S m a r t L E W I S TM T R X TDA5340 High Sensitivity Multi-Channel Transceiver Data Sheet Revision 1.2, 13.06.2012 Wireless Sense & Control Edition 13.06.2012 Published by Infineon Technologies AG 81726 Munich, Germany © 2012 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. TDA5340 SmartLEWISTM TRX Revision History Page or Item Subjects (major changes since previous revisions) Revision 1.2, 13.06.2012 Page 62 Package Outline Information added Revision 1.1, 30.05.2012 Page 40 Voltage at PA Pin changed to Peak Voltage at pin RFOUT with max 10% TX Duty Cycle Page 40 Inserted maximum Peak Voltage at pin RFOUT with TX Duty Cycle above 10% Page 40 Inserted maximum DC Voltage at pin RFOUT Page 54 Inserted Definition for reception parameters Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2011-02-24 Data Sheet 3 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Table of Contents Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1 1.1 1.2 1.3 1.4 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Key Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 2.1 2.1.1 2.2 2.3 2.4 2.5 2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6 2.6.6.1 2.6.6.2 2.6.7 2.6.8 2.6.8.1 2.6.8.2 2.6.8.3 2.6.8.4 2.6.8.5 2.6.8.6 2.6.8.7 2.6.8.8 2.6.8.9 2.6.8.10 2.6.9 2.6.9.1 2.6.10 Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Supply Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chip Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF / IF Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystal Oscillator and Clock Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sigma-Delta Fractional-N PLL Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PLL Dividers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Digital Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Decoding/Encoding Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ASK and FSK Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ASK Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FSK Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Automatic Frequency Control Unit (AFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Digital Automatic Gain Control Unit (AGC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Digital Baseband (DBB) Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock and Data Recovery (CDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wake-Up Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Message ID Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RUNIN, Synchronization Search Time and Inter-Frame Time . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Digital Control (4-wire SPI Bus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chip Serial Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12 13 20 20 21 22 23 23 23 24 25 25 26 27 27 27 29 29 29 29 30 31 31 32 32 33 33 34 34 38 3 3.1 3.1.1 3.1.2 3.1.3 3.2 3.3 3.4 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Circuitry Evaluation Board V1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Board Layout, Evaluation Board V1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bill of Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 39 39 40 41 56 57 57 Data Sheet 4 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Table of Contents 4 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Data Sheet 5 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX List of Figures List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 31 Application Example optimized for System Costs (3V3 Supply). . . . . . . . . . . . . . . . . . . . . . . . . . . Application Example optimized for RF performance (5V Supply). . . . . . . . . . . . . . . . . . . . . . . . . . Pin-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TDA5340 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Main State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Volts and 5 Volts Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram RF Receiver Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystal Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Clock Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synthesizer Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Encoding/Decoding Schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Block Diagram ASK/FSK Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analog RSSI output curve with AGC action ON (blue) vs. OFF (black) . . . . . . . . . . . . . . . . . . . . . Functional Block Diagram Digital Baseband Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock Recovery (ADPLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Structure of Payload Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Burst Write Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Burst Read Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write TX FIFO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transparent TX Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Checksum Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chip Serial Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10dBm Matching, Output Power and Supply Current in TX vs. Output power stages . . . . . . . . . . 13dBm Matching, Output Power and Supply Current in TX vs. Output power stages . . . . . . . . . . Test CircuitSchematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PG-TSSOP-28 Package Outline (green package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Sheet 6 10 11 12 20 22 23 24 25 26 26 27 28 29 30 31 31 33 35 35 36 36 36 37 37 38 38 55 55 56 57 62 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX List of Tables List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Pin Definition and Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Instruction Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Transceiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receive Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmit Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synthesizer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receiver Frontend Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receiver 2nd IF Mixer, RSSI and Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystal Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Digital Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing SPI-Bus Charcteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Sheet 7 13 22 34 39 40 41 43 46 46 48 49 50 51 52 57 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Product Description 1 Product Description 1.1 Overview The IC is a low power ASK/FSK/GFSK Transceiver for the frequency bands 300-320, 415-495, 863-960 MHz. Biphase modulation schemes, like Manchester, bi-phase mark, bi-phase space and differential Manchester as well as NRZ are supported. The chip offers a high level of integration and needs only a few external components, like a crystal, several blocking capacitors and the necessary matching elements. The IF-filter is integrated but depending on the performance requirements an external ceramic IF-filter can be used. For low cost applications an external passive antenna switch configuration can be used. The device is qualified according to automotive quality standards and operates between -40 and +110 °C at supply voltage ranges of 3.0-3.6 Volts or 4.5-5.5 Volts. A fully integrated Sigma-Delta Fractional-N PLL Synthesizer, with high frequency resolution and a crystal oscillator as reference, generates the necessary frequencies for the power amplifier or down conversion mixers. The onchip temperature sensor may be utilized for temperature drift compensation of the crystal oscillator. The receiver portion is realized as a double down conversion super-heterodyne / low-IF architecture each with image rejection supplemented by digital signal processing in the baseband. This architecture enables outstanding sensitivity performance in combination with very good blocking performance values. The transmitter section comprises a class C/E power amplifier with a high efficiency and an output power level of up to 14 dBm. A tuning feature for the output power is possible via several switchable parallel output stages, of course matching to lower power levels is always possible. For higher power applications an external power amplifier can be used and the internal PA serves as a power driver. For ASK modulation a programmable data shaping is provided. With the fractional-N PLL synthesizer and a selectable Gaussian data shaping filter a very accurate and precise FSK modulation is achieved. The transmit data can be either stored in a separate FIFO data buffer or directly provided via the bus interface. The receiver portion is able to scan autonomuosly for incoming data by using the self polling feature while the host micro controller can stay in power down mode, which reduces the system current consumption significanty. The digital baseband processing unit together with the high performance downconverter is the key element for the exceptional sensitivity performance of the device which take it close to the theoretical top-performance limits. It comprises signal and noise detectors, matched data filter, clock and data recovery, data slicer and a format decoder. It demodulates the received ASK or FSK data stream and recovers the data clock out of the received data with very fast synchronziation times which can then be either accessed via separate pins or used for further processing like frame synchronization and intermediate storage in the on-chip FIFO. The RSSI output signal is converted to the digital domain with an ADC. All these signals are accessible via the 4wire SPI interface bus. Up to 4 pre-configured telegram formats with different data rates and filter bandwidths can be stored into the device offering independent pre-processing of the received and transmitted data. The downconverter can be also configured to single-conversion mode at moderately reduced selectivity and image rejection performance but at the advantage of saving the external IF filter. Data Sheet 8 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Product Description 1.2 Key Features Transceiver • • • • • • • • • Multiband / Multichannel (300-320 MHz, 415-495 MHz, 863-960 MHz ) High receiver sensitivity better than -116 dBm Power amplifier with up to 14 dBm output power Very Low Current consumption: – Receive Mode: 12 mA (typ) – Transmit Mode at 10 dBm and 434 MHz: 12 mA (typ) – Sleep Mode (XTAL ON): 40 uA (typ) – Deep Sleep Mode (XTAL OFF): 7 µA (typ) – Power down Mode: 0.9 uA (typ) ASK and FSK capability with programmable Gaussian data shaping 20 dB programable output power range On-chip IF filter with selectable bandwidth (optional an external CER-filter is possible) Sigma-delta fractional-N PLL synthesizer with high resolution Automatic Frequency Control function (AFC) for offset carrier frequency Digital Baseband • • • • • • • Multi protocol handling: Up to 4 parallel parameter sets for autonomous scanning and receiving from different sources Integrated data and clock recovery Autonomous receive functionality: Frame synchronisation, format decoding, message ID screening 288 Bit RX/TX-FIFO for receive and transmit data Wake-up generator and polling timer unit Ultra-fast wake-up on RSSI Supports all bi-phase format schemes and NRZ General • • • • • • • • Operating temperature range -40 to +110°C Supply voltage range 3.0 to 3.6 V or 4.5 to 5.5 V Brownout detector Integrated 4-wire SPI bus interface 32-bit wide Unique ID on chip On-chip temperature sensor ESD protection +/- 2 kV on all pins (HBM) PG-TSSOP-28 package 1.3 • • • • • • • • • Target Applications Remote keyless entry (RKE) Remote start applications Passive Keyless Entry (PKE) Security Alarm Systems Automatic Meter Reading (AMR) and Infrastructure (AMI) Home Automation Remote Control Sensor Networks Short range radio data transmission Data Sheet 9 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Product Description 1.4 Application Example The Application examples within this section where optimezed for performance and sytem costs. Of course there exists several steps inbetween which can be realized by the customer to fullfill the application specific needs. +3V3 supply +3V3 supply 1 RSSI IF_OUT 28 2 VDDA VDDRF 27 3 GNDA PPRF 26 4,7 Ω 0.1µF 0.1µF 10 Ω 0.1µF 10 Ω 4 IF_IN RFOUT 25 5 GND_IF GNDRF 24 6 VDD5V LNA_INP 23 7 VDDD LNA_INN 22 8 VDDD1V5 0.1µF Choke GNDRF 21 0.1µF 9 GNDD 10 PP0 NINT to μC P_ON from μC TM 20 TDA5340 SDO 19 to μC 11 PP1 SDI 18 from μC 12 PP2 SCK 17 from μC 13 P_ON NCS 16 from μC 14 XTAL1 XTAL2 15 21.948717 MHz XTAL Figure 1 Application Example optimized for System Costs (3V3 Supply) Data Sheet 10 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Product Description 10.7 MHz CERFIL control line +5V supply 1 RSSI IF_OUT 28 2 VDDA VDDRF 27 3 GNDA PPRF 26 control line 0.1µF 0.470 µF 4 IF_IN RFOUT 25 5 GND_IF GNDRF 24 Choke ANT Antenna Switch 2.2 Ω 10µF 0.1µF 6 VDD5V LNA_INP 23 7 VDDD LNA_INN 22 0.1µF SAW Filter GNDRF 21 8 VDDD1V5 0.1µF TM 20 9 GNDD 10 PP0 NINT to μC P_ON from μC TDA5340 to μC SDO 19 11 PP1 SDI 18 from μC 12 PP2 SCK 17 from μC 13 P_ON NCS 16 from μC 14 XTAL1 XTAL2 15 21.948717 MHz XTAL Figure 2 Application Example optimized for RF performance (5V Supply) Data Sheet 11 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview 2 Functional Overview 2.1 Pin Configuration Figure 3 PPRF_RSSI 1 28 IF_OUT VDDA 2 27 VDDRF GNDA 3 26 PPRF IF_IN 4 25 RFOUT GNDIF 5 24 GNDRF VDD5V 6 23 LNA_INP VDDD 7 22 LNA_INN VDDD1V5 8 21 GNDRF GNDD 9 20 TM PP0 10 19 SDO PP1 11 18 SDI PP2 12 17 SCK P_ON 13 16 NCS XTAL1 14 15 XTAL2 TDA5340 Pin-Out Data Sheet 12 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview 2.1.1 Pin Definition Table 1 Pin Definition and Function Pin Nr Pad Name 1 PPRF_RSSI Equivalent I/O Schematic Function VDDRF VDDA VDDA vm_p 500Ω RSSI vm_n GNDA GNDA GNDRF 2 VDDA Analog output Digital output with weak driver capability, always in 3V domain CLK_OUT, RX_RUN, NINT, ANT_EXTSW1, ANT_EXTSW1, DATA, DATA_MATCHFIL, CH_DATA, CH_STR, RXD, RXSTR, TXSTR and TRISTATE are programmable via SFR default: TRISTATE Analog input Analog supply VDD5V + VReg = - VDDA GNDA 3 GNDA Analog Ground VDDA GNDA analog ground Data Sheet 13 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview Table 1 Pin Definition and Function Pin Nr Pad Name 4 IF_IN Equivalent I/O Schematic Function VDDA VDDA Analog input IF mixer input not sel_inp mimCAP 10p 320Ω _IN sel_inp GNDIF GNDIF VDDA NAND2 GNDIF 5 GND_IF Analog Ground GNDIF GNDA 6 VDD5V Analog input 5 Volt supply input VDD5V GNDD GNDD 5V supply 7 VDDD Analog input digital supply input VDD5V + VReg = - VDDD GNDD Data Sheet 14 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview Table 1 Pin Definition and Function Pin Nr Pad Name 8 VDDD1V5 Equivalent I/O Schematic Function Analog output 1.5V regulator VDDD + VReg = - GNDD 9 VDD1V5 GNDD Digital ground VDDD GNDD 10 PP0 VDD5V VDD5V vm_p PP0-PP2 vm_n Digital output CLK_OUT, RX_RUN, NINT, ANT_EXTSW1, ANT_EXTSW1, DATA, DATA_MATCHFIL, CH_DATA, CH_STR, RXD, RXSTR, TXSTR and TRISTATE are programmable via SFR default: CLK_OUT GNDD GNDD 11 PP1 Data Sheet same as PP0 Digital output CLK_OUT, RX_RUN, NINT, ANT_EXTSW1, ANT_EXTSW1, DATA, DATA_MATCHFIL, CH_DATA, CH_STR, RXD, RXSTR, TXSTR and TRISTATE are programmable via SFR default: DATA 15 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview Table 1 Pin Definition and Function Pin Nr Pad Name Equivalent I/O Schematic Function 12 PP2 same as PP0 Digital output CLK_OUT, RX_RUN, NINT, ANT_EXTSW1, ANT_EXTSW1, DATA, DATA_MATCHFIL, CH_DATA, CH_STR, RXD, RXSTR, TXSTR and TRISTATE are programmable via SFR default: NINT 13 P_ON VDD5V 500Ω P-ON GNDD 14 Digital input power-on reset VDDD GNDD XTAL1 Analog input crystal oscillator input VDDD VDDD XTAL1 .... GNDD 15 GNDD GNDD XTAL2 VDDD Analog output crystal oscillator output VDDD XTAL2 .... GNDD 16 GNDD GNDD NCS VDD5V VDDD 500Ω NCS GNDD Data Sheet Digital input SPI Not Chip select GNDD 16 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview Table 1 Pin Definition and Function Pin Nr Pad Name 17 SCK Equivalent I/O Schematic Function VDD5V 500Ω SCK GNDD 18 SDI GNDD VDD5V Digital input SPI data in VDDD 500Ω SDI GNDD 19 Digital input SPI clock VDDD GNDD SDO Digital output SPI data out VDD5V VDD5V vm_p SDO noRC vm_n GNDD GNDD 20 TM VDD5V VDDD 500Ω TM GNDD Data Sheet Digital input connect to digital ground GNDD 17 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview Table 1 Pin Definition and Function Pin Nr Pad Name 21 GNDRF Equivalent I/O Schematic Function Analog ground VDDRF GNDRF 22 LNA_INN LNA_INN LNA Analog input - RF input LNA Analog input +RF input GNDRF 23 LNA_INP LNA_INP GNDRF 24 GNDRF Analog ground VDDRF GNDRF 25 RFOUT RFOUT Analog output power amplifier output GNDRF Data Sheet 18 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview Table 1 Pin Definition and Function Pin Nr Pad Name 26 PPRF Equivalent I/O Schematic Function VDDRF VDDRF vm_p PPRF vm_n Digital output always in 3V domain CLK_OUT, RX_RUN, NINT, ANT_EXTSW1, ANT_EXTSW1, DATA, DATA_MATCHFIL, CH_DATA, CH_STR, RXD, RXSTR, TXSTR and TRISTATE are programmable via SFR default: TRISTATE GNDRF GNDRF 27 VDDRF Analog input RF supply VDD5V + VReg = - VDDRF GNDRF 28 IF_OUT VDDRF VDDRF Analog output Mixer output 330Ω IF-OUT 50Ω 3pF GNDRF Data Sheet GNDRF 19 GNDRF Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview 2.2 Functional Block Diagram CER (opt.) IF_OUT IF_IN BUF RSSI XTAL1 BUF LNA PA PLL ΣΔ VDD Temp Div by 2 XTAL2 fsys fsys Envelope Shaping Gauss Filter Encoding Baud Rate Generator TX FIFO Interrupt Control A Finite State Machine fsys VDDRF VDDA P_ON 21.948 MHz IR IR RF_OUT Limiter BPF LNA_INP LNA_INN D AFC / AGC PDF / FM Demodulator Antenna Diversity RSSI avg/peak Data Filter Polling Timer Slicer / CDR Decoding RX FIFO Power Supply Port Pin Control VDD5V, VDDD, VDDD1V5 SPI Interface PP0..PP2, PPRF Figure 4 TDA5340 Block Diagram 2.3 Architecture Overview NCS, SDI, SDO, SCK A fully integrated Sigma-Delta Fractional-N PLL Synthesizer covers the frequency bands 300-320 MHz, 415-495 MHz, 860-960 MHz with a high frequency resolution, using only one VCO running at around 3.6 GHz. This makes the IC most suitable for Multi-Band/Multi-Channel applications. For Multi-Channel applications a very good channel separation is essential. To achieve the necessary high sensitivity and selectivity a double down conversion super-heterodyne architecture is used. The first IF frequency is located at 10.7 MHz and the second IF frequency at 274 kHz. For both IF frequencies an adjustment-free image frequency rejection feature is realized. In the second IF domain the filtering is done with an on-chip third order bandpass polyphase filter. A multi-stage bandpass limiter completes the RF/IF path of the receiver. For Single-Channel applications with relaxed requirements to selectivity, a single down conversion low-IF scheme can be selected. A highly efficient Class C/E Power amplifier with an output level of +14dBm combined with a Gaussian Filter for GFSK and amplitude ramping functions for shaped ASK is implemented. A high resolution power adjustment can be done to trim the output power for highest system power savings. The data can be either shifted out of a on-chip transmit FIFO or directly provided on an input pin. An RSSI generator delivers a DC signal proportional to the applied input power and is also used as an ASK demodulator. Via an anti-aliasing filter this signal feeds an ADC with 10 bits resolution. The limiter output signal Data Sheet 20 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview feeds a digital FSK demodulator. This block demodulates the FSK data and delivers an AFC signal which controls the divider factor of the PLL synthesizer. A digital receiver, which comprises RSSI peak detectors, a matched data filter, a clock and data recovery, a data slicer, a frame synchronization and a data FIFO, decodes the received ASK or FSK data stream. The recovered data and clock signals are accessible via 2 separate pins. The FIFO data buffer is accessible via the SPI bus interface.The crystal oscillator serves as the reference frequency for the PLL phase detector, the clock signal of the Sigma-Delta modulator and divided by two as the 2nd local oscillator signal. To accelerate the start up of the crystal oscillator two modes are selectable: a Low Power Mode (with lower precision) and a High Precision Mode. 2.4 Block Overview The TDA5340 is separated into the following main blocks: • • • • • • • • • • • RF / IF Receiver Power Amplifier Crystal Oscillator and Clock Divider Sigma-Delta Fractional-N PLL Synthesizer ASK / FSK Demodulator incl. AFC and AGC RSSI Peak Detector Digital Baseband Receiver Digital Baseband Transmitter Power Supply Circuitry System Interface System Management Unit Data Sheet 21 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview 2.5 Operating Modes The transceiver has three different power saving modes, two receive modes and a transmit mode. The different operating modes are used to adjust the transceiver functionality to the needs of the application. Depending on the used communication protocols the appropriate power saving mode can be selected. In the table below all different modes are listed and corresponding to the modes the active blocks and current consumptions are shown. Table 2 Operating Modes Operating Mode Transceiver Blocks Dig. Vreg Ana. Vreg XTAL SFR SPI PLL PA RX typ. Current Consumption Power Down OFF OFF OFF OFF OFF OFF OFF OFF 0.9 µA Deep Sleep ON OFF OFF ON OFF OFF OFF OFF 7 µA 1) ON ON OFF OFF OFF 40 µA2) Sleep ON OFF ON Sleep ADC enabled ON ON ON1) ON ON OFF OFF OFF 1 mA Transmit Ready ON ON ON ON ON ON OFF OFF 5.8 mA Transmit Idle ON ON ON ON ON OFF OFF OFF <3 mA Transmit ON ON ON ON ON ON ON OFF 12.5 mA3) Receive ON ON ON ON ON ON OFF ON 11 mA4) 1) 2) 3) 4) selectable between XTAL in high or low precision mode XTAL in low precision mode 10dBm Output power at 434MHz single down conversion Mode (no external CER Filter used) P_ON Pin low P_ON Pin low NCS line to low + SPI: disable Deep Sleep Deep Sleep SPI: enable Deep Sleep + NCS line to high Sleep SPI: Receive Mode SPI: Transmit Mode SPI: Sleep Mode Run Mode Slave Receive Hold P_ON Pin low P_ON Pin high SPI: Sleep Mode Self Polling Power Down P_ON Pin low Ready (TRM) SPI: Transmit Mode Transmit Idle (TIM) Run Mode Self Polling Active (TAM) SPI: Receive Mode Figure 5 Main State Diagram Data Sheet 22 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview 2.6 Block Description 2.6.1 Power Supply Circuitry The chip may be operated within a 5 Volts or a 3.3 Volts environment. For operation within a 5 Volts environment (supply voltage range 1), the chip is supplied via the VDD5V pin. In this configuration the digital I/O pads are supplied via VDD5V and a 5 V to 3.3 V voltage regulator supplies the analog/RF section (only active in Run Modes). When operating within a 3.3 Volts environment (supply voltage range 2), the VDD5V, VDDA, VDDD and VDDRF pins must be supplied. The 5 V to 3.3 V voltage regulators are inactive in this configuration.The internal digital core is supplied by an additional 3.3 V to 1.5 V regulator.The regulators for the digital section are controlled by the signal at P_ON (Power On) pin. A low signal at P_ON disables all regulators and set the IC in Power Down Mode. A low to high transition at P_ON enables the regulators for the digital section and initiates a power on reset. The regulator for the analog section is controlled by the Master Control Unit and is active only when the RF section is active.To provide data integrity within the digital units, a brownout detector monitors the digital supply. In case a voltage drop of VDDD below approximately 2.45 V is detected a RESET will be initiated. A typical power supply application for a 3.3 Volts and a 5 Volts environment is shown in the figure below. *) 2,2Ω PA 10Ω 4.7Ω TDA5340 VDDRF TDA5340 10Ω 0Ω PA VDD5V 100n VDDA VDDD 3.3V 100n VDDA VDD5V VDDD 5V 100n 100n VDDD1V5 VDDD1V5 100n GNDA GNDRF VDDRF 330/ 470n 0Ω GNDRF GNDD Supply-Application in 3.3V environment 100n 100n GNDA *) 10μ GNDD Supply-Application in 5V environment *) When operating in a 5V environment, the voltage-drop across the voltage regulators 5 Æ 3.3V has to be limited , to keep the regulators in a safe operating range. Resistive or capacitive loads (in excess to the scheme shown above) on pins VDDA and VDDD are not recommended. Figure 6 3.3 Volts and 5 Volts Applications 2.6.2 Chip Reset Power down and power on are controlled by the P_ON pin. A LOW at this pin keeps the IC in Power Down Mode. All voltage regulators and the internal biasing are switched off. A high transition at P_ON pin activates the appropriate voltage regulators and the internal biasing of the chip. A power up reset is generated at the same time. Data Sheet 23 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview Supply Voltage at VDDD Pin 3V Reset- / BrownoutThreshold (typ . 2 .45V) Functional Threshold (typ . 2V) t tR eset Internal Reset Voltage at PP2 Pin (NINT Signal) 3V Reset- / BrownoutThreshold (typ . 2 .45V) Functional Threshold (typ . 2V) Level on NINT signal is undefined Supply voltage falls below Reset- / Brownout-Threshold Supply voltage falls below Functional- Threshold A ‚LOW’ is generated at NINT signal Figure 7 A ‚LOW’ is generated at PP2 pin (NINT signal) Supply voltage rises above Functional-Threshold t A ‚HIGH’ is generated at PP2 pin (NINT signal) µC reads InterruptStatus-Register A ‚LOW’ is generated at PP2 pin (NINT signal) Reset Behavior A second source that can trigger a reset is a brownout event. Whenever the integrated brownout detector measures a voltage drop below the brownout threshold on the digital supply, the integrity of the stored data and configuration can no longer be guaranteed; thus a reset is generated. While the supply voltage stays between the brownout and the functional threshold of the chip, the NINT signal is forced to low. When the supply voltage drops below the functional threshold, the levels of all digital output pins are undefined. When the supply voltage raises above the brownout threshold, the IC generates a high pulse at NINT and remains in the reset state for the duration of the reset time. When the IC leaves the reset state, the Interrupt Status registers are set to 0xFF and the NINT signal is forced to low. Now, the IC starts operation in the SLEEP Mode, ready to receive commands via the SPI interface. The NINT signal will go high, when one of the Interrupt Status registers is read for the first time. 2.6.3 RF / IF Receiver The receiver path uses a double down conversion super-heterodyne/low-IF architecture, where the first IF frequency is located at 10.7 MHz and the second IF frequency at 274 kHz. For the first IF frequency an adjustmentfree image frequency rejection is realized by means of two I/Q-mixers followed by a second order passive polyphase filter centered at 10.7 MHz (PPF). The I/Q-oscillator signals for the first down conversion are delivered from the PLL synthesizer. The frequency selection in the first IF domain is done by an external CER filter. For moderate or low performance applications, this ceramic filter can be substituted by a simple LC Pi-filter or completely by-passed using the receiver as a single down conversion low-IF scheme with 274 kHz IF frequency. Data Sheet 24 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview The down conversion to the second IF frequency is done by means of two high-side injected I/Q-mixers together with an on-chip third order bandpass polyphase filter (PPF2 + BPF). The I/Q-oscillator signals for the second down conversion are directly derived by division of two from the crystal oscillator frequency. The bandwidth of the bandpass filter (BPF) can be selected from 50 kHz to 300 kHz in 5 steps. For a frequency offset of 150 kHz to 120 kHz, the AFC (Automatic Frequency Control) function is mandatory. Activated AFC option might require a longer preamble sequence in the receive data stream. The receiver enable signal (RX_RUN) can be offered at each of the port pins to control external components. Whenever the receiver is active, the RX_RUN output signal is active. Active high or active low is configurable via PPCFG2 register. Limite r QMix2 3rd order BP /PP F2 IF2 = 274 kHz IF Attenuation adjust IMix2 SDCSEL-MUX Q-Mix MIX2BUF (var. gain) LNA CERFilter IF1 10.7 MHz PPFBUF MUX RX Input 2nd order PPF 10.7 MHz I-Mix RSSI Generator IQ :2 Channel Filter Bandwidth select N LP harm sup digital FSK Demod LP alias sup ASK / RSSI ADC RX FSK Data RX ASK Data Divider :N AFC Filter ΣΔ Modulator Channel select VCO :1/:2/:3 IQ Divider : 4 Multi Modulos Divider : N_FN PD Crystal oscil lator Band select Channel select LF select Channel Filter select Band select Loop Filter Front end control unit IF Attenuation adjust RSSI Gain/ Offset adjust LF select Figure 8 Block Diagram RF Receiver Section 2.6.4 Transmitter A highly efficient Class C/E Power amplifier with output levels of +14 dBm combined with a Gaussian Filter for GFSK and amplitude ramping functions for shaped ASK is implemented. A high resolution power adjustment can be done to trim the output power for highest system power savings. The data can be either shifted out of a on-chip transmit FIFO or directly provided on an input pin. 2.6.5 Crystal Oscillator and Clock Divider The crystal oscillator is a Pierce type oscillator. An automatic amplitude regulation circuitry allows the oscillator to operate with minimum current consumption. In SLEEP Mode, where the current consumption should be as low as possible, the load capacitor must be small and the frequency is slightly detuned, therefore all internal trim capacitors are disconnected. The internal capacitors are controlled by the crystal oscillator calibration registers XTALCALx. With a binary weighted capacitor array the necessary load capacitor can be selected. Whenever a XTALCALx register value is updated, the selected trim capacitors are automatically connected to the crystal so that the frequency is precise at the specified value. Step size is 1 pF. The SFR control bit XTALHPMS can be used to activate the High Precision Mode also during SLEEP Mode. Data Sheet 25 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview fsys Setting automatically controlled (1pF step size) 9 XTALCAL0 XTALCAL1 Oscillator -Core XTAL1 Figure 9 XTALHPMS Binary weighted Capacitor-Array Binary weighted Capacitor-Array (DGND) XTAL2 Crystal Oscillator External Clock Generation Unit A built-in programmable frequency divider can be used to generate an external clock source out of the crystal reference. The 20 bit wide division factor is stored in the registers CLKOUT0, CLKOUT1 and CLKOUT2. The minimum value of the programmable frequency divider is 1. This programmable divider is followed by an additional divider by 2, which generates a 50% duty cycle of the CLK_OUT signal. So the maximum frequency at the CLK_OUT signal is the crystal frequency divided by 4. The minimum CLK_OUT frequency is the crystal frequency divided by 221. CLKOUTEN CLKOUT2 CLKOUT1 CLKOUT0 To save power, this programmable clock signal can be disabled by the SFR control bit CLKOUTEN. In this case the external clock signal is set to low. Enable fsys 20 Bit Counter Enable 2 x f C LK_OU T Figure 10 External Clock Generation Unit 2.6.6 Sigma-Delta Fractional-N PLL Block Divide by 2 fC LK _OU T The Sigma-Delta Fractional-N PLL is fully integrated on chip. The Voltage Controlled Oscillator (VCO) with on-chip LC-tank runs at approximately 3.6 GHz and is first divided with a band select divider by 1, 2 or 3 and then with an I/Q-divider by 4 which provides an orthogonal local oscillator signal for the first image reject mixer with the necessary high accuracy. Data Sheet 26 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview The multi-modulus divider determines the channel selection and is controlled by a 3rd order Sigma-Delta Modulator (SDM). A type IV phase detector, a charge pump with programmable current and an on-chip loop filter closes the phase locked loop. To 1 st mixer 3.6 GHz VCO Loop Filter To DCC / PA IQ Divider ÷4 CP Band Select ÷1/÷2/÷3 Multimodulus Divider Channel FN FSK Modulation PFD ΣΔ Modulator QOSC 22MHz AFC filter AFC-data Figure 11 Synthesizer Block Diagram 2.6.6.1 PLL Dividers The divider chain consists of a band select divider 1/2/3, an I/Q-divider by 4 which provides an orthogonal 1st local oscillator signal for the first image reject mixer with the necessary high accuracy and a multi-modulus divider controlled by the Sigma-Delta Modulator. With the band select divider, the wanted frequency band is selected. Divide by 1 selects the 915 MHz and 868 MHz band, divide by 2 selects the 434 MHz band and divide by 3 selects the 315 MHz band. The ISM band selection is done via bit group BANDSEL in x_PLLINTC1 register. 2.6.6.2 Digital Modulator rd The 3 order Sigma-Delta Modulator (SDM) has a 22 bit wide input word, however the LSB is always high, and is clocked by the XTAL oscillator. This determines the achievable frequency resolution. The Automatic Frequency Control (AFC) Unit filters the actual frequency offset from the FSK demodulator data and calculates the necessary correction of the divider factor to achieve the nominal IF center frequency. 2.6.7 Decoding/Encoding Modes The IC supports the following Bi-phase encodings: • • Manchester code Differential Manchester code Data Sheet 27 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview • • • • Bi-phase space code Bi-phase mark code Miller code (TX only) NRZ The encoding mode is set and enabled by bit group CODE in x_DIGRXC (receiver) and x_TXCFG (transmitter) configuration register. Data 1 0 1 0 0 1 1 0 Clock Manchester Differential Manchester Biphase Space Biphase Mark Miller NRZ PRBS Scrambling Figure 12 Encoding/Decoding Schemes Data Sheet 28 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview 2.6.8 ASK and FSK Demodulator The IC comprises two separate demodulators for ASK and FSK. After combining FSK and ASK data path, a sampling rate adaptation follows to meet an output oversampling between 8 and 16 samples per chip. Finally, an oversampling of 8 samples per chip can be achieved using a fractional sample rate converter (SRC) with linear interpolation FSK demodulator AFC track/freeze PPF2 BP 2nd conversion image suppression / band limitation (noise) FSK 33 / 46 / 65 / 93 / 132 / 190 / 239 / 282 kHz (2sided PDF BW) RSSI ASK ADC RSSI Slope RSSI Offset Div buffer f System Peak Memory Filter RSSI Peak Detector register RF PLL ctrl FSK/ASK FSK demodulator B = 50..300kHz channel filter FM limiter AFC loop filter Rate adapter Demodulated Data Bypass Rate doubler Decimation 8 … 16 samples /chip (data rate dependent ) delog AGC RSSIPMF register RSSIPWU register RSSI RSSIPWU (internal signal) Begin of config / channel , x*WULOT End of config/ channel > WU event TH, BL, BH Figure 13 Functional Block Diagram ASK/FSK Demodulator 2.6.8.1 ASK Demodulator The RSSI generator delivers a DC signal proportional to the applied input power at a logarithmic scale (dBm) and is also used as an ASK demodulator. Via a programmable anti-aliasing filter this signal is converted to the digital domain by means of a 10-bit ADC. For the AM demodulation a signal proportional to the linear power is required. Therefore a conversion from logarithmic scale to linear scale is necessary. This is done in the digital domain by a nonlinear filter together with an exponential function. The analog RSSI signal after the anti-aliasing filter is available at the RSSI pin via a buffer amplifier. To enable this buffer the SFR control bit RSSIMONEN must be set. The anti-aliasing filter can be by-passed for visualization on the RSSI pin (see AAFBYP control bit). 2.6.8.2 FSK Demodulator The limiter output signal, which has a constant amplitude over a wide range of the input signal, feeds the FSK demodulator. There is a configurable lowpass filter in front of the FSK demodulation to suppress the down conversion image and noise/limiter harmonics (FSK Pre-Demodulation Filter, PDF). This is realized as a 3rd order digital filter. The sampling rate after FSK demodulation is fixed and independent from the target data rate. 2.6.8.3 Automatic Frequency Control Unit (AFC) In front of the image suppression filter a second FSK demodulator is used to derive the control signal for the Automatic Frequency Control Unit, which is actually the DC value of the FSK demodulated signal. This makes the AFC loop independent from signal path filtering and allow so a wider frequency capture range of the AFC. The derivation of the AFC control signal is preferably done during the DC-free preamble and is then frozen for the rest of the datagram. Data Sheet 29 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview Since the digital FSK demodulator determines the exact frequency offset between the received input frequency and the programmed input center frequency of the receiver, this offset can be corrected through the sigma delta control of the PLL. 2.6.8.4 Digital Automatic Gain Control Unit (AGC) Automatic Gain Control (AGC) is necessary mainly because of the limited dynamic range of the on-chip bandpass filter (BPF). The BPF dynamic range reduces to less than 60dB in case of minimum BPF bandwidth. AGC is used to cover the following cases: • • • 1. ASK demodulation at large input signals 2. RSSI reading at large input signals 3. Improve IIP3 performance in either FSK or ASK mode The 1st IF buffer can be fine tuned "manually" by means of 4 bits thus optimizing the overall gain to the application (attenuation of 0dB to -12dB by means of IFATT0 to IFATT15). This buffer allows the production spread of external components to be trimmed. The gain of the 2nd IF path is set to three different values by means of an AGC algorithm. Depending on whether the receiver is used in single down conversion or in double down conversion mode the gain control in the 2nd IF path is either after the 2nd poly-phase network or in front of the 2nd mixer. The AGC action is illustrated in the RSSI curve below: Analog (blue) & digital (black ) RSSI output Mixer2 saturation BPF bypassed AGC OFF Max. B W BPF saturation AGC ON Min. B W margin Analog AGC attack point hys teresis Analog AGC decay point Max . B W Front- end noise x gain Max. FE gain (IFA TT 0) Min. B W Min. FE gain (IFA TT 15) AGCT UP AGCTLO AGCTHOF FS Figure 14 AGCHYS AGCHYS Limiter noise floor Input power Analog RSSI output curve with AGC action ON (blue) vs. OFF (black) Data Sheet 30 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview 2.6.8.5 Digital Baseband (DBB) Receiver Blind Sync Initial Phase & Data rate FSK detector CR PLL Slicer CDR PLL sync chip_data_clock adjust_length CH_STR SRC bypass 8 to 16 samples per chip Matched Filter Signal Detector fractional SRC From ASK/ FSK Demodulator Data Slicer Chip Data Decoder chip_data CH_DATA fs out / fs in = 0.5 … 1.0 CHIPDINV MUX RAW Data Slicer for external processing Decoder SIGN Data Invert DINVEXT DATA (Sliced RAW Data for external processing ) Figure 15 Chip Data Invert Framer (TSI Detector) WU Unit Data Invert data_clk data eom fsync FIFO wakeup RXSTR RXD DATA_MATCHFIL (Matched Filtered Data for external processing ) Functional Block Diagram Digital Baseband Receiver The digital baseband receiver comprises a matched data filter, a clock and data recovery, a data slicer, a line decoder, a wake-up generator, a frame synchronization and a data FIFO. The recovered data and clock signals are accessible via 2 separate pins. The FIFO data buffer is accessible via the SPI bus interface. 2.6.8.6 Clock and Data Recovery (CDR) CDRDRTHRN CDRDRTHRP x_CDRRI x_CDRTOLB x_CDRTOLC An all-digital PLL (ADPLL) recovers the data clock from the incoming data stream. The second main function is the generation of a signal indicating symbol synchronization. Synchronization on the incoming data stream generally occurs within the first 4 bits of a telegram. Tnom / 16 EOM from Clock Recovery Slicer Symbol Sync found Timing Extrapolation Phase Detector PI Loop Filter Digital Controlled Oscillator Tnom / 2 x_TSIGAP (GAPVAL) x_CDRI x_CDRP x_TSIMODE (TSIGRSYN) Tnom / 2 x_TVWIN Figure 16 Recovered Clock Clock Recovery (ADPLL) Data Sheet 31 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview Clock Recovery is implemented as standard ADPLL PI regulator with Timing Extrapolation Unit for fast settling. In the unlocked state, the Timing Extrapolation Unit calculates the frequency offset for the incoming data stream. If the defined number of Bi-phase encoded bits are detected (the RUNIN length can be set in the x_CDRRI register), the I-part and the PLL oscillator will be set and the PLL will be locked. When x_CDRRI.RUNLEN is set to small values, then the I-part is less accurate (residual error) and can lead to a longer needed PLL settling time and worse performance in the first following bits. Therefore the selected default value is a good compromise between fast symbol synchronization and accuracy/performance. Duty cycle and data rate acceptance limits are adjustable via registers. After locking, the clock must be stable and must follow the reference input. Therefore, a rapid settling procedure (Timing Extrapolation Unit) and a slow PLL are implemented. If the PLL is locked, the reference signal from the Clock Recovery Slicer is used in the phase detector block to compute the actual error. The error is used in the PI loop filter to set the digital controlled oscillator running frequency. For the P, I and Timing Extrapolation Unit settings, the default values for the x_CDRP and x_CDRI control registers are recommended.The PLL will be unlocked, if a code violation of more than the defined length is detected, which is set in the x_TVWIN control register. Another criterion for PLL resynchronization is an End Of Message (EOM) signalled by the Framer block. The PLL oscillator generates the chip clock frequency is equal to 2 times the data rate. 2.6.8.7 Wake-Up Generator A wake-up generation unit is used only in the Self Polling Mode for the detection of a predefined wake-up criterion in the received pattern. There are two groups of configurable wake-up criteria: • • Wake-up on Level criteria Wake-up on Data criteria The search for the wake-up data criterion is started if data chip synchronization has occurred within the predefined number of symbols, otherwise the wake-up search is aborted. Several different wake-up patterns, like random bit, equal bit, bit pattern or bit synchronization, are programmable.Additional level criterion fulfilment for RSSI or Signal Recognition can lead to a fast wake-up and to a change to Run Mode Self Polling. Whenever one of these Wakeup Level criteria is enabled and exceeds a programmable threshold, a wake-up has been detected.The Wake-up Level criterion can be used very effectively in combination with the Ultrafast Fall Back to SLEEP Mode for further decreasing the needed active time of the autonomous receive mode. A configurable observation time for Wakeup on Level can be set in the x_WULOT register. 2.6.8.8 Frame Synchronization The Frame Synchronization Unit (Framer) synchronizes to a specific pattern to identify the exact start of a payload data frame within the data stream. This pattern is called Telegram Start Identifier (TSI).There are different TSI modes selectable via the configuration: • • • • 16-Bit TSI Mode, supporting a TSI length of up to 16 bits or 32 chips 8-Bit Parallel TSI Mode, supporting two independent TSI pattern of up to 8 bits length each. Different payload length is possible for these two TSI pattern. 8-Bit Extended TSI Mode, identical to 8-Bit Parallel TSI Mode, but identifies which pattern matches by adding a single bit at the beginning of the data frame 8-Bit TSI Gap Mode, supporting two independent TSI pattern separated by a discontinuity All SFRs configuring the Frame Synchronization Unit support the Multi-Configuration capability (Config A, B, C and D). The Framer starts working in Run Mode Slave after Symbol Sync found and in Self Polling Mode after wake-up found and searches for a frame until TSI is found or synchronization is lost. The input of the Framer is a sequence of Bi-phase encoded data (chips). Basically the Framer consists of two identical correlators of 16 chips in length. It allows a Telegram Start Identifier (TSI) to be composed of Bi-phase encoded “Zeros” and “Ones”. The active length of each of the 16 chips correlators is defined independently in the x_TSILENA and x_TSILENB registers. The pattern to match is defined as a sequence of chips in the x_TSIPTA0, x_TSIPTA1, x_TSIPTB0 and x_TSIPTB1 registers. Data Sheet 32 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview 2.6.8.9 Message ID Scanning This unit is used to define an ID or special combination of bits in the payload data stream, which identifies the pattern. All SFRs configuring the Message ID Scanning Unit feature the Multi-Configuration capability. Furthermore, it is available in the Slave and Self Polling Mode. The MID Unit can be mainly configured in two modes: 4-Byte and 2-Byte organized Message ID. For each configuration there are 20 8-bit registers designed for ID storage. SFRs are used to configure the MID Unit: Enabling of the MID scanning, setting of the ID storage organization, the starting position of the comparison and number of bytes to scan. When the Message ID Scanning Unit is activated, the incoming data stream is compared bit-wise serially with all stored IDs. If the Scan End Position is reached and all received data have matched the observed part of at least one MID the Message ID Scanning Unit indicates a successful MID scanning to the Master FSM, which generates an MID interrupt. Please note that the default register value of the MID registers is set to 0x00. All MID registers must be set to a pattern value to avoid matching to default value 0x00.If the MID Unit finishes ID matching without success, the data receiving is stopped and the FSM waits again for a Frame Start criterion. The received bits are still stored in the FIFO. 2.6.8.10 RUNIN, Synchronization Search Time and Inter-Frame Time The functionality of the Digital Baseband Receiver is divided into four consecutive data processing stages; the data filter, clock and data recovery, data slicer and frame synchronization unit. The architecture of the Digital Baseband Receiver is optimized for processing bi-phase coded data streams.The basic structure of a payload frame is shown in Figure 17. The protocol starts with a so called RUNIN. The RUNIN with the minimum length of four bi-phase coded symbols is used for internal filter settling and frequency adjustment. The TSI (Telegram Start Identifier), which is used as framing word, follows the RUNIN sequence. The payload contains the effective data. The length of the valid payload data is defined as the length itself or additional criteria (e.g. loss of Sync). Please note that almost all transmitted protocols send a wake-up sequence before the payload frame. This wake-up sequence allows a very fast decision, whether there is a suitable message available or not. RUNIN Figure 17 TSI PAYLOAD Structure of Payload Frame Data Sheet 33 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview 2.6.9 Application Interface Transparent Mode The TDA5340 supports two levels of integration. In the most elementary fashion, it provides a rather rudimentary interface. The incoming RF signal is demodulated and the corresponding data is made available to the Application Controller. Optionally, a chip clock is generated by the TDA5340. The Application Controller can provide the baseband data to a single input pin which is modulated and amplified via the PLL and Power amplifier. Since the data signal is always directly the baseband representation of the RF signal, we call this mode the Transparent Mode. Packet Oriented Mode Alternatively, the TDA5340 features the so-called Packet Oriented Mode which supports the autonomous reception and transmission of data telegrams. The Packet Oriented Mode provides a high-level System Interface which greatly simplifies the integration of the transceiver in data-centric applications. In Packet Oriented Mode, the data interface is based on chunks of synchronous data which are received in packets. In the easiest way, the Application Controller only reacts on the synchronous data it receives. The receiver autonomously handles the line decoding and the deframing of these data, and supports the timed reception of packets. Data is buffered in a receive FIFO and can be read out via the data interface. Further, the receiver provides support for the identification of wake-up signals. 2.6.9.1 Digital Control (4-wire SPI Bus) The control interface used for device control and data transmission is a 4-wire SPI interface. • • • • NCS SDI SDO SCK - select input, active low - data input - data output - clock input: Data bits on SDI are read in at rising SCK edges and written out on SDO at falling SCK edges. Level Definition: logic 0 = low voltage level logic 1 = high voltage level Note: It is possible to send multiple frames while the device is selected. It is also possible to change the access mode while the device is selected by sending a different instruction.Note: In all bus transfers MSB is sent first, except for the received data read from the FIFO. There the bit order is given as first bit received is first bit transferred via the bus. Table 3 Instruction Set Instruction Description Instruction Format WRB Write to chip in Burst mode 0x01 WR Write to chip 0x02 RD Read from chip 0x03 RDF Read FIFO from chip 0x04 RDB Read from chip in Burst mode 0x05 Data Sheet 34 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview Table 3 Instruction Set Instruction Description Instruction Format WRF Write FIFO 0x06 WRT0 Write transparent transmit data 0x08 with starting low data WRT1 Write transparent transmit data 0x07 with starting high data Burst Write Command To write to the device in Burst mode, the SPI master has to select the SPI slave unit first. Therefore the master has to drive the NCS line to low. After the instruction byte and the start address byte have been transferred to the SPI slave (MSB first) the successive data bytes will be stored into the automatically addressed registers.To verify the SPI Burst Write transfer, the current address (start address, start address + 1, etc.) is stored in register SPIAT and the current data field of the frame is stored in register SPIDT. At the end of the Burst Write frame the latest address as well as the latest data field can be read out to verify the transfer. Note that some error in one of the intermediate data bytes can not be detected by reading SPIDT. Driving the NCS line to high will end the Burst frame.A single SPI Burst Write command can be applied very efficiently for data transfer either within a register block of configuration dependent registers or within the block of configuration independent registers. NCS 1 8 1 8 1 8 1 8 1 8 SCK Instruction SDI SDO I7 I6 I5 I4 I3 Register Start Address I2 I1 I0 Data Byte (i) Data Byte (i+1) Data Byte (i+x) A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 high impedance Z Figure 18 Burst Write Registers Write Command To write to the device, the SPI master has to select the SPI slave unit first. Therefore, the master must set the NCS line to low. After this, the instruction byte and the address byte are shifted in on SDI and stored in the internal instruction and address register. The following data byte is then stored at this address. After completing the writing operation, either the master sets the NCS line to high or continues with another SPI command.Additionally the received address byte is stored into the register SPIAT and the received data byte is stored into the register SPIDT. These two trace registers are readable.Therefore, an external controller is able to check the correct address and data transmission by reading out these two registers after each write instruction. The trace registers are updated at every write instruction, so only the last transmission can be checked by a read out of these two registers. NCS Frame 1 8 1 Frame 8 1 8 1 8 1 8 1 8 SCK Instruction SDI SDO I7 I6 I5 I4 I3 Register Address I2 I1 Data Byte Instruction I0 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 I7 I6 I5 I4 I3 Register Address I2 I1 I0 Data Byte A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 high impedance Z Figure 19 Write Register Data Sheet 35 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview Read Command To read from the device, the SPI master has to select the SPI slave unit first. Therefore, the master must set the NCS line to low. After this, the instruction byte and the address byte are shifted in on SDI and stored in the internal instruction and address register. The data byte at this address is then shifted out on SDO. After completing the read operation, either the master sets the NCS line to high or continues with another SPI command. NCS Frame 1 8 Frame 1 8 1 8 1 8 1 8 1 8 SCK Instruction SDI SDO I7 I6 I5 I4 Register Address I3 I2 I1 I0 Instruction A7 A6 A5 A4 A3 A2 A1 A0 high impedance Z Figure 20 I7 I6 I5 I4 I3 Register Address I2 I1 I0 A7 A6 A5 A4 A3 A2 A1 A0 Data Out Data Out D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Read Register Burst Read Command To read from the device in Burst mode, the SPI master has to select the SPI slave unit first. Therefore the master has to drive the NCS line to low. After the instruction byte and the start address byte have been transferred to the SPI slave (MSB first), the slave unit will respond by transferring the register contents beginning from the given start address (MSB first). Driving the NCS line to high will end the Burst frame. NCS 1 8 1 8 1 8 1 8 1 8 SCK Instruction SDI I7 I6 I5 I4 I3 Register Start Address I2 I1 I0 A7 A6 A5 A4 A3 A2 A1 A0 Data Out (i) SDO high impedance Z Data Out (i+1) Data Out (i+x) D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 Figure 21 D0 D7 D6 D5 D4 D3 D2 D1 D0 Burst Read Registers Read FIFO Command To read the FIFO, the SPI master has to select the SPI slave unit first. Therefore, the master must set the NCS line to low. After this, the instruction byte is shifted in on SDI and stored in the internal instruction register. The data bits of the FIFO are then shifted out on SDO. The following byte is a status word that contains the number of valid bits in the data packet. After completing the read operation, either the master sets the NCS line to high or continues with a other SPI command. NCS Frame 1 8 Frame 1 32 1 8 1 8 1 32 1 8 SCK Instruction SDI I7 I6 Instruction I1 I0 I7 32 FIFO Bits SDO high impedance Z Figure 22 D0 D1 D30 I6 I1 I0 Status Word D31 S7 S6 S1 32 FIFO Bits S0 D0 D1 D30 Status Word D31 S7 S6 S1 S0 Read FIFO Data Sheet 36 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview Write FIFO Command To write to the TX FIFO the SPI master has to select the SPI slave unit first. Therefore the master has to drive the NCS line to low. After the instruction byte (MSB first) the next byte contains the number of data items (chip or bit) minus 1 to be transferred to the FIFO. Therefore 0x00 means a single data item, whereas 0xFF means 256 data items. Successive data bytes contain the data items to be stored into the FIFO. Only the number of data items specified in the 2nd byte of the instruction will be stored into the FIFO. Other bits are skipped. At the end of the access frame the master has to deselect the slave unit by driving the NCS line to high. NCS 1 8 1 8 1 8 1 8 SCK I7 SDI I6 I5 I4 I3 I2 I1 I0 N7 N6 N5 N4 N3 N2 N1 N0 Instruction SDO n+1 data items to push into TX FIFO high impedance Z Figure 23 Data (i) 1 2 Data (i+1), Data (i+2), etc 3 n n+1 skip skip skip Write TX FIFO Transparent TX Command To transfer data items (chip/bit) via SPI in transparent TX mode the SPI master has to select the SPI slave unit first. Therefore the master has to drive the NCS line to low. After the instruction byte (MSB first) the SCK should stay static to reduce noise during transmit. Note that there are 2 versions of the same command available. They differ only in the LSB of the instruction. The intent of this is to pre-set the level of the SDI line to the level of the first TX data item (chip/bit). A new data item is asserted every “k” Gaussian Filter strobes (depends on the configuration, k strobes per chip). NCS SCK static to reduce noise/ SCK running incr. noise SCK SDI data item 1 I7 I6 Figure 24 I4 I3 I2 I1 I0 data item 3 data item 4 data item n ‚0' when wrt0 else ‚1' Instruction wrt0/1 SDO stb (k*GF stb) I5 data item 2 high impedance Z Transparent TX Command SPI Check Sum The SPI also includes a safety feature by which the checksum is calculated with an XOR operation from the address and the data when writing SFR registers content. The checksum is in fact an XOR of the data 8-bitwise after every 8 bits of the SPI write command. The calculated checksum value is automatically written in the SPICHKSUM register and can be compared with the expected value. After the SPICHKSUM register is read, its value is cleared. In case of an SPI Burst Write and Write FIFO frame, a checksum is calculated from the SPI start address and consecutive data fields. Data Sheet 37 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Functional Overview enable every 8 bit SPI shift register XOR Figure 25 SPI Checksum Generation 2.6.10 Chip Serial Number Checksum SFR read/clear Every device contains a unique, preprogrammed 32-bit wide serial number. This number can be read out from SN3, SN2, SN1 and SN0 registers via the SPI interface. The TDA5340 always has SN0.6 set to 1 and SN0.5 is reserved. Figure 26 SN0 ...... ...... Fuses SN1 FuseReadoutInterface SN2 SN3 Chip Serial Number Data Sheet 38 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference 3 Reference 3.1 Electrical Data 3.1.1 Absolute Maximum Ratings ■ not subject to production test - verified by characterization/design Attention: The maximum ratings must not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the IC may result. Table 4 Absolute Maximum Ratings Parameter Symbol Values Min. Typ. Unit Max. Note / Test Condition Test Numb er Supply Voltage at VDD5V pin Vsmax -0.3 +6 V ■ 1.1 Supply Voltage at VDDD, VDDA, VDDRF pin Vsmax -0.3 +4 V ■ 1.2 Voltage between VDD5V vs VDDD , VDD5V vs VDDA and VDD5V vs VDDRF Vsmax -0.3 +4 V ■ 1.3 Junction Temperature Tj -40 +125 °C ■ 1.4 Storage Temperature TS -40 +150 °C ■ 1.5 Thermal resistance Rth(ja) junction to air 110 K/W ■ 1.6 Total power Ptot dissipation at Tamb = 105°C 135 mW ■ 1.7 ESD HBM integrity (all pins except RFOUT pin) VHBMRF -2 2 kV According to AEC Q100-002 /JEDEC JESD22/A114 ■ 1.8 ESD HBM integrity (RFOUT pin) VHBMRF_PA -4 4 kV According to AEC Q100-002 /JEDEC JESD22/A114 ■ 1.8.1 ESD CDM / SDM VSDM integrity (All pins except corner pins) -500 500 V According to ANSI / ESD SP5.3.2.-2008 ■ 1.9 ESD CDM / SDM integrity (All corner pins) VSDM -750 750 V According to ANSI / ESD SP5.3.2.-2008 ■ 1.10 Latch up ILU 100 mA JEDEC JESD78 ■ 1.11 Data Sheet 39 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference Table 4 Absolute Maximum Ratings Parameter Symbol Values Min. Maximum input voltage at digital input pins Vinmax Typ. -0.3 IIOmax Maximum current into digital input and output pins 3.1.2 Unit Note / Test Condition Test Numb er VDD5V+0 V .5 or 6.0 whichever is lower ■ 1.12 4 except PPRF_RSSI pin ■ 1.13 Max. mA Operating Range ■ not subject to production test - verified by characterization/design Table 5 Operating Range Parameter Symbol Values Min. Typ. Unit Note / Test Condition Test Num ber Max. Supply Voltage at pin VDD5V VDD5V 4.5 5.5 V Supply Voltage Range ■ 1 2.1 Supply Voltage at pin VDD5V = VDDD = VDDA = VDDRF VDD3V3 3.0 3.6 V Supply Voltage Range ■ 2 2.2 8 V TX duty cycle <= 10%1) ■ 2.2.1 6.5 V TX duty cycle > 10%1) ■ 2.2.2 3.6 V ■ 2.2.3 110 °C Peak Voltage at pin VRFOUT_peak RFOUT DC Voltage at pin RFOUT VRFOUT_DC Ambient temperature Tamb -40 upper and lower limit tested 2.3 1) TX duty cycle defines the on time of the power amplifier compared to all other modes of the TDA5340 Data Sheet 40 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference 3.1.3 AC/DC Characteristics Supply voltage VDD5V = 4.5 to 5.5 Volt or VDD5V = VDDA = VDDD = VDDRF = 3.0 to 3.6 Volt, Ambient temperature Tamb = -40...110°C, Tamb = +25°C for typical parameters, unless otherwise specified. Values of AC/DC characteristics are with combined matching network using internal antenna switch not including matching variation. ■ not subject to production test - verified by characterization/design Table 6 General Transceiver Characteristics Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Test Numb er Supply Current: Transmit Mode 315 MHz Band ITX,10dBm 12 14 mA Continuous wave measured in a 50 Ω Load ■ 3.1 434 MHz Band ITX,10dBm 12.5 15 mA Continuous wave measured in a 50 Ω Load / measured @ 433,92 MHz ■ 3.1.1 315 / 434 MHz Band ITX,13dBm 18 21 mA Continuous wavemeasured in a 50 Ω Load / measured and test @ 433,92 MHz 868 /915 /954 MHz ITX,10dBm Band 17 20 mA Continuous wave measured in a 50 Ω Load 868 /915 MHz Band ITX,13dBm 22.5 26 mA Continuous wave measured in a 50 Ω Load / test at 868 MHz 3.4 3.2 ■ 3.3 Supply Current: Receive Mode Double Down Conversion Mode IRun,Double 12.5 15.5 mA ASK or FSK mode Pin < -50 dBm 3.5 Single Down Conversion Mode IRun,Single 11.5 14.5 mA ASK or FSK mode Pin < -50 dBm 3.6 40 50 µA 1) 3.7 70 130 µA 1) 110 180 µA 1) µA 2) Supply Current: Sleep Mode Tamb = 25 °C Isleep_low,25 Tamb = 85 °C Isleep_low,85 °C ■ 3.8 °C Tamb = 110 °C Isleep_low,11 3.9 0°C Sleep Mode Supply Isleep_high current High Precision: Data Sheet 100 41 ■ 3.10 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference Table 6 General Transceiver Characteristics Parameter Symbol Values Min. Supply current: clock generator Iclock Unit Note / Test Condition Test Numb er fclockout = 1 kHz Cload = ■ 10 pF Typ. Max. 12 18 µA 7 14 µA 30 80 µA 70 140 µA 3.11.3 0.9 1,9 µA 3.12 5 15 µA 13,5 31 µA 3.14 2 3 µA 3.14.1 5,5 15 µA 12,5 31 µA 40 kchips /s ■ 3.15 3.11 Supply Current: Deep Sleep Mode Tamb = 25 °C IDeep_sleep_ 3.11.1 low,25°C Tamb = 85 °C IDeep_sleep_ ■ 3.11.2 low,85°C Tamb = 110 °C IDeep_sleep_ low,110°C Supply current: Power Down Mode Tamb = 25 °C 3,3V IPDN,25°C, 3V3 Tamb = 85 °C 3,3V IPDN,85°C, ■ 3.13 3V3 Tamb = 110 °C 3,3V Tamb = 25 °C 5V IPDN,110°C, 3V3 IPDN,25°C, 5V Tamb = 85 °C 5V IPDN,85°C, Tamb = 110 °C 5V IPDN,110°C, ■ 3.14.2 5V 3.14.3 5V General 0.5 Data Rate ASK DRASK Data Rate FSK DRFSK_TX 0.5 112 kchips /s ■ 3.16 DRFSK_RX 0.5 112 kchips /s ■ 3.17 FSK Deviation fdev +/-1 +/-64 kHz ■ 3.18 Modulation index mASK 50 100 % ■ 3.19 mFSK 0.5 ■ 3.20 tRESET 1 Transceiver reset time Transceiver startup tDSstartup time: deep sleep to sleep mode Transceiver startup tstartupRX time: receive mode Data Sheet 469 1.8 3 ms Time from Power Down Mode to Sleep Mode 3.21 0.35 1.3 ms Time from DeepSleep Mode to Sleep Mode; XTAL see Table 12 3.21.1 469 469 µs Time from Sleep Mode to Receive Mode3)4) 42 ■ 3.22 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference Table 6 General Transceiver Characteristics Parameter Symbol Values Unit Note / Test Condition Test Numb er Min. Typ. Max. Transceiver startup tstartupTX time: transmit mode 403 403 403 µs Time from Sleep Mode to Transmit Mode3)4) ■ 3.23 RX/TX switch time tRX/TX 133 133 133 µs Time from transmit mode to receive mode4) ■ 3.24 TX/RX switch time tTX/RX 470 470 470 µs Time from receive mode to transmit mode4) ■ 3.25 RF Channel / Configuration Hop Latency Time tChHop 110 110 110 µs Time to switch RF ■ PLL between different RF Channels 4)5) 3.26 P_ON LOW pulse width tP_ON 15 µs Minimal necessary pulse width to reset the chip ■ 3.27 NINT pulse length tNINT_Pulse µs Pulse width of interrupt ■ 3.28 Brownout detector threshold VBOR 1) 2) 3) 4) 5) 11.7 2.3 2.45 2.6 V 3.29 crystal oscillator in Low Power Mode; clock generator off; valid for SLEEP Mode and during SPM Off time crystal osscillator in High Precision Mode Cload = 25 pF; clock generator off; valid for SLEEP Mode and during SPM Off time comprises time required to switch crystal oscillator from Low Power Mode to High Precision Mode default RX/TX PLL startup time does not include settling of Data Clock Recovery Table 7 Receive Characteristics Parameter Symbol Values Min. Overall noise figure NF Typ. Max. 6 8 Unit Note / Test Condition Test Numb er dB RF input matched to ■ 50 Ω @ Tamb = 25 °C 4.1 3rd order intercept IIP3 PIIP3 -16 -15 dBm IFATT = 7;1) ■ 4.2 1 dB compression point CP1dB PCP1dB -27 -25 dBm IFATT = 7;1) ■ 4.3 1st IF image rejection dimage1 30 40 dB 1st IF = 10.7 MHz Double Down Conversion Mode only 4.4 2nd IF image rejection dimage2 30 35 dB 2nd IF = 274 kHz single Down Conversion Mode; 4.5 Data Sheet 43 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference Table 7 Receive Characteristics Parameter Symbol 3dB Overall analog BWana Bandwidth Values Note / Test Condition Max. Test Numb er Min. Typ. 230 250 kHz LNA input to Limiter ■ output, excluding external CER Filter, 2nd IF BW = 300 kHz 4.6 120 kHz 10kBit/s; ∆f = 40 kHz; 2nd IF BW = 300 kHz PDF = 283 kHz ■ 4.7 180 200 kHz 10kBit/s; ∆f = 40 kHz; 2nd IF BW = 300 kHz PDF = 283 kHz AFC active ■ 4.8 230 250 kHz 2nd IF BW = 300 kHz ■ 4.9 dB relative to Tamb = 25 °C;2) ■ 4.10 FSK 3dB Sensitivity SBWFSK BW ASK 3dB Sensitivity SBWASK BW Unit Sensitivity variation ∆Pin_temp due to temperature (-40...+110°C) 3 Sensitivity improvement in case of pure RX matching ∆Pin_315/434 1 dB ■ 4.10.1 ∆Pin_868/915 2 dB ■ 4.10.2 Data rate tol. Rdata_tol -10 +10 % ■ 4.11 Duty cycle ASK Tchip/ Tdata 35 55 % see Definition C in User Manual ■ 4.12 Duty cycle FSK Tchip/ Tdata 45 55 % see Definition B in User Manual ■ 4.13 ASK Demodulation Data Rate 0.5 kBit/s SASK1MER Manchester Coding -120 -117 dBm m = 100% ■ peak 2nd IF BW = 50 kHz 4.14 SASK2MER -115 -112 dBm m = 100% peak 2nd IF BW = 300 kHz 3) ■ 4.15 Data Rate 2 kBit/s SASK3MER Manchester Coding -116 -113 dBm m = 100% ■ peak 2nd IF BW = 50 kHz 4.16 SASK4MER -112 -109 dBm m = 100% peak 2nd IF BW = 300 kHz 3) 4.17 Data Sheet 44 ■ Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference Table 7 Receive Characteristics Parameter Symbol Values Min. Unit Note / Test Condition Test Numb er Typ. Max. Data Rate 10 kBit/s SASK5MER Manchester Coding -111 -108 dBm m = 100% ■ peak 2nd IF BW = 50 kHz 4.18 SASK6MER -108 -105 dBm m = 100% peak 2nd IF BW = 300 kHz 3) ■ 4.19 Data Rate 16 kBit/s SASK7MER Manchester Coding -109 -106 dBm m = 100% ■ peak 2nd IF BW = 80 kHz 4.20 SASK8MER -107 -104 dBm m = 100% peak 2nd IF BW = 300 kHz 3) ■ 4.21 Data Rate 2 kBit/s; SFSK1MER ∆f =4kHz Manchester Coding SFSK2 MER -116 -113 dBm 2nd IF BW = 50 kHz ■ PDF = 33 kHz 4) 4.22 -108 -105 dBm 2nd IF BW = 300 kHz PDF = 282 kHz;5) 4.23 Data Rate 2 kBit/s; SFSK2.1MER ∆f =10kHz Manchester Coding -118 dBm 2nd IF BW = 50 kHz ■ PDF = 33 kHz 4) 4.23.1 Data Rate 10 kBit/s; SFSK3MER ∆f = 14 kHz Manchester Coding SFSK4 MER -114 -111 dBm 2nd IF BW = 50 kHz ■ PDF = 65 kHz 4) 4.24 -106 -103 dBm 2nd IF BW = 300kHz ■ PDF = 282 kHz;5) 4.25 Data Rate 10 kBit/s; SFSK5MER ∆f = 40 kHz Manchester Coding -112 -109 dBm 2nd IF BW = 125 kHz PDF = 132 kHz 4) ■ 4.26 SFSK6MER -110 -107 dBm 2nd IF BW = 300kHz ■ PDF = 282 kHz;5) 4.27 Data Rate 50 kBit/s; SFSK7MER ∆f = 50 kHz Manchester Coding -105 -102 dBm 2nd IF BW = 300 kHz; PDF = 239 kHz 4) 4.28 FSK Demodulation 1) 2) 3) 4) 5) ■ ■ input matched to 50 Ω; Insertion loss of input matching network = 1dB temperature coefficient of crystal not considered Note: min 3dB sensitivity loss @ foffset = +/-100 kHz AFC off Note: min 3dB sensitivity loss @ foffset=+/-90kHz; AFC ON Data Sheet 45 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference Table 8 Transmit Characteristics Parameter Symbol Values Min. Typ. Unit Note / Test Condition Test Number dBm measured at 50 Ω Load / test at 868 MHz 5.1 Max. Output Power PTXmax +14 Number of output power steps #Pstep 31 TX output Power Variation vs. Production PTX_P -1.5 +1.5 dB test at +13 dBm and 868 MHz 5.10 TX output Power Variation vs. Voltage PTX_V -1.5 +1.5 dB test at +13 dBm and 868 MHz 5.11 -2 +1.5 dB TX output Power PTX_temp Variation vs. Temp. Modulation Filtering B*T Optimal load impedance, matched to 10 dBm output power at 50 Ohm Optimal load impedance, matched to 13 dBm output power at 50 Ohm PPRF output current not linear ■ 5.3 ■ 5.12 0.5 programmable ■ 5.13 Zopt1 490+j227 315 MHz ■ 5.14 Zopt2 420+j136 434 MHz ■ 5.15 Zopt3 280+j65 868 MHz ■ 5.16 Zopt4 223+j40 915 MHz ■ 5.17 Zopt5 251+j36 954 MHz ■ 5.18 Zopt1 220+j217 315 MHz ■ 5.19 Zopt2 215+j150 434 MHz ■ 5.20 Zopt3 140+j60 868 MHz ■ 5.21 Zopt4 153+j40 915 MHz ■ 5.22 Zopt5 156+j36 954 MHz ■ 5.23 ■ 5.24 IPPRF 4 mA (Unless otherwise noted, all values apply for the specified frequency ranges) Table 9 Synthesizer Characteristics Parameter Symbol Values Min. Typ. Unit Note / Test Condition MHz 1) 6.1 MHz 1)2) 6.2 MHz 1) Max. Test Number TRX Frequency Bands Range 1 Range 2 Range 3 Frequency step of Sigma-Delta PLL fband_1 fband_2 fband_3 fstep 300 415 495 863 960 10.5 PLL loop Bandwidth PLLBWT 75 TX X Data Sheet 320 Hz 130 kHz 46 6.3 21 fstep = fXTAL / 2 ■ 6.6 ■ 6.7 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference Table 9 Synthesizer Characteristics Parameter Symbol Values Min. Unit Note / Test Condition Test Number Typ. Max. -87 -79 dBc/H @ foffset = z 10 kHz3) ■ 6.8 -91 -80 dBc/H @ foffset = 100 kHz3) z ■ 6.9 -124 -115 dBc/H @ foffset = 1 MHz3) ■ z 6.10 -140 -129 dBc/H @ foffset =>10 MHz3) z ■ 6.11 -87 -78 dBc/H @ foffset = z 10 kHz3) ■ 6.12 -89 -81 dBc/H @ foffset = z 100 kHz3) ■ 6.13 -123 -115 dBc/H @ foffset = 1 MHz3) ■ z 6.14 -140 -131 dBc/H @ foffset =>10 MHz3) z ■ 6.15 -82 -70 dBc/H @ foffset = z 10 kHz3) ■ 6.16 -86 -78 dBc/H @ foffset = z 100 kHz3) ■ 6.17 -120 -112 dBc/H @ foffset = 1 MHz3) ■ z 6.18 -135 -128 dBc/H @ foffset = 6 MHz3) ■ z 6.19 -138 -128 dBc/H @ foffset = z =>10 MHz3) ■ 6.20 -80 -70 dBc/H @ foffset = z 10 kHz3) ■ 6.20.1 -86 -79 dBc/H @ foffset = 100 kHz3) z ■ 6.25 -118 -110 dBc/H @ foffset = 1 MHz3) ■ z 6.28 -138 -128 dBc/H @ foffset = =>10 MHz3) z 6.29 PLL Phase Noise fLO= 315 MHz PLLBWTX = 130kHz fLO= 434 MHz PLLBWTX = 130kHz fLO = 868.95 MHz PLLBWTX = 130kHz fLO= 960 MHz PLLBWTX = 130kHz Data Sheet dSSB_LO dSSB_LO dSSB_LO dSSB_LO 47 ■ Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference Table 9 Synthesizer Characteristics Parameter Symbol Values Min. fLO = 960MHz dSSB_LO PLLBWTX = 70kHz Unit Note / Test Condition Test Number Typ. Max. -74 -67 dBc/H @ foffset = z 10 kHz3) ■ 6.30 -90 -82 dBc/H @ foffset = 100 kHz3) z ■ 6.31 -119 -111 dBc/H @ foffset = 1 MHz3) ■ z 6.32 -138 -128 dBc/H @ foffset = =>10 MHz3) z ■ 6.33 Unit Note / Test Condition Test Number 1) except: |fTX - k*fXTAL| < 500 kHz where k is an integer value 2) for f > 485MHz high side injection in receive mode not alllowed 3) unmodulated TX carrier Table 10 Receiver Frontend Characteristics Parameter Symbol Values Min. Typ. Max. FE voltage conversion gain AVFE,max 34 36 38 dB min. IF attenuation (IFATT = 0)1) 7.1 FE voltage conversion gain AVFE_7 29 31 33 dB IF attenuation (IFATT = 7)1) 7.2 FE voltage conversion gain AVFE,min 22 24 26 dB max. IF attenuation (IFATT = 15)1) 7.3 dB Double Down Conversion: 16 gain steps; Single Down Conversion: 7 gain steps 7.4 Ω fIF = 10.7 MHz ■ 7.5 Ω 2) ■ 7.6 pF 2) ■ 7.7 Ω 2) ■ 7.8 pF 2) ■ 7.9 Ω 2) ■ 7.10 ■ 7.11 FE voltage conversion gain step FE output impedance 0.8 Rout_IF 290 330 370 LNA input impedance fRF = 315 MHz Rin_p Cin_p fRF = 434MHz Rin_p Cin_p fRF = 868MHz fRF = 915MHz Rin_p 672 1.075 534 0.835 462 Cin_p 0.665 pF 2) Rin_p 460 Ω 2) ■ 7.12 pF 2) ■ 7.13 Cin_p 0.66 1) input matched to 50 Ω; Insertion loss of input matching network = 1dB; Rload_IF = 330Ω ; tested at 433.92MHz Data Sheet 48 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference 2) differential parallel equivalent input between LNA_INP and LNA_INN Table 11 Receiver 2nd IF Mixer, RSSI and Filter Characteristics Parameter Symbol Values Unit Note / Test Condition Test Number Min. Typ. Max. Rin_IF 290 330 370 Ω fIF = 10...12 MHz ■ 8.1 DRRSSI1 -110 -30 dBm applies for digital ■ RSSI 8.2 DRRSSI2 -115 -60 dBm applies for analog RSSI @ 50 kHz BPF, AGC off ■ 8.3 DRRSSI3 -110 -50 dBm applies for analog RSSI @ 300 kHz BPF, AGC off ■ 8.4 Linearity DRLIN -1 +1 dB -95 dBm ....35 dBm; applies for digital RSSI ■ 8.5 Temperature drift within linear dynamic range DRTEMP -2.5 +1.5 dB -95 dBm...35 dBm; applies for digital RSSI ■ 8.6 Output voltage dynamic range VRSSI+ 0.8 2 V ■ 8.7 analog RSSI error, untrimmed DRSSIana -4 +2.5 dB at RSSI pin 8.8 12 mV/d B at RSSI pin; typical 600 mV/60 dB = 10 mV/dB 8.9 +3 dB RSSI register readout 8.10 +1 dB RSSI register readout 12 LSB/d RSSI register B readout; typical 600 mV/60 dB = 10 mV/dB, 1mV = 1 LSB Mixer input impedance RSSI Dynamic range analog RSSI slope, dVRSSI/ untrimmed dVmix_in digital RSSI error, untrimmed 8 1.0 10 DRSSIdig_ -3 u digital RSSI error, DRSSIdig_ -1 user trimmed via t SFRs RSSISLOPE and RSSIOFFS digital RSSI slope,untrimmed Data Sheet dVRSSI/ dVmix_in 8 10 49 ■ 8.11 8.12 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference Table 11 Receiver 2nd IF Mixer, RSSI and Filter Characteristics Parameter Symbol dVRSSI/ digital RSSI slope,user trimmed dVmix_in via SFRs RSSISLOPE and RSSIOFFS Values Unit Min. Typ. Max. 9.5 10 10.5 Resistive load at RSSI pin RL,RSSImax 100 Capacitive load at RSSI pin CL,RSSI Note / Test Condition Test Number LSB/d RSSI register B readout; typical 600 mV/60 dB = 10 mV/dB, 1 mV = 1 LSB ■ 8.13 kΩ ■ 8.14 20 pF ■ 8.15 288 kHz Asymmetric BPF ■ corners: f_center=sqrt(flo w * fhigh); Use AFC for more symmetry 8.16 kHz selectable ■ 8.17 2nd IF Filter (3rd order Bandpass Filter) Center frequency fcenter -3 dB BW BW-3dB -3 dB BW tolerance tol_BW- 262 274 50 / 80 125 / 200 300 -5 +5 % BW=125, 200, 300 kHz ■ 8.18 -6 +6 % BW=50,80 kHz ■ 8.19 Unit Note / Test Condition Test Number 3dB -3 dB BW tolerance tol_BW3dB Table 12 Crystal Oscillator Characteristics Parameter Symbol Values Min. Frequency range Typ. Max. fXTAL 21.94871 7 MHz C1 4 fF ■ 9.2 Ω ■ 9.3 ■ 9.4 ■ 9.5 9.1 Crystal parameters Motional capacitance 60 Motional resistance R1 Shunt capacitance C0 1.2 pF Load capacitance CLoad 12 pF Data Sheet 50 nominal value Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference Table 12 Crystal Oscillator Characteristics Parameter Symbol Values Min. Typ. Unit Note / Test Condition Max. Test Number -30 +30 ppm ■ oscillator untrimmed (trim capacitor default settings, usage of recommended crystal); not including crystal tolerances 9.6 Frequency trimming ∆fXTAL range -30 +50 ppm using only internal load C, larger trimming range possible via SD PLL 9.7 Frequency trimming ∆fXTAL range -50 +50 ppm using external load C (2 x 3.9pF), larger trimming range possible via SD PLL ■ 9.7.1 Clock output frequency at PPx pin 12 5.5M Hz 10 pF load ■ 9.8 330 µs ■ 9.9 Initial frequency tolerance fXTAL_Tol fclock_out tXOSCsettle Crystal oscillator settling time (switching from Low Power to High Precision Mode) Table 13 300 Digital Input/Output Characteristics Parameter Symbol Values Min. High level input voltage VIn_High High level input leakage current IIn_High Low level input voltage (except P_ON pin) VIn_Low 0.7*VDD5 V Typ. Unit Max. VDD5V+0 V .1 Note / Test Condition Test Number ■ 10.1 5 µA 0 0.8 V ■ 10.3 Low level input voltage (at P_ON pin) VIn_Low_PO 0 0.5 V ■ 10.4 Low level input leakage current IIn_Low Data Sheet 10.2 N -5 µA 51 10.5 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference Table 13 Digital Input/Output Characteristics Parameter Symbol Values Min. Typ. Unit Note / Test Condition Max. Test Number High level output voltage 1 VOut_High1 VDD5V 0.4 VDD5V V IOH=-500 µA, static driver capability; Normal Pad Mode 10.6 Low level output voltage 1 VOut_Low1 0 0.4 V IOL=500 µA, static driver capability; Normal Pad Mode 10.7 High level output voltage 2 VOut_High2 VDD5V0.8 VDD5V V IOH=-4 mA, static driver capability; High Power Pad Mode 10.8 Low level output voltage 2 VOut_Low2 0 0.8 V IOL=4 mA, static driver capability; High Power Pad Mode 10.9 Unit Note / Test Condition Table 14 Timing SPI-Bus Charcteristics Parameter Symbol Values Min. Clock frequency fclock Clock High time tCLK_H Clock Low time Typ. Max. MHz ■ 11.1 200 ns ■ 11.2 tCLK_L 200 ns ■ 11.3 Active setup time tsetup 200 ns ■ 11.4 Not active setup time tnot_setup 200 ns ■ 11.5 Active hold time thold 200 ns ■ 11.6 Not active hold time tnot_hold 200 ns ■ 11.7 Deselect time tDeselect 200 ns ■ 11.8 SDI setup time tSDI_setup 100 ns ■ 11.9 SDI hold time tSDI_hold 100 ns ■ 11.10 Clock low to SDO valid tCLK_SDO 145 ns @ Cload = 80 pF ■ High Power Pad not enabled (Normal Mode) 11.11 Clock low to SDO valid tCLK_SDO 40 ns @ Cload = 10 pF ■ High Power Pad not enabled (Normal Mode) 11.12 SDO rise time tSDO_r 90 ns @ Cload = 80 pF ■ 11.13 Data Sheet 2.2 Test Number 52 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference Table 14 Timing SPI-Bus Charcteristics Parameter Symbol Values Min. Typ. Unit Note / Test Condition Max. Test Number SDO fall time tSDO_f 90 ns @ Cload = 80 pF ■ 11.14 SDO rise time tSDO_r 15 ns @ Cload = 10 pF ■ 11.15 SDO fall time tSDO_f 15 ns @ Cload = 10 pF ■ 11.16 SDO disable time tSDO_disable 25 ns ■ 11.17 Data Sheet 53 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference Definitions Unless explicitly otherwise noted, the following test conditions apply to the given specification values in Table 7 of ASK Demodulation and FSK Demodulation: * Hardware: TDA5340 Platform Testboard V1.3 * Combined low cost Matching for 315.0 MHz / 433.92 MHz / 868.3 MHz / 915.0 MHz * RF input matched to 50 Ohm; Insertion loss of input matching network = 1dB * Receive Frequency 315.0 MHz / 433.92 MHz / 868.3 MHz / 915.0 MHz; Lo-Side LO-Injection * Reference Clock: XTAL=21.948717 MHz * IF-Gain: Attenuation set to 0 dB (IFATT = 0) * Double Down Conversion * 1 IF-Filter: Center=10.7MHz; BW=330kHz; Connected between IF_OUT and IFBUF_IN * Received Signal at zero Offset to IF Center Frequency * RSSI trimmed * FSK Pre-Demodulation Filter (PDF) BW: Depending on Data Rate and FSK Deviation * No SPI-traffic during telegram reception, CLK_OUT disabled * AFC and AGC are OFF, unless otherwise noted * Specification values are in respect to Manchester-coded Infineon-Reference Pattern 1 (7 Bits '0', 1 Bit ’1', 1 Bits '0', 1 Bit ’1', 1 Bits '0', 1 Bit ’1', PRBS5 (31 Bit), 1 Bit 'M') however a Code Violation is not used as EOM criterion. MER sensitivity measurements use Receive Mode - Packet oriented FIFO Mode) * DC ... Duty Cycle * MER ... Message Error Rate [MER = 1 - (number_of_correctly_received_messages / number_of_transmitted messages)] * FAR ... False Alarm Rate [FAR = number_of_mistakenly_wake_ups / number_of_periods_searching_for_data_on_channel] * MMR ... Missed Message Rate [MMR = number_of_mistakenly_missed_wake_up_patterns / number_of_periods_with_wake_up_pattern_transmitted_and_searching_for_wake_up_pattern] * BER ... Bit Error Rate (using a PRBS9 Pseudo-Random Binary Sequence) [BER = 1 - (number_of_correctly_received_bits / number_of_transmitted bits)] Data Sheet 54 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference Measurement Results 30 10 25 5 20 TxxPower[dBm] 15 0 15 Sup pplyCurrent[mA] TXPowerandSupplyCurrentvs.PASetting(comb.10dBmMatchings) VDD=3V3,25°C P[315Mhz10dBm] P[434MHz10dBm] P[868MHz10dBm] P[915MHz10dBm] I [315 MH 10 dB ] I[315MHz10dBm] I[434MHz10dBm] I[868MHz10dBm] I[915MHz10dBm] 5 10 10 5 1 6 11 16 21 26 31 PASetting[1] Figure 27 10dBm Matching, Output Power and Supply Current in TX vs. Output power stages 18 35 13 30 8 25 3 20 Sup pplyCurrent[mA] TX XPower[dBm] TXPowerandSupplyCurrentvs.PASetting(comb.13dBmMatchings) VDD=3V3,25°C P[434MHz13dBm] P[868MHz13dBm] P[915MHz13dBm] I [434 MH 13 dB ] I[434MHz13dBm] I[868MHz13dBm] 2 15 7 10 12 I[915MHz13dBm] 5 1 6 11 16 21 26 31 PASetting[1] Figure 28 13dBm Matching, Output Power and Supply Current in TX vs. Output power stages Data Sheet 55 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference 3.2 Test Circuitry Evaluation Board V1.3 Figure 29 Test CircuitSchematic Data Sheet 56 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference ( ( ) Test Board Layout, Evaluation Board V1.3 3.3 (' ( & ( ( &' & Figure 30 Test Board Layout 3.4 Bill of Material Table 15 BOM Part Value IC1 TDA5340 C10 2,2 Data Sheet Unit Package Toleranc Manufact Device / Type e urer PGTSSOP-28 nF 0603 Volt age Pout Frequenc y Info Infineon +/- 10% COG or XR7 57 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference Table 15 BOM Part Value Unit Package Toleranc Manufact Device / Type e urer C11 15 pF 0603 +/- 1% COG 10 dBm 315 MHz 12 pF 0603 +/- 1% COG 10 dBm 434 MHz 3,9 pF 0603 +/- 0.1pF COG 13 dBm 868 MHz 3,9 pF 0603 +/- 0.1pF COG 13 dBm 915 MHz 3,9 pF 0603 +/- 0.1pF COG 10 dBm 954 MHz 18 pF 0603 +/- 1% COG 10 dBm 315 MHz 10 pF 0603 +/- 0.1pF COG 10 dBm 434 MHz open pF 0603 COG 13 dBm 868 MHz 1 pF 0603 +/- 0.1pF COG 13 dBm 915 MHz 0,5 pF 0603 +/- 0.1pF COG 10 dBm 954 MHz 82 pF 0603 +/- 1% COG 10 dBm 315 MHz 47 pF 0603 +/- 1% COG 10 dBm 434 MHz 12 pF 0603 +/- 1% COG 13 dBm 868 MHz 100 pF 0603 +/- 1% COG 13 dBm 915 MHz 12 pF 0603 +/- 1% COG 10 dBm 954 MHz 82 pF 0603 +/- 1% COG 10 dBm 315 MHz 47 pF 0603 +/- 1% COG 10 dBm 434 MHz 12 pF 0603 +/- 1% COG 13 dBm 868 MHz 12 pF 0603 +/- 1% COG 13 dBm 915 MHz 12 pF 0603 +/- 1% COG 10 dBm 954 MHz open pF 0603 COG 10 dBm 315 MHz open pF 0603 COG 10 dBm 434 MHz open pF 0603 COG 13 dBm 868 MHz open pF 0603 COG 13 dBm 915 MHz open pF 0603 COG 10 dBm 954 MHz 4.7 pF 0603 +/- 0.1pF COG 10 dBm 315 MHz 3.9 pF 0603 +/- 0.1pF COG 10 dBm 434 MHz 1.8 pF 0603 +/- 0.1pF COG 13 dBm 868 MHz 2.2 pF 0603 +/- 0.1pF COG 13 dBm 915 MHz 2.7 pF 0603 +/- 0.1pF COG 10 dBm 954 MHz 5.6 pF 0603 +/- 0.1pF COG 10 dBm 315 MHz 1.8 pF 0603 +/- 0.1pF COG 10 dBm 434 MHz 2.7 pF 0603 +/- 0.1pF COG 13 dBm 868 MHz 3.3 pF 0603 +/- 0.1pF COG 13 dBm 915 MHz 3.3 pF 0603 +/- 0.1pF COG 10 dBm 954 MHz C12 C13 C14 C15 C16 C17 Data Sheet 58 Volt age Pout Frequenc y Info Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference Table 15 BOM Part Value Unit Package Toleranc Manufact Device / Type e urer C18 12 pF 0603 +/- 1% COG 10 dBm 315 MHz 6.8 pF 0603 +/- 0.1pF COG 10 dBm 434 MHz 4.7 pF 0603 +/- 0.1pF COG 13 dBm 868 MHz 3.3 pF 0603 +/- 0.1pF COG 13 dBm 915 MHz 2.2 pF 0603 +/- 0.1pF COG 10 dBm 954 MHz 100 nF 0603 +/-10% X7R or COG 3V3 100 nF 0603 +/-10% X7R or COG 5V 100 nF 0603 +/-10% X7R or COG 3V3 100 nF 0603 +/-10% X7R or COG 5V 100 nF 0603 +/-10% X7R or COG 3V3 100 nF 0603 +/-10% X7R or COG 5V 100 nF 0603 +/-10% X7R or COG 3V3 100 nF 0603 +/-10% X7R or COG 5V 100 nF 0603 +/-10% X7R or COG 3V3 100 nF 0603 +/-10% X7R or COG 5V X7R or COG 3V3 X7R or COG 5V C20 C21 C22 C23 C24 C25 open 470 C26 C27 L10 L11 L12 0603 nF 0603 +/-10% Volt age open 0603 X7R or COG 3V3 open 0603 X7R or COG 5V Pout Frequenc y Info 10 µF SMC +/-10% Tantal 3V3 10 µF SMC +/-10% Tantal 5V 56 nH 0603 +/-2% CoilCraft 1608 10dBm 315 MHz 39 nH 0603 +/-2% CoilCraft 1608 10dBm 434 MHz 12 nH 0603 +/-2% CoilCraft 1608 13dBm 868 MHz 12 nH 0603 +/-2% CoilCraft 1608 13dBm 915 MHz 5.6 nH 0603 +/-2% CoilCraft 1608 10dBm 954 MHz 220 nH 0603 +/-2% CoilCraft 1608 10dBm 315 MHz 82 nH 0603 +/-2% CoilCraft 1608 10dBm 434 MHz 220 nH 0603 +/-2% CoilCraft 1608 13dBm 868 MHz 100 nH 0603 +/-2% CoilCraft 1608 13dBm 915 MHz 220 nH 0603 +/-2% CoilCraft 1608 10dBm 954 MHz 18 nH 0603 +/-2% CoilCraft 1608 10dBm 315 MHz 12 nH 0603 +/-2% CoilCraft 1608 10dBm 434 MHz 8.2 nH 0603 +/-2% CoilCraft 1608 13dBm 868 MHz 8.2 nH 0603 +/-2% CoilCraft 1608 13dBm 915 MHz 4.7 nH 0603 +/-2% CoilCraft 1608 10dBm 954 MHz Data Sheet 59 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference Table 15 BOM Part Value Unit Package Toleranc Manufact Device / Type e urer L13 33 nH 0603 +/-2% CoilCraft 1608 10dBm 315 MHz 27 nH 0603 +/-2% CoilCraft 1608 10dBm 434 MHz 8.2 nH 0603 +/-2% CoilCraft 1608 13dBm 868 MHz 8.2 nH 0603 +/-2% CoilCraft 1608 13dBm 915 MHz 8.2 nH 0603 +/-2% CoilCraft 1608 10dBm 954 MHz 0 Ω 0603 3V3 0 Ω 0603 5V 10 Ω 0603 open Ω 0603 4.7 Ω 0603 open Ω 0603 10 Ω 0603 open Ω 0603 5V open Ω 0603 3V3 0 Ω 0603 5V 0 Ω 0603 3V3 open Ω 0603 5V 0 Ω 0603 3V3 2.2 Ω 0603 R20 R21 R23 R24 R25 R26 R27 Q1 21.948717 M Hz IF1 SFECF10?M 7EA00 +/- 5% Volt age Pout Frequenc y Info 3V3 5V +/- 5% 3V3 5V +/- 5% 3V3 +/- 5% 5V CL = 12pF NDK; Frischer Electronic s NX3225SA Murata BW = 330kHz Interface components / optional IC2 AT24C32CSH-B or? AT24C512 C1 open C2 open C3 open C30 open C31 open C32 100 C33 open L30 0 D30 LED Data Sheet SOIC8 nF 0603 Ω 0603 EEPROM / Board detection +/-10% X7R or COG status indication LED 60 Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Reference Table 15 BOM Part Value Unit Package R3 0 Ω 0603 R30 1 kΩ 0603 R31 open SJ1 connect to SV2 Toleranc Manufact Device / Type e urer Pout Frequenc y Info +/- 5% Supply from UWLINK main board connect to SV2 and SV1 3V3 5V JP1 2 pins Power amplifier current SV1 2x6 pin UWLINK connector SV2 2x6 pin UWLINK connector X2 3 pin Supply selection / ext or UWLINK X3 2 pin Chip supply current X5 1 pin analog RSSI test point X6 12 pin Digital Chip I/O X10 SMA socket X11 4 pin GND Pin Header X41 4 pin GND Pin Header X42 4 pin GND Pin Header Data Sheet Volt age SAMTEC 61 RF Input / Output Revision 1.2, 13.06.2012 TDA5340 SmartLEWISTM TRX Package Outlines Package Outlines 0˚...8˚ -0.035 B 1.2 MAX. 1 +0.05 -0.2 0.1 ±0.05 4.4 ±0.1 1) 0.125 +0.075 4 0.65 C 2) 0.22 +0.08 -0.03 0.1 0.6 +0.15 -0.1 0.1 M A C 28x 28 15 1 14 9.7 ±0.1 1) 6.4 0.2 B 28x A Index Marking 1) 2) Does not include plastic or metal protrusion of 0.15 max. per side Does not include dambar protrusion Figure 31 PG-TSSOP-28 Package Outline (green package) Table 16 Ordering Information Type Ordering Code Package TDA5340 SP000803722 PG-TSSOP-28 You can find all of our packages, sorts of packaging and other on our Infinion Internet Page”Products”: http://www.infineon.com/products Data Sheet 62 Revision 1.2, 13.06.2012 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG