fall Back to SLEEP Mode for further
decreasing the needed active time of the autonomous receive mode. A configurable observation time for Wakeup on Level can be set in the x_WULOT register.
2.6.8.8
Frame Synchronization
The Frame Synchronization Unit (Framer) synchronizes to a specific pattern to identify the exact start of a payload
data frame within the data stream. This pattern is called Telegram Start Identifier (TSI).There are different TSI
modes selectable via the configuration:
•
•
•
•
16-Bit TSI Mode, supporting a TSI length of up to 16 bits or 32 chips
8-Bit Parallel TSI Mode, supporting two independent TSI pattern of up to 8 bits length each. Different payload
length is possible for these two TSI pattern.
8-Bit Extended TSI Mode, identical to 8-Bit Parallel TSI Mode, but identifies which pattern matches by adding
a single bit at the beginning of the data frame
8-Bit TSI Gap Mode, supporting two independent TSI pattern separated by a discontinuity
All SFRs configuring the Frame Synchronization Unit support the Multi-Configuration capability (Config A, B, C
and D). The Framer starts working in Run Mode Slave after Symbol Sync found and in Self Polling Mode after
wake-up found and searches for a frame until TSI is found or synchronization is lost. The input of the Framer is a
sequence of Bi-phase encoded data (chips). Basically the Framer consists of two identical correlators of 16 chips
in length. It allows a Telegram Start Identifier (TSI) to be composed of Bi-phase encoded “Zeros” and “Ones”. The
active length of each of the 16 chips correlators is defined independently in the x_TSILENA and x_TSILENB
registers. The pattern to match is defined as a sequence of chips in the x_TSIPTA0, x_TSIPTA1, x_TSIPTB0 and
x_TSIPTB1 registers.
Data Sheet
32
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
2.6.8.9
Message ID Scanning
This unit is used to define an ID or special combination of bits in the payload data stream, which identifies the
pattern. All SFRs configuring the Message ID Scanning Unit feature the Multi-Configuration capability.
Furthermore, it is available in the Slave and Self Polling Mode. The MID Unit can be mainly configured in two
modes: 4-Byte and 2-Byte organized Message ID. For each configuration there are 20 8-bit registers designed for
ID storage. SFRs are used to configure the MID Unit: Enabling of the MID scanning, setting of the ID storage
organization, the starting position of the comparison and number of bytes to scan. When the Message ID Scanning
Unit is activated, the incoming data stream is compared bit-wise serially with all stored IDs. If the Scan End
Position is reached and all received data have matched the observed part of at least one MID the Message ID
Scanning Unit indicates a successful MID scanning to the Master FSM, which generates an MID interrupt. Please
note that the default register value of the MID registers is set to 0x00. All MID registers must be set to a pattern
value to avoid matching to default value 0x00.If the MID Unit finishes ID matching without success, the data
receiving is stopped and the FSM waits again for a Frame Start criterion. The received bits are still stored in the
FIFO.
2.6.8.10
RUNIN, Synchronization Search Time and Inter-Frame Time
The functionality of the Digital Baseband Receiver is divided into four consecutive data processing stages; the
data filter, clock and data recovery, data slicer and frame synchronization unit. The architecture of the Digital
Baseband Receiver is optimized for processing bi-phase coded data streams.The basic structure of a payload
frame is shown in Figure 17. The protocol starts with a so called RUNIN. The RUNIN with the minimum length of
four bi-phase coded symbols is used for internal filter settling and frequency adjustment. The TSI (Telegram Start
Identifier), which is used as framing word, follows the RUNIN sequence. The payload contains the effective data.
The length of the valid payload data is defined as the length itself or additional criteria (e.g. loss of Sync). Please
note that almost all transmitted protocols send a wake-up sequence before the payload frame. This wake-up
sequence allows a very fast decision, whether there is a suitable message available or not.
RUNIN
Figure 17
TSI
PAYLOAD
Structure of Payload Frame
Data Sheet
33
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
2.6.9
Application Interface
Transparent Mode
The TDA5340 supports two levels of integration. In the most elementary fashion, it provides a rather rudimentary
interface.
The incoming RF signal is demodulated and the corresponding data is made available to the Application
Controller. Optionally, a chip clock is generated by the TDA5340.
The Application Controller can provide the baseband data to a single input pin which is modulated and amplified
via the PLL and Power amplifier.
Since the data signal is always directly the baseband representation of the RF signal, we call this mode the
Transparent Mode.
Packet Oriented Mode
Alternatively, the TDA5340 features the so-called Packet Oriented Mode which supports the autonomous
reception and transmission of data telegrams. The Packet Oriented Mode provides a high-level System Interface
which greatly simplifies the integration of the transceiver in data-centric applications. In Packet Oriented Mode, the
data interface is based on chunks of synchronous data which are received in packets. In the easiest way, the
Application Controller only reacts on the synchronous data it receives. The receiver autonomously handles the line
decoding and the deframing of these data, and supports the timed reception of packets. Data is buffered in a
receive FIFO and can be read out via the data interface. Further, the receiver provides support for the identification
of wake-up signals.
2.6.9.1
Digital Control (4-wire SPI Bus)
The control interface used for device control and data transmission is a 4-wire SPI interface.
•
•
•
•
NCS
SDI
SDO
SCK
- select input, active low
- data input
- data output
- clock input:
Data bits on SDI are read in at rising SCK edges and written out on SDO at falling SCK edges.
Level Definition:
logic 0 = low voltage
level logic 1 = high voltage level
Note: It is possible to send multiple frames while the device is selected. It is also possible to change the access
mode while the device is selected by sending a different instruction.Note: In all bus transfers MSB is sent first,
except for the received data read from the FIFO. There the bit order is given as first bit received is first bit
transferred via the bus.
Table 3
Instruction Set
Instruction
Description
Instruction
Format
WRB
Write to chip in Burst mode
0x01
WR
Write to chip
0x02
RD
Read from chip
0x03
RDF
Read FIFO from chip
0x04
RDB
Read from chip in Burst mode
0x05
Data Sheet
34
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
Table 3
Instruction Set
Instruction
Description
Instruction
Format
WRF
Write FIFO
0x06
WRT0
Write transparent transmit data 0x08
with starting low data
WRT1
Write transparent transmit data 0x07
with starting high data
Burst Write Command
To write to the device in Burst mode, the SPI master has to select the SPI slave unit first. Therefore the master
has to drive the NCS line to low. After the instruction byte and the start address byte have been transferred to the
SPI slave (MSB first) the successive data bytes will be stored into the automatically addressed registers.To verify
the SPI Burst Write transfer, the current address (start address, start address + 1, etc.) is stored in register SPIAT
and the current data field of the frame is stored in register SPIDT. At the end of the Burst Write frame the latest
address as well as the latest data field can be read out to verify the transfer. Note that some error in one of the
intermediate data bytes can not be detected by reading SPIDT. Driving the NCS line to high will end the Burst
frame.A single SPI Burst Write command can be applied very efficiently for data transfer either within a register
block of configuration dependent registers or within the block of configuration independent registers.
NCS
1
8
1
8
1
8
1
8
1
8
SCK
Instruction
SDI
SDO
I7
I6
I5
I4
I3
Register Start Address
I2
I1
I0
Data Byte (i)
Data Byte (i+1)
Data Byte (i+x)
A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
D7 D6 D5 D4 D3 D2 D1 D0
high impedance Z
Figure 18
Burst Write Registers
Write Command
To write to the device, the SPI master has to select the SPI slave unit first. Therefore, the master must set the NCS
line to low. After this, the instruction byte and the address byte are shifted in on SDI and stored in the internal
instruction and address register. The following data byte is then stored at this address. After completing the writing
operation, either the master sets the NCS line to high or continues with another SPI command.Additionally the
received address byte is stored into the register SPIAT and the received data byte is stored into the register
SPIDT. These two trace registers are readable.Therefore, an external controller is able to check the correct
address and data transmission by reading out these two registers after each write instruction. The trace registers
are updated at every write instruction, so only the last transmission can be checked by a read out of these two
registers.
NCS
Frame
1
8
1
Frame
8
1
8
1
8
1
8
1
8
SCK
Instruction
SDI
SDO
I7
I6
I5
I4
I3
Register Address
I2
I1
Data Byte
Instruction
I0 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
I7
I6
I5
I4
I3
Register Address
I2
I1
I0
Data Byte
A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
high impedance Z
Figure 19
Write Register
Data Sheet
35
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
Read Command
To read from the device, the SPI master has to select the SPI slave unit first. Therefore, the master must set the
NCS line to low. After this, the instruction byte and the address byte are shifted in on SDI and stored in the internal
instruction and address register. The data byte at this address is then shifted out on SDO. After completing the
read operation, either the master sets the NCS line to high or continues with another SPI command.
NCS
Frame
1
8
Frame
1
8
1
8
1
8
1
8
1
8
SCK
Instruction
SDI
SDO
I7
I6
I5
I4
Register Address
I3
I2
I1
I0
Instruction
A7 A6 A5 A4 A3 A2 A1 A0
high impedance Z
Figure 20
I7
I6
I5
I4
I3
Register Address
I2
I1
I0 A7 A6 A5 A4 A3 A2 A1 A0
Data Out
Data Out
D7 D6 D5 D4 D3 D2 D1 D0
D7 D6 D5 D4 D3 D2 D1 D0
Read Register
Burst Read Command
To read from the device in Burst mode, the SPI master has to select the SPI slave unit first. Therefore the master
has to drive the NCS line to low. After the instruction byte and the start address byte have been transferred to the
SPI slave (MSB first), the slave unit will respond by transferring the register contents beginning from the given start
address (MSB first). Driving the NCS line to high will end the Burst frame.
NCS
1
8
1
8
1
8
1
8
1
8
SCK
Instruction
SDI
I7
I6
I5
I4
I3
Register Start Address
I2
I1
I0
A7 A6 A5 A4 A3 A2 A1 A0
Data Out (i)
SDO
high impedance Z
Data Out (i+1)
Data Out (i+x)
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7
Figure 21
D0 D7 D6 D5 D4 D3 D2 D1 D0
Burst Read Registers
Read FIFO Command
To read the FIFO, the SPI master has to select the SPI slave unit first. Therefore, the master must set the NCS
line to low. After this, the instruction byte is shifted in on SDI and stored in the internal instruction register. The
data bits of the FIFO are then shifted out on SDO. The following byte is a status word that contains the number of
valid bits in the data packet. After completing the read operation, either the master sets the NCS line to high or
continues with a other SPI command.
NCS
Frame
1
8
Frame
1
32
1
8
1
8
1
32
1
8
SCK
Instruction
SDI
I7
I6
Instruction
I1
I0
I7
32 FIFO Bits
SDO
high impedance Z
Figure 22
D0
D1
D30
I6
I1
I0
Status Word
D31
S7
S6
S1
32 FIFO Bits
S0
D0
D1
D30
Status Word
D31
S7
S6
S1
S0
Read FIFO
Data Sheet
36
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
Write FIFO Command
To write to the TX FIFO the SPI master has to select the SPI slave unit first. Therefore the master has to drive the
NCS line to low. After the instruction byte (MSB first) the next byte contains the number of data items (chip or bit)
minus 1 to be transferred to the FIFO. Therefore 0x00 means a single data item, whereas 0xFF means 256 data
items. Successive data bytes contain the data items to be stored into the FIFO. Only the number of data items
specified in the 2nd byte of the instruction will be stored into the FIFO. Other bits are skipped. At the end of the
access frame the master has to deselect the slave unit by driving the NCS line to high.
NCS
1
8
1
8
1
8
1
8
SCK
I7
SDI
I6
I5
I4
I3
I2
I1
I0
N7 N6 N5 N4 N3 N2 N1 N0
Instruction
SDO
n+1 data items to push into TX FIFO
high impedance Z
Figure 23
Data (i)
1
2
Data (i+1), Data (i+2), etc
3
n n+1 skip skip skip
Write TX FIFO
Transparent TX Command
To transfer data items (chip/bit) via SPI in transparent TX mode the SPI master has to select the SPI slave unit
first. Therefore the master has to drive the NCS line to low. After the instruction byte (MSB first) the SCK should
stay static to reduce noise during transmit.
Note that there are 2 versions of the same command available. They differ only in the LSB of the instruction. The
intent of this is to pre-set the level of the SDI line to the level of the first TX data item (chip/bit). A new data item is
asserted every “k” Gaussian Filter strobes (depends on the configuration, k strobes per chip).
NCS
SCK static to reduce noise/ SCK running incr. noise
SCK
SDI
data item 1
I7
I6
Figure 24
I4
I3
I2
I1
I0
data item 3
data item 4
data item n
‚0' when wrt0 else ‚1'
Instruction wrt0/1
SDO
stb (k*GF stb)
I5
data item 2
high impedance Z
Transparent TX Command
SPI Check Sum
The SPI also includes a safety feature by which the checksum is calculated with an XOR operation from the
address and the data when writing SFR registers content. The checksum is in fact an XOR of the data 8-bitwise
after every 8 bits of the SPI write command. The calculated checksum value is automatically written in the
SPICHKSUM register and can be compared with the expected value. After the SPICHKSUM register is read, its
value is cleared. In case of an SPI Burst Write and Write FIFO frame, a checksum is calculated from the SPI start
address and consecutive data fields.
Data Sheet
37
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Functional Overview
enable every 8 bit
SPI shift register
XOR
Figure 25
SPI Checksum Generation
2.6.10
Chip Serial Number
Checksum SFR
read/clear
Every device contains a unique, preprogrammed 32-bit wide serial number. This number can be read out from
SN3, SN2, SN1 and SN0 registers via the SPI interface. The TDA5340 always has SN0.6 set to 1 and SN0.5 is
reserved.
Figure 26
SN0
......
......
Fuses
SN1
FuseReadoutInterface
SN2
SN3
Chip Serial Number
Data Sheet
38
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
3
Reference
3.1
Electrical Data
3.1.1
Absolute Maximum Ratings
■ not subject to production test - verified by characterization/design
Attention: The maximum ratings must not be exceeded under any circumstances, not even momentarily
and individually, as permanent damage to the IC may result.
Table 4
Absolute Maximum Ratings
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Note /
Test Condition
Test Numb
er
Supply Voltage at
VDD5V pin
Vsmax
-0.3
+6
V
■
1.1
Supply Voltage at
VDDD, VDDA,
VDDRF pin
Vsmax
-0.3
+4
V
■
1.2
Voltage between
VDD5V vs VDDD ,
VDD5V vs VDDA
and VDD5V vs
VDDRF
Vsmax
-0.3
+4
V
■
1.3
Junction
Temperature
Tj
-40
+125
°C
■
1.4
Storage
Temperature
TS
-40
+150
°C
■
1.5
Thermal resistance Rth(ja)
junction to air
110
K/W
■
1.6
Total power
Ptot
dissipation at Tamb
= 105°C
135
mW
■
1.7
ESD HBM integrity
(all pins except
RFOUT pin)
VHBMRF
-2
2
kV
According to AEC
Q100-002 /JEDEC
JESD22/A114
■
1.8
ESD HBM integrity
(RFOUT pin)
VHBMRF_PA -4
4
kV
According to AEC
Q100-002 /JEDEC
JESD22/A114
■
1.8.1
ESD CDM / SDM
VSDM
integrity (All pins
except corner pins)
-500
500
V
According to ANSI /
ESD SP5.3.2.-2008
■
1.9
ESD CDM / SDM
integrity (All corner
pins)
VSDM
-750
750
V
According to ANSI /
ESD SP5.3.2.-2008
■
1.10
Latch up
ILU
100
mA
JEDEC JESD78
■
1.11
Data Sheet
39
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
Table 4
Absolute Maximum Ratings
Parameter
Symbol
Values
Min.
Maximum input
voltage at digital
input pins
Vinmax
Typ.
-0.3
IIOmax
Maximum current
into digital input and
output pins
3.1.2
Unit
Note /
Test Condition
Test Numb
er
VDD5V+0 V
.5 or 6.0
whichever is lower
■
1.12
4
except PPRF_RSSI
pin
■
1.13
Max.
mA
Operating Range
■ not subject to production test - verified by characterization/design
Table 5
Operating Range
Parameter
Symbol
Values
Min.
Typ.
Unit
Note / Test Condition Test Num
ber
Max.
Supply Voltage at
pin VDD5V
VDD5V
4.5
5.5
V
Supply Voltage Range ■
1
2.1
Supply Voltage at
pin
VDD5V = VDDD =
VDDA = VDDRF
VDD3V3
3.0
3.6
V
Supply Voltage Range ■
2
2.2
8
V
TX duty cycle <=
10%1)
■
2.2.1
6.5
V
TX duty cycle > 10%1) ■
2.2.2
3.6
V
■
2.2.3
110
°C
Peak Voltage at pin VRFOUT_peak
RFOUT
DC Voltage at pin
RFOUT
VRFOUT_DC
Ambient
temperature
Tamb
-40
upper and lower limit
tested
2.3
1) TX duty cycle defines the on time of the power amplifier compared to all other modes of the TDA5340
Data Sheet
40
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
3.1.3
AC/DC Characteristics
Supply voltage VDD5V = 4.5 to 5.5 Volt or VDD5V = VDDA = VDDD = VDDRF = 3.0 to 3.6 Volt, Ambient
temperature Tamb = -40...110°C, Tamb = +25°C for typical parameters, unless otherwise specified.
Values of AC/DC characteristics are with combined matching network using internal antenna switch not including
matching variation.
■ not subject to production test - verified by characterization/design
Table 6
General Transceiver Characteristics
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Test Numb
er
Supply Current: Transmit Mode
315 MHz Band
ITX,10dBm
12
14
mA
Continuous wave
measured in a 50 Ω
Load
■
3.1
434 MHz Band
ITX,10dBm
12.5
15
mA
Continuous wave
measured in a 50 Ω
Load / measured @
433,92 MHz
■
3.1.1
315 / 434 MHz
Band
ITX,13dBm
18
21
mA
Continuous
wavemeasured in a
50 Ω Load / measured
and test @
433,92 MHz
868 /915 /954 MHz ITX,10dBm
Band
17
20
mA
Continuous wave
measured in a 50 Ω
Load
868 /915 MHz Band ITX,13dBm
22.5
26
mA
Continuous wave
measured in a 50 Ω
Load / test at
868 MHz
3.4
3.2
■
3.3
Supply Current: Receive Mode
Double Down
Conversion Mode
IRun,Double
12.5
15.5
mA
ASK or FSK mode Pin
< -50 dBm
3.5
Single Down
Conversion Mode
IRun,Single
11.5
14.5
mA
ASK or FSK mode Pin
< -50 dBm
3.6
40
50
µA
1)
3.7
70
130
µA
1)
110
180
µA
1)
µA
2)
Supply Current: Sleep Mode
Tamb = 25 °C
Isleep_low,25
Tamb = 85 °C
Isleep_low,85
°C
■
3.8
°C
Tamb = 110 °C
Isleep_low,11
3.9
0°C
Sleep Mode Supply Isleep_high
current High
Precision:
Data Sheet
100
41
■
3.10
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
Table 6
General Transceiver Characteristics
Parameter
Symbol
Values
Min.
Supply current:
clock generator
Iclock
Unit
Note /
Test Condition
Test Numb
er
fclockout = 1 kHz Cload = ■
10 pF
Typ.
Max.
12
18
µA
7
14
µA
30
80
µA
70
140
µA
3.11.3
0.9
1,9
µA
3.12
5
15
µA
13,5
31
µA
3.14
2
3
µA
3.14.1
5,5
15
µA
12,5
31
µA
40
kchips
/s
■
3.15
3.11
Supply Current: Deep Sleep Mode
Tamb = 25 °C
IDeep_sleep_
3.11.1
low,25°C
Tamb = 85 °C
IDeep_sleep_
■
3.11.2
low,85°C
Tamb = 110 °C
IDeep_sleep_
low,110°C
Supply current: Power Down Mode
Tamb = 25 °C 3,3V IPDN,25°C,
3V3
Tamb = 85 °C 3,3V IPDN,85°C,
■
3.13
3V3
Tamb = 110 °C
3,3V
Tamb = 25 °C 5V
IPDN,110°C,
3V3
IPDN,25°C,
5V
Tamb = 85 °C 5V
IPDN,85°C,
Tamb = 110 °C 5V
IPDN,110°C,
■
3.14.2
5V
3.14.3
5V
General
0.5
Data Rate ASK
DRASK
Data Rate FSK
DRFSK_TX 0.5
112
kchips
/s
■
3.16
DRFSK_RX 0.5
112
kchips
/s
■
3.17
FSK Deviation
fdev
+/-1
+/-64
kHz
■
3.18
Modulation index
mASK
50
100
%
■
3.19
mFSK
0.5
■
3.20
tRESET
1
Transceiver reset
time
Transceiver startup tDSstartup
time: deep sleep to
sleep mode
Transceiver startup tstartupRX
time: receive mode
Data Sheet
469
1.8
3
ms
Time from Power
Down Mode to Sleep
Mode
3.21
0.35
1.3
ms
Time from DeepSleep
Mode to Sleep Mode;
XTAL see Table 12
3.21.1
469
469
µs
Time from Sleep
Mode to Receive
Mode3)4)
42
■
3.22
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
Table 6
General Transceiver Characteristics
Parameter
Symbol
Values
Unit
Note /
Test Condition
Test Numb
er
Min.
Typ.
Max.
Transceiver startup tstartupTX
time: transmit mode
403
403
403
µs
Time from Sleep
Mode to Transmit
Mode3)4)
■
3.23
RX/TX switch time
tRX/TX
133
133
133
µs
Time from transmit
mode to receive
mode4)
■
3.24
TX/RX switch time
tTX/RX
470
470
470
µs
Time from receive
mode to transmit
mode4)
■
3.25
RF Channel /
Configuration Hop
Latency Time
tChHop
110
110
110
µs
Time to switch RF
■
PLL between different
RF Channels 4)5)
3.26
P_ON LOW pulse
width
tP_ON
15
µs
Minimal necessary
pulse width to reset
the chip
■
3.27
NINT pulse length
tNINT_Pulse
µs
Pulse width of
interrupt
■
3.28
Brownout detector
threshold
VBOR
1)
2)
3)
4)
5)
11.7
2.3
2.45
2.6
V
3.29
crystal oscillator in Low Power Mode; clock generator off; valid for SLEEP Mode and during SPM Off time
crystal osscillator in High Precision Mode Cload = 25 pF; clock generator off; valid for SLEEP Mode and during SPM Off time
comprises time required to switch crystal oscillator from Low Power Mode to High Precision Mode
default RX/TX PLL startup time
does not include settling of Data Clock Recovery
Table 7
Receive Characteristics
Parameter
Symbol
Values
Min.
Overall noise figure NF
Typ.
Max.
6
8
Unit
Note /
Test Condition
Test Numb
er
dB
RF input matched to ■
50 Ω @ Tamb =
25 °C
4.1
3rd order intercept
IIP3
PIIP3
-16
-15
dBm
IFATT = 7;1)
■
4.2
1 dB compression
point CP1dB
PCP1dB
-27
-25
dBm
IFATT = 7;1)
■
4.3
1st IF image
rejection
dimage1
30
40
dB
1st IF = 10.7 MHz
Double Down
Conversion Mode
only
4.4
2nd IF image
rejection
dimage2
30
35
dB
2nd IF = 274 kHz
single Down
Conversion Mode;
4.5
Data Sheet
43
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
Table 7
Receive Characteristics
Parameter
Symbol
3dB Overall analog BWana
Bandwidth
Values
Note /
Test Condition
Max.
Test Numb
er
Min.
Typ.
230
250
kHz
LNA input to Limiter ■
output, excluding
external CER Filter,
2nd IF BW =
300 kHz
4.6
120
kHz
10kBit/s;
∆f = 40 kHz; 2nd IF
BW = 300 kHz
PDF = 283 kHz
■
4.7
180
200
kHz
10kBit/s;
∆f = 40 kHz; 2nd IF
BW = 300 kHz
PDF = 283 kHz
AFC active
■
4.8
230
250
kHz
2nd IF BW =
300 kHz
■
4.9
dB
relative to Tamb =
25 °C;2)
■
4.10
FSK 3dB Sensitivity SBWFSK
BW
ASK 3dB Sensitivity SBWASK
BW
Unit
Sensitivity variation ∆Pin_temp
due to temperature
(-40...+110°C)
3
Sensitivity
improvement in
case of pure RX
matching
∆Pin_315/434
1
dB
■
4.10.1
∆Pin_868/915
2
dB
■
4.10.2
Data rate tol.
Rdata_tol
-10
+10
%
■
4.11
Duty cycle ASK
Tchip/ Tdata
35
55
%
see
Definition C in User
Manual
■
4.12
Duty cycle FSK
Tchip/ Tdata
45
55
%
see
Definition B in User
Manual
■
4.13
ASK Demodulation
Data Rate 0.5 kBit/s SASK1MER
Manchester Coding
-120
-117
dBm m = 100%
■
peak 2nd IF BW = 50 kHz
4.14
SASK2MER
-115
-112
dBm m = 100%
peak 2nd IF BW =
300 kHz 3)
■
4.15
Data Rate 2 kBit/s SASK3MER
Manchester Coding
-116
-113
dBm m = 100%
■
peak 2nd IF BW = 50 kHz
4.16
SASK4MER
-112
-109
dBm m = 100%
peak 2nd IF BW =
300 kHz 3)
4.17
Data Sheet
44
■
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
Table 7
Receive Characteristics
Parameter
Symbol
Values
Min.
Unit
Note /
Test Condition
Test Numb
er
Typ.
Max.
Data Rate 10 kBit/s SASK5MER
Manchester Coding
-111
-108
dBm m = 100%
■
peak 2nd IF BW = 50 kHz
4.18
SASK6MER
-108
-105
dBm m = 100%
peak 2nd IF BW =
300 kHz 3)
■
4.19
Data Rate 16 kBit/s SASK7MER
Manchester Coding
-109
-106
dBm m = 100%
■
peak 2nd IF BW = 80 kHz
4.20
SASK8MER
-107
-104
dBm m = 100%
peak 2nd IF BW =
300 kHz 3)
■
4.21
Data Rate 2 kBit/s; SFSK1MER
∆f =4kHz
Manchester Coding SFSK2
MER
-116
-113
dBm
2nd IF BW = 50 kHz ■
PDF = 33 kHz 4)
4.22
-108
-105
dBm
2nd IF BW =
300 kHz
PDF = 282 kHz;5)
4.23
Data Rate 2 kBit/s; SFSK2.1MER
∆f =10kHz
Manchester Coding
-118
dBm
2nd IF BW = 50 kHz ■
PDF = 33 kHz 4)
4.23.1
Data Rate 10 kBit/s; SFSK3MER
∆f = 14 kHz
Manchester Coding SFSK4
MER
-114
-111
dBm
2nd IF BW = 50 kHz ■
PDF = 65 kHz 4)
4.24
-106
-103
dBm
2nd IF BW = 300kHz ■
PDF = 282 kHz;5)
4.25
Data Rate 10 kBit/s; SFSK5MER
∆f = 40 kHz
Manchester Coding
-112
-109
dBm
2nd IF BW =
125 kHz
PDF = 132 kHz 4)
■
4.26
SFSK6MER
-110
-107
dBm
2nd IF BW = 300kHz ■
PDF = 282 kHz;5)
4.27
Data Rate 50 kBit/s; SFSK7MER
∆f = 50 kHz
Manchester Coding
-105
-102
dBm
2nd IF BW =
300 kHz;
PDF = 239 kHz 4)
4.28
FSK Demodulation
1)
2)
3)
4)
5)
■
■
input matched to 50 Ω; Insertion loss of input matching network = 1dB
temperature coefficient of crystal not considered
Note: min 3dB sensitivity loss @ foffset = +/-100 kHz
AFC off
Note: min 3dB sensitivity loss @ foffset=+/-90kHz; AFC ON
Data Sheet
45
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
Table 8
Transmit Characteristics
Parameter
Symbol
Values
Min.
Typ.
Unit
Note /
Test Condition
Test Number
dBm
measured at
50 Ω Load / test
at 868 MHz
5.1
Max.
Output Power
PTXmax
+14
Number of output
power steps
#Pstep
31
TX output Power
Variation vs.
Production
PTX_P
-1.5
+1.5
dB
test at +13 dBm
and 868 MHz
5.10
TX output Power
Variation vs.
Voltage
PTX_V
-1.5
+1.5
dB
test at +13 dBm
and 868 MHz
5.11
-2
+1.5
dB
TX output Power
PTX_temp
Variation vs. Temp.
Modulation Filtering B*T
Optimal load
impedance,
matched to 10 dBm
output power at
50 Ohm
Optimal load
impedance,
matched to 13 dBm
output power at
50 Ohm
PPRF output
current
not linear
■
5.3
■
5.12
0.5
programmable
■
5.13
Zopt1
490+j227
315 MHz
■
5.14
Zopt2
420+j136
434 MHz
■
5.15
Zopt3
280+j65
868 MHz
■
5.16
Zopt4
223+j40
915 MHz
■
5.17
Zopt5
251+j36
954 MHz
■
5.18
Zopt1
220+j217
315 MHz
■
5.19
Zopt2
215+j150
434 MHz
■
5.20
Zopt3
140+j60
868 MHz
■
5.21
Zopt4
153+j40
915 MHz
■
5.22
Zopt5
156+j36
954 MHz
■
5.23
■
5.24
IPPRF
4
mA
(Unless otherwise noted, all values apply for the specified frequency ranges)
Table 9
Synthesizer Characteristics
Parameter
Symbol
Values
Min.
Typ.
Unit
Note /
Test Condition
MHz
1)
6.1
MHz
1)2)
6.2
MHz
1)
Max.
Test Number
TRX Frequency Bands
Range 1
Range 2
Range 3
Frequency step of
Sigma-Delta PLL
fband_1
fband_2
fband_3
fstep
300
415
495
863
960
10.5
PLL loop Bandwidth PLLBWT 75
TX
X
Data Sheet
320
Hz
130
kHz
46
6.3
21
fstep = fXTAL / 2
■
6.6
■
6.7
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
Table 9
Synthesizer Characteristics
Parameter
Symbol
Values
Min.
Unit
Note /
Test Condition
Test Number
Typ.
Max.
-87
-79
dBc/H @ foffset =
z
10 kHz3)
■
6.8
-91
-80
dBc/H @ foffset =
100 kHz3)
z
■
6.9
-124
-115
dBc/H @ foffset = 1 MHz3) ■
z
6.10
-140
-129
dBc/H @ foffset
=>10 MHz3)
z
■
6.11
-87
-78
dBc/H @ foffset =
z
10 kHz3)
■
6.12
-89
-81
dBc/H @ foffset =
z
100 kHz3)
■
6.13
-123
-115
dBc/H @ foffset = 1 MHz3) ■
z
6.14
-140
-131
dBc/H @ foffset
=>10 MHz3)
z
■
6.15
-82
-70
dBc/H @ foffset =
z
10 kHz3)
■
6.16
-86
-78
dBc/H @ foffset =
z
100 kHz3)
■
6.17
-120
-112
dBc/H @ foffset = 1 MHz3) ■
z
6.18
-135
-128
dBc/H @ foffset = 6 MHz3) ■
z
6.19
-138
-128
dBc/H @ foffset =
z
=>10 MHz3)
■
6.20
-80
-70
dBc/H @ foffset =
z
10 kHz3)
■
6.20.1
-86
-79
dBc/H @ foffset =
100 kHz3)
z
■
6.25
-118
-110
dBc/H @ foffset = 1 MHz3) ■
z
6.28
-138
-128
dBc/H @ foffset =
=>10 MHz3)
z
6.29
PLL Phase Noise
fLO= 315 MHz
PLLBWTX =
130kHz
fLO= 434 MHz
PLLBWTX =
130kHz
fLO = 868.95 MHz
PLLBWTX =
130kHz
fLO= 960 MHz
PLLBWTX =
130kHz
Data Sheet
dSSB_LO
dSSB_LO
dSSB_LO
dSSB_LO
47
■
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
Table 9
Synthesizer Characteristics
Parameter
Symbol
Values
Min.
fLO = 960MHz
dSSB_LO
PLLBWTX = 70kHz
Unit
Note /
Test Condition
Test Number
Typ.
Max.
-74
-67
dBc/H @ foffset =
z
10 kHz3)
■
6.30
-90
-82
dBc/H @ foffset =
100 kHz3)
z
■
6.31
-119
-111
dBc/H @ foffset = 1 MHz3) ■
z
6.32
-138
-128
dBc/H @ foffset =
=>10 MHz3)
z
■
6.33
Unit
Note /
Test Condition
Test Number
1) except: |fTX - k*fXTAL| < 500 kHz where k is an integer value
2) for f > 485MHz high side injection in receive mode not alllowed
3) unmodulated TX carrier
Table 10
Receiver Frontend Characteristics
Parameter
Symbol
Values
Min.
Typ.
Max.
FE voltage
conversion gain
AVFE,max
34
36
38
dB
min. IF
attenuation
(IFATT = 0)1)
7.1
FE voltage
conversion gain
AVFE_7
29
31
33
dB
IF attenuation
(IFATT = 7)1)
7.2
FE voltage
conversion gain
AVFE,min
22
24
26
dB
max. IF
attenuation
(IFATT = 15)1)
7.3
dB
Double Down
Conversion: 16
gain steps;
Single Down
Conversion: 7
gain steps
7.4
Ω
fIF = 10.7 MHz
■
7.5
Ω
2)
■
7.6
pF
2)
■
7.7
Ω
2)
■
7.8
pF
2)
■
7.9
Ω
2)
■
7.10
■
7.11
FE voltage
conversion gain
step
FE output
impedance
0.8
Rout_IF
290
330
370
LNA input impedance
fRF = 315 MHz
Rin_p
Cin_p
fRF = 434MHz
Rin_p
Cin_p
fRF = 868MHz
fRF = 915MHz
Rin_p
672
1.075
534
0.835
462
Cin_p
0.665
pF
2)
Rin_p
460
Ω
2)
■
7.12
pF
2)
■
7.13
Cin_p
0.66
1) input matched to 50 Ω; Insertion loss of input matching network = 1dB; Rload_IF = 330Ω ; tested at 433.92MHz
Data Sheet
48
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
2) differential parallel equivalent input between LNA_INP and LNA_INN
Table 11
Receiver 2nd IF Mixer, RSSI and Filter Characteristics
Parameter
Symbol
Values
Unit
Note /
Test Condition
Test Number
Min.
Typ.
Max.
Rin_IF
290
330
370
Ω
fIF = 10...12 MHz ■
8.1
DRRSSI1
-110
-30
dBm
applies for digital ■
RSSI
8.2
DRRSSI2
-115
-60
dBm
applies for
analog RSSI @
50 kHz BPF,
AGC off
■
8.3
DRRSSI3
-110
-50
dBm
applies for
analog RSSI @
300 kHz BPF,
AGC off
■
8.4
Linearity
DRLIN
-1
+1
dB
-95 dBm ....35 dBm; applies
for digital RSSI
■
8.5
Temperature drift
within linear
dynamic range
DRTEMP
-2.5
+1.5
dB
-95 dBm...35 dBm; applies
for digital RSSI
■
8.6
Output voltage
dynamic range
VRSSI+
0.8
2
V
■
8.7
analog RSSI error,
untrimmed
DRSSIana -4
+2.5
dB
at RSSI pin
8.8
12
mV/d
B
at RSSI pin;
typical
600 mV/60 dB =
10 mV/dB
8.9
+3
dB
RSSI register
readout
8.10
+1
dB
RSSI register
readout
12
LSB/d RSSI register
B
readout; typical
600 mV/60 dB =
10 mV/dB, 1mV =
1 LSB
Mixer input
impedance
RSSI
Dynamic range
analog RSSI slope, dVRSSI/
untrimmed
dVmix_in
digital RSSI error,
untrimmed
8
1.0
10
DRSSIdig_ -3
u
digital RSSI error, DRSSIdig_ -1
user trimmed via
t
SFRs RSSISLOPE
and RSSIOFFS
digital RSSI
slope,untrimmed
Data Sheet
dVRSSI/
dVmix_in
8
10
49
■
8.11
8.12
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
Table 11
Receiver 2nd IF Mixer, RSSI and Filter Characteristics
Parameter
Symbol
dVRSSI/
digital RSSI
slope,user trimmed dVmix_in
via SFRs
RSSISLOPE and
RSSIOFFS
Values
Unit
Min.
Typ.
Max.
9.5
10
10.5
Resistive load at
RSSI pin
RL,RSSImax 100
Capacitive load at
RSSI pin
CL,RSSI
Note /
Test Condition
Test Number
LSB/d RSSI register
B
readout; typical
600 mV/60 dB =
10 mV/dB, 1 mV
= 1 LSB
■
8.13
kΩ
■
8.14
20
pF
■
8.15
288
kHz
Asymmetric BPF ■
corners:
f_center=sqrt(flo
w * fhigh); Use
AFC for more
symmetry
8.16
kHz
selectable
■
8.17
2nd IF Filter (3rd order Bandpass Filter)
Center frequency
fcenter
-3 dB BW
BW-3dB
-3 dB BW tolerance tol_BW-
262
274
50 / 80
125 / 200
300
-5
+5
%
BW=125, 200,
300 kHz
■
8.18
-6
+6
%
BW=50,80 kHz
■
8.19
Unit
Note /
Test Condition
Test Number
3dB
-3 dB BW tolerance tol_BW3dB
Table 12
Crystal Oscillator Characteristics
Parameter
Symbol
Values
Min.
Frequency range
Typ.
Max.
fXTAL
21.94871
7
MHz
C1
4
fF
■
9.2
Ω
■
9.3
■
9.4
■
9.5
9.1
Crystal parameters
Motional
capacitance
60
Motional resistance R1
Shunt capacitance
C0
1.2
pF
Load capacitance
CLoad
12
pF
Data Sheet
50
nominal value
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
Table 12
Crystal Oscillator Characteristics
Parameter
Symbol
Values
Min.
Typ.
Unit
Note /
Test Condition
Max.
Test Number
-30
+30
ppm
■
oscillator
untrimmed (trim
capacitor default
settings, usage of
recommended
crystal); not
including crystal
tolerances
9.6
Frequency trimming ∆fXTAL
range
-30
+50
ppm
using only
internal load C,
larger trimming
range possible
via SD PLL
9.7
Frequency trimming ∆fXTAL
range
-50
+50
ppm
using external
load C (2 x
3.9pF), larger
trimming range
possible via SD
PLL
■
9.7.1
Clock output
frequency at PPx
pin
12
5.5M
Hz
10 pF load
■
9.8
330
µs
■
9.9
Initial frequency
tolerance
fXTAL_Tol
fclock_out
tXOSCsettle
Crystal oscillator
settling time
(switching from Low
Power to High
Precision Mode)
Table 13
300
Digital Input/Output Characteristics
Parameter
Symbol
Values
Min.
High level input
voltage
VIn_High
High level input
leakage current
IIn_High
Low level input
voltage (except
P_ON pin)
VIn_Low
0.7*VDD5
V
Typ.
Unit
Max.
VDD5V+0 V
.1
Note /
Test Condition
Test Number
■
10.1
5
µA
0
0.8
V
■
10.3
Low level input
voltage (at P_ON
pin)
VIn_Low_PO 0
0.5
V
■
10.4
Low level input
leakage current
IIn_Low
Data Sheet
10.2
N
-5
µA
51
10.5
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
Table 13
Digital Input/Output Characteristics
Parameter
Symbol
Values
Min.
Typ.
Unit
Note /
Test Condition
Max.
Test Number
High level output
voltage 1
VOut_High1
VDD5V 0.4
VDD5V
V
IOH=-500 µA,
static driver
capability;
Normal Pad
Mode
10.6
Low level output
voltage 1
VOut_Low1
0
0.4
V
IOL=500 µA,
static driver
capability;
Normal Pad
Mode
10.7
High level output
voltage 2
VOut_High2
VDD5V0.8
VDD5V
V
IOH=-4 mA,
static driver
capability; High
Power Pad Mode
10.8
Low level output
voltage 2
VOut_Low2
0
0.8
V
IOL=4 mA, static
driver capability;
High Power Pad
Mode
10.9
Unit
Note /
Test Condition
Table 14
Timing SPI-Bus Charcteristics
Parameter
Symbol
Values
Min.
Clock frequency
fclock
Clock High time
tCLK_H
Clock Low time
Typ.
Max.
MHz
■
11.1
200
ns
■
11.2
tCLK_L
200
ns
■
11.3
Active setup time
tsetup
200
ns
■
11.4
Not active setup
time
tnot_setup
200
ns
■
11.5
Active hold time
thold
200
ns
■
11.6
Not active hold time tnot_hold
200
ns
■
11.7
Deselect time
tDeselect
200
ns
■
11.8
SDI setup time
tSDI_setup
100
ns
■
11.9
SDI hold time
tSDI_hold
100
ns
■
11.10
Clock low to SDO
valid
tCLK_SDO
145
ns
@ Cload = 80 pF ■
High Power Pad
not enabled
(Normal Mode)
11.11
Clock low to SDO
valid
tCLK_SDO
40
ns
@ Cload = 10 pF ■
High Power Pad
not enabled
(Normal Mode)
11.12
SDO rise time
tSDO_r
90
ns
@ Cload = 80 pF ■
11.13
Data Sheet
2.2
Test Number
52
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
Table 14
Timing SPI-Bus Charcteristics
Parameter
Symbol
Values
Min.
Typ.
Unit
Note /
Test Condition
Max.
Test Number
SDO fall time
tSDO_f
90
ns
@ Cload = 80 pF ■
11.14
SDO rise time
tSDO_r
15
ns
@ Cload = 10 pF ■
11.15
SDO fall time
tSDO_f
15
ns
@ Cload = 10 pF ■
11.16
SDO disable time
tSDO_disable
25
ns
■
11.17
Data Sheet
53
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
Definitions
Unless explicitly otherwise noted, the following test conditions apply to the given specification values in Table 7 of
ASK Demodulation and FSK Demodulation:
* Hardware: TDA5340 Platform Testboard V1.3
* Combined low cost Matching for 315.0 MHz / 433.92 MHz / 868.3 MHz / 915.0 MHz
* RF input matched to 50 Ohm; Insertion loss of input matching network = 1dB
* Receive Frequency 315.0 MHz / 433.92 MHz / 868.3 MHz / 915.0 MHz; Lo-Side LO-Injection
* Reference Clock: XTAL=21.948717 MHz
* IF-Gain: Attenuation set to 0 dB (IFATT = 0)
* Double Down Conversion
* 1 IF-Filter: Center=10.7MHz; BW=330kHz; Connected between IF_OUT and IFBUF_IN
* Received Signal at zero Offset to IF Center Frequency
* RSSI trimmed
* FSK Pre-Demodulation Filter (PDF) BW: Depending on Data Rate and FSK Deviation
* No SPI-traffic during telegram reception, CLK_OUT disabled
* AFC and AGC are OFF, unless otherwise noted
* Specification values are in respect to Manchester-coded Infineon-Reference Pattern 1
(7 Bits '0', 1 Bit ’1', 1 Bits '0', 1 Bit ’1', 1 Bits '0', 1 Bit ’1', PRBS5 (31 Bit), 1 Bit 'M') however a Code Violation is not
used as EOM criterion.
MER sensitivity measurements use Receive Mode - Packet oriented FIFO Mode)
* DC ... Duty Cycle
* MER ... Message Error Rate
[MER = 1 - (number_of_correctly_received_messages / number_of_transmitted messages)]
* FAR ... False Alarm Rate
[FAR = number_of_mistakenly_wake_ups / number_of_periods_searching_for_data_on_channel]
* MMR ... Missed Message Rate
[MMR = number_of_mistakenly_missed_wake_up_patterns /
number_of_periods_with_wake_up_pattern_transmitted_and_searching_for_wake_up_pattern]
* BER ... Bit Error Rate (using a PRBS9 Pseudo-Random Binary Sequence)
[BER = 1 - (number_of_correctly_received_bits / number_of_transmitted bits)]
Data Sheet
54
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
Measurement Results
30
10
25
5
20
TxxPower[dBm]
15
0
15
Sup
pplyCurrent[mA]
TXPowerandSupplyCurrentvs.PASetting(comb.10dBmMatchings)
VDD=3V3,25°C
P[315Mhz10dBm]
P[434MHz10dBm]
P[868MHz10dBm]
P[915MHz10dBm]
I [315 MH 10 dB ]
I[315MHz10dBm]
I[434MHz10dBm]
I[868MHz10dBm]
I[915MHz10dBm]
5
10
10
5
1
6
11
16
21
26
31
PASetting[1]
Figure 27
10dBm Matching, Output Power and Supply Current in TX vs. Output power stages
18
35
13
30
8
25
3
20
Sup
pplyCurrent[mA]
TX
XPower[dBm]
TXPowerandSupplyCurrentvs.PASetting(comb.13dBmMatchings)
VDD=3V3,25°C
P[434MHz13dBm]
P[868MHz13dBm]
P[915MHz13dBm]
I [434 MH 13 dB ]
I[434MHz13dBm]
I[868MHz13dBm]
2
15
7
10
12
I[915MHz13dBm]
5
1
6
11
16
21
26
31
PASetting[1]
Figure 28
13dBm Matching, Output Power and Supply Current in TX vs. Output power stages
Data Sheet
55
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
3.2
Test Circuitry Evaluation Board V1.3
Figure 29
Test CircuitSchematic
Data Sheet
56
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
(
(
)
Test Board Layout, Evaluation Board V1.3
3.3
('
(
&
(
(
&'
&
Figure 30
Test Board Layout
3.4
Bill of Material
Table 15
BOM
Part
Value
IC1
TDA5340
C10
2,2
Data Sheet
Unit
Package
Toleranc Manufact Device / Type
e
urer
PGTSSOP-28
nF
0603
Volt
age
Pout
Frequenc
y Info
Infineon
+/- 10%
COG or XR7
57
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
Table 15
BOM
Part
Value
Unit
Package
Toleranc Manufact Device / Type
e
urer
C11
15
pF
0603
+/- 1%
COG
10 dBm 315 MHz
12
pF
0603
+/- 1%
COG
10 dBm 434 MHz
3,9
pF
0603
+/- 0.1pF
COG
13 dBm 868 MHz
3,9
pF
0603
+/- 0.1pF
COG
13 dBm 915 MHz
3,9
pF
0603
+/- 0.1pF
COG
10 dBm 954 MHz
18
pF
0603
+/- 1%
COG
10 dBm 315 MHz
10
pF
0603
+/- 0.1pF
COG
10 dBm 434 MHz
open
pF
0603
COG
13 dBm 868 MHz
1
pF
0603
+/- 0.1pF
COG
13 dBm 915 MHz
0,5
pF
0603
+/- 0.1pF
COG
10 dBm 954 MHz
82
pF
0603
+/- 1%
COG
10 dBm 315 MHz
47
pF
0603
+/- 1%
COG
10 dBm 434 MHz
12
pF
0603
+/- 1%
COG
13 dBm 868 MHz
100
pF
0603
+/- 1%
COG
13 dBm 915 MHz
12
pF
0603
+/- 1%
COG
10 dBm 954 MHz
82
pF
0603
+/- 1%
COG
10 dBm 315 MHz
47
pF
0603
+/- 1%
COG
10 dBm 434 MHz
12
pF
0603
+/- 1%
COG
13 dBm 868 MHz
12
pF
0603
+/- 1%
COG
13 dBm 915 MHz
12
pF
0603
+/- 1%
COG
10 dBm 954 MHz
open
pF
0603
COG
10 dBm 315 MHz
open
pF
0603
COG
10 dBm 434 MHz
open
pF
0603
COG
13 dBm 868 MHz
open
pF
0603
COG
13 dBm 915 MHz
open
pF
0603
COG
10 dBm 954 MHz
4.7
pF
0603
+/- 0.1pF
COG
10 dBm 315 MHz
3.9
pF
0603
+/- 0.1pF
COG
10 dBm 434 MHz
1.8
pF
0603
+/- 0.1pF
COG
13 dBm 868 MHz
2.2
pF
0603
+/- 0.1pF
COG
13 dBm 915 MHz
2.7
pF
0603
+/- 0.1pF
COG
10 dBm 954 MHz
5.6
pF
0603
+/- 0.1pF
COG
10 dBm 315 MHz
1.8
pF
0603
+/- 0.1pF
COG
10 dBm 434 MHz
2.7
pF
0603
+/- 0.1pF
COG
13 dBm 868 MHz
3.3
pF
0603
+/- 0.1pF
COG
13 dBm 915 MHz
3.3
pF
0603
+/- 0.1pF
COG
10 dBm 954 MHz
C12
C13
C14
C15
C16
C17
Data Sheet
58
Volt
age
Pout
Frequenc
y Info
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
Table 15
BOM
Part
Value
Unit
Package
Toleranc Manufact Device / Type
e
urer
C18
12
pF
0603
+/- 1%
COG
10 dBm 315 MHz
6.8
pF
0603
+/- 0.1pF
COG
10 dBm 434 MHz
4.7
pF
0603
+/- 0.1pF
COG
13 dBm 868 MHz
3.3
pF
0603
+/- 0.1pF
COG
13 dBm 915 MHz
2.2
pF
0603
+/- 0.1pF
COG
10 dBm 954 MHz
100
nF
0603
+/-10%
X7R or COG
3V3
100
nF
0603
+/-10%
X7R or COG
5V
100
nF
0603
+/-10%
X7R or COG
3V3
100
nF
0603
+/-10%
X7R or COG
5V
100
nF
0603
+/-10%
X7R or COG
3V3
100
nF
0603
+/-10%
X7R or COG
5V
100
nF
0603
+/-10%
X7R or COG
3V3
100
nF
0603
+/-10%
X7R or COG
5V
100
nF
0603
+/-10%
X7R or COG
3V3
100
nF
0603
+/-10%
X7R or COG
5V
X7R or COG
3V3
X7R or COG
5V
C20
C21
C22
C23
C24
C25
open
470
C26
C27
L10
L11
L12
0603
nF
0603
+/-10%
Volt
age
open
0603
X7R or COG
3V3
open
0603
X7R or COG
5V
Pout
Frequenc
y Info
10
µF
SMC
+/-10%
Tantal
3V3
10
µF
SMC
+/-10%
Tantal
5V
56
nH
0603
+/-2%
CoilCraft
1608
10dBm 315 MHz
39
nH
0603
+/-2%
CoilCraft
1608
10dBm 434 MHz
12
nH
0603
+/-2%
CoilCraft
1608
13dBm 868 MHz
12
nH
0603
+/-2%
CoilCraft
1608
13dBm 915 MHz
5.6
nH
0603
+/-2%
CoilCraft
1608
10dBm 954 MHz
220
nH
0603
+/-2%
CoilCraft
1608
10dBm 315 MHz
82
nH
0603
+/-2%
CoilCraft
1608
10dBm 434 MHz
220
nH
0603
+/-2%
CoilCraft
1608
13dBm 868 MHz
100
nH
0603
+/-2%
CoilCraft
1608
13dBm 915 MHz
220
nH
0603
+/-2%
CoilCraft
1608
10dBm 954 MHz
18
nH
0603
+/-2%
CoilCraft
1608
10dBm 315 MHz
12
nH
0603
+/-2%
CoilCraft
1608
10dBm 434 MHz
8.2
nH
0603
+/-2%
CoilCraft
1608
13dBm 868 MHz
8.2
nH
0603
+/-2%
CoilCraft
1608
13dBm 915 MHz
4.7
nH
0603
+/-2%
CoilCraft
1608
10dBm 954 MHz
Data Sheet
59
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
Table 15
BOM
Part
Value
Unit
Package
Toleranc Manufact Device / Type
e
urer
L13
33
nH
0603
+/-2%
CoilCraft
1608
10dBm 315 MHz
27
nH
0603
+/-2%
CoilCraft
1608
10dBm 434 MHz
8.2
nH
0603
+/-2%
CoilCraft
1608
13dBm 868 MHz
8.2
nH
0603
+/-2%
CoilCraft
1608
13dBm 915 MHz
8.2
nH
0603
+/-2%
CoilCraft
1608
10dBm 954 MHz
0
Ω
0603
3V3
0
Ω
0603
5V
10
Ω
0603
open
Ω
0603
4.7
Ω
0603
open
Ω
0603
10
Ω
0603
open
Ω
0603
5V
open
Ω
0603
3V3
0
Ω
0603
5V
0
Ω
0603
3V3
open
Ω
0603
5V
0
Ω
0603
3V3
2.2
Ω
0603
R20
R21
R23
R24
R25
R26
R27
Q1
21.948717 M
Hz
IF1
SFECF10?M
7EA00
+/- 5%
Volt
age
Pout
Frequenc
y Info
3V3
5V
+/- 5%
3V3
5V
+/- 5%
3V3
+/- 5%
5V
CL = 12pF
NDK;
Frischer
Electronic
s
NX3225SA
Murata
BW = 330kHz
Interface components / optional
IC2
AT24C32CSH-B or?
AT24C512
C1
open
C2
open
C3
open
C30
open
C31
open
C32
100
C33
open
L30
0
D30
LED
Data Sheet
SOIC8
nF
0603
Ω
0603
EEPROM /
Board detection
+/-10%
X7R or COG
status indication
LED
60
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Reference
Table 15
BOM
Part
Value
Unit
Package
R3
0
Ω
0603
R30
1
kΩ
0603
R31
open
SJ1
connect to
SV2
Toleranc Manufact Device / Type
e
urer
Pout
Frequenc
y Info
+/- 5%
Supply from
UWLINK main
board
connect to
SV2 and SV1
3V3
5V
JP1
2 pins
Power amplifier
current
SV1
2x6 pin
UWLINK
connector
SV2
2x6 pin
UWLINK
connector
X2
3 pin
Supply selection
/ ext or UWLINK
X3
2 pin
Chip supply
current
X5
1 pin
analog RSSI
test point
X6
12 pin
Digital Chip I/O
X10
SMA socket
X11
4 pin
GND Pin
Header
X41
4 pin
GND Pin
Header
X42
4 pin
GND Pin
Header
Data Sheet
Volt
age
SAMTEC
61
RF Input /
Output
Revision 1.2, 13.06.2012
TDA5340
SmartLEWISTM TRX
Package Outlines
Package Outlines
0˚...8˚
-0.035
B
1.2 MAX.
1 +0.05
-0.2
0.1 ±0.05
4.4 ±0.1 1)
0.125 +0.075
4
0.65
C
2)
0.22 +0.08
-0.03
0.1
0.6 +0.15
-0.1
0.1 M A C 28x
28
15
1
14
9.7 ±0.1 1)
6.4
0.2 B 28x
A
Index Marking
1)
2)
Does not include plastic or metal protrusion of 0.15 max. per side
Does not include dambar protrusion
Figure 31
PG-TSSOP-28 Package Outline (green package)
Table 16
Ordering Information
Type
Ordering Code
Package
TDA5340
SP000803722
PG-TSSOP-28
You can find all of our packages, sorts of packaging and other on our Infinion Internet Page”Products”:
http://www.infineon.com/products
Data Sheet
62
Revision 1.2, 13.06.2012
w w w . i n f i n e o n . c o m
Published by Infineon Technologies AG