Da ta Sh ee t , V 1. 0 , M arch 20 0 9 TDA7116F 868 M Hz ASK/ FS K Transm i tte r in 10 -p in Package Ver s i on 1 .0 W i re l e s s C o n t r o l Co mpo ne nts N e v e r s t o p t h i n k i n g . Edition 2009-03-05 Published by Infineon Technologies AG, Am Campeon 1-12 85579 Neubiberg, Germany © Infineon Technologies AG 2009. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or the Infineon Technologies Companies and our Infineon Technologies Representatives worldwide (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Da ta Sh ee t , V 1. 0 , M arch 20 0 9 TDA7116F 868 M Hz ASK/ FS K Transm i tte r in 10 -p in Package Ver s i on 1 .0 W i re l e s s C o n t r o l Co mpo ne nts N e v e r s t o p t h i n k i n g . TDA7116F Revision History: 2009-03-05 Previous Version: V 1.0 Page V 1.0 Subjects (major changes since last revision) We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] TDA7116F Table of Contents Page 1 1.1 1.2 1.3 1.4 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Order Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 2.2 2.3 2.4 2.4.1 2.4.2 2.4.3 2.4.4 2.4.4.1 2.4.4.2 2.4.4.3 2.4.4.4 2.4.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Definition and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Functional Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 PLL Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Power Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 PLL Enable Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Transmit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power mode control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Recommended Timing Diagrams for ASK- and FSK-Modulation . . . . . 17 3 3.1 3.2 3.3 3.4 3.5 3.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Ohm-Output Testboard Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Ohm-Output Testboard Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bill of Material (50 Ohm-Output Evalboard) . . . . . . . . . . . . . . . . . . . . . . . . Application Hints on the Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . Design Hints on the Clock Output (CLKOUT) . . . . . . . . . . . . . . . . . . . . . . Application Hints on the Power-Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . 19 19 20 21 22 24 25 4 4.1 4.1.1 4.2 4.3 4.3.1 4.3.2 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC/DC Characteristic at 3V, 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC/DC Characteristic at 2.1V ...4.0 V, -40°C ...+85°C . . . . . . . . . . . . . 27 27 27 28 28 28 30 5 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Data Sheet 5 6 6 6 6 6 V 1.0, 2009-03-05 TDA7116F Product Description 1 Product Description 1.1 Overview The TDA7116F is a single chip ASK/FSK transmitter for operation in the frequency band 866 ... 870 MHz. The IC offers a high level of integration and needs only a few external components. The device contains a fully integrated PLL synthesizer and a high efficiency power amplifier to drive a loop antenna. A special circuit design and an unique power amplifier design are used to save current consumption and therefore to save battery life. Additional features are a power down mode and a divided clock output. 1.2 • • • • • • • • • • • • • fully integrated frequency synthesizer VCO without external components ASK and FSK modulation frequency range 866 ... 870 MHz high efficiency power amplifier (typically 10 dBm) low supply current voltage supply range 2.1 ... 4 V temperature range −40 ... +85°C power down mode crystal oscillator 13.56 MHz FSK-switch divided clock output for µC low external component count 1.3 • • • • • Features Application Tire pressure monitoring systems Keyless entry systems Remote control systems Alarm systems Communication systems 1.4 Order Information Table 1 Order Information Type Ordering Code Package TDA7116F SP000611114 PG-TSSOP-10 available on tape and reel Data Sheet 6 V 1.0, 2009-03-05 TDA7116F Functional Description 2 Functional Description 2.1 Pin Configuration Figure 1 2.2 CLKOUT 1 10 PDWN VS 2 9 PAOUT GND 3 8 PAGND FSKOUT 4 7 FSKDTA COSC 5 6 ASKDTA TDA 7116F IC Pin Configuration Pin Definition and Functions Table 2 Pin Definition and Functions - Overview Pin No. Symbol Function 1 CLKOUT Clock Driver Output (847.5 kHz) 2 VS Voltage Supply 3 GND Ground 4 FSKOUT Frequency Shift Keying Switch Output 5 COSC Crystal Oscillator Input (13.56 MHz) 6 ASKDTA Amplitude Shift Keying Data Input 7 FSKDTA Frequency Shift Keying Data Input 8 PAGND Power Amplifier Ground 9 PAOUT Power Amplifier Output (868 MHz) 10 PDWN Power Down Mode Control Data Sheet 7 V 1.0, 2009-03-05 TDA7116F Functional Description Table 3 Pin Definition and Function1 Pin No. Symbol 1 CLKOUT Interface Schematic Function Clock output to supply an external device. An external pull-up resistor has to be added in accordance to the driving requirements of the external device. VS 1 300 Ω The clock frequency is 847.5 kHz. 2 VS This pin is the positive supply of the transmitter electronics. An RF bypass capacitor should be connected directly to this pin and returned to GND (pin 3) as short as possible. 3 GND General ground connection. 4 FSKOUT This pin is connected to a switch to GND (pin 3). VS VS 200 µA 120 kΩ 4 The switch is closed when the signal at FSKDTA (pin 7) is in a logic low state. The switch is open when the signal at FSKDTA (pin 7) is in a logic high state. 200 kΩ FSKOUT can switch an additional capacitor to the reference crystal network to pull the crystal frequency by an amount resulting in the desired FSK frequency shift of the transmitter output frequency. Data Sheet 8 V 1.0, 2009-03-05 TDA7116F Functional Description Pin No. Symbol 5 COSC Interface Schematic Function VS VS 6 kΩ 5 This pin is connected to the reference oscillator circuit. The reference oscillator is working as a negative impedance converter. It presents a negative resistance in series to an inductance at the COSC pin. 100 μA 6 ASKDTA VS Digital amplitude modulation can be imparted to the Power Amplifier through this pin. +1.2 V 60 kΩ 6 +1.1 V 90 kΩ 2.3 pF A logic high (ASKDTA > 1.5 V or open) enables the Power Amplifier. 30 μA A logic low (ASKDTA < 0.5 V) disables the Power Amplifier. Data Sheet 9 V 1.0, 2009-03-05 TDA7116F Functional Description Pin No. Symbol 7 FSKDTA Interface Schematic VS Function +1.2 V 60 kΩ 7 +1.1 V Digital frequency modulation can be imparted to the Xtal Oscillator by this pin. The VCO-frequency varies in accordance to the frequency of the reference oscillator. 90 kΩ 30 μA A logic high (FSKDTA > 1.5V or open) sets the FSK switch to a high impedance state. A logic low (FSKDTA < 0.5 V) closes the FSK switch from FSKOUT (pin 4) to GND (pin 3). A capacitor can be switched to the reference crystal network this way. The Xtal Oscillator frequency will be shifted giving the designed FSK frequency deviation. Data Sheet 10 V 1.0, 2009-03-05 TDA7116F Functional Description Pin No. Symbol 8 PAGND Interface Schematic Function 9 9 PAOUT 10 PDWN 8 Ground connection of the power amplifier. The RF ground return path of the power amplifier output PAOUT (pin 9) has to be concentrated to this pin. RF output pin of the transmitter. A DC path to the positive supply VS has to be supplied by the antenna matching network. Disable pin for the complete transmitter circuit. VS 40 μA ∗ (ASKDTA+FSKDTA) A logic low (PDWN < 0.7 V) turns off all transmitter functions. 5 kΩ 10 "ON" A logic high (PDWN > 1.5 V) gives access to all transmitter functions. 150 kΩ PDWN input will be pulled up by 40 µA internally by either setting FSKDTA or ASKDTA to a logic high-state. 250 kΩ 1) Indicated voltages and currents apply for PLL Enable Mode and Transmit Mode. In Power Down Mode, the values are zero or high-ohmic. Data Sheet 11 V 1.0, 2009-03-05 Figure 2 Data Sheet Crystal 13.56 MHz FSK Switch 5 4 XTAL Osc 12 3 Ground LF VCO Power Supply 2 Power Supply VS 1 :64 OR 10 Power Down Control Clock Output :16 PFD 6 ASK Data Input Buffer Power AMP On Power Am plifier Output Power Am plifier Ground 9 8 2.3 7 FSK Data Input TDA7116F Functional Description Functional Block Diagram Functional Block Diagram V 1.0, 2009-03-05 TDA7116F Functional Description 2.4 Functional Block Description 2.4.1 PLL Synthesizer The Phase Locked Loop synthesizer consists of a Voltage Controlled Oscillator (VCO), an asynchronous divider chain, a phase detector, a charge pump and a loop filter. It is fully implemented on chip. The tuning circuit of the VCO consisting of spiral inductors and varactor diodes is on chip, too. Therefore no additional external components are necessary. The nominal center frequency of the VCO is 868 MHz. The oscillator signal is fed both, to the synthesizer divider chain and to the power amplifier. The overall division ratio of the asynchronous divider chain is 64. The phase detector is a Type IV PD with charge pump. The passive loop filter is realized on chip. 2.4.2 Crystal Oscillator The crystal oscillator operates at 13.56 MHz. The crystal frequency is divided by 16. The resulting 847.5 kHz are available at the clock output CLKOUT (pin1) to drive the clock input of a micro controller. To achieve FSK transmission, the oscillator frequency can be detuned by a fixed amount by switching an external capacitor via FSKOUT (pin 4). The condition of the switch is controlled by the signal at FSKDTA (pin 7). Table 4 FSKDTA - FSK Switch FSKDTA (pin7) FSK Switch Low1) CLOSED 2) 3) Open , High OPEN 1) Low: Voltage at pin < 0.5V 2) Open: Pin open 3) High: Voltage at pin > 1.5V 2.4.3 Power Amplifier The VCO frequency is buffered and fed to the Power Amplifier. The Power Amplifier can be switched on and off by the signal at ASKDTA (pin 6). Data Sheet 13 V 1.0, 2009-03-05 TDA7116F Functional Description Table 5 ASKDTA - Power Amplifier ASKDTA (pin6) Power Amplifier 1) Low OFF Open2), High3) ON 1) Low: Voltage at pin < 0.5V 2) Open: Pin open 3) High: Voltage at pin > 1.5V The Power Amplifier has an Open Collector output at PAOUT (pin 9) and requires an external pull-up coil to provide bias. The coil is part of the tuning and matching LC circuitry to get best performance with the external loop antenna. To achieve the best power amplifier efficiency, the high frequency voltage swing at PAOUT (pin 9) should be twice the supply voltage. The power amplifier has its own ground pin PAGND (pin 8) in order to reduce the amount of coupling to the other circuits. 2.4.4 Power Modes The IC provides three power modes, the POWER DOWN MODE, the PLL ENABLE MODE and the TRANSMIT MODE. 2.4.4.1 Power Down Mode In the POWER DOWN MODE the complete chip is switched off. The current consumption is typically 0.3 nA at 3 V 25°C. This current doubles every 8°C. The values for higher temperatures are typically 14 nA at 85°C. 2.4.4.2 PLL Enable Mode In the PLL ENABLE MODE the PLL is switched on but the power amplifier is turned off to avoid undesired power radiation during the time the PLL needs to settle. The turn on time of the PLL is determined mainly by the turn on time of the crystal oscillator and is less than 1 msec when the specified crystal is used. The current consumption is typically 4mA. Data Sheet 14 V 1.0, 2009-03-05 TDA7116F Functional Description 2.4.4.3 Transmit Mode In the TRANSMIT MODE the PLL is switched on and the power amplifier is turned on too. The current consumption of the IC is typically 14.2 mA when using a proper transforming network at PAOUT, see Figure 8. 2.4.4.4 Power mode control The bias circuitry is powered up via a voltage V > 1.5 V at the pin PDWN (pin10). When the bias circuitry is powered up, the pins ASKDTA and FSKDTA are pulled up internally. Forcing the voltage at the pins low overrides the internally set state. Alternatively, if the voltage at ASKDTA or FSKDTA is forced high externally, the PDWN pin is pulled up internally via a current source. In this case, it is not necessary to connect the PDWN pin, it is recommended to leave it open. The principle schematic of the power mode control circuitry is shown in Figure 3 PDWN ASKDTA OR FSKDTA On Bias Source Bias Voltage 120 k Ω 120 k Ω FSK FSKOUT On PLL 868 MHz PA PAOUT IC Figure 3 Data Sheet Power mode control circuitry 15 V 1.0, 2009-03-05 TDA7116F Functional Description Table 6 provides a listing of how to get into the different power modes Table 6 PDWN 1) Power Modes FSKDTA ASKDTA Low Low, Open Low, Open Open2) Low Low High3) Low, Open, High Low Open High Low High Low, Open, High Open, High Open High Open, High Open Low, Open, High High 1) Low: MODE POWER DOWN PLL ENABLE TRANSMIT Voltage at pin < 0.7V (PDWN) Voltage at pin < 0.5V (FSKDTA, ASKDTA) 2) Open: Pin open 3) High: Voltage at pin > 1.5V Other combinations of the control pins PDWN, FSKDTA and ASKDTA are not recommended. Data Sheet 16 V 1.0, 2009-03-05 TDA7116F Functional Description 2.4.5 Recommended Timing Diagrams for ASK- and FSK-Modulation ASK Modulation using FSKDTA and ASKDTA, PDWN not connected Modes: Power Down PLL Enable Transmit High FSKDTA Low to t DATA Open, High ASKDTA Low to t min. 1 msec. Figure 4 ASK Modulation FSK Modulation using FSKDTA and ASKDTA, PDWN not connected. Modes: Power Down PLL Enable Transmit DATA High FSKDTA Low to t to t High ASKDTA Low min. 1 msec. Figure 5 Data Sheet FSK Modulation 17 V 1.0, 2009-03-05 TDA7116F Functional Description Alternative ASK Modulation, FSKDTA not connected. Modes: Power Down PLL Enable Transmit High PDWN Low to t DATA Open, High ASKDTA Low to t min. 1 msec. Figure 6 Alternative ASK Modulation Alternative FSK Modulation Modes: Power Down PLL Enable Transmit High PDWN Low to t Open, High ASKDTA Low to t DATA Open, High FSKDTA Low to t min. 1 msec. Figure 7 Data Sheet Alternative FSK Modulation 18 V 1.0, 2009-03-05 TDA7116F Applications Applications 3.1 50 Ohm-Output Testboard Schematic TITLE: TDA7116F EvalBoard 3 TDA7116F Figure 8 Data Sheet 50 Ohm-output testboard schematic 19 V 1.0, 2009-03-05 TDA7116F Applications 3.2 50 Ohm-Output Testboard Layout Figure 9 Top Side of TDA7116F-Testboard1) with 50 Ohm-Output Figure 10 Bottom Side of TDA7116F-Testboard1) with 50 Ohm-Output 1) Name and labeling of the PCB itself is TDK511xF Data Sheet 20 V 1.0, 2009-03-05 TDA7116F Applications 3.3 Bill of Material (50 Ohm-Output Evalboard) Reference Value R1 open Specification R2 open R3 4k7 0603, +/-5% R4 12k 0603, +/-5% R5 open R6 15k R7 open 0603, +/-5% C1 8p2 0603, C0G, +/-1% C2 15p 0603, C0G, +/-0.1p C3 open C4 47n 0603, X7R, +/-10% C5 100p 0603, X7R, +/-10% C6 6p8 0603, C0G, +/-1% C7 47p 0603, C0G, +/-1% C8 47p 0603, C0G, +/-5% C9 2p7 0603, C0G, +/-0,1p C10 47n 0603, X7R, +/-10% L1 10n EPCOS SIMID 0603-C, +/-2% L2 82n EPCOS SIMID 0603-C, +/-2% X1 n.e. X2 n.e. X3 Pin single-pole connector, 2.54mm X4 Pin single-pole connector, 2.54mm X5 SMA-connector X6 SMA-connector X7 n.e. JP1 solder bridge JP2 solder bridge in position “FSK” Q1 13.56875 MHz, CL=12pF Tokyo Denpa TSS-3B, Spec.No. 10-50205 IC1 TDA7116F PCB TDK511xF V1.0 Data Sheet in position “XTAL” Manufacturer: PIU Printex in Vienna 21 V 1.0, 2009-03-05 TDA7116F Applications 3.4 Application Hints on the Crystal Oscillator Application Hints on the crystal oscillator The crystal oscillator achieves a turn on time less than 1 msec when the specified crystal is used. To achieve this, a NIC oscillator type is implemented in the TDA7116F. The input impedance of this oscillator is a negative resistance in series to an inductance. Therefore the load capacitance of the crystal CL (specified by the crystal supplier) is transformed to the capacitance Cv. -R L f, CL Cv IC Figure 11 Application Hints Formula 1: Cv = CL: ω: L: 1 1 + ω 2L CL crystal load capacitance for nominal frequency angular frequency inductance of the crystal oscillator Example for the ASK-Mode: Referring to the application circuit, in ASK-Mode the capacitance C2 is replaced by a short to ground. Assume a crystal frequency of 13.56MHz and a crystal load capacitance of CL = 12 pF. The inductance L at 13.56MHz is about 4.6 μH. Therefore C1 is calculated to 10 pF. But please note that the calculated Cv value includes all parasitic. So, the value of the capacitor (except the parasitic) is a bit smaller depending on the parasitic. Cv = Data Sheet 1 1 + ω 2L CL 22 = C1 V 1.0, 2009-03-05 TDA7116F Applications Example for the FSK-Mode: FSK modulation is achieved by switching the load capacitance of the crystal as shown below. FSKDTA FSKOUT Csw -R L f, CL Cv1 Cv2 COSC IC Figure 12 FSK Mode The frequency deviation of the crystal oscillator is multiplied with the divider factor N of the Phase Locked Loop to the output of the power amplifier. In case of small frequency deviations (up to +/- 1000 ppm), the two desired load capacitances can be calculated with the formula below. CL ± = 2(C 0 + CL ) Δf (1 + ) N * f1 C1 Δf 2(C 0 + CL ) 1± (1 + ) N * f1 C1 CL m C 0 CL: crystal load capacitance for nominal frequency C0: shunt capacitance of the crystal f: frequency ω: ω = 2πf: angular frequency N: division ratio of the PLL df: peak frequency deviation Because of the inductive part of the TDA7116F, these values must be corrected by Formula 1 on the preceding page. The value of Cv± can be calculated. Data Sheet 23 V 1.0, 2009-03-05 TDA7116F Applications Cv ± = 1 1 +ω 2L CL ± If the FSK switch is closed, Cv± is equal to Cv1 (C1 in the application diagram). If the FSK switch is open, Cv2 (C2 in the application diagram) can be calculated. Cv 2 = C 2 = Csw: Csw ∗ Cv1 − (Cv + ) ∗ (Cv1 + Csw ) (Cv + ) − Cv1 parallel capacitance of the FSK switch (3 pF incl. layout parasitics) Remark: These calculations are only approximations. The necessary values depend on the parasitic and thus on the layout also and must be adapted for the specific application board. 3.5 Design Hints on the Clock Output (CLKOUT) The CLKOUT pin is an open collector output. An external pull up resistor (RL) should be connected between this pin and the positive supply voltage. The value of RL is depending on the clock frequency and the load capacitance CLD (PCB board plus input capacitance of the microcontroller). RL can be calculated to: RL = Table 7 1 fCLKOUT * 8 * CLD Clock Output fCLKOUT=847.5 kHz CL[pF] Remark: Data Sheet RL[kOhm] 5 27 10 12 20 6.8 To achieve a low current consumption and a low spurious radiation, the largest possible RL should be chosen. 24 V 1.0, 2009-03-05 TDA7116F Applications Even harmonics of the signal at CLKOUT can interact with the crystal oscillator input COSC preventing the start-up of oscillation. Care must be taken in layout by sufficient separation of the signal lines to ensure sufficiently small coupling. 3.6 Application Hints on the Power-Amplifier The power amplifier operates in a high efficient class C mode. This mode is characterized by a pulsed operation of the power amplifier transistor at a current flow angle of θ<<π. A frequency selective network at the amplifier output passes the fundamental frequency component of the pulse spectrum of the collector current to the load. The load and its resonance transformation to the collector of the power amplifier can be generalized by the equivalent circuit of Figure 13. The tank circuit L//C//RL in parallel to the output impedance of the transistor should be in resonance at the operating frequency of the transmitter. VS L Figure 13 C RL Equivalent power amplifier tank circuit The optimum load at the collector of the power amplifier for “critical” operation under idealized conditions at resonance is: R LC = V S2 2 * PO The theoretical value of RLC for an RF output power of Po= 10dBm (10mW) is: R LC = 32 = 450Ω 2 * 0.01 “Critical” operation is characterized by the RF peak voltage swing at the collector of the PA transistor to just reach the supply voltage VS. The high degree of efficiency under “critical” operating conditions can be explained by the low power losses at the transistor. During the conducting phase of the transistor, its collector voltage is very small. This way the power loss of the transistor, equal to iC*uCE is minimized. This is particularly true for small current flow angles of θ<<π. Data Sheet 25 V 1.0, 2009-03-05 TDA7116F Applications In practice the RF-saturation voltage of the PA transistor and other parasitics reduce the “critical” RLC. The output power Po is reduced by operating in an “overcritical” mode characterised by RL > RLC. The power efficiency (and the bandwidth) increase when operating at a slightly higher RL, as shown in Figure 14. The collector efficiency E is defined as E= PO VS I C The diagram of Figure 14 was measured directly at the PA-output at VS = 3 V. Losses in the matching circuitry decrease the output power by about 1.5 dB. As can be seen from the diagram, 250 Ω is the optimum impedance for operation at 3 V. For an approximation of ROPT and POUT at other supply voltages those two formulas can be used: ROPT ~ VS and POUT ~ ROPT 18 16 14 12 10 Pout [mW] 10*Ec 8 6 4 2 0 0 100 200 300 400 500 RL [Ohm] Figure 14 Output power Po (mW) and collector efficiency E vs. load resistor RL. The DC collector current Ic of the power amplifier and the RF output power Po vary with the load resistor RL. This is typical for overcritical operation of class C amplifiers. The collector current will show a characteristic dip at the resonance frequency for this type of “overcritical” operation. The depth of this dip will increase with higher values of RL. Data Sheet 26 V 1.0, 2009-03-05 TDA7116F Reference 4 Reference 4.1 Electrical Data 4.1.1 Absolute Maximum Ratings Attention: The maximum ratings must not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the IC will result. Table 8 Absolute Maximum Ratings, Tamb = -40 °C … +85 °C Parameter Symbol Limit Values Unit Remarks min. max. Junction Temperature TJ −40 +150 °C Storage Temperature Ts −40 +125 °C Thermal Resistance RthJA 220 K/W Supply voltage VS −0.3 +4.0 V Voltage at any pin excluding pin 9 Vpins -0.3 VS + 0.3 V Voltage at pin 9 Vpin9 -0.3 2 * VS V No ESD-Diode to VS ESD integrity, all pins VESD -1 +1 kV JEDEC Standard JESD22-A114-B ESD integrity, all pins excluding pin 9 VESD -2.5 +2.5 kV JEDEC Standard JESD22-A114-B Ambient Temperature under bias: Tamb = −40°C to +85°C Note: All voltages referred to ground (pins) unless stated otherwise. Pins 3 and 8 are grounded. Data Sheet 27 V 1.0, 2009-03-05 TDA7116F Reference 4.2 Operating Ratings Within the operational range the IC operates as described in the circuit description. Table 9 Operating Ratings Parameter Symbol Limit Values min. max. Unit Supply voltage VS 2.1 4.0 V Ambient temperature Tamb -40 85 °C 4.3 Test Conditions AC/DC Characteristics AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature. Typical charcateristics are the median of the production. 4.3.1 AC/DC Characteristic at 3V, 25°C Table 10 Supply Voltage VS=3V, Ambient temperature Tamb=25°C Parameter Symbol Limit Values min. typ. max. Unit Test Conditions Current consumption Power Down mode IS PDWN 0.3 100 nA V (Pins 10, 6 and 7) < 0.2 V PLL Enable mode IS PLL_EN 4 5.5 mA Transmit mode 868 MHz IS TRANSM 14 18 mA 868 884 MHz fOUT = 64 * fCOSC Output frequency Output frequency fOUT 854 Clock Driver Output (Pin 1) Output current (High) ICLKOUT 5 µA VCLKOUT = VS Saturation Voltage (Low)1) VSATL 0.56 V ICLKOUT = 1 mA Data Sheet 28 V 1.0, 2009-03-05 TDA7116F Reference Table 10 Supply Voltage VS=3V, Ambient temperature Tamb=25°C (cont’d) Parameter Symbol Limit Values min. typ. max. Unit Test Conditions FSK Switch Output (Pin 4) On resistance RFSKOUT 250 Ω VFSKDTA = 0 V On capacitance CFSKOUT 6 pF VFSKDTA = 0 V Off resistance RFSKOUT 10 kΩ VFSKDTA = VS Off capacitance CFSKOUT 1.5 pF VFSKDTA = VS 5 pF 100 Ω f = 13.56 MHz µH f = 13.56 MHz Crystal Oscillator Input (Pin 5) Load capacitance CCOSCmax Serial Resistance of the crystal Input inductance of the COSC pin 4.6 ASK Modulation Data Input (Pin 6) ASK Transmit disabled VASKDTA 0 0.5 ASK Transmit enabled VASKDTA 1.5 VS V Input bias current ASKDTA IASKDTA 30 µA VASKDTA = VS Input bias current ASKDTA IASKDTA µA VASKDTA = 0 V ASK data rate fASKDTA -20 V 20 kHz VFSKDTA 0 0.5 V FSK Switch off VFSKDTA 1.5 VS V Input bias current FSKDTA IFSKDTA 30 µA VFSKDTA = VS Input bias current FSKDTA IFSKDTA µA VFSKDTA = 0 V FSK data rate fFSKDTA FSK Modulation Data Input (Pin 7) FSK Switch on -20 20 kHz 13 dBm Power Amplifier Output (Pin 9) Output Power2) at 868 MHz transformed to 50 Ohm Data Sheet POUT868 7 10 29 V 1.0, 2009-03-05 TDA7116F Reference Table 10 Supply Voltage VS=3V, Ambient temperature Tamb=25°C (cont’d) Parameter Symbol Limit Values min. typ. max. Unit Test Conditions Power Down Mode Control (Pin 10) Power Down mode V PDWN 0 0.7 V VASKDTA < 0.2 V VFSKDTA < 0.2 V PLL Enable mode V PDWN 1.5 VS V VASKDTA < 0.5 V Transmit mode V PDWN 1.5 VS V VASKDTA > 1.5 V Input bias current PDWN IPDWN 30 µA VPDWN = VS 1) Derating linearly to a saturation voltage of max. 140 mV at ICLKOUT = 0 mA 2) Power amplifier in overcritical C-operation Matching circuitry as used in the 50 Ohm-Output Testboard at the specified frequency. Tolerances of the passive elements not taken into account. 4.3.2 AC/DC Characteristic at 2.1V ...4.0 V, -40°C ...+85°C Table 11 Supply Voltage VS=2.1V ... 4.0V, Tamb=-40°C ... +85°C Parameter Symbol Limit Values min. typ. max. Unit Test Conditions 4 μA Current consumption Power Down mode IS PDWN V (Pins 10, 6 and 7) < 0.2 V PLL Enable mode IS PLL_EN 2.5 4 6 mA Transmit mode Load tank see Figure 8 and 9 IS TRANSM 11 15.5 mA VS = 2.1V IS TRANSM 14 18 mA VS = 3.0 V IS TRANSM 16 21 mA VS = 4.0 V 868 874 MHz fOUT = 64 * fCOSC Output frequency Output frequency1) fOUT 864 Clock Driver Output (Pin 1) Output current (High) ICLKOUT 5 µA VCLKOUT = VS Saturation Voltage (Low)2) VSATL 0.5 V ICLKOUT = 0.6 mA Data Sheet 30 V 1.0, 2009-03-05 TDA7116F Reference Table 11 Supply Voltage VS=2.1V ... 4.0V, Tamb=-40°C ... +85°C (cont’d) Parameter Symbol Limit Values min. typ. max. Unit Test Conditions FSK Switch Output (Pin 4) On resistance RFSKOUT 280 Ω VFSKDTA = 0 V On capacitance CFSKOUT 6 pF VFSKDTA = 0 V Off resistance RFSKOUT 10 kΩ VFSKDTA = VS Off capacitance CFSKOUT 1.5 pF VFSKDTA = VS 5 pF 100 Ω f = 13.56 MHz µH f = 13.56 MHz Crystal Oscillator Input (Pin 5) Load capacitance CCOSCmax Serial Resistance of the crystal Input inductance of the COSC pin 4.6 ASK Modulation Data Input (Pin 6) ASK Transmit disabled VASKDTA 0 0.5 ASK Transmit enabled VASKDTA 1.5 VS V Input bias current ASKDTA IASKDTA 33 µA VASKDTA = VS Input bias current ASKDTA IASKDTA µA VASKDTA = 0 V ASK data rate fASKDTA -20 V 20 kHz VFSKDTA 0 0.5 V FSK Switch off VFSKDTA 1.5 VS V Input bias current FSKDTA IFSKDTA 33 µA VFSKDTA = VS Input bias current FSKDTA IFSKDTA µA VFSKDTA = 0 V FSK data rate fFSKDTA FSK Modulation Data Input (Pin 7) FSK Switch on Data Sheet -20 20 31 kHz V 1.0, 2009-03-05 TDA7116F Reference Table 11 Supply Voltage VS=2.1V ... 4.0V, Tamb=-40°C ... +85°C (cont’d) Parameter Symbol Limit Values min. typ. max. Unit Test Conditions Power Amplifier Output (Pin 9) Output Power 3) at 868 MHz transformed to 50 Ohm. POUT, 868 3 6 9 dBm VS = 2.1V POUT, 868 6 10 14 dBm VS = 3.0 V POUT, 868 6.5 11.5 16 dBm VS = 4.0 V Power Down Mode Control (Pin 10) Power Down mode V PDWN 0 0.5 V VASKDTA < 0.2 V VFSKDTA < 0.2 V PLL Enable mode V PDWN 1.5 VS V VASKDTA < 0.5 V Transmit mode V PDWN 1.5 VS V VASKDTA > 1.5 V Input bias current PDWN IPDWN 38 µA VPDWN = VS 1) a) When the minimum Tamb is increased by 5°C, the minimum fVCO decreases by 1 MHz. b) When the maximum Tamb is decreased by 5°C, the maximum fVCO increases by 1 MHz c) When the minimum VS is increased by 25 mV, the maximum fVCO increases by 1 MHz Restriction of c): The maximum fVCO must not be increased by more than 40 MHz by increasing VS. Please note that fVCO equals the Output Frequency. All three measures can be taken independently and additive. 2) Derating linearly to a saturation voltage of max. 140 mV at ICLKOUT = 0 mA 3) Matching circuitry as used in the 50 Ohm-Output Testboard. Tolerances of the passive elements not taken into account. Range @ 2.1 V, +25°C: 6 dBm +/- 2 dBm Range @ 3.0 V, +25°C: 10 dBm +/- 3 dBm Range @ 4.0 V, +25°C: 11.5 dBm +4.5/-3.5 dBm Data Sheet 32 V 1.0, 2009-03-05 TDA7116F Package Outlines 0.5 0.1 A A 0.22 ±0.05 0.08 M C 0.42 +0.15 -0.1 ABC 4.9 3 ±0.1 6 max. +0.08 0.125 -0.05 3 ±0.1 H 0.09 0.85 ±0.1 1.1 max. Package Outlines 0.15 max. 5 0.25 M ABC B Index Marking Figure 15 PG-TSSOP-10 You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”: http://www.infineon.com/products. Dimensions in mm SMD = Surface Mounted Device Data Sheet 33 V 1.0, 2009-03-05 TDA7116F List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Data Sheet Page Order Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Definition and Functions - Overview . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Definition and Function1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 FSKDTA - FSK Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 ASKDTA - Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Clock Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Absolute Maximum Ratings, Tamb = -40 °C … +85 °C . . . . . . . . . . . . 27 Operating Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Supply Voltage VS=3V, Ambient temperature Tamb=25°C . . . . . . . . . . 28 Supply Voltage VS=2.1V ... 4.0V, Tamb=-40°C ... +85°C. . . . . . . . . . . . 30 34 V 1.0, 2009-03-05 TDA7116F List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Data Sheet Page IC Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Power mode control circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 ASK Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 FSK Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Alternative ASK Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Alternative FSK Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 50 Ohm-output testboard schematic . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Top Side of TDA7116F-Testboard with 50 Ohm-Output . . . . . . . . . . . 20 Bottom Side of TDA7116F-Testboard1) with 50 Ohm-Output . . . . . . . 20 Application Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 FSK Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Equivalent power amplifier tank circuit. . . . . . . . . . . . . . . . . . . . . . . . . 25 Output power Po (mW) and collector efficiency E vs. load resistor RL. 26 PG-TSSOP-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 35 V 1.0, 2009-03-05 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG