66AK2H14/12/06 SPRS866E—November 2012—Revised November 2013 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) Check for Evaluation Modules (EVM): EVMK2H 1 66AK2H14/12/06 Features and Description 1.1 Features • Eight (66AK2H14/12) or Four (66AK2H06) TMS320C66x™ DSP Core Subsystems (C66x CorePacs), Each With – Up to 1.2 GHz C66x Fixed/Floating-Point DSP Cores › 38.4 GMacs/Core for Fixed Point @ 1.2 GHz › 19.2 GFlops/Core for Floating Point @ 1.2 GHz – Memory › 32K Byte L1P Per CorePac › 32K Byte L1D Per CorePac › 1024K Byte Local L2 Per CorePac • ARM® Cortex™-A15 MPCore™ Processors Containing Four (66AK2H14/12) or Two (66AK2H06) ARM Cortex-A15 Cores – Up to 1.4-GHz Cortex-A15 Processor Core Speed – 4MB L2 Cache Memory Shared by All ARM CorePacs – Full Implementation of ARMv7-A Architecture Instruction Set – 32KB L1 Instruction Cache and Data Cache per Cortex-A15 Processor Core – AMBA 4.0 AXI Coherency Extension (ACE) Master Port, Connected to MSMC for Low Latency Access to Shared MSMC SRAM • Multicore Shared Memory Controller (MSMC) – 6 MB MSM SRAM Memory Shared by DSP CorePacs and ARM CorePac – Memory Protection Unit for Both MSM SRAM and DDR3_EMIF • Multicore Navigator – 16k Multi-Purpose Hardware Queues with Queue Manager – Packet-Based DMA for Zero-Overhead Transfers • Network Coprocessor – Packet Accelerator Enables Support for › Transport Plane IPsec, GTP-U, SCTP, PDCP › L2 User Plane PDCP (RoHC, Air Ciphering) › 1 Gbps Wire Speed Throughput at 1.5 MPackets Per Second – Security Accelerator Engine Enables Support for › IPSec, SRTP, 3GPP and WiMAX Air Interface, and SSL/TLS Security › ECB, CBC, CTR, F8, A5/3, CCM, GCM, HMAC, CMAC, GMAC, AES, DES, 3DES, Kasumi, SNOW 3G, SHA-1, SHA-2 (256-bit Hash), MD5 › Up To 2.4 Gbps IPSec and 2.4 Gbps Air Ciphering – Ethernet Subsystem › Five-Port Switch (four SGMII ports) • Peripherals – Four Lanes of SRIO 2.1 › Supports Up To 5 GBaud › Supports Direct I/O, Message Passing – Two Lanes PCIe Gen2 › Supports Up To 5 GBaud – TwoHyperLink › Supports Connections to Other KeyStone Architecture Devices Providing Resource Scalability › Supports Up To 50 GBaud – 10-Gigabit Ethernet (10-GbE) Switch Subsystem (66AK2H14 only) › Two XFI Ports › IEEE1588 Support – Five Enhanced Direct Memory Access (EDMA) Modules – Two 72-Bit DDR3 Interfaces with Speeds Up To 1600 MHz – EMIF16 Interface – USB 3.0 – Two UART Interfaces – Three I2C Interfaces – 32 GPIO Pins – Three SPI Interfaces – Semaphore Module – 64-Bit Timers › Twenty 64-Bit Timers for 66AK2H14/12 › Fourteen 64-Bit Timers for 66AK206 – Five On-Chip PLLs • Commercial Case Temperature: – 0°C to 85°C • Extended Case Temperature: – - 40°C to 100°C An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 1.2 Applications • • • • • • • • • Mission Critical Computing Communications Audio Video Infrastructure Imaging Analytics Networking Media Processing 1.3 KeyStone Architecture TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. KeyStone is the first of its kind in that it provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. Multicore Navigator is an innovative packet-based manager that controls 16k queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the 2-Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller enables processing cores to access shared memory directly without drawing from the TeraNet’s capacity, so packet movement cannot be blocked by memory access. HyperLink provides a 50-GBaud chip-level interconnect that allows SoCs to work in tandem. Its low-protocol overhead and high throughput make HyperLink an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources. 1.4 Device Description The 66AK2Hx platform combines the quad ARM® Cortex™-A15 with up to eight TMS320C66x high-performance DSPs using the KeyStone II architecture. The 66AK2H14/12/06 provides up to 5.6 GHz of ARM and 9.6 GHz of DSP processing coupled with security, packet processing, and Ethernet switching at lower power than multi-chip solutions. It is optimal for embedded infrastructure applications like cloud computing, media processing, high-performance computing, transcoding, security, gaming, analytics, and virtual desktop. The C66x core combines fixed-point and floating-point computational capability in the processor without sacrificing speed, size, or power consumption. The raw computational performance is 38.4 GMACS/core and 19.2 Gflops/core (@ 1.2 GHz operating frequency). The C66x is also 100% backward compatible with software for C64x+ devices. It incorporates 90 new instructions targeted for floating point (FPi) and vector math oriented (VPi) processing. The 66AK2H14/12/06 device has a complete set of development tools that includes: a C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source code execution. 2 66AK2H14/12/06 Features and Description Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 1.5 Enhancements in KeyStone II The KeyStone II architecture provides many major enhancements over the previous KeyStone I generation of devices. The KeyStone II architecture integrates a Cortex-A15 processor quad-core cluster. The external memory bandwidth has been doubled with the integration of dual DDR3 1600 EMIFs. MSMC internal memory bandwidth is quadrupled with MSMC architecture improvements such as cache coherency. MSMC also enbles memories to operate at the speed of the processor cores, which reduces latency and contention while providing high-bandwidth interconnections between processor cores and shared internal and external memory. Multicore Navigator supports 2× the number of queues, descriptors, and packet DMA, 4× the number of micro RISC engines, and a significant increase in the number of push/pops per second compared to the previous generation. The new peripherals that have been added include the USB 3.0 controller, and asynchronous EMIF controller for NAND/NOR memory access. The 3-port Gigabit Ethernet switch in KeyStone I has been replaced with a 5-port Gigabit Ethernet switch in KeyStone II. Time synchronization support has been enhanced to reduce software workload and support additional 2 standards like IEEE1588 Annex D/E and SyncE. The number of GPIOs and serial interface peripherals, like I C and SPI, have been increased to enable more board level control functionality. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Features and Description 3 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 1.6 Functional Block Diagram The following figures show the functional block diagrams of the devices. Figure 1-1 Functional Block Diagram for 66AK2H14 66AK2H14 C66x™ C66x™ C66x™ C66x™ C66x™ C66x™ C66x™ C66x™ CorePac CorePac CorePac CorePac CorePac CorePac CorePac CorePac Memory Subsystem 72-Bit DDR3 EMIF 6MB MSM SRAM 72-Bit DDR3 EMIF MSMC 32KBL1 L1 32KB 32KBL1 L1 32KB 32KB L1 32KB 32KBL1 L1 32KB L1 32KB L1 32KB L1 P-Cache D-Cache 32KB L1 32KB L1 P-Cache D-Cache 32KB L1 32KB 32KB L1 P-Cache D-Cache 32KB L1 L1 P-Cache D-Cache P-Cache D-Cache P-Cache D-Cache P-Cache D-Cache P-Cache D-Cache 1024KB L2 Cache 1024KBL2 L2Cache Cache 1024KB 1024KB L2Cache Cache 1024KB L2 1024KB L2 Cache 1024KB L2 Cache 1024KB L2 Cache Debug & Trace Boot ROM 8´ 32KB L1 32KB L1 32KB L1 32KB L1 P-Cache D-Cache P-Cache D-Cache ARM A15 Semaphore Power Management ARM A15 4MB L2 Cache ARM A15 PLL 5´ ARM A15 32KB L1 32KB L1 32KB L1 32KB L1 P-Cache D-Cache P-Cache D-Cache EDMA 8 C66x DSP Cores @ up to 1.2 GHz 4 ARM Cores @ up to 1.4 GHz 5´ TeraNet 2´ HyperLink Multicore Navigator 4 66AK2H14/12/06 Features and Description Packet DMA Security Accelerator Packet Accelerator 1GBE 1GBE 1GBE 5-Port Ethernet Switch 1GBE 10GBE 3-Port Ethernet Switch 10GBE 10GBE SRIO ´4 PCIe ´2 3´ SPI 2´ UART USB 3.0 3´ I2C GPIO ´32 EMIF16 Queue Manager Network Coprocessor Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 1-2 Functional Block Diagram for 66AK2H12 66AK2H12 C66x™ C66x™ C66x™ C66x™ C66x™ C66x™ C66x™ C66x™ CorePac CorePac CorePac CorePac CorePac CorePac CorePac CorePac Memory Subsystem 72-Bit DDR3 EMIF 6MB MSM SRAM 72-Bit DDR3 EMIF MSMC 32KBL1 L1 32KB 32KBL1 L1 32KB 32KB L1 32KB 32KBL1 L1 32KB L1 32KB L1 32KB L1 P-Cache D-Cache 32KB L1 32KB L1 P-Cache D-Cache 32KB L1 32KB L1 P-Cache D-Cache 32KB L1 32KB L1 P-Cache D-Cache P-Cache D-Cache D-Cache P-Cache P-Cache D-Cache P-Cache D-Cache 1024KB L2Cache Cache 1024KB L2 1024KBL2 L2Cache Cache 1024KB 1024KB L2Cache Cache 1024KB L2 1024KB L2 L2 Cache Cache 1024KB Debug & Trace Boot ROM 8´ 32KB L1 32KB L1 32KB L1 32KB L1 P-Cache D-Cache P-Cache D-Cache ARM A15 Semaphore Power Management ARM A15 4MB L2 Cache ARM A15 PLL 5´ ARM A15 32KB L1 32KB L1 32KB L1 32KB L1 P-Cache D-Cache P-Cache D-Cache EDMA 8 C66x DSP Cores @ up to 1.2 GHz 4 ARM Cores @ up to 1.4 GHz 5´ TeraNet 2´ HyperLink Multicore Navigator Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Packet DMA Security Accelerator Packet Accelerator 1GBE 1GBE 1GBE 5-Port Ethernet Switch 1GBE SRIO ´4 PCIe ´2 3´ SPI 2´ UART USB 3.0 3´ I2C GPIO ´32 EMIF16 Queue Manager Network Coprocessor 66AK2H14/12/06 Features and Description 5 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 1-3 Functional Block Diagram for 66AK2H06 66AK2H06 Memory Subsystem 72-Bit DDR3 EMIF 6MB MSM SRAM 72-Bit DDR3 EMIF MSMC C66x™ C66x™ C66x™ C66x™ CorePac CorePac CorePac CorePac 32KBL1 L1 32KB 32KBL1 L1 32KB 32KB L1 32KB 32KBL1 L1 32KB L1 32KB L1 32KB L1 P-Cache D-Cache P-Cache D-Cache P-Cache D-Cache P-Cache D-Cache D-Cache P-Cache 1024KB L2 Cache 1024KBL2 L2Cache Cache 1024KB 1024KB L2 Cache Cache 1024KB L2 Debug & Trace 4´ Boot ROM 32KB L1 32KB L1 32KB L1 32KB L1 P-Cache D-Cache P-Cache D-Cache Semaphore ARM A15 Power Management ARM A15 4MB L2 Cache PLL 5´ EDMA 4 C66x DSP Cores @ up to 1.2 GHz 2 ARM Cores @ up to 1.4 GHz 5´ 2´ HyperLink TeraNet Multicore Navigator 6 66AK2H14/12/06 Features and Description Packet DMA Security Accelerator Packet Accelerator 1GBE 1GBE 1GBE 5-Port Ethernet Switch 1GBE SRIO ´4 PCIe ´2 3´ SPI 2´ UART USB 3.0 3´ I2C GPIO ´32 EMIF16 Queue Manager Network Coprocessor Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 1.7 Release History Table 1-1 Release 66AK2Hx Release History Date Description/Comments SPRS866E November 2013 Added the 66AK2H14 to the manual SPRS866D October 2013 Updated pin maps. (Page 34) Added the USB PHY registers (Page 254) Changed the Tc to 23ns (Page 343) Changed CVDDT pin designations to CVDD, as the two have been tied together internally from PG1.1. Document refromatting. First Production Data release. SPRS866C September 2013 Unreleased SPRS866B August 2013 Added SRIOSGMIICLK clocking info to the table. (Page 298) Corrected USBVBUS terminal designation. It is not reserved. (Page 56) Added the bridge numbers to the Interconnect tables in the System Interconnect chapter (Page 195) Added the TeraNet drawings to the System Interconnect chapter (Page 191) Updated the Power-Up Sequence information in the Peripheral Information and Electrical Specifications chapter (Page 264) Corrected Event Names (48-80) (Page 116) Changed SerDes field to Reserved as it is not implemented (Page 218) Added DEVSPEED address (Page 235) Removed PLLLOCK LOCK, STAT and EVAL registers (Page 235) Corrected inconsistencies in RSVD pin designations between the Pin Map figures and the Terminal Functions tables. (Page 34) Changed CPTS_RFTCLK_SEL from three bits to four bits (Page 319) SPRS866A May 2013 Added tying CVDD and CVDDT together (Page 59) Updated BOOTMODE pins and MIN information (Page 191) Added Device Boot and Configuration chapter. (Page 191) Added Security section (Page 205) Added the Boot Parameter Table section (Page 207) Updated the PWRSTATECTL register (Page 228) Added Device Operating Conditions chapter. (Page 235) Added Peripheral Information and Electrical Specifications chapter. (Page 239) Updated the ALNCTL Register in the Peripheral Information and Electrical Specifications chapter. (Page 266) Updated the DCHANGE Register in the Peripheral Information and Electrical Specifications chapter. (Page 266) Corrected rise and fall time of all differential clock pairs (Page 272) Added ARMCLK specification (Page 272) Corrected rise and fall time of differential clock pairs (Page 273) Updated DDRCLKN and DDRCLKP from 0.025 to 0.02. (Page 277) Changed to not support external charge pump for 5V (Page 299) Added thermal values into the Thermal Resistance Characteristics table. (Page 314) SPRS866 November 2012 Initial Release For a complete document change history, see ‘‘Revision History’’ on page 345. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Features and Description 7 66AK2H14/12/06 SPRS866E—November 2012—Revised November 2013 Contents 1 66AK2H14/12/06 Features and Description. . . . . . . . . . .1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 KeyStone Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Device Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Enhancements in KeyStone II . . . . . . . . . . . . . . . . . . . . . . . . .3 Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Release History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C66x DSP CorePac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ARM CorePac. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Development Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.1 Development Support . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Device Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Related Documentation from Texas Instruments . . . . Terminals 28 29 30 30 30 31 32 32 32 32 32 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.1 Package Terminals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.1 Pin Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Pullup/Pulldown Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . 6 21 21 21 23 24 24 24 25 26 26 26 ARM CorePac. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 ARM Cortex-A15 Processor. . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.3 ARM Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . 4.3.4 Endianess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 CFG Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Main TeraNet Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 Clocking and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.1 Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 15 16 16 16 16 17 19 33 33 38 81 Memory, Interrupts, and EDMA for 66AK2H14/12/06 82 6.1 Memory Map Summary for 66AK2H14/12/06 . . . . . . . . 82 6.2 Memory Protection Unit (MPU) for 66AK2H14/12/06. 95 6.2.1 MPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.2.2 MPU Programmable Range Registers . . . . . . . . . 102 6.3 Interrupts for 66AK2H14/12/06 . . . . . . . . . . . . . . . . . . . . 110 6.3.1 Interrupt Sources and Interrupt Controller . . . . 110 6.3.2 CIC Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.3.3 Inter-Processor Register Map . . . . . . . . . . . . . . . . . 176 6.3.4 NMI and LRESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Enhanced Direct Memory Access (EDMA3) Controller for 66AK2H14/12/06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178 6.4.1 EDMA3 Device-Specific Information . . . . . . . . . . .179 6.4.2 EDMA3 Channel Controller Configuration . . . . .179 6.4.3 EDMA3 Transfer Controller Configuration . . . . .179 6.4.4 EDMA3 Channel Synchronization Events . . . . . .180 System Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 7.1 Internal Buses and Switch Fabrics . . . . . . . . . . . . . . . . . . .189 7.2 Switch Fabric Connections Matrix - Data Space. . . . . .190 7.3 TeraNet Switch Fabric Connections Matrix Configuration Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196 7.4 Bus Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 8 Device Boot and Configuration . . . . . . . . . . . . . . . . . . . .203 8.1 Device Boot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203 8.1.1 Boot Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203 8.1.2 Boot Modes Supported . . . . . . . . . . . . . . . . . . . . . . .205 8.1.3 SoC Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 8.1.4 System PLL Settings . . . . . . . . . . . . . . . . . . . . . . . . . .227 8.2 Device Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229 8.2.1 Device Configuration at Device Reset . . . . . . . . .229 8.2.2 Peripheral Selection After Device Reset. . . . . . . .230 8.2.3 Device State Control Registers . . . . . . . . . . . . . . . .230 C66x CorePac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1 Memory Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 L1P Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.2 L1D Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.3 L2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.4 Multicore Shared Memory SRAM . . . . . . . . . . . . . . 3.1.5 L3 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Memory Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Bandwidth Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Power-Down Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 C66x CorePac Revision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 C66x CorePac Register Descriptions . . . . . . . . . . . . . . . . . 4 7 Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 2.2 2.3 2.4 3 6.4 9 Device Operating Conditions . . . . . . . . . . . . . . . . . . . . . .262 9.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . .262 9.2 Recommended Operating Conditions . . . . . . . . . . . . . .263 9.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .264 9.4 Power Supply to Peripheral I/O Mapping. . . . . . . . . . . .265 10 66AK2H14/12/06 Peripheral Information and Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . .266 10.1 Recommended Clock and Control Signal Transition Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266 10.2 Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266 10.2.1 Power-Up Sequencing. . . . . . . . . . . . . . . . . . . . . . .267 10.2.2 Power-Down Sequence. . . . . . . . . . . . . . . . . . . . . .273 10.2.3 Power Supply Decoupling and Bulk Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274 10.2.4 SmartReflex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274 10.3 Power Sleep Controller (PSC) . . . . . . . . . . . . . . . . . . . . . .276 10.3.1 Power Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276 10.3.2 Clock Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277 10.3.3 PSC Register Memory Map . . . . . . . . . . . . . . . . . . .278 10.4 Reset Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283 10.4.1 Power-on Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283 10.4.2 Hard Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284 10.4.3 Soft Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285 10.4.4 Local Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285 10.4.5 ARM CorePac Reset. . . . . . . . . . . . . . . . . . . . . . . . . .286 10.4.6 Reset Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286 10.4.7 Reset Controller Register . . . . . . . . . . . . . . . . . . . .286 10.4.8 Reset Electrical Data/Timing . . . . . . . . . . . . . . . . .286 10.5 Main PLL, ARM PLL, DDR3A PLL, DDR3B PLL, PASS PLL and the PLL Controllers. . . . . . . . . . . . . . . . .288 10.5.1 Main PLL Controller Device-Specific Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290 10.5.2 PLL Controller Memory Map . . . . . . . . . . . . . . . . .292 10.5.3 Main PLL Control Registers . . . . . . . . . . . . . . . . . .299 10.5.4 ARM PLL Control Registers. . . . . . . . . . . . . . . . . . .300 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. 66AK2H14/12/06 SPRS866E—November 2012—Revised November 2013 10.5.5 Main PLL Controller/ARM/SRIO/HyperLink/PCIe/ USB Clock Input Electrical Data/Timing. . . . . . . 301 10.6 DDR3A PLL and DDR3B PLL . . . . . . . . . . . . . . . . . . . . . . . 304 10.6.1 DDR3A PLL and DDR3B PLL Control Registers 305 10.6.2 DDR3A PLL and DDR3B PLL Device-Specific Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 10.6.3 DDR3 PLL Input Clock Electrical Data/Timing 306 10.7 PASS PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 10.7.1 PASS PLL Local Clock Dividers . . . . . . . . . . . . . . . 307 10.7.2 PASS PLL Control Registers. . . . . . . . . . . . . . . . . . 307 10.7.3 PASS PLL Device-Specific Information . . . . . . . 309 10.7.4 PASS PLL Input Clock Electrical Data/Timing . 309 10.8 External Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 10.8.1 External Interrupts Electrical Data/Timing . . . 309 10.9 DDR3A and DDR3B Memory Controllers. . . . . . . . . . . 311 10.9.1 DDR3 Memory Controller Device-Specific Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 10.9.2 DDR3 Slew Rate Control . . . . . . . . . . . . . . . . . . . . 312 10.9.3 DDR3 Memory Controller Electrical Data/Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 10.10 I2C Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 10.10.1 I2C Device-Specific Information . . . . . . . . . . . . 312 10.10.2 I2C Peripheral Register Description . . . . . . . . . 313 10.10.3 I2C Electrical Data/Timing. . . . . . . . . . . . . . . . . . 314 10.11 SPI Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 10.11.1 SPI Electrical Data/Timing. . . . . . . . . . . . . . . . . . 316 10.12 HyperLink Peripheral. . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 10.13 UART Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 10.14 PCIe Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 10.15 Packet Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 10.16 Security Accelerator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 10.17 Network Coprocessor Gigabit Ethernet (GbE) Switch Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 10.18 SGMII/XFI Management Data Input/Output (MDIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325 10.19 Ten-Gigabit Ethernet (10GbE) Switch Subsystem. .326 10.19.1 10GbE Supported Features . . . . . . . . . . . . . . . . .326 10.20 Timers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326 10.20.1 Timers Device-Specific Information . . . . . . . . .326 10.20.2 Timers Electrical Timing . . . . . . . . . . . . . . . . . . . .327 10.21 Serial RapidIO (SRIO) Port . . . . . . . . . . . . . . . . . . . . . . . .327 10.21.1 Serial RapidIO Device-Specific Information . .327 10.22 General-Purpose Input/Output (GPIO) . . . . . . . . . . . .328 10.22.1 GPIO Device-Specific Information. . . . . . . . . . .328 10.22.2 GPIO Peripheral Register Description . . . . . . .328 10.22.3 GPIO Electrical Data/Timing . . . . . . . . . . . . . . . .328 10.23 Semaphore2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329 10.24 Universal Serial Bus 3.0 (USB 3.0) . . . . . . . . . . . . . . . . .329 10.25 EMIF16 Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330 10.25.1 EMIF16 Electrical Data/Timing . . . . . . . . . . . . . .330 10.26 Emulation Features and Capability . . . . . . . . . . . . . . .333 10.26.1 Chip Level Features . . . . . . . . . . . . . . . . . . . . . . . .334 10.26.2 ICEPick Module . . . . . . . . . . . . . . . . . . . . . . . . . . . .335 10.27 Debug Port (EMUx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337 10.27.1 Concurrent Use of Debug Port . . . . . . . . . . . . . .338 10.27.2 Master ID for HW and SW Messages. . . . . . . . .339 10.27.3 SoC Cross-Triggering Connection. . . . . . . . . . .340 10.27.4 Peripherals-Related Debug Requirement. . . .340 10.27.5 Advance Event Triggering (AET) . . . . . . . . . . . .342 10.27.6 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342 10.27.7 IEEE 1149.1 JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . .343 A Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345 B Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 B.1 B.2 Thermal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 Packaging Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. 66AK2H14/12/06 SPRS866E—November 2012—Revised November 2013 List of Figures Figure 1-1 Figure 1-2 Figure 1-3 Figure 2-1 Figure 3-1 Figure 3-2 Figure 3-3 Figure 3-4 Figure 3-5 Figure 4-1 Figure 4-2 Figure 4-3 Figure 4-4 Figure 5-1 Figure 5-2 Figure 5-3 Figure 5-4 Figure 5-5 Figure 5-6 Figure 6-1 Figure 6-2 Figure 6-3 Figure 6-4 Figure 6-5 Figure 7-1 Figure 7-2 Figure 7-3 Figure 7-4 Figure 7-5 Figure 7-6 Figure 7-7 Figure 7-8 Figure 8-1 Figure 8-2 Figure 8-3 Figure 8-4 Figure 8-5 Figure 8-6 Figure 8-7 Figure 8-8 Figure 8-9 Functional Block Diagram for 66AK2H14 . . . . . .4 Functional Block Diagram for 66AK2H12 . . . . . .5 Functional Block Diagram for 66AK2H06 . . . . . .6 66AK2H14/12/06 Device Nomenclature . . . . . 18 C66x CorePac Block Diagram . . . . . . . . . . . . . . . 20 L1P Memory Configurations . . . . . . . . . . . . . . . . 21 L1D Memory Configurations . . . . . . . . . . . . . . . . 22 L2 Memory Configurations . . . . . . . . . . . . . . . . . 23 CorePac Revision ID Register (MM_REVID) . . . 26 66AK2H12 ARM CorePac Block Diagram . . . . . 27 66AK2H06 ARM CorePac Block Diagram . . . . . 28 ARM Interrupt Controller for Two Cortex-A15 Processor Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ARM Interrupt Controller for Four Cortex-A15 Processor Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 AAW 1517-PIN BGA Package (Bottom View) . 33 Pin Map Panels (Bottom View) . . . . . . . . . . . . . . 33 66AK2H14/12/06 Pin Map Left Side Panel (A) — Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 66AK2H14/12/06 Pin Map Left Center Panel (B) — Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 66AK2H14/12/06 Pin Map Right Center Panel (C) — Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 66AK2H14/12/06 Pin Map Right Side Panel (D) — Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Programmable Range n Start Address Register (PROGn_MPSAR) . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Programmable Range n End Address Register (PROGn_MPEAR) . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPAR). . . 106 66AK2H14/12 Interrupt Topology . . . . . . . . . . 111 66AK2H06 Interrupt Topology . . . . . . . . . . . . . 112 TeraNet 3_A-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 TeraNet 3_A-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 TeraNet 3_C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 TeraNet C66x to SDMA . . . . . . . . . . . . . . . . . . . . 193 TeraNet 3P_A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 TeraNet 3P_B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 TeraNet 6P_B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 TeraNet 3P_Tracer. . . . . . . . . . . . . . . . . . . . . . . . . 198 DEVSTAT Boot Mode Pins ROM Mapping . . . 206 Sleep Boot Mode Configuration Fields . . . . . 208 I2C Passive Mode Device Configuration Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 I2C Master Mode Device Configuration Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 SPI Device Configuration Fields . . . . . . . . . . . . 210 EMIF Boot Device Configuration Fields . . . . . 211 NAND Boot Device Configuration Fields. . . . 212 Serial Rapid I/O Boot Device Configuration Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Ethernet (SGMII) Boot Device Configuration Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 Figure 8-10 Figure 8-11 Figure 8-12 Figure 8-13 Figure 8-14 Figure 8-15 Figure 8-16 Figure 8-17 Figure 8-18 Figure 8-19 Figure 8-20 Figure 8-21 Figure 8-22 Figure 8-23 Figure 8-24 Figure 8-25 Figure 8-26 Figure 8-27 Figure 8-28 Figure 8-29 Figure 8-30 Figure 8-31 Figure 8-32 Figure 8-33 Figure 8-34 Figure 8-35 Figure 8-36 Figure 8-37 Figure 8-38 Figure 8-39 Figure 8-40 Figure 8-41 Figure 8-42 Figure 8-43 Figure 10-1 Figure 10-2 Figure 10-3 Figure 10-4 Figure 10-5 Figure 10-6 Figure 10-7 Figure 10-8 Figure 10-9 PCIe Boot Device Configuration Fields . . . . . .216 HyperLink Boot Device Configuration Fields 217 UART Boot Mode Configuration Field Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218 Device Status Register. . . . . . . . . . . . . . . . . . . . . .234 Device Configuration Register (DEVCFG) . . . .235 JTAG ID (JTAGID) Register . . . . . . . . . . . . . . . . . .235 LRESETNMI PIN Status Register (LRSTNMIPINSTAT) . . . . . . . . . . . . . . . . . . . . . . . . .236 LRESETNMI PIN Status Clear Register (LRSTNMIPINSTAT_CLR) . . . . . . . . . . . . . . . . . . . .237 Reset Status Register (RESET_STAT) . . . . . . . . .238 Reset Status Clear Register (RESET_STAT_CLR) . . . . . . . . . . . . . . . . . . . . . . . . .239 Boot Complete Register (BOOTCOMPLETE). .239 Power State Control Register (PWRSTATECTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . .241 NMI Generation Register (NMIGRx) . . . . . . . . .242 IPC Generation Registers (IPCGRx) . . . . . . . . . .242 IPC Acknowledgement Registers (IPCARx) . .243 IPC Generation Registers (IPCGRH) . . . . . . . . . .244 IPC Acknowledgement Register (IPCARH) . . .244 Timer Input Selection Register (TINPSEL) . . . .245 Timer Output Selection Register (TOUTPSEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247 Reset Mux Register . . . . . . . . . . . . . . . . . . . . . . . . .249 Device Speed Register (DEVSPEED) . . . . . . . . .250 ARM Endian Configuration Register 0 (ARMENDIAN_CFGr_0), r=0..7. . . . . . . . . . . . . . .251 ARM Endian Configuration Register 1 (ARMENDIAN_CFGr_1), r=0..7. . . . . . . . . . . . . . .251 ARM Endian Configuration Register 2 (ARMENDIAN_CFGr_2), r=0..7. . . . . . . . . . . . . . .252 Chip Miscellaneous Control Register (CHIP_MISC_CTL0) . . . . . . . . . . . . . . . . . . . . . . . . .252 Chip Miscellaneous Control Register (CHIP_MISC_CTL1) . . . . . . . . . . . . . . . . . . . . . . . . .253 System Endian Status Register . . . . . . . . . . . . . .253 SYNECLK_PINCTL Register. . . . . . . . . . . . . . . . . .254 USB_PHY_CTL0 Register. . . . . . . . . . . . . . . . . . . .254 USB_PHY_CTL1 Register. . . . . . . . . . . . . . . . . . . .256 USB_PHY_CTL2 Register. . . . . . . . . . . . . . . . . . . .257 USB_PHY_CTL3 Register. . . . . . . . . . . . . . . . . . . .258 USB_PHY_CTL4 Register. . . . . . . . . . . . . . . . . . . .259 USB_PHY_CTL5 Register. . . . . . . . . . . . . . . . . . . .260 Core Before IO Power Sequencing . . . . . . . . . .270 IO-Before-Core Power Sequencing. . . . . . . . . .272 SmartReflex 4-Pin 6-bit VID Interface Timing275 RESETFULL Reset Timing . . . . . . . . . . . . . . . . . . .287 Soft/Hard Reset Timing. . . . . . . . . . . . . . . . . . . . .287 Boot Configuration Timing . . . . . . . . . . . . . . . . .288 Main PLL and PLL Controller . . . . . . . . . . . . . . . .289 PLL Secondary Control Register (SECCTL) . . .293 PLL Controller Divider Register (PLLDIVn) . . .294 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. 66AK2H14/12/06 SPRS866E—November 2012—Revised November 2013 Figure 10-10 PLL Controller Clock Align Control Register (ALNCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 Figure 10-11 PLLDIV Divider Ratio Change Status Register (DCHANGE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 Figure 10-12 SYSCLK Status Register (SYSTAT) . . . . . . . . . . . 296 Figure 10-13 Reset Type Status Register (RSTYPE). . . . . . . . 296 Figure 10-14 Reset Control Register (RSTCTRL) . . . . . . . . . . 297 Figure 10-15 Reset Configuration Register (RSTCFG) . . . . . 297 Figure 10-16 Reset Isolation Register (RSISO) . . . . . . . . . . . . 298 Figure 10-17 Main PLL Control Register 0 (MAINPLLCTL0) 299 Figure 10-18 Main PLL Control Register 1 (MAINPLLCTL1) 299 Figure 10-19 ARM PLL Control Register 0 (ARMPLLCTL0) . 300 Figure 10-20 ARM PLL Control Register 1 (ARMPLLCTL1) . 301 Figure 10-21 Main PLL Controller/SRIO/HyperLink/PCIe/USB Clock Input Timing . . . . . . . . . . . . . . . . . . . . . . . . 303 Figure 10-22 Main PLL Transition Time . . . . . . . . . . . . . . . . . . 304 Figure 10-23 HYP0CLK, HYP1CLK, and PCIECLK Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 Figure 10-24 USBCLK Rise and Fall Times . . . . . . . . . . . . . . . . 304 Figure 10-25 DDR3A PLL and DDR3B PLL Block Diagram . 305 Figure 10-26 DDR3A PLL and DDR3B PLL Control Register 0 (DDR3APLLCTL0/DDR3BPLLCTL0) . . . . . . . . . . 305 Figure 10-27 DDR3A PLL and DDR3B PLL Control Register 1 (DDR3APLLCTL0/DDR3BPLLCTL1) . . . . . . . . . . 306 Figure 10-28 DDR3 PLL DDRCLK Timing . . . . . . . . . . . . . . . . . 307 Figure 10-29 PASS PLL Block Diagram . . . . . . . . . . . . . . . . . . . 307 Figure 10-30 PASS PLL Control Register 0 (PASSPLLCTL0) 308 Figure 10-31 PASS PLL Control Register 1 (PASSPLLCTL1) 308 Figure 10-32 PASS PLL Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 309 Figure 10-33 NMI and LRESET Timing . . . . . . . . . . . . . . . . . . . 310 Figure 10-34 I2C Module Block Diagram . . . . . . . . . . . . . . . . . 313 Figure 10-35 I2C Receive Timings . . . . . . . . . . . . . . . . . . . . . . . 315 Figure 10-36 I2C Transmit Timings . . . . . . . . . . . . . . . . . . . . . . 316 Figure 10-37 SPI Master Mode Timing Diagrams — Base Timings for 3-Pin Mode. . . . . . . . . . . . . . . . . . . . .318 Figure 10-38 SPI Additional Timings for 4-Pin Master Mode with Chip Select Option . . . . . . . . . . . . . . . . . . . .318 Figure 10-39 HyperLink Station Management Clock Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320 Figure 10-40 HyperLink Station Management Transmit Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320 Figure 10-41 HyperLink Station Management Receive Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320 Figure 10-42 UART Receive Timing Waveform . . . . . . . . . . . .321 Figure 10-43 UART CTS (Clear-to-Send Input) — Autoflow Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . .321 Figure 10-44 UART Transmit Timing Waveform. . . . . . . . . . .322 Figure 10-45 UART RTS (Request-to-Send Output) – Autoflow Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . .322 Figure 10-46 MACID1 Register (MMR Address 0x02620110) . . . . . . . . . . . . . . . .323 Figure 10-47 MACID2 Register (MMR Address 0x02620114) . . . . . . . . . . . . . . . .323 Figure 10-48 RFTCLK Select Register (CPTS_RFTCLK_SEL) 324 Figure 10-49 MDIO Input Timing. . . . . . . . . . . . . . . . . . . . . . . . .325 Figure 10-50 MDIO Output Timing . . . . . . . . . . . . . . . . . . . . . . .325 Figure 10-51 Timer Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327 Figure 10-52 GPIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329 Figure 10-53 EMIF16 Asynchronous Memory Read Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331 Figure 10-54 EMIF16 Asynchronous Memory Write Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332 Figure 10-55 EMIF16 EM_WAIT Read Timing Diagram . . . .332 Figure 10-56 EMIF16 EM_WAIT Write Timing Diagram . . . .332 Figure 10-57 Trace Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343 Figure 10-58 JTAG Test-Port Timing. . . . . . . . . . . . . . . . . . . . . .344 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. 66AK2H14/12/06 SPRS866E—November 2012—Revised November 2013 List of Tables Table 1-1 Table 2-1 Table 3-1 Table 3-2 Table 4-1 Table 5-1 Table 5-2 Table 5-3 Table 5-4 Table 5-5 Table 6-1 Table 6-2 Table 6-3 Table 6-4 Table 6-5 Table 6-6 Table 6-7 Table 6-8 Table 6-9 Table 6-10 Table 6-11 Table 6-12 Table 6-13 Table 6-14 Table 6-15 Table 6-16 Table 6-17 Table 6-18 Table 6-19 Table 6-20 66AK2Hx Release History . . . . . . . . . . . . . . . . . . . . .7 Characteristics of the 66AK2H14/12/06 Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Available Memory Page Protection Schemes 25 CorePac Revision ID Register (MM_REVID) Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Cortex-A15 Processor Core Supported Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 I/O Functional Symbol Definitions . . . . . . . . . . 38 Terminal Functions — Signals and Control by Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Terminal Functions — Power and Ground . . . 58 Terminal Functions — By Signal Name . . . . . . 60 Terminal Functions — By Ball Number . . . . . 68 Device Memory Map Summary for 66AK2H14/12/06 . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 MPU0- MPU5 Default Configuration. . . . . . . . . 95 MPU6-MPU11 Default Configuration . . . . . . . . 95 MPU12- MPU14 Default Configuration . . . . . . 96 MPU Memory Regions . . . . . . . . . . . . . . . . . . . . . . 96 Master ID Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Privilege ID Settings . . . . . . . . . . . . . . . . . . . . . . . . 99 MPU Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Configuration Register Field Descriptions . . 102 Programmable Range n Start Address Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 102 MPU0-MPU5 Programmable Range n Start Address Register (PROGn_MPSAR) Reset Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 MPU6-MPU11 Programmable Range n Start Address Register (PROGn_MPSAR) Reset Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 MPU12-MPU14 Programmable Range n Start Address Register (PROGn_MPSAR) Reset Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Programmable Range n End Address Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 104 MPU0-MPU5 Programmable Range n End Address Register (PROGn_MPEAR) Reset Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 MPU6-MPU11 Programmable Range n End Address Register (PROGn_MPEAR) Reset Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 MPU12-MPU14 Programmable Range n End Address Register (PROGn_MPEAR) Reset Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Programmable Range n Memory Protection Page Attribute Register Field Descriptions. . 106 MPU0-MPU5 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPAR) Reset Values . . . . . . . . . . . . . 108 MPU6-MPU11 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPAR) Reset Values . . . . . . . . . . . . . 109 Table 6-21 Table 6-22 Table 6-23 Table 6-24 Table 6-25 Table 6-26 Table 6-27 Table 6-28 Table 6-29 Table 6-30 Table 6-31 Table 6-32 Table 6-33 Table 6-34 Table 6-35 Table 6-36 Table 6-37 Table 6-38 Table 7-1 Table 7-2 Table 7-3 Table 8-1 Table 8-2 Table 8-3 Table 8-4 Table 8-5 Table 8-6 Table 8-7 Table 8-8 Table 8-9 Table 8-10 Table 8-11 Table 8-12 Table 8-13 Table 8-14 Table 8-15 Table 8-16 MPU12-MPU14 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPAR) Reset Values . . . . . . . . . . . . . .109 System Event Mapping — C66x CorePac Primary Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 System Event Mapping — ARM CorePac Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 CIC0 Event Inputs — C66x CorePac Secondary Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 CIC1 Event Inputs — C66x CorePac Secondary Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138 CIC2 Event Inputs (Secondary Events for EDMA3CC0 and Hyperlink) . . . . . . . . . . . . . . . . .149 CIC0 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 CIC1 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 CIC2 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 IPC Generation Registers (IPCGRx) . . . . . . . . . .176 LRESET and NMI Decoding . . . . . . . . . . . . . . . . .177 EDMA3 Channel Controller Configuration. . .179 EDMA3 Transfer Controller Configuration . . .180 EDMA3CC0 Events for 66AK2H14/12/06 . . . .180 EDMA3CC1 Events for 66AK2H14/12/06 . . . .182 EDMA3CC2 Events for 66AK2H14/12/06 . . . .183 EDMA3CC3 Events for 66AK2H14/12/06 . . . .185 EDMA3CC4 Events for 66AK2H14/12/06 . . . .186 Data Space Interconnect . . . . . . . . . . . . . . . . . . .194 Configuration Space Interconnect Section 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 Configuration Space Interconnect Section 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201 C66x DSP Boot RAM Memory Map . . . . . . . . . .203 ARM Boot RAM Memory Map . . . . . . . . . . . . . . .204 Boot Mode Pins: Boot Device Values . . . . . . . .207 Sleep Boot Configuration Field Descriptions 208 I2C Passive Mode Device Configuration Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209 I2C Master Mode Device Configuration Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210 SPI Device Configuration Field Descriptions .211 EMIF Boot Device Configuration Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212 NAND Boot Device Configuration Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213 Serial Rapid I/O Boot Device Configuration Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214 Ethernet (SGMII) Boot Device Configuration Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .215 PCIe Boot Device Configuration Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216 BAR Config / PCIe Window Sizes . . . . . . . . . . . .217 HyperLink Boot Device Configuration Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217 UART Boot Configuration Field Descriptions 218 Boot Parameter Table Common Parameters.219 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. 66AK2H14/12/06 SPRS866E—November 2012—Revised November 2013 Table 8-17 Table 8-18 Table 8-19 Table 8-20 Table 8-21 Table 8-22 Table 8-23 Table 8-24 Table 8-25 Table 8-26 Table 8-27 Table 8-28 Table 8-29 Table 8-30 Table 8-31 Table 8-32 Table 8-33 Table 8-34 Table 8-35 Table 8-36 Table 8-37 Table 8-38 Table 8-39 Table 8-40 Table 8-41 Table 8-42 Table 8-43 Table 8-44 Table 8-45 Table 8-46 Table 8-47 Table 8-48 Table 8-49 Table 8-50 Table 8-51 Table 8-52 Table 8-53 Table 8-54 Table 8-55 Table 8-56 Table 8-57 Table 8-58 Table 8-59 Table 8-60 EMIF16 Boot Parameter Table. . . . . . . . . . . . . . 219 SRIO Boot Parameter Table . . . . . . . . . . . . . . . . 220 Ethernet Boot Parameter Table . . . . . . . . . . . . 221 PCIe Boot Parameter Table. . . . . . . . . . . . . . . . . 222 I2C Boot Parameter Table . . . . . . . . . . . . . . . . . . 223 SPI Boot Parameter Table . . . . . . . . . . . . . . . . . . 223 HyperLink Boot Parameter Table . . . . . . . . . . . 224 UART Boot Parameter Table . . . . . . . . . . . . . . . 224 NAND Boot Parameter Table . . . . . . . . . . . . . . . 225 DDR3 Boot Parameter Table . . . . . . . . . . . . . . . 226 System PLL Configuration . . . . . . . . . . . . . . . . . 227 ARM PLL Configuration . . . . . . . . . . . . . . . . . . . . 228 Device Configuration Pins . . . . . . . . . . . . . . . . . 229 Device State Control Registers . . . . . . . . . . . . . 230 Device Status Register Field Descriptions. . . 234 Device Configuration Register Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 JTAG ID Register Field Descriptions . . . . . . . . 235 LRESETNMI PIN Status Register Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 LRESETNMI PIN Status Clear Register Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 Reset Status Register Field Descriptions . . . . 238 Reset Status Clear Register Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 Boot Complete Register Field Descriptions . 240 Power State Control Register Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 NMI Generation Register Field Descriptions 242 IPC Generation Registers Field Descriptions 243 IPC Acknowledgement Registers Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 IPC Generation Registers Field Descriptions 244 IPC Acknowledgement Register Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 Timer Input Selection Field Description . . . . 245 Timer Output Selection Field Description. . . 248 Reset Mux Register Field Descriptions . . . . . . 249 Device Speed Register Field Descriptions. . . 250 ARM Endian Configuration Register 0 Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 ARM Endian Configuration Register 1 Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 ARM Endian Configuration Register 2 Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 Chip Miscellaneous Control Register (CHIP_MISC_CTL0) Field Descriptions . . . . . . 252 Chip Miscellaneous Control Register (CHIP_MISC_CTL1) Field Descriptions . . . . . . 253 System Endian Status Register Descriptions 253 SYNECLK_PINCTL Register Descriptions . . . . 254 USB_PHY_CTL0 Register Field Descriptions. 255 USB_PHY_CTL1 Register Field Descriptions. 256 USB_PHY_CTL2 Register Field Descriptions. 257 USB_PHY_CTL3 Register Field Descriptions. 258 USB_PHY_CTL4 Register Field Descriptions. 259 Table 8-61 Table 9-1 Table 9-2 Table 9-3 Table 9-4 Table 10-1 Table 10-2 Table 10-3 Table 10-4 Table 10-5 Table 10-6 Table 10-7 Table 10-8 Table 10-9 Table 10-10 Table 10-11 Table 10-12 Table 10-13 Table 10-14 Table 10-15 Table 10-16 Table 10-17 Table 10-18 Table 10-19 Table 10-20 Table 10-21 Table 10-22 Table 10-23 Table 10-24 Table 10-25 Table 10-26 Table 10-27 Table 10-28 Table 10-29 Table 10-30 Table 10-31 Table 10-32 Table 10-33 USB_PHY_CTL5 Register Field Descriptions .261 Absolute Maximum Ratings . . . . . . . . . . . . . . . .262 Recommended Operating Conditions . . . . . .263 Electrical Characteristics. . . . . . . . . . . . . . . . . . . .264 Power Supply to Peripheral I/O Mapping . . .265 Power Supply Rails on the 66AK2H14/12/06 266 Core Before IO Power Sequencing . . . . . . . . . .268 IO-Before-Core Power Sequencing. . . . . . . . . .271 Clock Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . .273 SmartReflex 4-Pin 6-bit VID Interface Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274 66AK2H x Power Domains . . . . . . . . . . . . . . . . . .276 Clock Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277 PSC Register Memory Map . . . . . . . . . . . . . . . . .278 Reset Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283 Reset Timing Requirements . . . . . . . . . . . . . . . .286 Reset Switching Characteristics . . . . . . . . . . . . .287 Boot Configuration Timing Requirements . .287 Main PLL Controller Module Clock Domains Internal and Shared Local Clock Dividers . . . .290 Main PLL Stabilization, Lock, and Reset Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292 PLL Controller Registers (Including Reset Controller) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292 PLL Secondary Control Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294 PLL Controller Divider Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294 PLL Controller Clock Align Control Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295 PLLDIV Divider Ratio Change Status Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .295 SYSCLK Status Register Field Descriptions. . .296 Reset Type Status Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296 Reset Control Register Field Descriptions . . .297 Reset Configuration Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298 Reset Isolation Register Field Descriptions . .298 Main PLL Control Register 0 (MAINPLLCTL0) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .299 Main PLL Control Register 1 (MAINPLLCTL1) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .300 ARM PLL Control Register 0 Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300 ARM PLL Control Register 1Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301 Main PLL Controller/ARM/SRIO/HyperLink/PCIe/ USB Clock Input Timing Requirements . . . . . .301 DDR3A PLL and DDR3B PLL Control Register 0 Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .305 DDR3A PLL and DDR3B PLL Control Register 1 Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .306 DDR3 PLL DDRCLK(N|P) Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306 PASS PLL Control Register 0 Field Descriptions (PASSPLLCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .308 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. 66AK2H14/12/06 SPRS866E—November 2012—Revised November 2013 Table 10-34 Table 10-35 Table 10-36 Table 10-37 Table 10-38 Table 10-39 Table 10-40 Table 10-41 Table 10-42 Table 10-43 Table 10-44 Table 10-45 Table 10-46 Table 10-47 Table 10-48 Table 10-49 Table 10-50 Table 10-51 Table 10-52 Table 10-53 PASS PLL Control Register 1 Field Descriptions (PASSPLLCTL1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 PASS PLL Timing Requirements . . . . . . . . . . . . 309 NMI and LRESET Timing Requirements . . . . . 309 I2C Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 I2C Timing Requirements . . . . . . . . . . . . . . . . . . 314 I2C Switching Characteristics. . . . . . . . . . . . . . . 315 SPI Timing Requirements . . . . . . . . . . . . . . . . . . 316 SPI Switching Characteristics. . . . . . . . . . . . . . . 316 HyperLink Peripheral Timing Requirements 319 HyperLink Peripheral Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 UART Timing Requirements. . . . . . . . . . . . . . . . 321 UART Switching Characteristics . . . . . . . . . . . . 322 MACID1 Register Field Descriptions . . . . . . . . 323 MACID2 Register Field Descriptions . . . . . . . . 323 RFTCLK Select Register Field Descriptions . . 324 MDIO Timing Requirements . . . . . . . . . . . . . . . 325 MDIO Switching Characteristics . . . . . . . . . . . . 325 Timer Input Timing Requirements . . . . . . . . . 327 Timer Output Switching Characteristics . . . . 327 GPIO Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 Table 10-54 Table 10-55 Table 10-56 Table 10-57 Table 10-58 Table 10-59 Table 10-60 Table 10-61 Table 10-62 Table 10-63 Table 10-64 Table 10-65 Table 10-66 Table 10-67 Table 10-68 Table B-1 GPIO Input Timing Requirements . . . . . . . . . .328 GPIO Output Switching Characteristics . . . . .329 EMIF16 Asynchronous Memory Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330 ICEPick Debug Secondary TAPs . . . . . . . . . . . . .336 Emulation Interface with Different Debug Port Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337 MSTID mapping for Hardware Instrumentation (CPTRACERS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339 MSTID Mapping for Software Messages . . . . .339 Cross-Triggering Connection . . . . . . . . . . . . . . .340 TI XTRIG Assignment . . . . . . . . . . . . . . . . . . . . . . .340 Peripherals Emulation Support . . . . . . . . . . . . .341 EMUSUSP Peripheral Summary (for EMUSUSP Handshake from DEBUGSS). . . . . . . . . . . . . . . . .342 EMUSUSP Core Summary (for EMUSUSP Handshake to DEBUGSS) . . . . . . . . . . . . . . . . . . .342 Trace Switching Characteristics . . . . . . . . . . . . .343 JTAG Test Port Timing Requirements . . . . . . .344 JTAG Test Port Switching Characteristics . . . .344 Thermal Resistance Characteristics (PBGA Package) AAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 2 Device Characteristics 2.1 Characteristics Table 2-1 provides an overview of the 66AK2H14/12/06 SoC. The table shows the significant features of the device, including the capacity of on-chip RAM, the peripherals, the CPU frequency, and the package type with pin count. Table 2-1 Characteristics of the 66AK2H14/12/06 Processor (Part 1 of 2) HARDWARE FEATURES Cores 66AK2H12 8 4 ARM Cortex-A15 MPCore 4 2 2 – DDR3 memory controller (72-bit bus width) 2 16-bit ASYNC EMIF 1 EDMA3 (64 independent channels) 5 High-speed 1×/2×/4× Serial RapidIO port (4 lanes) 1 HyperLink (4 lanes) 2 IC 2 3 SPI 3 PCIe (2 lanes) 1 USB 3.0 1 UART 2 10/100/1000 Ethernet 4 Management Data Input/Output (MDIO) 64-bit timers (configurable) 1 Twenty 64-bit or Forty 32-bit General-Purpose Input/Output port (GPIO) Accelerators Security Accelerator 1 (1) 32KB per CorePac L1 data memory controller (C66x) 32KB per CorePac 4096KB 128KB L1 program memory controller (ARM Cortex-A15) 32KB per CorePac L1 data memory controller (ARM Cortex-A15) 32KB per CorePac Shared L2 Cache (ARM Cortex-A15) 4096KB L3 ROM (ARM Cortex-A15) 256KB C66x CorePac Rev. ID CorePac Revision ID Register (address location: 0181 2000h) JTAG BSDL_ID JTAGID Register (address location: 0x02620018) BGA Package 8192KB 128KB MSMC Voltage 1 L1 program memory controller (C66x) L3 ROM (C66x) Frequency Fourteen 64-bit or Twenty Eight 32-bit 32 Packet Accelerator Shared L2 Cache (C66x) On-Chip Memory Organization 66AK2H06 C66x DSP 10- GbE Peripherals 66AK2H14 6MB 0x0009_0000 (PG 1.0) 0x0009_0002 (PG 1.1) 0x0b98102f (PG 1.0) 0x1b98102f (PG 1.1) C66x Up to 1.2 GHz ARM Cortex-A15 Up to 1.4 GHz Core (V) I/O (V) 40 mm × 40 mm Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback SmartReflex variable supply 0.85 V, 1.0 V, 1.35 V, 1.5 V, 1.8 V and 3.3 V 1517-Pin Flip-Chip Plastic BGA (AAW) Device Characteristics 15 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 2-1 Characteristics of the 66AK2H14/12/06 Processor (Part 2 of 2) HARDWARE FEATURES Process Technology μm Product Status (2) Product Preview (PP), Advance Information (AI), Production Data (PD) 66AK2H14 66AK2H12 66AK2H06 0.028 μm PD End of Table 2-1 1 The Security Accelerator function is subject to export control and will be enabled only for approved device shipments. 2 PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. 2.2 C66x DSP CorePac The C66x DSP CorePac extends the performance of the C64x+ and C674x CPUs through enhancements and new features. Many of the new features target increased performance for vector processing. The C64x+ and C674x DSPs support 2-way SIMD operations for 16-bit data and 4-way SIMD operations for 8-bit data. On the C66x DSP, the vector processing capability is improved by extending the width of the SIMD instructions. C66x DSPs can execute instructions that operate on 128-bit vectors. The C66x CPU also supports SIMD for floating-point operations. Improved vector processing capability (each instruction can process multiple data in parallel) combined with the natural instruction level parallelism of C6000 architecture (e.g., execution of up to 8 instructions per cycle) results in a very high level of parallelism that can be exploited by DSP programmers through the use of TI's optimized C/C++ compiler. For more details on the C66x CPU and its enhancements over the C64x+ and C674x architectures, see the following documents (2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19): • C66x CPU and Instruction Set Reference Guide • C66x DSP Cache User Guide • C66x CorePac User Guide 2.3 ARM CorePac The ARM CorePac of the 66AK2H14/12/06 integrates a Cortex-A15 Cluster (4 Cortex™-A15 processors) with additional logic for bus protocol conversion, emulation, interrupt handling, and debug related enhancements. The Cortex™-A15 processor is an ARMv7A-compatible, multi-issue out-of-order, superscalar pipeline with integrated L1 caches. The implementation also supports advanced SIMDV2 (Neon technology) and VFPv4 (Vector Floating Point) architecture extensions, security, virtualization, LPAE (Large Physical Address Extension), and multiprocessing extensions. The quad core cluster includes a 4MB L2 cache and support for AMBA4 AXI and AXI Coherence Extension (ACE) protocols. For more information see the ARM CorePac User Guide for KeyStone II Devices User Guide listed in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. 2.4 Development Tools 2.4.1 Development Support In case the customer would like to develop their own features and software on the 66AK2H14/12/06 device, TI offers an extensive line of development tools for the TMS320C6000™ DSP platform, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. The tool's support documentation is electronically available within the Code Composer Studio™ Integrated Development Environment (IDE). 16 Device Characteristics Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 The following products support development of KeyStone devices: • Software Development Tools: – Code Composer Studio™ Integrated Development Environment (IDE), including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools – Scalable, Real-Time Foundation Software (DSP/BIOS™), which provides the basic run-time target software needed to support any DSP application • Hardware Development Tools: – Extended Development System (XDS™) Emulator (supports multiprocessor system debug) – EVM (Evaluation Module) 2.5 Device Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all devices and support tools. Each family member has one of two prefixes: X or [blank]. These prefixes represent evolutionary stages of product development from engineering prototypes through fully qualified production devices/tools. Device development evolutionary flow: • X: Experimental device that is not necessarily representative of the final device's electrical specifications • [Blank]: Fully qualified production device Support tool development evolutionary flow: • X: Development-support product that has not yet completed Texas Instruments internal qualification testing. • [Blank]: Fully qualified development-support product Experimental (X) and fully qualified [Blank] devices and development-support tools are shipped with the following disclaimer: Developmental product is intended for internal evaluation purposes. Fully qualified and production devices and development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that experimental devices (X) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, AAW), the temperature range (for example, blank is the default case temperature range), and the device speed range, in Megahertz (for example, blank is 1000 MHz [1 GHz]). For device part numbers and further ordering information for 66AK2H14/12/06 in the AAW package type, see the TI website www.ti.com or contact your TI sales representative. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Characteristics 17 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 2-1 provides a legend for reading the complete device name for any KeyStone II generation member. Figure 2-1 66AK2H14/12/06 Device Nomenclature ( _ ) 66A K2 PREFIX X = Experimental device Blank = Qualified device DEVICE FAMILY 66A = DSP + ARM SoC ARCHITECTURE K2 = KeyStone II PLATFORM H DEVICE NUMBER 12 SILICON REVISION Blank = Initial 1.0 silicon A = Silicon Revision 1.1 18 Device Characteristics H 12 (_) ( _ ) AAW ( _ ) ( _ ) MAXIMUM DEVICE SPEED Blank = 1 GHz 2 = 1.2 GHz 24 = 1.2 GHz DSP / 1.4 GHz ARM TEMPERATURE RANGE Blank = Commercial temperature range (0°C to +85°C) A = Extended temperature range (-40°C to +100°C) PACKAGE TYPE AAW = 1517-pin plastic ball grid array, with Pb-free solder balls and die bumps SECURITY Blank = Security Accelerator disabled / General Purpose device X = Security Accelerator enabled / General Purpose device D = Security Accelerator enabled / High Security device with TI developmental keys S = Security Accelerator enabled / High Security device with production keys Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 2.6 Related Documentation from Texas Instruments These documents describe the 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC). Copies of these documents are available on the Internet at www.ti.com. 64-bit Timer (Timer 64) for KeyStone Devices User Guide SPRUGV5 ARM CorePac User Guide for KeyStone II Devices User Guide SPRUHJ4 Chip Interrupt Controller (CIC) for KeyStone Devices User Guide SPRUGW4 Debug and Trace for KeyStone Devices User Guide SPRUGZ2 DDR3 Memory Controller for KeyStone Devices User Guide SPRUGV8 External Memory Interface (EMIF16) for KeyStone Devices User Guide SPRUGZ3 Emulation and Trace Headers Technical Reference SPRU655 Enhanced Direct Memory Access 3 (EDMA3) for KeyStone Devices User Guide SPRUGS5 General Purpose Input/Output (GPIO) for KeyStone Devices User Guide SPRUGV1 Gigabit Ethernet (GbE) Switch Subsystem (1 GB) for KeyStone Devices User Guide SPRUGV9 HyperLink for KeyStone Devices User Guide SPRUGW8 2 Inter Integrated Circuit (I C) for KeyStone Devices User Guide SPRUGV3 Interrupt Controller (INTC) for KeyStone Devices User Guide SPRUGW4 Memory Protection Unit (MPU) for KeyStone Devices User Guide SPRUGW5 Multicore Navigator for KeyStone Devices User Guide SPRUGR9 Multicore Shared Memory Controller (MSMC) for KeyStone II Devices User Guide SPRUHJ6 Network Coprocessor (NETCP) for KeyStone Devices User Guide SPRUGZ6 Optimizing Application Software on KeyStone Devices SPRABG8 Packet Accelerator (PA) for KeyStone Devices User Guide SPRUGS4 Peripheral Component Interconnect Express (PCIe) for KeyStone Devices User Guide SPRUGS6 Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide SPRUGV2 Power Sleep Controller (PSC) for KeyStone Devices User Guide SPRUGV4 Security Accelerator (SA) for KeyStone Devices User Guide SPRUGY6 Security Addendum for KeyStone II Devices (1) SPRABS4 Semaphore2 Hardware Module for KeyStone Devices User Guide SPRUGS3 Serial Peripheral Interface (SPI) for KeyStone Devices User Guide SPRUGP2 Universal Asynchronous Receiver/Transmitter (UART) for KeyStone Devices User Guide SPRUGP1 1 Contact a TI sales office to obtain this document. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 19 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 3 C66x CorePac The C66x CorePac consists of several components: • Level-one and level-two memories (L1P, L1D, L2) • Data Trace Formatter (DTF) • Embedded Trace Buffer (ETB) • Interrupt controller • Power-down controller • External memory controller • Extended memory controller • A dedicated local power/sleep controller (LPSC) The C66x CorePac also provides support for big and little endianness, memory protection, and bandwidth management (for resources local to the CorePac). Figure 3-1 shows a block diagram of the C66x CorePac. Figure 3-1 C66x CorePac Block Diagram C66x DSP Core 16-/32-bit Instruction Dispatch Control Registers In-Circuit Emulation Boot Controller Instruction Decode Data Path B Data Path A PLLC LPSC A Register File B Register File A31-A16 A15-A0 B31-B16 B15-B0 .M1 xx xx .M2 xx xx GPSC .L1 .S1 .D1 .D2 .S2 Data Memory Controller (DMC) With Memory Protect/Bandwidth Mgmt .L2 L2 Cache/ SRAM 1024KB MSM SRAM 6144KB DDR3 SRAM DMA Switch Fabric External Memory Controller (EMC) Interrupt and Exception Controller Instruction Fetch Extended Memory Controller (XMC) Memory Controller (PMC) With Memory Protect/Bandwidth Mgmt Unified Memory Controller (UMC) 32KB L1P CFG Switch Fabric 32KB L1D For more detailed information on the C66x CorePac in the 66AK2H14/12/06 device, see the C66x CorePac User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. 20 C66x CorePac Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 3.1 Memory Architecture Each C66x CorePac of the 66AK2H14/12/06 device contains a 1024KB level-2 memory (L2), a 32KB level-1 program memory (L1P), and a 32KB level-1 data memory (L1D). The device also contains a 6144KB multicore shared memory (MSM). All memory on the 66AK2H14/12/06 has a unique location in the memory map (see the Memory, Interrupts, and EDMA chapter). After device reset, L1P and L1D cache are configured as all cache, by default. The L1P and L1D cache can be reconfigured via software through the L1PMODE field of the L1P Configuration Register (L1PMODE) and the L1DMODE field of the L1D Configuration Register (L1DCFG) of the C66x CorePac. L1D is a two-way set-associative cache, while L1P is a direct-mapped cache. The on-chip bootloader changes the reset configuration for L1P and L1D. For more information, see the Bootloader for the C66x DSP User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. For more information on the operation L1 and L2 caches, see the C66x DSP Cache User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. 3.1.1 L1P Memory The L1P memory configuration for the 66AK2H14/12/06 device is as follows: • Region 0 size is 0K bytes (disabled) • Region 1 size is 32K bytes with no wait states Figure 3-2 shows the available SRAM/cache configurations for L1P. Figure 3-2 L1P Memory Configurations L1P Mode Bits 000 001 010 Block Base Address 011 100 L1P Memory 00E0 0000h 1/2 SRAM All SRAM 7/8 SRAM 16K bytes 3/4 SRAM Direct Mapped Cache 00E0 4000h 8K bytes DM Cache Direct Mapped Cache Direct Mapped Cache 00E0 6000h 4K bytes 00E0 7000h 4K bytes 00E0 8000h 3.1.2 L1D Memory The L1D memory configuration for the 66AK2H14/12/06 device is as follows: • Region 0 size is 0K bytes (disabled) • Region 1 size is 32K bytes with no wait states Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback C66x CorePac 21 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 3-3 shows the available SRAM/cache configurations for L1D. Figure 3-3 L1D Memory Configurations L1D Mode Bits 000 001 010 011 100 L1D Memory Block Base Address 00F0 0000h 1/2 SRAM All SRAM 7/8 SRAM 16K bytes 3/4 SRAM 2-Way Cache 00F0 4000h 8K bytes 2-Way Cache 2-Way Cache 22 C66x CorePac 2-Way Cache 00F0 6000h 4K bytes 00F0 7000h 4K bytes 00F0 8000h Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 3.1.3 L2 Memory The L2 memory configuration for the 66AK2H14/12/06 device is as follows: • Total memory size is 8192KB • Each CorePac contains 1024KB of memory • Local starting address for each CorePac is 0080 0000h L2 memory can be configured as all SRAM, all 4-way set-associative cache, or a mix of the two. The amount of L2 memory that is configured as cache is controlled through the L2MODE field of the L2 Configuration Register (L2CFG) of the C66x CorePac. Figure 3-4 shows the available SRAM/cache configurations for L2. By default, L2 is configured as all SRAM after device reset. Figure 3-4 L2 Memory Configurations L2 Mode Bits 000 001 010 011 100 101 110 L2 Memory Block Base Address 0080 0000h 1/2 SRAM 512K bytes 3/4 SRAM ALL SRAM 31/32 SRAM 15/16 SRAM 7/8 SRAM 4-Way Cache 0088 0000h 256K bytes 4-Way Cache 008C 0000h 128K bytes 4-Way Cache 4-Way Cache 4-Way Cache 4-Way Cache Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 008E 0000h 64K bytes 32K bytes 32K bytes 008F 0000h 008F 8000h 008F FFFFh C66x CorePac 23 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Global addresses that are accessible to all masters in the system are in all memory local to the processors. In addition, local memory can be accessed directly by the associated processor through aliased addresses, where the eight MSBs are masked to 0. The aliasing is handled within the CorePac and allows for common code to be run unmodified on multiple cores. For example, address location 0x10800000 is the global base address for CorePac0's L2 memory. CorePac0 can access this location by either using 0x10800000 or 0x00800000. Any other master on the device must use 0x10800000 only. Conversely, 0x00800000 can by used by any of the C66x CorePacs as their own L2 base addresses. For CorePac0, as mentioned, this is equivalent to 0x10800000, for CorePac1 this is equivalent to 0x11800000, and for CorePac2 this is equivalent to 0x12800000. Local addresses should be used only for shared code or data, allowing a single image to be included in memory. Any code/data targeted to a specific core, or a memory region allocated during run-time by a particular CorePac should always use the global address only. 3.1.4 Multicore Shared Memory SRAM The MSM SRAM configuration for the 66AK2H14/12/06 device is as follows: • Memory size of 6144KB • Can be configured as shared L2 or shared L3 memory • Allows extension of external addresses from 2GB up to 8GB • Has built-in memory protection features The MSM SRAM is always configured as all SRAM. When configured as a shared L2, its contents can be cached in L1P and L1D. When configured in shared L3 mode, it’s contents can be cached in L2 also. For more details on external memory address extension and memory protection features, see the Multicore Shared Memory Controller (MSMC) for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. 3.1.5 L3 Memory The L3 ROM on the device is 128KB. The ROM contains software used to boot the device. There is no requirement to block accesses from this portion to the ROM. 3.2 Memory Protection Memory protection allows an operating system to define who or what is authorized to access L1D, L1P, and L2 memory. To accomplish this, the L1D, L1P, and L2 memories are divided into pages. There are 16 pages of L1P (2KB each), 16 pages of L1D (2KB each), and 32 pages of L2 (32KB each). The L1D, L1P, and L2 memory controllers in the C66x CorePac are equipped with a set of registers that specify the permissions for each memory page. Each page may be assigned with fully orthogonal user and supervisor read, write, and execute permissions. In addition, a page may be marked as either (or both) locally accessible or globally accessible. A local access is a direct DSP access to L1D, L1P, and L2, while a global access is initiated by a DMA (either IDMA or the EDMA3) or by other system masters. Note that EDMA or IDMA transfers programmed by the DSP count as global accesses. On a secure device, pages can be restricted to secure access only (default) or opened up for public, non-secure access. The DSP and each of the system masters on the device are all assigned a privilege ID. It is possible to specify only whether memory pages are locally or globally accessible. 24 C66x CorePac Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 The AIDx and LOCAL bits of the memory protection page attribute registers specify the memory page protection scheme, see Table 3-1. Table 3-1 AIDx (1) Bit Available Memory Page Protection Schemes Local Bit Description 0 0 No access to memory page is permitted. 0 1 Only direct access by DSP is permitted. 1 0 Only accesses by system masters and IDMA are permitted (includes EDMA and IDMA accesses initiated by the DSP). 1 1 All accesses permitted. End of Table 3-1 1 x = 0, 1, 2, 3, 4, 5 Faults are handled by software in an interrupt (or an exception, programmable within the CorePac interrupt controller) service routine. A DSP or DMA access to a page without the proper permissions will: • Block the access — reads return 0, writes are ignored • Capture the initiator in a status register — ID, address, and access type are stored • Signal the event to the DSP interrupt controller The software is responsible for taking corrective action to respond to the event and resetting the error status in the memory controller. For more information on memory protection for L1D, L1P, and L2, see the C66x CorePac User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. 3.3 Bandwidth Management When multiple requestors contend for a single C66x CorePac resource, the conflict is resolved by granting access to the highest priority requestor. The following four resources are managed by the bandwidth management control hardware: • Level 1 Program (L1P) SRAM/Cache • Level 1 Data (L1D) SRAM/Cache • Level 2 (L2) SRAM/Cache • Memory-mapped registers configuration bus The priority level for operations initiated within the C66x CorePac are declared through registers in the CorePac. These operations are: • DSP-initiated transfers • User-programmed cache coherency operations • IDMA-initiated transfers The priority level for operations initiated outside the CorePac by system peripherals is declared through the Priority Allocation Register (PRI_ALLOC). System peripherals with no fields in PRI_ALLOC have their own registers to program their priorities. More information on the bandwidth management features of the CorePac can be found in the C66x CorePac Reference Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback C66x CorePac 25 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 3.4 Power-Down Control The C66x CorePac supports the ability to power-down various parts of the CorePac. The power-down controller (PDC) of the CorePac can be used to power down L1P, the cache control hardware, the DSP, and the entire CorePac. These power-down features can be used to design systems for lower overall system power requirements. Note—The 66AK2H14/12/06 does not support power-down modes for the L2 memory at this time. More information on the power-down features of the C66x CorePac can be found in the C66x CorePac Reference Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19 3.5 C66x CorePac Revision The version and revision of the C66x CorePac can be read from the CorePac Revision ID Register (MM_REVID) located at address 0181 2000h. The MM_REVID register is shown in Table 3-2 and described in Table 3-2. The C66x CorePac revision is dependent on the silicon revision being used. Figure 3-5 CorePac Revision ID Register (MM_REVID) 31 16 15 0 VERSION REVISION R-n R-n Legend: R = Read only; R/W = Read/Write; -n = value after reset Table 3-2 Bit CorePac Revision ID Register (MM_REVID) Field Descriptions Name Value Description 31-16 VERSION xxxxh Version of the C66x CorePac implemented on the device will depend on the silicon being used. 15-0 REVISION 0000h Revision of the C66x CorePac version implemented on this device. End of Table 3-2 3.6 C66x CorePac Register Descriptions See the C66x CorePac User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19 for register offsets and definitions. 26 C66x CorePac Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 4 ARM CorePac The ARM CorePac is added in the 66AK2H14/12/06 to enable the ability for layer 2 and layer 3 processing on-chip. Operations such as traffic control, local O&M, NBAP/FP termination, and SCTP processing can all be performed with the Cortex-A15 processor core. The ARM CorePac of the 66AK2H14/12/06 integrates one or more Cortex-A15 processor clusters with additional logic for bus protocol conversion, emulation, interrupt handling, and debug related enhancements. The Cortex™-A15 processor is an ARMv7A-compatible, multi-issue out-of-order superscalar execution engine with integrated L1 caches. The implementation also supports advanced SIMDv2 (NEON™ technology) and VFPv4 (vector floating point) architecture extensions, security, virtualization, LPAE (large physical address extension), and multiprocessing extensions. The ARM CorePac includes a 4MBL2 cache and support for AMBA4 AXI and AXI coherence extension (ACE) protocols. An interrupt controller is included in the ARM CorePac to handle host interrupt requests in the system. The ARM CorePac has three functional clock domains, including a high-frequency clock domain used by the Cortex™-A15. The high-frequency domain is isolated from the rest of the device by asynchronous bridges. The following figures show the ARM CorePac. Figure 4-1 66AK2H12 ARM CorePac Block Diagram KeyStone II ARM CorePac (Quad Core) ARM Generic Interrupt Controller 400 16 PPI VBUSP2AXI Bridge Global Time Base Counter Endian CFG TCI6638 TCI6636 66AK2H12 Timer 0 - 3 TeraNet (CFG) 64 Bits 32KB L1 P-Cache 32KB L1 P-Cache 32KB L1 P-Cache APB MUX APB Debug 32KB L1 D-Cache APB CTI/CTM CTM 32KB L1 D-Cache Debug SubSystem PTM (´4) ARM A15 Main PLL ATB APB 32KB L1 D-Cache TeraNet (DMA) OCP ARM Trace ATB ARM A15 ARM CorePac Clock Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 32KB L1 D-Cache ARM A15 32KB L1 P-Cache Boot Config VBUSP ARM A15 L2 Cache Control and Snoop Control Unit 480 SPI Interrupts STM ATB 4 MB L2 Cache ARM INTC ARM Cluster IRQ, FIQ, VIRQ, VFIQ CTI (´4) ARM VBUSP Registers AXI-VBUS Master VBUSP 256b VBUSM TeraNet (CFG) MSMC DDR3 ARM A15 Core Clock ARM PLL PSC ARM CorePac 27 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 4-2 66AK2H06 ARM CorePac Block Diagram KeyStone II ARM CorePac (Dual Core) ARM Generic Interrupt Controller 400 ATB 8 PPI VBUSP2AXI Bridge Global Time Base Counter Endian CFG 66AK2H06 Boot Config 64 Bits Timer 0 - 3 TeraNet (CFG) STM VBUSP ARM A15 L2 Cache Control and Snoop Control Unit 480 SPI Interrupts IRQ, FIQ, VIRQ, VFIQ 4 MB L2 Cache ARM INTC ARM Cluster 32KB L1 P-Cache 32KB L1 D-Cache OCP ARM Trace ATB APB APB MUX APB ATB Debug SubSystem PTM (´4) Debug TeraNet (DMA) APB CTI/CTM ARM A15 32KB L1 P-Cache ARM CorePac Clock Main PLL CTM 32KB L1 D-Cache CTI (´4) ARM VBUSP Registers AXI-VBUS Master VBUSP 256b VBUSM TeraNet (CFG) MSMC DDR3 ARM A15 Core Clock ARM PLL PSC 4.1 Features The key features of the Quad Core ARM CorePac are as follows: • One or more Cortex-A15 processors, each containing: – Cortex-A15 processor revision R2P4. – ARM architecture version 7 ISA. – Multi-issue, out-of-order, superscalar pipeline. – L1 and L2 instruction and data cache of 32 KB, 2-way, 16 word line with 128 bit interface. – Integrated L2 cache of 4MB, 16-way, 16 word line, 128-bit interface to L1 along with ECC/parity. – Includes the NEON media coprocessor (NEON™), which implements the advanced SIMDv2 media processing architecture and the VFPv4 Vector Floating Point architecture. – The external interface uses the AXI protocol configured to 128-bit data width. – Includes the System Trace Macrocell (STM) support for non-invasive debugging. – Implements the ARMv7 debug with watchpoint and breakpoint registers and 32-bit advanced peripheral bus (APB) slave interface to CoreSight™ debug systems. • Interrupt controller – Supports up to 480 interrupt requests • Emulation/debug – Compatible with CoreSight™ architecture 28 ARM CorePac Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 4.2 System Integration The ARM CorePac integrates the following group of submodules. • Cortex™-A15 Processors: Provides a high processing capability, including the NEON™ technology for mobile multimedia acceleration. The Cortex™-A15 communicates with the rest of the ARM CorePac through an AXI bus with an AXI2VBUSM bridge and receives interrupts from the ARM CorePac interrupt controller (ARM INTC). • Interrupt Controller: Handles interrupts from modules outside of the ARM CorePac (for details, see ‘‘ARM Interrupt Controller’’). • Clock Divider: Provides the required divided clocks to the internal modules of the ARM CorePac and has a clock input from the Main PLL • In-Circuit Emulator: Fully compatible with CoreSight™ architecture and enables debugging capabilities. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback ARM CorePac 29 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 4.3 ARM Cortex-A15 Processor 4.3.1 Overview The ARM Cortex™-A15 processor incorporates the technologies available in the ARM7™ architecture. These technologies include NEON™ for media and signal processing and Jazelle™ RCT for acceleration of real-time compilers, Thumb®-2 technology for code density, and the VFPv4 floating point architecture. For details, see the ARM Cortex™-A15 Processor Technical Reference Manual. 4.3.2 Features Table 4-1 shows the features supported by the Cortex-A15 processor core. Table 4-1 Cortex-A15 Processor Core Supported Features Features Description ARM version 7-A ISA Standard Cortex-A15 processor instruction set + Thumb2, ThumbEE, JazelleX Java accelerator, and media extensions Cortex-A15 processor version R2P4 Backward compatible with previous ARM ISA versions Integer core Main core for processing integer instructions NEON core Gives greatly enhanced throughput for media workloads and VFP-Lite support Architecture Extensions Security, virtualization and LPAE (40-bit physical address) extensions L1 Lcache and Dcache 32KB, 2-way, 16 word line, 128 bit interface L2 cache 4096KB, 16-way, 16 word line, 128 bit interface to L1, ECC/Parity is supported shared between cores L2 valid bits cleared by software loop or by hardware Cache Coherency Support for coherent memory accesses between A15 cores and other non-core master peripherals (Ex: EDMA) in the DDR3A and MSMC SRAM space. Branch target address cache Dynamic branch prediction with Branch Target Buffer (BTB) and Global History Buffer (GHB), a return stack, and an indirect predictor Enhanced memory management unit Mapping sizes are 4KB, 64KB, 1MB, and 16MB Buses 128b AXI4 internal bus from Cortex-A15 converted to a 256b VBUSM to interface (through the MSMC) with MSMC SRAM, DDR EMIF, ROM, Interrupt controller and other system peripherals Non-invasive Debug Support Processor instruction trace using 4x Program Trace Macrocell (Coresight™ PTM), Data trace (print-f style debug) using System Trace Macrocell (Coresight™ STM) and Performance Monitoring Units (PMU) Misc Debug Support JTAG based debug and Cross triggering Voltage SmartReflex voltage domain for automatic voltage scaling Power Support for standby modes and separate core power domains for additional leakage power reduction End of Table 4-1 30 ARM CorePac Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 4.3.3 ARM Interrupt Controller The ARM CorePac interrupt controller (AINTC) is responsible for prioritizing all service requests from the system peripherals and the Secondary interrupt controller CIC2 and then generating either nIRQ or nFIQ to the Cortex-A15 processor. The type of the interrupt (nIRQ or nFIQ) and the priority of the interrupt inputs are programmable. The AINTC interfaces to the Cortex-A15 processor via the AXI port through an VBUS2AXI bridge and runs at half the processor speed. It has the capability to handle up to 480 requests, which can be steered/prioritized as A15 nFIQ or nIRQ interrupt requests. The general features of the AINTC are: • Up to 480 level sensitive shared peripheral interrupts (SPI) inputs • Individual priority for each interrupt input • Each interrupt can be steered to nFIQ or nIRQ • Independent priority sorting for nFIQ and nIRQ • Secure mask flag On the chip level, there is a dedicated chip level interrupt controller to serve the ARM interrupt controller. See the Interrupt section for more details. The figures below show an overall view of the ARM CorePac interrupt controller. Figure 4-3 ARM Interrupt Controller for Two Cortex-A15 Processor Cores ARM INTC Peripherals 480 SPI Interrupts CIC2 CPU/6 Clock GTB Counter Clock Power On Reset VBUSP Interface Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Generic Interrupt Controller 400 Global Time Base Counter VBUSP2AXI Bridge FIQ, IRQ, Virtual FIQ, Virtual IRQ 8 PPIs 64 Bits Cortex A15 16 Software Generated Inputs ARM CorePac 31 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 4-4 ARM Interrupt Controller for Four Cortex-A15 Processor Cores ARM INTC Peripherals 480 SPI Interrupts CIC2 CPU/6 Clock GTB Counter Clock Power On Reset VBUSP Interface Generic Interrupt Controller 400 Global Time Base Counter VBUSP2AXI Bridge FIQ, IRQ, Virtual FIQ, Virtual IRQ 16 PPIs 64 Bits Cortex A15 16 Software Generated Inputs 4.3.4 Endianess The ARM CorePac can operate in either little endian or big endian mode. When the ARM CorePac is in little endian mode and the rest of the system is in big endian mode, the bridges in the ARM CorePac are responsible for performing the endian conversion. 4.4 CFG Connection The ARM CorePac has two slave ports. The 66AK2H14/12/06 masters cannot access the ARM CorePac internal memory space. 1. Slave port 0 (TeraNet 3P_A) is a 32 bit wide port used for the ARM Trace module. 2. Slave port 1 (TeraNet 3P_B) is a 32 bit wide port used to access the rest of the system configuration. 4.5 Main TeraNet Connection There is one master port coming out of the ARM CorePac. The master port is a 256 bit wide port for the transactions going to the MSMC and DDR_EMIF data spaces. 4.6 Clocking and Reset 4.6.1 Clocking The Cortex-A15 processor core clocks are sourced from Controller. The Cortex-A15 processor core clock has a maximum frequency of 1.4 Ghz. The ARM CorePac subsytem also uses the SYSCLK1 clock source from the main PLL is locally divided (/1, /3 and /6) and provided to certain sub-modules inside the ARM CorePac. AINTC sub module runs at a frequency of SYSCLK1/6. 4.6.2 Reset The ARM CorePac does not support local reset. It is reset whenever the device is under reset. In addition, the interrupt controller (AINTC) can only be reset during POR and RESETFULL. AINTC also resets whenever device is under reset. For the complete programming model, refer to the KeyStone II ARM CorePac User Guide. 32 ARM CorePac Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 5 Terminals 5.1 Package Terminals Figure 5-1 shows the AAW ball grid array package (bottom view). Figure 5-1 AAW 1517-PIN BGA Package (Bottom View) 5.1.1 Pin Map The following figures show the 66AK2H14/12/06 pin assignments in four quadrants (A, B, C, and D). Note that the 14 pins that serve the 10-GbE function (XFI) in the 66AK2H14 are reserved in the 66AK2H12/06 devices. Figure 5-2 Pin Map Panels (Bottom View) A B C D Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Terminals 33 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 5-3 66AK2H14/12/06 Pin Map Left Side Panel (A) — Bottom View 1 2 3 4 5 6 7 8 9 10 AW (nopin) VSS VSS HYP1CLKP HYP1CLKN VSS HYP0RXN3 HYP0RXP3 VSS HYP0RXN0 AV VSS VSS HYP1RXN3 HYP1RXP3 VSS HYP1RXN1 HYP1RXP1 VSS HYP0RXN2 HYP0RXP2 AU VSS VSS VSS HYP1RXN2 HYP1RXP2 VSS HYP1RXN0 HYP1RXP0 VSS HYP0RXN1 AT RSV190 VSS HYP1TXN3 HYP1TXP3 VSS HYP1TXN0 HYP1TXP0 VSS HYP0CLKP HYP0CLKN AR RSV189 RSV186 VSS HYP1TXN2 HYP1TXP2 VSS HYP0TXN3 HYP0TXP3 VSS HYP0TXN1 AP TSRXCLKOUT0N RSV187 TSRXCLKOUT1N VSS HYP1TXN1 HYP1TXP1 VSS HYP0TXN2 HYP0TXP2 VSS AN TSRXCLKOUT0P VSS TSRXCLKOUT1P RSV002 VSS VSS VSS VSS VSS RSV019 AM TSREFCLKP ALTCORECLKP VSS RSV003 CVDD HYP1REFRES RSV020 VSS HYP0REFRES VSS AL TSREFCLKN ALTCORECLKN SYSCLKP CORECLKSEL VSS CVDD VSS CVDD VSS VDDAHV AK SYSCLKOUT VSS SYSCLKN POR RSV012 VSS CVDD VSS CVDD VSS AJ HYP0TXPMDAT HYP0RXPMCLK HYP0TXFLCLK HYP0RXFLDAT HYP0RXFLCLK VSS VSS CVDD VSS CVDD AH HYP1TXPMCLK HYP1TXFLDAT HYP1TXFLCLK HYP1RXFLCLK HYP0TXPMCLK VSS VSS VSS CVDD VSS AG TDI HYP1RXFLDAT HYP0RXPMDAT VSS HYP0TXFLDAT DVDD18 VSS CVDD VSS CVDD AF TDO HYP1TXPMDAT HYP1RXPMCLK HYP1RXPMDAT BOOTCOMPLETE VSS DVDD18 VSS CVDD VSS AE TCK TMS VSS LRESET HOUT DVDD18 VSS CVDD VSS CVDD AD TRST RESET RESETFULL LRESETNMIEN NMI VSS DVDD18 VSS CVDD VSS AC TSPUSHEVT1 TSPUSHEVT0 TSSYNCEVT RSV188 RESETSTAT DVDD18 VSS CVDD VSS CVDD AB TSCOMPOUT EMU01 EMU14 EMU10 DVDD18 VSS DVDD18 VSS CVDD VSS AA USBRESREF EMU00 EMU11 EMU18 VSS DVDD18 VSS CVDD VSS CVDD Y USBRX0M VSS EMU02 EMU03 DVDD18 VSS DVDD18 VSS CVDD VSS W USBRX0P USBCLKP EMU04 EMU05 VSS DVDD18 VSS CVDD VSS CVDD V USBTX0M USBCLKM VSS EMU06 DVDD18 VSS DVDD18 VSS CVDD VSS U USBTX0P USBDP EMU08 EMU07 EMU12 DVDD18 VSS CVDD VSS CVDD T USBVBUS USBDM EMU09 EMU13 EMU16 VSS DVDD18 VSS CVDD VSS R USBID0 VSS EMU15 EMU17 VSS DVDD18 VSS CVDD VSS CVDD P RSV001 RSV000 SDA0 SCL2 VSS VSS CVDD VSS CVDD VSS N SCL0 SDA1 SDA2 SCL1 VSS CVDD VSS CVDD VSS CVDD M TIMI1 TIMI0 TIMO0 TIMO1 UART1RTS VSS CVDD VSS CVDD VSS L UART0CTS UART1RXD USBDRVVBUS UART0RTS VSS CVDD VSS DVDD15 VSS DVDD15 K UART1CTS UART0TXD UART1TXD UART0RXD VSS VSS DVDD15 VSS DVDD15 VSS J VSS VSS VSS VSS VSS DVDD15 VSS DVDD15 VSS DVDD15 H DDR3AD04 DDR3AD01 DDR3AD13 VSS DDR3AD17 VSS DVDD15 VSS DVDD15 DDR3ARQ1 G DDR3AD00 DDR3AD03 DDR3AD10 DDR3AD16 DDR3AD20 DDR3AD29 DDR3AD30 DDR3AA02 DDR3AA01 DDR3AA03 F DDR3AD02 DDR3AD06 DDR3ADQM1 DDR3AD09 DDR3AD19 DDR3AD26 DDR3AD25 DDR3AA05 DDR3AA04 DDR3AA10 E DDR3ADQS0P DDR3AD05 VSS DDR3AD08 VSS DDR3ADQM3 VSS DDR3AA00 VSS DDR3AA12 D DDR3ADQS0N DDR3AD07 DDR3AD14 DDR3AD15 DDR3AD18 DDR3AD21 DDR3AD31 DDR3AA09 DDR3AA07 DDR3AA15 C VSS DDR3ADQM0 DDR3ADQS1N VSS DDR3AD22 VSS DDR3AD24 VSS DDR3AA06 VSS B VSS VSS DDR3ADQS1P DDR3AD12 DDR3ADQS2N DDR3AD23 DDR3ADQS3P DDR3AD28 DDR3AA08 DDR3AA14 A (nopin) VSS VSS DDR3AD11 DDR3ADQS2P DDR3ADQM2 DDR3ADQS3N DDR3AD27 DDR3AA11 DDR3AA13 1 2 3 4 5 6 7 8 9 10 34 Terminals Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 5-4 66AK2H14/12/06 Pin Map Left Center Panel (B) — Bottom View 11 12 13 14 15 16 17 18 19 20 AW HYP0RXP0 VSS RSV167 RSV168 VSS RSV161 RSV162 VSS XFIRXP1 XFIRXN1 AV VSS RSV171 RSV172 VSS RSV165 RSV166 VSS XFIRXP0 XFIRXN0 VSS AU HYP0RXP1 VSS RSV169 RSV170 VSS RSV163 RSV164 VSS XFICLKP XFICLKN AT VSS RSV183 RSV184 VSS RSV177 RSV178 VSS XFITXP0 XFITXN0 VSS AR HYP0TXP1 VSS RSV181 RSV182 VSS RSV175 RSV176 VSS XFITXP1 XFITXN1 AP HYP0TXN0 HYP0TXP0 VSS RSV179 RSV180 VSS RSV173 RSV174 VSS VSS AN VSS VSS VSS VSS VSS XFIREFRES0 VSS VSS RSV026 VSS AM RSV099 VSS VSS RSV025 RSV185 RSV024 VSS VSS XFIREFRES1 VSS AL VSS VDDAHV VSS VDDAHV VSS VDDAHV VSS VDDAHV VSS VDDAHV AK VDDAHV VSS VDDAHV VSS VDDAHV VSS VDDAHV VSS VDDAHV VSS AJ VSS VDDALV VSS VDDALV VSS VDDALV VSS VDDALV VSS VDDALV AH VDDALV VSS VDDALV VSS VDDALV VSS VDDALV VSS VDDALV VSS AG VSS VDDALV VSS VDDALV VSS VDDALV VSS VDDALV VSS VDDALV AF AVDDA1 VSS VDDALV VSS VDDALV VSS VDDALV VSS VDDALV VSS AE VSS CVDD VSS CVDD VSS CVDD VSS CVDD VSS CVDD AD VNWA2 VSS CVDD VSS CVDD VSS CVDD1 VSS CVDD1 VSS AC VSS CVDD VSS CVDD VSS CVDD VSS CVDD1 VSS CVDD AB CVDD VSS VDDUSB VSS CVDD VSS CVDD VSS CVDD VSS AA VSS VP VSS DVDD33 VSS CVDD VSS CVDD VSS CVDD Y VPTX VSS VPH VSS CVDD VSS CVDD VSS CVDD VSS W VSS CVDD VSS CVDD VSS CVDD1 VSS CVDD VSS CVDD V VNWA4 VSS CVDD1 VSS CVDD VSS CVDD1 VSS CVDD VSS U VSS CVDD VSS CVDD1 VSS CVDD1 VSS CVDD VSS CVDD1 T CVDD VSS CVDD1 VSS CVDD VSS CVDD VSS CVDD VSS R VSS CVDD VSS CVDD VSS CVDD VSS CVDD VSS CVDD P AVDDA6 VSS CVDD VSS CVDD VSS CVDD VSS CVDD VSS N VSS CVDD VSS CVDD VSS CVDD VSS CVDD VSS AVDDA2 M DVDD15 VSS AVDDA7 VSS AVDDA8 VSS DVDD15 AVDDA9 DVDD15 AVDDA10 L VSS DVDD15 VSS DVDD15 VSS DVDD15 VSS DVDD15 VSS DVDD15 K DVDD15 VSS DVDD15 VSS DVDD15 VSS DVDD15 VSS DVDD15 VSS J VSS DVDD15 VSS DVDD15 VSS DVDD15 VSS DVDD15 VSS DVDD15 H DVDD15 VSS DVDD15 VSS DVDD15 DDR3ARQ0 DVDD15 VSS DVDD15 VSS G DDR3ABA2 DDR3ACKE0 DDR3AODT1 DDR3AVREFSSTL DDR3ACB07 DDR3AD33 DDR3AD35 DDR3AD42 DDR3AD44 DDR3AD51 F DDR3ACE1 DDR3AWE RSV029 DDR3ACB05 DDR3ACB03 DDR3AD34 DDR3AD38 DDR3AD47 DDR3AD43 DDR3AD54 E VSS DDR3AODT0 VSS DDR3ADQM8 VSS DDR3AD32 VSS DDR3AD39 VSS DDR3AD53 D DDR3ACE0 RSV027 RSV028 DDR3ACB06 DDR3ACB04 DDR3AD36 DDR3AD37 DDR3AD46 DDR3AD41 DDR3AD50 C DDR3ABA1 VSS DDR3ACAS VSS DDR3ACB01 VSS DDR3ADQM4 VSS DDR3AD40 VSS B DDR3ABA0 DDR3ACLKOUTN0 DDR3ACLKOUTN1 DDR3ARESET DDR3ADQS8P DDR3ACB02 DDR3ADQS4N DDR3AD45 DDR3ADQS5P DDR3AD49 A DDR3ACKE1 DDR3ACLKOUTP0 DDR3ACLKOUTP1 DDR3ARAS DDR3ADQS8N DDR3ACB00 DDR3ADQS4P DDR3ADQM5 DDR3ADQS5N DDR3AD48 14 15 16 17 18 19 20 11 12 13 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Terminals 35 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 5-5 66AK2H14/12/06 Pin Map Right Center Panel (C) — Bottom View 21 22 23 24 25 26 27 28 29 VSS RIORXN2 RIORXP2 VSS SGMII3RXN SGMII3RXP VSS SGMII0RXN SGMII0RXP VSS RIORXN3 RIORXP3 VSS RIORXN0 RIORXP0 VSS SGMII1RXN SGMII1RXP VSS PCIERXN1 AV VSS RIORXN1 RIORXP1 VSS SGMII2RXN SGMII2RXP VSS SGMII0TXN SGMII0TXP VSS AU RIOTXN3 RIOTXP3 VSS RIOTXN0 RIOTXP0 VSS SGMII1TXN SGMII1TXP VSS PCIETXN0 AT VSS VSS RIOTXN1 RIOTXP1 VSS SGMII2TXN SGMII2TXP VSS PCIETXN1 PCIETXP1 AR VSS RIOTXN2 RIOTXP2 VSS SGMII3TXN SGMII3TXP VSS VSS VSS VSS AP VSS VSS VSS VSS VSS VSS VSS VSS VSS PACLKSEL AN RIOREFRES VSS RSV021 SGMIIREFRES RSV023 PCIEREFRES DVDD18 RSV022 DVDD18 RSV192 AM VSS VDDAHV VSS VDDAHV VSS DVDD18 VSS DVDD18 VSS CVDD AL VDDAHV VSS VDDAHV VSS VDDAHV VSS DVDD18 VSS CVDD VSS AK VSS VDDALV VSS VDDALV VSS DVDD18 VSS CVDD VSS DVDD15 AJ VDDALV VSS VDDALV VSS VDDALV VSS CVDD VSS AVDDA4 VSS AH VSS VDDALV VSS VNWA1 VSS AVDDA5 VSS CVDD VSS DVDD15 AG VDDALV VSS VDDALV VSS CVDD VSS CVDD VSS DVDD15 VSS AF VSS CVDD VSS CVDD VSS CVDD VSS AVDDA15 VSS DVDD15 AE CVDD VSS CVDD VSS CVDD VSS CVDD AVDDA14 DVDD15 VSS AD VSS CVDD VSS CVDD VSS CVDD VSS AVDDA13 VSS DVDD15 AC CVDD VSS CVDD VSS CVDD VSS CVDD AVDDA12 DVDD15 VSS AB VSS CVDD VSS CVDD VSS CVDD VSS DVDD15 VSS DVDD15 AA CVDD VSS CVDD VSS CVDD VSS CVDD AVDDA11 DVDD15 VSS Y VSS CVDDT1 VSS CVDD VSS CVDD VSS DVDD15 VSS DVDD15 W CVDD1 VSS CVDD VSS CVDD VSS CVDD VSS DVDD15 VSS V VSS CVDDT1 VSS CVDD VSS CVDD VSS DVDD15 VSS DVDD15 U CVDD1 VSS CVDD VSS CVDD VSS CVDD VSS DVDD15 VSS T VSS CVDDT1 VSS CVDD VSS CVDD VSS DVDD15 VSS DVDD15 R CVDD VSS CVDD VSS CVDD VSS CVDD VSS DVDD15 VSS P VSS CVDD VSS CVDD VSS CVDD VSS AVDDA3 VSS DVDD18 N VPP VSS VNWA3 VSS CVDD VSS CVDD VSS DVDD18 VSS M VSS VPP VSS DVDD18 VSS DVDD18 VSS CVDD VSS DVDD18 L DVDD15 VSS DVDD15 VSS DVDD18 VSS DVDD18 VSS CVDD VSS K VSS DVDD15 VSS VSS VSS DVDD18 VSS DVDD18 VSS CVDD J DVDD15 DDR3ARQ2 DVDD15 VSS DVDD18 VSS DVDD18 VSS VSS VSS H DDR3AD55 DDR3AD57 VSS CORESEL3 VSS RSV018 VSS SPI2DOUT VSS GPIO09 G DDR3AD62 DDR3AD59 RSV013 CORESEL0 SPI0SCS0 RSV017 SPI1DIN SPI2DIN GPIO00 GPIO12 F VSS DDR3AD60 RSV014 CORESEL1 SPI2SCS3 SPI0SCS2 SPI1SCS3 VSS GPIO05 GPIO11 E DDR3ADQM6 DDR3AD63 DDR3AD58 CORESEL2 SPI2CLK SPI0SCS3 SPI1SCS2 SPI2SCS1 GPIO02 GPIO06 D DDR3AD52 VSS DDR3AD56 VSS SPI0SCS1 VSS SPI1SCS1 SPI1CLK VSS GPIO07 C DDR3ADQS6N DDR3AD61 DDR3ADQS7N RSV004 DDR3ACLKP SPI0CLK SPI1SCS0 SPI2SCS0 GPIO04 GPIO01 B DDR3ADQS6P DDR3ADQM7 DDR3ADQS7P RSV005 DDR3ACLKN SPI0DIN SPI0DOUT SPI1DOUT SPI2SCS2 GPIO08 A 21 22 23 24 25 26 27 28 29 30 36 Terminals 30 AW Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 5-6 66AK2H14/12/06 Pin Map Right Side Panel (D) — Bottom View 31 32 33 34 35 36 37 38 39 PCIECLKP PCIECLKN VSS SRIOSGMIICLKP SRIOSGMIICLKN RSV81 VSS VSS (nopin) AW PCIERXP1 VSS PASSCLKP PASSCLKN VSS RSV79 RSV77 VSS VSS AV PCIERXN0 PCIERXP0 VSS RSV008 RSV80 RSV76 RSV78 VCNTL4 VSS AU PCIETXP0 VSS XFIMDIO RSV009 RSV75 VSS RSV74 VCNTL3 VCNTL0 AT VSS MDIO VSS XFIMDCLK VCNTL5 VCNTL2 VCNTL1 DDR3BCLKP DDR3BCLKN AR MDCLK RSV193 RSV195 RSV191 VD VCL VSS RSV006 RSV007 AP VSS RSV194 DDR3BD58 DDR3BD56 VSS DDR3BD57 DDR3BD63 DDR3BDQS7P DDR3BDQS7N AN CVDD VSS VSS DDR3BD59 DDR3BD60 DDR3BD62 VSS DDR3BD61 DDR3BDQM7 AM VSS DVDD15 DDR3BD55 DDR3BD52 VSS DDR3BD53 DDR3BD54 DDR3BDQS6N DDR3BDQS6P AL DVDD15 DDR3BRQ2 VSS DDR3BDQM6 DDR3BD51 DDR3BD50 VSS DDR3BD49 DDR3BD48 AK VSS VSS DDR3BD41 DDR3BD43 VSS DDR3BD44 DDR3BD47 DDR3BDQS5N DDR3BDQS5P AJ DVDD15 DDR3BD40 VSS DDR3BD37 DDR3BD38 DDR3BD42 VSS DDR3BD46 DDR3BD45 AH VSS DDR3BD39 DDR3BDQM4 DDR3BD35 VSS DDR3BD36 DDR3BD32 DDR3BD34 DDR3BDQM5 AG DVDD15 DDR3BCB00 VSS DDR3BCB01 DDR3BCB03 DDR3BD33 VSS DDR3BDQS4P DDR3BDQS4N AF VSS DDR3BCB02 DDR3BCB04 DDR3BCB07 VSS DDR3BCB05 DDR3BDQM8 DDR3BDQS8N DDR3BDQS8P AE DVDD15 DDR3BRAS VSS DDR3BODT1 RSV030 DDR3BCB06 VSS DDR3BCLKOUTP0 DDR3BCLKOUTN0 AD DDR3BVREFSSTL DDR3BRESET DDR3BODT0 RSV031 VSS DDR3BCAS DDR3BWE DDR3BCLKOUTN1 DDR3BCLKOUTP1 AC DVDD15 RSV032 VSS DDR3BCE0 DDR3BBA2 VSS VSS DDR3BCKE1 DDR3BCKE0 AB DDR3BRQ0 DDR3BA00 DDR3BA08 DDR3BBA1 VSS DDR3BCE1 DDR3BBA0 DDR3BA14 DDR3BA11 AA DVDD15 DDR3BA09 VSS DDR3BA03 DDR3BA12 DDR3BA15 VSS DDR3BA10 DDR3BA13 Y VSS DDR3BA02 DDR3BA01 DDR3BA04 VSS DDR3BA06 DDR3BA07 DDR3BD27 DDR3BD28 W DVDD15 DDR3BD30 VSS DDR3BA05 DDR3BD24 DDR3BD31 VSS DDR3BDQS3N DDR3BDQS3P V VSS DDR3BDQM3 DDR3BD29 DDR3BD26 VSS DDR3BD25 DDR3BD21 DDR3BD23 DDR3BDQM2 U DVDD15 DDR3BD08 VSS DDR3BD16 DDR3BD18 DDR3BD22 VSS DDR3BDQS2N DDR3BDQS2P T VSS DDR3BD09 DDR3BD14 DDR3BD17 VSS DDR3BD20 DDR3BD19 DDR3BD12 DDR3BD11 R DVDD15 DDR3BRQ1 VSS DDR3BDQM1 DDR3BD10 DDR3BD15 VSS DDR3BDQS1N DDR3BDQS1P P VSS DDR3BD13 DDR3BD04 DDR3BD01 VSS DDR3BD06 DDR3BD05 DDR3BD07 DDR3BDQM0 N DVDD15 EMIFD00 VSS EMIFD13 EMIFD15 EMIFD14 DDR3BD02 DDR3BDQS0P DDR3BDQS0N M VSS DVDD15 EMIFD02 EMIFD03 EMIFD12 EMIFD11 VSS DDR3BD00 DDR3BD03 L DVDD18 VSS EMIFA07 EMIFA16 VSS EMIFD10 EMIFD06 EMIFD09 EMIFD08 K VSS DVDD18 VSS EMIFA05 EMIFA18 EMIFA21 EMIFD01 EMIFD05 EMIFD07 J CVDD VSS EMIFBE1 EMIFBE0 EMIFA06 EMIFA12 VSS EMIFA22 EMIFD04 H VSS EMIFCE1 EMIFCE0 EMIFCE2 VSS EMIFA02 EMIFA09 EMIFA14 EMIFA19 G GPIO10 RSV016 EMIFRNW EMIFA00 EMIFA17 EMIFWE EMIFA01 EMIFA10 EMIFA15 F GPIO25 GPIO14 RSV015 EMIFA04 EMIFA13 EMIFCE3 EMIFOE EMIFWAIT0 EMIFA03 E GPIO22 GPIO27 GPIO21 VSS EMIFA11 EMIFA23 VSS RSV011 EMIFWAIT1 D GPIO18 VSS GPIO28 GPIO29 EMIFA08 EMIFA20 ARMCLKP RSV010 VSS C GPIO15 GPIO19 GPIO24 GPIO31 GPIO23 GPIO30 ARMCLKN VSS VSS B GPIO13 GPIO17 GPIO20 GPIO26 GPIO03 GPIO16 VSS VSS (nopin) A 31 32 33 34 35 36 37 38 39 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Terminals 37 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 5.2 Terminal Functions The terminal functions table (Table 5-2) identifies the external signal names, the associated pin (ball) numbers, the pin type (I, O/Z, or I/O/Z), whether the pin has any internal pullup/pulldown resistors, and gives functional pin descriptions. This table is arranged by function. The power terminal functions table (Table 5-3) lists the various power supply pins and ground pins and gives functional pin descriptions. Table 5-4 shows all pins arranged by signal name. Table 5-5 shows all pins arranged by ball number. There are 30 pins that have a secondary function as well as a primary function. The secondary function is indicated with a dagger (†). For more detailed information on device configuration, peripheral selection, multiplexed/shared pins, and pullup/pulldown resistors, see section 8.2 ‘‘Device Configuration’’ on page 229 and section 5.3 ‘‘Pullup/Pulldown Resistors’’ on page 81. Use the symbol definitions in Table 5-1 when reading Table 5-2. Table 5-1 I/O Functional Symbol Definitions Functional Symbol IPD or IPU A GND Table 5-2 Column Heading Definition Internal 100-μA pulldown or pullup is provided for this terminal. In most systems, a 1-kΩ resistor can be used to oppose the IPD/IPU. For more detailed information on pulldown/pullup resistors and situations in which external pulldown/pullup resistors are required, see the Hardware Design Guide for KeyStone II Devices (in development). IPD/IPU Analog signal Type Ground Type I Input terminal Type O Output terminal Type S Supply voltage Type Z Three-state terminal or high impedance Type End of Table 5-1 Table 5-2 Terminal Functions — Signals and Control by Function (Part 1 of 20) Signal Name Ball No. Type IPD/IPU Description Boot Configuration Pins ARMAVSSHARED† G24 I Down Boot strapped pin to share ARM AVS with SoC. Pin shared with CORESEL3. AVSIFSEL0† M2 I Down AVSIFSEL1† M1 I Down Default value (Boot Strapped) for SR PINMUX register (SR_PINCTL). Pins shared with TIMI0 and TIMI1. BOOTMODE_RSVD† B31 I Down 38 Terminals Bootmode reserved pin. Pin shared with GPIO15. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-2 Terminal Functions — Signals and Control by Function (Part 2 of 20) Signal Name Ball No. Type IPD/IPU Description BOOTMODE00† B30 I Down BOOTMODE01† D29 I Down BOOTMODE02† A35 I Down BOOTMODE03† B29 I Down BOOTMODE04† E29 I Down BOOTMODE05† D30 I Down User defined Boot Mode pins BOOTMODE06† C30 I Down See 8.1.2 ‘‘Boot Modes Supported’’ on page 205 for more details. BOOTMODE07† A30 I Down († Pins are secondary functions and are shared with GPIO[01:13]) BOOTMODE08† G30 I Down BOOTMODE09† F31 I Down BOOTMODE10† E30 I Down BOOTMODE11† F30 I Down BOOTMODE12† A31 I Down BOOTMODE13† F24 I User defined Boot Mode pins BOOTMODE14† E24 I See 8.1.2 ‘‘Boot Modes Supported’’ on page 205 for more details. BOOTMODE15† D24 I († Pins are secondary functions and are shared with CORESEL[0:2]) BOOTCOMPLETE AF5 OZ Down Boot progress indication output DDR3A_REMAP_EN† A36 I Down Control ARM remapping of DDR3A address space in the lower 4 GB (32b space) Mode select. Secondary function. Pin shared with GPIO16. LENDIAN† F29 I Up Little endian configuration pin. Pin shared with GPIO00 MAINPLLODSEL† E32 I Down Main PLL Output divider select. Pin shared with GPIO14. ALTCORECLKN AL2 I ALTCORECLKP AM2 I ARMCLKN B37 I ARMCLKP C37 I CORECLKSEL AL4 I Clock / Reset Alternate clock input to Main PLL Reference clock to drive ARM CorePac PLL Down CORESEL0 F24 I Down CORESEL1 E24 I Down CORESEL2 D24 I Down CORESEL3 G24 I Down DDR3ACLKN A25 I DDR3ACLKP B25 I DDR3BCLKN AR39 I DDR3BCLKP AR38 I Core clock select to select between SYSCLK(N|p) and ALTCORECCLK to the main PLL Select for the target core for LRESET and NMI DDR3A reference clock input to DDR PLL DDR3B reference clock input to DDR PLL HOUT AE5 OZ HYP0CLKN AT10 I HYP0CLKP AT9 I LRESET AE4 I Up Warm reset Up Enable for core selects LRESETNMIEN AD4 I HYP1CLKN AW5 I HYP1CLKP AW4 I NMI AD5 I Up Interrupt output pulse created by IPCGRH HyperLink reference clock to drive HyperLink0 SerDes HyperLink reference clock to drive HyperLink 1 SerDes Up Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Non-maskable interrupt Terminals 39 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-2 Terminal Functions — Signals and Control by Function (Part 3 of 20) Signal Name Ball No. Type IPD/IPU Description PACLKSEL AN30 I Down PA clock select to choose between core clock and PASSCLK pins PASSCLKN AV34 I PASSCLKP AV33 I PCIECLKN AW32 I PCIECLKP AW31 I POR AK4 I RESETFULL AD3 I Up Full reset RESET AD2 I Up Warm reset of non isolated portion of the device Up Reset status output RESETSTAT AC5 O SRIOSGMIICLKN AW35 I SRIOSGMIICLKP AW34 I SYSCLKN AK3 I SYSCLKP AL3 I SYSCLKOUT AK1 OZ TSREFCLKN AL1 I TSREFCLKP AM1 I TSRXCLKOUT0N AP1 O TSRXCLKOUT0P AN1 O TSRXCLKOUT1N AP3 O TSRXCLKOUT1P AN3 O DDR3ADQM0 C2 OZ Packet Accelerator subsystem reference clock PCIe clock input to drive PCIe SerDes Power-on reset RapidIO/SGMII reference clock to drive the RapidIO and SGMII SerDes System clock input to Main PLL (Main PLL optional vs. ALTCORECLK) Down System clock output to be used as a general purpose output clock for debug purposes External precision clock source for SyncE SerDes recovered clock output for SyncE. SerDes recovered clock output for SyncE. DDR3A DDR3ADQM1 F3 OZ DDR3ADQM2 A6 OZ DDR3ADQM3 E6 OZ DDR3ADQM4 C17 OZ DDR3ADQM5 A18 OZ DDR3ADQM6 D21 OZ DDR3ADQM7 A22 OZ DDR3ADQM8 E14 OZ 40 Terminals DDR3A EMIF data masks Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-2 Terminal Functions — Signals and Control by Function (Part 4 of 20) Signal Name Ball No. Type DDR3ADQS0P E1 IOZ DDR3ADQS0N D1 IOZ DDR3ADQS1P B3 IOZ DDR3ADQS1N C3 IOZ DDR3ADQS2P A5 IOZ DDR3ADQS2N B5 IOZ DDR3ADQS3P B7 IOZ DDR3ADQS3N A7 IOZ DDR3ADQS4P A17 IOZ DDR3ADQS4N B17 IOZ DDR3ADQS5P B19 IOZ DDR3ADQS5N A19 IOZ DDR3ADQS6P A21 IOZ DDR3ADQS6N B21 IOZ DDR3ADQS7P A23 IOZ DDR3ADQS7N B23 IOZ DDR3ADQS8P B15 IOZ DDR3ADQS8N A15 IOZ DDR3ACB00 A16 IOZ DDR3ACB01 C15 IOZ DDR3ACB02 B16 IOZ DDR3ACB03 F15 IOZ DDR3ACB04 D15 IOZ DDR3ACB05 F14 IOZ DDR3ACB06 D14 IOZ DDR3ACB07 G15 IOZ DDR3AD00 G1 IOZ DDR3AD01 H2 IOZ DDR3AD02 F1 IOZ DDR3AD03 G2 IOZ DDR3AD04 H1 IOZ DDR3AD05 E2 IOZ DDR3AD06 F2 IOZ DDR3AD07 D2 IOZ DDR3AD08 E4 IOZ DDR3AD09 F4 IOZ DDR3AD10 G3 IOZ DDR3AD11 A4 IOZ DDR3AD12 B4 IOZ DDR3AD13 H3 IOZ DDR3AD14 D3 IOZ DDR3AD15 D4 IOZ IPD/IPU Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Description DDR3A EMIF data strobe DDR3A EMIF check bits DDR3A EMIF data bus Terminals 41 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-2 Terminal Functions — Signals and Control by Function (Part 5 of 20) Signal Name Ball No. Type DDR3AD16 G4 IOZ DDR3AD17 H5 IOZ DDR3AD18 D5 IOZ DDR3AD19 F5 IOZ DDR3AD20 G5 IOZ DDR3AD21 D6 IOZ DDR3AD22 C5 IOZ DDR3AD23 B6 IOZ DDR3AD24 C7 IOZ DDR3AD25 F7 IOZ DDR3AD26 F6 IOZ DDR3AD27 A8 IOZ DDR3AD28 B8 IOZ DDR3AD29 G6 IOZ DDR3AD30 G7 IOZ DDR3AD31 D7 IOZ DDR3AD32 E16 IOZ DDR3AD33 G16 IOZ DDR3AD34 F16 IOZ DDR3AD35 G17 IOZ DDR3AD36 D16 IOZ DDR3AD37 D17 IOZ DDR3AD38 F17 IOZ DDR3AD39 E18 IOZ DDR3AD40 C19 IOZ DDR3AD41 D19 IOZ DDR3AD42 G18 IOZ DDR3AD43 F19 IOZ DDR3AD44 G19 IOZ DDR3AD45 B18 IOZ DDR3AD46 D18 IOZ DDR3AD47 F18 IOZ DDR3AD48 A20 IOZ 42 Terminals IPD/IPU Description DDR3A EMIF data bus DDR3A EMIF data bus Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-2 Terminal Functions — Signals and Control by Function (Part 6 of 20) Signal Name Ball No. Type DDR3AD49 B20 IOZ DDR3AD50 D20 IOZ DDR3AD51 G20 IOZ DDR3AD52 C21 IOZ DDR3AD53 E20 IOZ DDR3AD54 F20 IOZ DDR3AD55 G21 IOZ DDR3AD56 C23 IOZ DDR3AD57 G22 IOZ DDR3AD58 D23 IOZ DDR3AD59 F22 IOZ DDR3AD60 E22 IOZ DDR3AD61 B22 IOZ DDR3AD62 F21 IOZ IPD/IPU Description DDR3A EMIF data bus DDR3AD63 D22 IOZ DDR3ACE0 D11 OZ DDR3A EMIF chip enable DDR3ACE1 F11 OZ DDR3A EMIF chip enable DDR3ABA0 B11 OZ DDR3ABA1 C11 OZ DDR3ABA2 G11 OZ DDR3AA00 E8 OZ DDR3AA01 G9 OZ DDR3AA02 G8 OZ DDR3AA03 G10 OZ DDR3AA04 F9 OZ DDR3AA05 F8 OZ DDR3AA06 C9 OZ DDR3AA07 D9 OZ DDR3AA08 B9 OZ DDR3AA09 D8 OZ DDR3AA10 F10 OZ DDR3AA11 A9 OZ DDR3AA12 E10 OZ DDR3AA13 A10 OZ DDR3AA14 B10 OZ DDR3AA15 D10 OZ DDR3ACAS C13 OZ DDR3A EMIF column address strobe DDR3ARAS A14 OZ DDR3A EMIF row address strobe DDR3AWE F12 OZ DDR3A EMIF write enable DDR3ACKE0 G12 OZ DDR3A EMIF clock enable0 DDR3A EMIF clock enable1 DDR3ACKE1 A11 OZ DDR3ACLKOUTP0 A12 OZ DDR3ACLKOUTN0 B12 OZ Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback DDR3A EMIF bank address DDR3A EMIF address bus DDR3A EMIF output clocks to drive SDRAMs (one clock pair per SDRAM) for Rank0 Terminals 43 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-2 Terminal Functions — Signals and Control by Function (Part 7 of 20) Signal Name Ball No. Type IPD/IPU Description DDR3ACLKOUTP1 A13 OZ DDR3ACLKOUTN1 B13 OZ DDR3AODT0 E12 OZ DDR3A EMIF on die termination outputs used to set termination on the SDRAMs for Rank0 DDR3AODT1 G13 OZ DDR3A EMIF on die termination outputs used to set termination on the SDRAMs for Rank1 DDR3A EMIF output clocks to drive SDRAMs (one clock pair per SDRAM) for Rank1 DDR3ARESET B14 OZ DDR3A reset signal DDR3ARZQ0 H16 A PTV compensation pin for DDR3A DDR3ARZQ1 H10 A PTV compensation pin for DDR3A DDR3ARZQ2 H22 A PTV compensation pin for DDR3A DDR3BDQM0 N39 OZ DDR3BDQM1 P34 OZ DDR3BDQM2 U39 OZ DDR3BDQM3 U32 OZ DDR3BDQM4 AG33 OZ DDR3B DDR3BDQM5 AG39 OZ DDR3BDQM6 AK34 OZ DDR3BDQM7 AM39 OZ DDR3BDQM8 AE37 OZ DDR3BDQS0P M38 IOZ DDR3BDQS0N M39 IOZ DDR3BDQS1P P39 IOZ DDR3BDQS1N P38 IOZ DDR3BDQS2P T39 IOZ DDR3BDQS2N T38 IOZ DDR3BDQS3P V39 IOZ DDR3BDQS3N V38 IOZ DDR3BDQS4P AF38 IOZ DDR3BDQS4N AF39 IOZ DDR3BDQS5P AJ39 IOZ DDR3BDQS5N AJ38 IOZ DDR3BDQS6P AL39 IOZ DDR3BDQS6N AL38 IOZ DDR3BDQS7P AN38 IOZ DDR3BDQS7N AN39 IOZ DDR3BDQS8P AE39 IOZ DDR3BDQS8N AE38 IOZ DDR3BCB00 AF32 IOZ DDR3BCB01 AF34 IOZ DDR3BCB02 AE32 IOZ DDR3BCB03 AF35 IOZ DDR3BCB04 AE33 IOZ DDR3BCB05 AE36 IOZ DDR3BCB06 AD36 IOZ DDR3BCB07 AE34 IOZ 44 Terminals DDR3B EMIF data masks DDR3B EMIF data strobe DDR3B EMIF check bits Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-2 Terminal Functions — Signals and Control by Function (Part 8 of 20) Signal Name Ball No. Type DDR3BD00 L38 IOZ DDR3BD01 N34 IOZ DDR3BD02 M37 IOZ DDR3BD03 L39 IOZ DDR3BD04 N33 IOZ DDR3BD05 N37 IOZ DDR3BD06 N36 IOZ DDR3BD07 N38 IOZ DDR3BD08 T32 IOZ DDR3BD09 R32 IOZ DDR3BD10 P35 IOZ DDR3BD11 R39 IOZ DDR3BD12 R38 IOZ DDR3BD13 N32 IOZ DDR3BD14 R33 IOZ DDR3BD15 P36 IOZ DDR3BD16 T34 IOZ DDR3BD17 R34 IOZ DDR3BD18 T35 IOZ DDR3BD19 R37 IOZ DDR3BD20 R36 IOZ DDR3BD21 U37 IOZ DDR3BD22 T36 IOZ DDR3BD23 U38 IOZ DDR3BD24 V35 IOZ DDR3BD25 U36 IOZ DDR3BD26 U34 IOZ DDR3BD27 W38 IOZ DDR3BD28 W39 IOZ DDR3BD29 U33 IOZ DDR3BD30 V32 IOZ DDR3BD31 V36 IOZ IPD/IPU Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Description DDR3B EMIF data bus DDR3B EMIF data bus Terminals 45 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-2 Terminal Functions — Signals and Control by Function (Part 9 of 20) Signal Name Ball No. DDR3BD32 AG37 IOZ DDR3BD33 AF36 IOZ DDR3BD34 AG38 IOZ DDR3BD35 AG34 IOZ DDR3BD36 AG36 IOZ DDR3BD37 AH34 IOZ DDR3BD38 AH35 IOZ DDR3BD39 AG32 IOZ DDR3BD40 AH32 IOZ DDR3BD41 AJ33 IOZ DDR3BD42 AH36 IOZ DDR3BD43 AJ34 IOZ DDR3BD44 AJ36 IOZ DDR3BD45 AH39 IOZ DDR3BD46 AH38 IOZ DDR3BD47 AJ37 IOZ DDR3BD48 AK39 IOZ DDR3BD49 AK38 IOZ DDR3BD50 AK36 IOZ DDR3BD51 AK35 IOZ DDR3BD52 AL34 IOZ DDR3BD53 AL36 IOZ DDR3BD54 AL37 IOZ DDR3BD55 AL33 IOZ DDR3BD56 AN34 IOZ DDR3BD57 AN36 IOZ DDR3BD58 AN33 IOZ DDR3BD59 AM34 IOZ DDR3BD60 AM35 IOZ DDR3BD61 AM38 IOZ DDR3BD62 AM36 IOZ DDR3BD63 AN37 IOZ DDR3BCE0 AB34 OZ DDR3B EMIF chip enable DDR3BCE1 AA36 OZ DDR3B EMIF chip enable DDR3BBA0 AA37 OZ DDR3BBA1 AA34 OZ DDR3BBA2 AB35 OZ 46 Terminals Type IPD/IPU Description DDR3B EMIF data bus DDR3B EMIF data bus DDR3B EMIF bank address Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-2 Terminal Functions — Signals and Control by Function (Part 10 of 20) Signal Name Ball No. Type DDR3BA00 AA32 OZ DDR3BA01 W33 OZ DDR3BA02 W32 OZ DDR3BA03 Y34 OZ IPD/IPU Description DDR3BA04 W34 OZ DDR3BA05 V34 OZ DDR3BA06 W36 OZ DDR3BA07 W37 OZ DDR3BA08 AA33 OZ DDR3BA09 Y32 OZ DDR3BA10 Y38 OZ DDR3BA11 AA39 OZ DDR3BA12 Y35 OZ DDR3BA13 Y39 OZ DDR3BA14 AA38 OZ DDR3BA15 Y36 OZ DDR3BCAS AC36 OZ DDR3B EMIF column address strobe DDR3BRAS AD32 OZ DDR3B EMIF row address strobe DDR3BWE AC37 OZ DDR3B EMIF write enable DDR3BCKE0 AB39 OZ DDR3B EMIF clock enable0 DDR3BCKE1 AB38 OZ DDR3B EMIF clock enable1 DDR3BCLKOUTP0 AD38 OZ DDR3BCLKOUTN0 AD39 OZ DDR3BCLKOUTP1 AC39 OZ DDR3BCLKOUTN1 AC38 OZ DDR3BODT0 AC33 OZ DDR3BODT1 AD34 OZ DDR3B EMIF on-die termination outputs used to set termination on the SDRAMs DDR3BRESET AC32 OZ DDR3B reset signal DDR3B EMIF address bus DDR3B EMIF output clocks to drive SDRAM (one clock pair for Rank0) DDR3B EMIF output clocks to drive SDRAM (one clock pair for Rank1) DDR3B EMIF on-die termination outputs used to set termination on the SDRAMs DDR3BRZQ0 AA31 A PTV compensation pin for DDR3B DDR3BRZQ1 P32 A PTV compensation pin for DDR3B DDR3BRZQ2 AK32 A PTV compensation pin for DDR3B EMIF16 EMIFRW F33 O Up EMIFCE0 G33 O Up EMIFCE1 G32 O Up EMIFCE2 G34 O Up EMIFCE3 E36 O Up EMIFOE E37 O Up EMIFWE F36 O Up EMIFBE0 H34 O Up EMIFBE1 H33 O Up EMIFWAIT0 E38 I Down EMIFWAIT1 D39 I Down Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback EMIF control signals Terminals 47 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-2 Terminal Functions — Signals and Control by Function (Part 11 of 20) Signal Name Ball No. Type IPD/IPU EMIFA00 F34 O Down EMIFA01 F37 O Down EMIFA02 G36 O Down EMIFA03 E39 O Down EMIFA04 E34 O Down EMIFA05 J34 O Down EMIFA06 H35 O Down EMIFA07 K33 O Down EMIFA08 C35 O Down EMIFA09 G37 O Down EMIFA10 F38 O Down EMIFA11 D35 O Down EMIFA12 H36 O Down EMIFA13 E35 O Down EMIFA14 G38 O Down EMIFA15 F39 O Down EMIFA16 K34 O Down EMIFA17 F35 O Down EMIFA18 J35 O Down EMIFA19 G39 O Down EMIFA20 C36 O Down EMIFA21 J36 O Down EMIFA22 H38 O Down EMIFA23 D36 O Down EMIFD00 M32 IOZ Down EMIFD01 J37 IOZ Down EMIFD02 L33 IOZ Down EMIFD03 L34 IOZ Down EMIFD04 H39 IOZ Down EMIFD05 J38 IOZ Down EMIFD06 K37 IOZ Down EMIFD07 J39 IOZ Down EMIFD08 K39 IOZ Down EMIFD09 K38 IOZ Down EMIFD10 K36 IOZ Down EMIFD11 L36 IOZ Down EMIFD12 L35 IOZ Down EMIFD13 M34 IOZ Down EMIFD14 M36 IOZ Down EMIFD15 M35 IOZ Down 48 Terminals Description EMIF address EMIF address EMIF data Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-2 Terminal Functions — Signals and Control by Function (Part 12 of 20) Signal Name Ball No. Type IPD/IPU EMU00 AA2 IOZ Up Description EMU EMU01 AB2 IOZ Up EMU02 Y3 IOZ Up EMU03 Y4 IOZ Up EMU04 W3 IOZ Up EMU05 W4 IOZ Up EMU06 V4 IOZ Up EMU07 U4 IOZ Up EMU08 U3 IOZ Up EMU09 T3 IOZ Up EMU10 AB4 IOZ Up EMU11 AA3 IOZ Up EMU12 U5 IOZ Up EMU13 T4 IOZ Up EMU14 AB3 IOZ Up EMU15 R3 IOZ Up EMU16 T5 IOZ Up EMU17 R4 IOZ Up EMU18 AA4 IOZ Up EMU19† A32 IOZ Down EMU20† C31 IOZ Down EMU21† B32 IOZ Down EMU22† A33 IOZ Down EMU23† D33 IOZ Down EMU24† D31 IOZ Down EMU25† B35 IOZ Down EMU26† B33 IOZ Down EMU27† E31 IOZ Down EMU28† A34 IOZ Down EMU29† D32 IOZ Down EMU30† C33 IOZ Down EMU31† C34 IOZ Down EMU32† B36 IOZ Down EMU33† B34 IOZ Down Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Emulation and trace port Emulation and trace port († Pins shared with GPIO[17:31]) Terminals 49 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-2 Terminal Functions — Signals and Control by Function (Part 13 of 20) Signal Name Ball No. Type IPD/IPU GPIO00 F29 IOZ Up GPIO01 B30 IOZ Down GPIO02 D29 IOZ Down GPIO03 A35 IOZ Down GPIO04 B29 IOZ Down GPIO05 E29 IOZ Down GPIO06 D30 IOZ Down GPIO07 C30 IOZ Down GPIO08 A30 IOZ Down GPIO09 G30 IOZ Down GPIO10 F31 IOZ Down GPIO11 E30 IOZ Down GPIO12 F30 IOZ Down GPIO13 A31 IOZ Down GPIO14 E32 IOZ Down GPIO15 B31 IOZ Down GPIO16 A36 IOZ Down GPIO17 A32 IOZ Down GPIO18 C31 IOZ Down GPIO19 B32 IOZ Down GPIO20 A33 IOZ Down GPIO21 D33 IOZ Down GPIO22 D31 IOZ Down GPIO23 B35 IOZ Down GPIO24 B33 IOZ Down GPIO25 E31 IOZ Down GPIO26 A34 IOZ Down GPIO27 D32 IOZ Down GPIO28 C33 IOZ Down GPIO29 C34 IOZ Down GPIO30 B36 IOZ Down GPIO31 B34 IOZ Down Description General Purpose Input/Output (GPIO) GPIO GPIO HyperLink0 HYP0RXN0 AW10 I HYP0RXP0 AW11 I HYP0RXN1 AU10 I HYP0RXP1 AU11 I HYP0RXN2 AV9 I HYP0RXP2 AV10 I HYP0RXN3 AW7 I HYP0RXP3 AW8 I 50 Terminals HyperLink0 receive data Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-2 Signal Name Terminal Functions — Signals and Control by Function (Part 14 of 20) Ball No. Type HYP0TXN0 AP11 O HYP0TXP0 AP12 O HYP0TXN1 AR10 O HYP0TXP1 AR11 O HYP0TXN2 AP8 O HYP0TXP2 AP9 O IPD/IPU Description HyperLink0 transmit data HYP0TXN3 AR7 O HYP0TXP3 AR8 O HYP0RXFLCLK AJ5 O Down HYP0RXFLDAT AJ4 O Down HYP0TXFLCLK AJ3 I Down HYP0TXFLDAT AG5 I Down HYP0RXPMCLK AJ2 I Down HYP0RXPMDAT AG3 I Down HYP0TXPMCLK AH5 O Down HYP0TXPMDAT AJ1 O Down HYP0REFRES AM9 A HyperLink0 sideband signals HyperLink0 SerDes reference resistor input (3 kΩ +/- 1%) HyperLink1 HYP1RXN0 AU7 I HYP1RXP0 AU8 I HYP1RXN1 AV6 I HYP1RXP1 AV7 I HYP1RXN2 AU4 I HYP1RXP2 AU5 I HYP1RXN3 AV3 I HYP1RXP3 AV4 I HYP1TXN0 AT6 O HYP1TXP0 AT7 O HYP1TXN1 AP5 O HYP1TXP1 AP6 O HYP1TXN2 AR4 O HYP1TXP2 AR5 O HyperLink1 receive data HyperLink1 transmitdata HYP1TXN3 AT3 O HYP1TXP3 AT4 O HYP1RXFLCLK AH4 O Down HYP1RXFLDAT AG2 O Down HYP1TXFLCLK AH3 I Down HYP1TXFLDAT AH2 I Down HYP1RXPMCLK AF3 I Down HYP1RXPMDAT AF4 I Down HYP1TXPMCLK AH1 O Down HYP1TXPMDAT AF2 O Down HYP1REFRES AM6 A Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback HyperLink1 sideband signals HyperLink1 SerDes reference resistor input (3 kΩ +/- 1%) Terminals 51 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-2 Signal Name Terminal Functions — Signals and Control by Function (Part 15 of 20) Ball No. Type IPD/IPU Description I2C 2 SCL0 N1 IOZ I C0 clock SCL1 N4 IOZ I C1 clock SCL2 P4 IOZ I2C2 clock SDA0 P3 IOZ I C0 data SDA1 N2 IOZ I C1 data SDA2 N3 IOZ I2C2 data 2 2 2 JTAG TCK AE1 I Up JTAG clock input TDI AG1 I Up JTAG data input TDO AF1 OZ Up JTAG data output TMS AE2 I Up JTAG test mode input TRST AD1 I Down JTAG reset MDIO MDCLK AP31 O Down MDIO clock MDIO AR32 IOZ Up MDIO data PCIERXN0 AU31 I PCIERXP0 AU32 I PCIERXN1 AV30 I PCIERXP1 AV31 I PCIETXN0 AT30 O PCIETXP0 AT31 O PCIETXN1 AR29 O PCIETXP1 AR30 O PCIEREFRES AM26 A RIORXN0 AV24 I RIORXP0 AV25 I RIORXN1 AU22 I RIORXP1 AU23 I RIORXN2 AW22 I RIORXP2 AW23 I RIORXN3 AV21 I RIORXP3 AV22 I RIOTXN0 AT24 O RIOTXP0 AT25 O RIOTXN1 AR23 O RIOTXP1 AR24 O RIOTXN2 AP22 O RIOTXP2 AP23 O RIOTXN3 AT21 O RIOTXP3 AT22 O RIOREFRES AM21 A PCIe PCIexpress lane 0 receive data PCIexpress lane 1 receive data PCIexpress lane 0 transmit data PCIexpress lane 1 transmit data PCIexpress SerDes reference resistor input (3 kΩ +/- 1%) Serial RapidIO 52 Terminals Serial RapidIO lane 0 receive data Serial RapidIO lane 1 receive data Serial RapidIO lane 2 receive data Serial RapidIO lane 3 receive data Serial RapidIO lane 0 transmit data Serial RapidIO lane 1 transmit data Serial RapidIO lane 2 transmit data Serial RapidIO lane 3 transmit data Serial RapidIO SerDes reference resistor input (3 kΩ +/- 1%) Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-2 Terminal Functions — Signals and Control by Function (Part 16 of 20) Signal Name Ball No. Type IPD/IPU Description SGMII0RXN AW28 I SGMII0RXP AW29 I SGMII0TXN AU28 O SGMII0TXP AU29 O SGMII1RXN AV27 I SGMII1RXP AV28 I SGMII1TXN AT27 O SGMII1TXP AT28 O SGMII2RXN AU25 I SGMII2RXP AU26 I SGMII2TXN AR26 O SGMII2TXP AR27 O SGMII3RXN AW25 I SGMII3RXP AW26 I SGMII3TXN AP25 O SGMII3TXP AP26 O SGMIIREFRES AM24 A SGMII SerDes reference resistor input (3 kΩ +/- 1%) VCL AP36 IOZ Voltage control I C clock SGMII Ethernet MAC SGMII port 0 receive data Ethernet MAC SGMII port 0 transmit data Ethernet MAC SGMII port 1 receive data Ethernet MAC SGMII port 1 transmit data Ethernet MAC SGMII port 2 receive data Ethernet MAC SGMII port 2 transmit data Ethernet MAC SGMII port 3 receive data Ethernet MAC SGMII port 3 transmit data SmartReflex VCNTL0 AT39 OZ VCNTL1 AR37 OZ VCNTL2 AR36 OZ VCNTL3 AT38 OZ VCNTL4 AU38 OZ VCNTL5 AR35 OZ VD AP35 IOZ 2 Voltage control outputs to variable core power supply 2 Voltage control I C data SPI0 SPI0CLK B26 OZ Down SPI0 clock SPI0DIN A26 I Down SPI0 data in SPI0DOUT A27 OZ Down SPI0 data out SPI0SCS0 F25 OZ Up SPI0 interface enable 0 SPI0SCS1 C25 OZ Up SPI0 interface enable 1 SPI0SCS2 E26 OZ Up SPI0 interface enable 2 SPI0SCS3 D26 OZ Up SPI0 interface enable 3 SPI1 SPI1CLK C28 OZ Down SPI1 clock SPI1DIN F27 I Down SPI1 data in SPI1DOUT A28 OZ Down SPI1 data out SPI1SCS0 B27 OZ Up SPI1 interface enable 0 SPI1SCS1 C27 OZ Up SPI1 interface enable 1 SPI1SCS2 D27 OZ Up SPI1 interface enable 2 SPI1SCS3 E27 OZ Up SPI1 interface enable 3 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Terminals 53 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-2 Terminal Functions — Signals and Control by Function (Part 17 of 20) Signal Name Ball No. Type IPD/IPU Description SPI2CLK D25 OZ Down SPI2 clock SPI2 SPI2DIN F28 I Down SPI2 data in SPI2DOUT G28 OZ Down SPI2 data out SPI2SCS0 B28 OZ Up SPI2 interface enable 0 SPI2SCS1 D28 OZ Up SPI2 interface enable 1 SPI2SCS2 A29 OZ Up SPI2 interface enable 2 SPI2SCS3 E25 OZ Up SPI2 interface enable 3 TSCOMPOUT AB1 O Down IEEE1588 compare output. TSPUSHEVT0 AC2 IOZ Down PPS push event from GPS for IEEE1588 TSPUSHEVT1 AC1 IOZ Down Push event from BCN for IEEE1588 TSSYNCEVT AC3 O Down IEEE1588 sync event output. Sync-Ethernet / IEEE1588 Timer TIMI0 M2 I Down TIMI1 M1 I Down TIMO0 M3 OZ Down TIMO1 M4 OZ Down UART0CTS L1 I Down UART0RTS L4 OZ Down UART0RXD K4 I Down UART0TXD K2 OZ Down Timer inputs Timer outputs UART0 UART0 UART1 UART1CTS K1 I Down UART1RTS M5 OZ Down UART1RXD L2 I Down UART1TXD K3 OZ Down USBCLKM V2 I USBCLKP W2 I USBDM T2 IOZ USBDP U2 IOZ USBDRVVBUS L3 O USBID0 R1 A USBRX0M Y1 I USBRX0P W1 I USBTX0M V1 O USBTX0P U1 O USBVBUS T1 A Connect to VBUS pin on USB connector through protection switch USBRESREF AA1 P Reference resistor connection for USB PHY UART1 USB 54 Terminals USB ref clock USB DUSB D+ Down Used to enable an external charge pump to provide +5V on the VBUS pin of the USB connector. USB ID USB receive data USB transmit data Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-2 Terminal Functions — Signals and Control by Function (Part 18 of 20) Signal Name Ball No. Type IPD/IPU Description XFICLKP AU19 I XFICLKN AU20 I XFIMDCLK AR34 O Down XFI MDIO clock XFIMDIO AT33 IOZ Up XFI MDIO data XFIRXN0 AV19 I XFIRXP0 AV18 I XFITXN0 AT19 O XFITXP0 AT18 O XFIRXN1 AW20 I XFIRXP1 AW19 I XFI (66AK2H14 only) XFI reference clock to drive the XFI SerDes Ethernet MAC XFI port 0 receive data Ethernet MAC XFI port 0 transmit data Ethernet MAC XFI port 1 receive data XFITXN1 AR20 O XFITXP1 AR19 O XFIREFRES0 AN16 A XFI SerDes reference resistor input (3 kΩ +/- 1%) XFIREFRES1 AM19 A XFI SerDes reference resistor input (3 kΩ +/- 1%) RSV000 P2 OZ Down Reserved — leave unconnected RSV001 P1 OZ Down Reserved — leave unconnected RSV002 AN4 O Reserved — leave unconnected RSV003 AM4 O Reserved — leave unconnected RSV004 B24 O Reserved — leave unconnected Ethernet MAC XFI port 1 transmit data Reserved RSV005 A24 O Reserved — leave unconnected RSV006 AP38 O Reserved — leave unconnected RSV007 AP39 O Reserved — leave unconnected RSV008 AU34 O Reserved — leave unconnected RSV009 AT34 O Reserved — leave unconnected RSV010 C38 O Reserved — leave unconnected RSV011 D38 O RSV012 AK5 OZ Reserved — leave unconnected RSV013 F23 A GND RSV014 E23 A Reserved — leave unconnected RSV015 E33 A Reserved — leave unconnected RSV016 F32 A Reserved — leave unconnected RSV017 F26 A Reserved — leave unconnected RSV018 G26 A Reserved — leave unconnected RSV019 AN10 A Reserved — leave unconnected RSV020 AM7 A Reserved — leave unconnected RSV021 AM23 A Reserved — leave unconnected RSV022 AM28 A Reserved — leave unconnected RSV023 AM25 A Reserved — leave unconnected RSV024 AM16 A Reserved — leave unconnected RSV025 AM14 A Reserved — leave unconnected RSV026 AN19 A Reserved — leave unconnected Down Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Reserved — leave unconnected Terminals 55 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-2 Terminal Functions — Signals and Control by Function (Part 19 of 20) Signal Name Ball No. Type IPD/IPU Description RSV027 D12 OZ Reserved — leave unconnected RSV028 D13 OZ Reserved — leave unconnected RSV029 F13 A Reserved — leave unconnected RSV030 AD35 OZ Reserved — leave unconnected RSV031 AC34 OZ Reserved — leave unconnected RSV032 AB32 A Reserved — leave unconnected RSV060 (66AK2H12/06 only) AV19 I Reserved — leave unconnected RSV061 (66AK2H12/06 only) AV18 I Reserved — leave unconnected RSV062 (66AK2H12/06 only) AT19 O Reserved — leave unconnected RSV063 (66AK2H12/06 only) AT18 O Reserved — leave unconnected RSV064 (66AK2H12/06 only) AW20 I Reserved — leave unconnected RSV065 (66AK2H12/06 only) AW19 I Reserved — leave unconnected RSV066 (66AK2H12/06 only) AR20 O Reserved — leave unconnected RSV067 (66AK2H12/06 only) AR19 O Reserved — leave unconnected RSV068 (66AK2H12/06 only) AN16 A Reserved — leave unconnected RSV069 (66AK2H12/06 only) AM19 A Reserved — leave unconnected RSV070 (66AK2H12/06 only) AU19 I Reserved — leave unconnected RSV071 (66AK2H12/06 only) AU20 I Reserved — leave unconnected RSV072 (66AK2H12/06 only) AT33 IOZ Up Reserved — leave unconnected RSV073 (66AK2H12/06 only) AR34 O Down Reserved — leave unconnected RSV074 AT37 IOZ Reserved — leave unconnected RSV075 AT35 IOZ Reserved — leave unconnected RSV076 AU36 OZ Reserved — leave unconnected RSV077 AV37 OZ Reserved — leave unconnected RSV078 AU37 OZ Reserved — leave unconnected RSV079 AV36 OZ Reserved — leave unconnected RSV080 AU35 OZ Reserved — leave unconnected RSV081 AW36 OZ Reserved — leave unconnected RSV099 AM11 A Reserved — leave unconnected RSV161 AW16 I Reserved — leave unconnected RSV162 AW17 I Reserved — leave unconnected RSV163 AU16 I Reserved — leave unconnected RSV164 AU17 I Reserved — leave unconnected RSV165 AV15 I Reserved — leave unconnected RSV166 AV16 I Reserved — leave unconnected 56 Terminals Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-2 Terminal Functions — Signals and Control by Function (Part 20 of 20) Signal Name Ball No. Type IPD/IPU Description RSV167 AW13 I Reserved — leave unconnected RSV168 AW14 I Reserved — leave unconnected RSV169 AU13 I Reserved — leave unconnected RSV170 AU14 I Reserved — leave unconnected RSV171 AV12 I Reserved — leave unconnected RSV172 AV13 I Reserved — leave unconnected RSV173 AP17 O Reserved — leave unconnected RSV174 AP18 O Reserved — leave unconnected RSV175 AR16 O Reserved — leave unconnected RSV176 AR17 O Reserved — leave unconnected RSV177 AT15 O Reserved — leave unconnected RSV178 AT16 O Reserved — leave unconnected RSV179 AP14 O Reserved — leave unconnected RSV180 AP15 O Reserved — leave unconnected RSV181 AR13 O Reserved — leave unconnected RSV182 AR14 O Reserved — leave unconnected RSV183 AT12 O Reserved — leave unconnected RSV184 AT13 O Reserved — leave unconnected RSV185 AM15 A Reserved — leave unconnected RSV186 AR2 I Reserved — leave unconnected RSV187 AP2 I RSV188 AC4 OZ Reserved — leave unconnected RSV189 AR1 I Reserved — leave unconnected RSV190 AT1 I Reserved — leave unconnected RSV191 AP34 I Down Reserved — leave unconnected RSV192 AM30 I Down Reserved — leave unconnected RSV193 AP32 OZ Down Reserved — leave unconnected RSV194 AN32 OZ Down Reserved — leave unconnected RSV195 AP33 IOZ Up Reserved — leave unconnected Down Reserved — leave unconnected End of Table 5-2 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Terminals 57 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-3 Terminal Functions — Power and Ground (Part 1 of 2) Supply Ball No. Volts Description AVDDA1 AF11 1.8 V C66x CorePac PLL supply AVDDA2 N20 1.8 V DDR3A PLL supply AVDDA3 N28 1.8 V ARM CorePac PLL supply AVDDA4 AH29 1.8 V DDR3B PLL supply AVDDA5 AG26 1.8 V Network Coprocessor PLL supply AVDDA6 P11 1.8 V DDRA DLL supply AVDDA7 M13 1.8 V DDRA DLL supply AVDDA8 M15 1.8 V DDRA DLL supply AVDDA9 M18 1.8 V DDRA DLL supply AVDDA10 M20 1.8 V DDRA DLL supply AVDDA11 Y28 1.8 V DDRB DLL supply AVDDA12 AB28 1.8 V DDRB DLL supply AVDDA13 AC28 1.8 V DDRB DLL supply AVDDA14 AD28 1.8 V DDRB DLL supply AVDDA15 AE28 1.8 V DDRB DLL supply CVDD AVS H31, J30, K29, L6, L28, M7, M9, M25, M27, N6, N8, N10, N12, N14, N16, N18, N22, N24, N26, P7, P9, P13, P15, P17, P19, P21, P23, P25, P27, R8, R10, R12, R14, R16, R18, R20, R24, R26, T9, T11, T15, T17, T19, T23, T25, T27, U8, U10, U12, U18, U24, U26, V9, V15, V19, V23, V25, V27, W8, W10, W12, W14, W18, W20, W24, W26, Y9, Y15, Y17, Y19, Y21, Y23, Y25, Y27, AA8, AA10, AA16, AA18, AA20, AA22, AA24, AA26, AB9, AB11, AB15, AB17, AB19, AB21, AB23, AB25, AB27, AC8, AC10, AC12, AC14, AC16, AC20, AC22, AC24, AC26, AD9, AD13, AD15, AD21, AD23, AD25, AD27, AE8, AE10, AE12, AE14, AE16, AE18, AE20, AE22, AE24, AE26, AF9, AF25, AF27, AG8, AG10, AG28, AH9, AH27, AJ8, AJ10, AJ28, AK7, AK9, AK29, AL6 , AL8, AL30, AM5, AM31 SmartReflex DSP core supply voltage. CVDD1 T13, T21, U14, U16, U20, V13, V17, V21, W16, AC18, AD17, AD19 0.95 V Core supply voltage for memory array CVDDT1 R22, U22, W22 0.95 V Cortex-A15 processor fixed core memory supply voltage DDR3AVREFSSTL G14 0.75 V 0.75-V DDR3A reference voltage DDR3BVREFSSTL AC3 0.75 V 0.75-V DDR3B reference voltage DVDD15 H7, H9, H11, H13, H15, H17, H19, H21, H23, J6, J8, J10, J12, 1.5 V J14, J16, J18, J20, J22, K7, K9, K11, K13, K15, K17, K19, K21, K23, L8, L10, L12, L14, L16, L18, L20, L32, M11, M17, M19, M31, P29, P31, R28, R30, T29, T31, U28, U30, V29, V31, W28, W30, Y29, Y31, AA28, AA30, AB29, AB31, AC30, AD29, AD31, AE30, AF29, AF31, AG30, AH31, AJ30, AK31, AL32 1.5-V DDR IO supply DVDD18 H25, H27, J26, J28, J32, K25, K27, K31, L24, L26, L30, M29, 1.8 V N30, R6, T7, U6, V5, V7, W6, Y5, Y7, AA6, AB5, AB7, AC6, AD7, AE6, AF7, AG6, AJ26, AK27, AL26, AL28, AM27, AM29 1.8-V IO supply DVDD33 AA14 3.3 V 3.3-V USB supply VDDAHV AK11, AK13, AK15, AK17, AK19, AK21, AK23, AK25, AL10, AL12, AL14, AL16, AL18, AL20, AL22, AL24 1.8 V SerDes IO supply VDDALV AF13, AF15, AF17, AF19, AF21, AF23, AG12, AG14, AG16, AG18, AG20, AG22, AH11, AH13, AH15, AH17, AH19, AH21, AH23, AH25, AJ12, AJ14, AJ16, AJ18, AJ20, AJ22, AJ24 0.85 V SerDes low voltage VDDUSB AB13 0.85 V SerDes digiital IO supply VNWA1 AG24 0.95 V Fixed Nwell supply 58 Terminals Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-3 Supply Terminal Functions — Power and Ground (Part 2 of 2) Ball No. Volts Description VNWA2 AD11 0.95 V Fixed Nwell supply VNWA3 M23 0.95 V Fixed Nwell supply VNWA4 V11 0.95 V Fixed Nwell supply VP AA12 0.85 V Filtered .85 V USB supply VPH Y13 3.3 V VPP L22, M21 VPTX Y11 VSS A2, A3, A37, A38, B1, B2, B38, B39, C1, C4, C6, C8, C10, C12, GND C14, C16, C18, C20, C22, C24, C26, C29, C32, C39, D34, D37, E3, E5, E7, E9, E11, E13, E15, E17, E19, E21, E28, G23, G25, G27, G29, G31, G35, H4, H6, H8, H12, H14, H18, H20, H24, H26, H28, H29, H30, H32, H37, J1, J2, J3, J4, J5, J7, J9, J11, J13, J15, J17, J19, J21, J23, J24, J25, J27, J29, J31, J33, K5, K6, K8, K10, K12, K14, K16, K18, K20, K22, K24, K26, K28, K30, K32, K35, L5, L7, L9, L11, L13, L15, L17, L19, L21, L23, L25, L27, L29, L31, L37, M6, M8, M10, M12, M14, M16, M22, M24, M26, M28, M30, M33, N5, N7, N9, N11, N13, N15, N17, N19, N21, N23, N25, N27, N29, N31, N35, P5, P6, P8, P10, P12, P14, P16, P18, P20, P22, P24, P26, P28, P30, P33, P37, R2, R5, R7, R9, R11, R13, R15, R17, R19, R21, R23, R25, R27, R29, R31, R35, T6, T8, T10, T12, T14, T16, T18, T20, T22, T24, T26, T28, T30, T33, T37, U7, U9, U11, U13, U15, U17, U19, U21, U23, U25, U27, U29, U31, U35, V3, V6, V8, V10, V12, V14, V16, V18, V20, V22, V24, V26, V28, V30, V33, V37, W5, W7, W9, W11, W13, W15, W17, W19, W21, W23, W25, W27, W29, W31, W35, Y2, Y6, Y8, Y10, Y12, Y14, Y16, Y18, Y20, Y22, Y24, Y26, Y30, Y33, Y37, AA5, AA7, AA9, AA11, AA13, AA15, AA17, AA19, AA21, AA23, AA25, AA27, AA29, AA35, AB6, AB8, AB10, AB12, AB14, AB16, AB18, AB20, AB22, AB24, AB26, AB30, AB33, AB36, AB37, AC7, AC9, AC11, AC13, AC15, AC17, AC19, AC21, AC23, AC25, AC27, AC29, AC35, AD6, AD8, AD10, AD12, AD14, AD16, AD18, AD20, AD22, AD24, AD26, AD30, AD33, AD37, AE3, AE7, AE9, AE11, AE13, AE15, AE17, AE19, AE21, AE23, AE25, AE27, AE29, AE31, AE35, AF6, AF8, AF10, AF12, AF14, AF16, AF18, AF20, AF22, AF24, AF26, AF28, AF30, AF33, AF37, AG4, AG7, AG9, AG11, AG13, AG15, AG17, AG19, AG21, AG23, AG25, AG27, AG29, AG31, AG35, AH6, AH7, AH8, AH10, AH12, AH14, AH16, AH18, AH20, AH22, AH24, AH26, AH28, AH30, AH33, AH37, AJ6, AJ7, AJ9, AJ11, AJ13, AJ15, AJ17, AJ19, AJ21, AJ23, AJ25, AJ27, AJ29, AJ31, AJ32, AJ35, AK2, AK6, AK8, AK10, AK12, AK14, AK16, AK18, AK20, AK22, AK24, AK26, AK28, AK30, AK33, AK37, AL5, AL7, AL9, AL11, AL13, AL15, AL17, AL19, AL21, AL23, AL25, AL27, AL29, AL31, AL35, AM3, AM8, AM10, AM12, AM13, AM17, AM18, AM20, AM22, AM32, AM33, AM37, AN2, AN5, AN6, AN7, AN8, AN9, AN11, AN12, AN13, AN14, AN15, AN17, AN18, AN20, AN21, AN22, AN23, AN24, AN25, AN26, AN27, AN28, AN29, AN31, AN35, AP4, AP7, AP10, AP13, AP16, AP19, AP20, AP21, AP24, AP27, AP28, AP29, AP30, AP37, AR3, AR6, AR9, AR12, AR15, AR18, AR21, AR22, AR25, AR28, AR31, AR33, AT2, AT5, AT8, AT11, AT14, AT17, AT20, AP27, AP28, AP29, AP30, AP37, AR3, AR6, AR9, AR12, AR15, AR18, AR21, AR22, AR25, AR28, AR31, AR33, AT2, AT5, AT8, AT11, AT14, AT17, AT20, AT23, AT26, AT29, AT32, AT36, AU1, AU2, AU3, AU6, AU9, AU12, AU15, AU18, AU21, AU24, AU27, AU30, AU33, AU39, AV1, AV2, AV5, AV8, AV11, AV14, AV17, AV20, AV23, AV26, AV29 , AV32, AV35, AV38, AV39, AW2, AW3, AW6, AW9, AW12, AW15, AW18, AW21, AW24, AW27, AW30, AW33, AW37, AW38 Filtered 3.3 V USB supply Leave unconnected 0.85 V Filtered 0.85 V USB supply Ground End of Table 5-3 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Terminals 59 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-4 Terminal Functions — By Signal Name (Part 1 of 23) Table 5-4 Terminal Functions — By Signal Name (Part 2 of 23) Table 5-4 Terminal Functions — By Signal Name (Part 3 of 23) Signal Name Ball Number Signal Name Ball Number Signal Name Ball Number (nopin) A1 BOOTMODE14† E24 DDR3AA01 G9 DDR3AA02 G8 (nopin) A39 BOOTMODE15† D24 (nopin) AW1 BOOTCOMPLETE AF5 DDR3AA03 G10 F9 (nopin) AW39 CORECLKSEL AL4 DDR3AA04 ALTCORECLKN AL2 CORESEL0 F24 DDR3AA05 F8 C9 ALTCORECLKP AM2 CORESEL1 E24 DDR3AA06 ARMCLKN B37 CORESEL2 D24 DDR3AA07 D9 B9 ARMCLKP C37 CORESEL3 G24 DDR3AA08 ARMAVSSHARED† G24 CVDD H31, J30, K29, L6, L28, M7, M9, M25, M27, N6, N8, N10, N12, N14, N16, N18, N22, N24, N26, P7, P9, P13, P15, P17, P19, P21, P23, P25, P27, R8, R10, R12 DDR3AA09 D8 DDR3AA10 F10 AVDDA1 AF11 AVDDA2 N20 AVDDA3 N28 AVDDA4 AH29 AVDDA5 AG26 AVDDA6 P11 AVDDA7 M13 AVDDA8 M15 AVDDA9 M18 AVDDA10 M20 AVDDA11 Y28 AVDDA12 AB28 AVDDA13 AC28 AVDDA14 AD28 AVDDA15 AE28 AVSIFSEL0† M2 AVSIFSEL1† M1 BOOTMODE_RSVD† B31 BOOTMODE00† B30 BOOTMODE01† D29 BOOTMODE02† A35 BOOTMODE03† B29 BOOTMODE04† E29 BOOTMODE05† D30 BOOTMODE06† C30 BOOTMODE07† A30 BOOTMODE08† G30 BOOTMODE09† F31 BOOTMODE10† E30 BOOTMODE11† F30 BOOTMODE12† BOOTMODE13† 60 Terminals A31 F24 CVDD CVDD CVDD CVDD CVDD1 R14, R16, R18, R20, R24, R26, T9, T11, T15, T17, T19, T23, T25, T27, U8, U10, U12, U18, U24, U26, V9, V15, V19, V23, V25, V27, W8, W10, W12, W14, W18 W20, W24, W26, Y9, Y15, Y17, Y19, Y21, Y23, Y25, Y27, AA8, AA10, AA16, AA18, AA20, AA22, AA24, AA26, AB9, AB11, AB15, AB17, AB19, AB21, AB23, AB25 AB27, AC8, AC10, AC12, AC14, AC16, AC20, AC22, AC24, AC26, AD9, AD13, AD15, AD21, AD23, AD25, AD27, AE8, AE10, AE12, AE14, AE16, AE18, AE20 AE22, AE24, AE26, AF9, AF25, AF27, AG8, AG10, AG28, AH9, AH27, AJ8, AJ10, AJ28, AK7, AK9, AK29, AL6, , AL8, AL30, AM5, AM31 T13, T21, U14, U16, U20, V13, V17, V21, W16, AC18, AD17, AD19 CVDDT1 R22, U22, W22 DDR3A_REMAP_EN† A36 DDR3AA00 E8 DDR3AA11 A9 DDR3AA12 E10 DDR3AA13 A10 DDR3AA14 B10 DDR3AA15 D10 DDR3ABA0 B11 DDR3ABA1 C11 DDR3ABA2 G11 DDR3ACAS C13 DDR3ACB00 A16 DDR3ACB01 C15 DDR3ACB02 B16 DDR3ACB03 F15 DDR3ACB04 D15 DDR3ACB05 F14 DDR3ACB06 D14 DDR3ACB07 G15 DDR3ACE0 D11 DDR3ACE1 F11 DDR3ACKE0 G12 DDR3ACKE1 A11 DDR3ACLKN A25 DDR3ACLKOUTN0 B12 DDR3ACLKOUTN1 B13 DDR3ACLKOUTP0 A12 DDR3ACLKOUTP1 A13 DDR3ACLKP B25 DDR3AD00 G1 DDR3AD01 H2 DDR3AD02 F1 DDR3AD03 G2 DDR3AD04 H1 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-4 Terminal Functions — By Signal Name (Part 4 of 23) Table 5-4 Terminal Functions — By Signal Name (Part 5 of 23) Table 5-4 Terminal Functions — By Signal Name (Part 6 of 23) Signal Name Ball Number Signal Name Ball Number Signal Name Ball Number DDR3AD05 E2 DDR3AD47 F18 DDR3ADQS8N A15 DDR3AD06 F2 DDR3AD48 A20 DDR3ADQS8P B15 DDR3AD07 D2 DDR3AD49 B20 DDR3AODT0 E12 DDR3AD08 E4 DDR3AD50 D20 DDR3AODT1 G13 DDR3AD09 F4 DDR3AD51 G20 DDR3ARAS A14 DDR3AD10 G3 DDR3AD52 C21 DDR3ARESET B14 DDR3AD11 A4 DDR3AD53 E20 DDR3ARZQ0 H16 DDR3AD12 B4 DDR3AD54 F20 DDR3ARZQ1 H10 DDR3AD13 H3 DDR3AD55 G21 DDR3ARZQ2 H22 DDR3AD14 D3 DDR3AD56 C23 DDR3AVREFSSTL G14 DDR3AD15 D4 DDR3AD57 G22 DDR3AWE F12 DDR3AD16 G4 DDR3AD58 D23 DDR3BA00 AA32 DDR3AD17 H5 DDR3AD59 F22 DDR3BA01 W33 DDR3AD18 D5 DDR3AD60 E22 DDR3BA02 W32 DDR3AD19 F5 DDR3AD61 B22 DDR3BA03 Y34 DDR3AD20 G5 DDR3AD62 F21 DDR3BA04 W34 DDR3AD21 D6 DDR3AD63 D22 DDR3BA05 V34 DDR3AD22 C5 DDR3ADQM0 C2 DDR3BA06 W36 DDR3AD23 B6 DDR3ADQM1 F3 DDR3BA07 W37 DDR3AD24 C7 DDR3ADQM2 A6 DDR3BA08 AA33 DDR3AD25 F7 DDR3ADQM3 E6 DDR3BA09 Y32 DDR3AD26 F6 DDR3ADQM4 C17 DDR3BA10 Y38 DDR3AD27 A8 DDR3ADQM5 A18 DDR3BA11 AA39 DDR3AD28 B8 DDR3ADQM6 D21 DDR3BA12 Y35 DDR3AD29 G6 DDR3ADQM7 A22 DDR3BA13 Y39 DDR3AD30 G7 DDR3ADQM8 E14 DDR3BA14 AA38 DDR3AD31 D7 DDR3ADQS0N D1 DDR3BA15 Y36 DDR3AD32 E16 DDR3ADQS0P E1 DDR3BBA0 AA37 DDR3AD33 G16 DDR3ADQS1N C3 DDR3BBA1 AA34 DDR3AD34 F16 DDR3ADQS1P B3 DDR3BBA2 AB35 DDR3AD35 G17 DDR3ADQS2N B5 DDR3BCAS AC36 DDR3AD36 D16 DDR3ADQS2P A5 DDR3BCB00 AF32 DDR3AD37 D17 DDR3ADQS3N A7 DDR3BCB01 AF34 DDR3AD38 F17 DDR3ADQS3P B7 DDR3BCB02 AE32 DDR3AD39 E18 DDR3ADQS4N B17 DDR3BCB03 AF35 DDR3AD40 C19 DDR3ADQS4P A17 DDR3BCB04 AE33 DDR3AD41 D19 DDR3ADQS5N A19 DDR3BCB05 AE36 DDR3AD42 G18 DDR3ADQS5P B19 DDR3BCB06 AD36 DDR3AD43 F19 DDR3ADQS6N B21 DDR3BCB07 AE34 DDR3AD44 G19 DDR3ADQS6P A21 DDR3BCE0 AB34 DDR3AD45 B18 DDR3ADQS7N B23 DDR3BCE1 AA36 DDR3AD46 D18 DDR3ADQS7P A23 DDR3BCKE0 AB39 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Terminals 61 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-4 Terminal Functions — By Signal Name (Part 7 of 23) Table 5-4 Terminal Functions — By Signal Name (Part 8 of 23) Table 5-4 Terminal Functions — By Signal Name (Part 9 of 23) Signal Name Ball Number Signal Name Ball Number Signal Name Ball Number DDR3BCKE1 AB38 DDR3BD35 AG34 DDR3BDQS2N T38 DDR3BCLKN AR39 DDR3BD36 AG36 DDR3BDQS2P T39 DDR3BCLKOUTN0 AD39 DDR3BD37 AH34 DDR3BDQS3N V38 DDR3BCLKOUTN1 AC38 DDR3BD38 AH35 DDR3BDQS3P V39 DDR3BCLKOUTP0 AD38 DDR3BD39 AG32 DDR3BDQS4N AF39 DDR3BCLKOUTP1 AC39 DDR3BD40 AH32 DDR3BDQS4P AF38 DDR3BCLKP AR38 DDR3BD41 AJ33 DDR3BDQS5N AJ38 DDR3BD00 L38 DDR3BD42 AH36 DDR3BDQS5P AJ39 DDR3BD01 N34 DDR3BD43 AJ34 DDR3BDQS6N AL38 DDR3BD02 M37 DDR3BD44 AJ36 DDR3BDQS6P AL39 DDR3BD03 L39 DDR3BD45 AH39 DDR3BDQS7N AN39 DDR3BD04 N33 DDR3BD46 AH38 DDR3BDQS7P AN38 DDR3BD05 N37 DDR3BD47 AJ37 DDR3BDQS8N AE38 DDR3BD06 N36 DDR3BD48 AK39 DDR3BDQS8P AE39 DDR3BD07 N38 DDR3BD49 AK38 DDR3BODT0 AC33 DDR3BD08 T32 DDR3BD50 AK36 DDR3BODT1 AD34 DDR3BD09 R32 DDR3BD51 AK35 DDR3BRAS AD32 DDR3BD10 P35 DDR3BD52 AL34 DDR3BRESET AC32 DDR3BD11 R39 DDR3BD53 AL36 DDR3BRZQ0 AA31 DDR3BD12 R38 DDR3BD54 AL37 DDR3BRZQ1 P32 DDR3BD13 N32 DDR3BD55 AL33 DDR3BRZQ2 AK32 DDR3BD14 R33 DDR3BD56 AN34 DDR3BVREFSSTL AC31 DDR3BD15 P36 DDR3BD57 AN36 DDR3BWE AC37 DDR3BD16 T34 DDR3BD58 AN33 DVDD15 DDR3BD17 R34 DDR3BD59 AM34 DDR3BD18 T35 DDR3BD60 AM35 DDR3BD19 R37 DDR3BD61 AM38 DDR3BD20 R36 DDR3BD62 AM36 DDR3BD21 U37 DDR3BD63 AN37 H7, H9, H11, H13, H15, H17, H19, H21, H23, J6, J8, J10, J12, J14, J16, J18, J20, J22, K7, K9, K11, K13, K15, K17, K19, K21, K23, L8, L10, L12, L14, L16, L18, L20 DDR3BD22 T36 DDR3BDQM0 N39 DVDD15 DDR3BD23 U38 DDR3BDQM1 P34 DDR3BD24 V35 DDR3BDQM2 U39 DDR3BD25 U36 DDR3BDQM3 U32 DDR3BD26 U34 DDR3BDQM4 AG33 L32, M11, M17, M19, M31, P29, P31, R28, R30, T29, T31, U28, U30, V29, V31, W28, W30, Y29, Y31, AA28, AA30, AB29, AB31, AC30, AD29, AD31, AE30, AF29 DDR3BD27 W38 DDR3BDQM5 AG39 DVDD15 DDR3BD28 W39 DDR3BDQM6 AK34 AF31, AG30, AH31, AJ30, AK31, AL32 DDR3BD29 U33 DDR3BDQM7 AM39 DVDD18 DDR3BD30 V32 DDR3BDQM8 AE37 DDR3BD31 V36 DDR3BDQS0N M39 DDR3BD32 AG37 DDR3BDQS0P M38 DDR3BD33 AF36 DDR3BDQS1N P38 DDR3BD34 AG38 DDR3BDQS1P P39 H25, H27, J26, J28, J32, K25, K27, K31, L24, L26, L30, M29, N30, R6, T7, U6, V5, V7, W6, Y5, Y7, AA6, AB5, AB7, AC6, AD7, AE6, AF7, AG6, AJ26, AK27, AL26, AL28, AM27, AM29 62 Terminals Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-4 Terminal Functions — By Signal Name (Part 10 of 23) Table 5-4 Terminal Functions — By Signal Name (Part 11 of 23) Table 5-4 Terminal Functions — By Signal Name (Part 12 of 23) Signal Name Ball Number Signal Name Ball Number Signal Name Ball Number DVDD33 AA14 EMIFD11 L36 GPIO13 A31 EMIFA00 F34 EMIFD12 L35 GPIO14 E32 EMIFA01 F37 EMIFD13 M34 GPIO15 B31 EMIFA02 G36 EMIFD14 M36 GPIO16 A36 EMIFA03 E39 EMIFD15 M35 GPIO17 A32 EMIFA04 E34 EMIFOE E37 GPIO18 C31 EMIFA05 J34 EMIFRNW F33 GPIO19 B32 EMIFA06 H35 EMIFWAIT0 E38 GPIO20 A33 EMIFA07 K33 EMIFWAIT1 D39 GPIO21 D33 EMIFA08 C35 EMIFWE F36 GPIO22 D31 EMIFA09 G37 EMU00 AA2 GPIO23 B35 EMIFA10 F38 EMU01 AB2 GPIO24 B33 EMIFA11 D35 EMU02 Y3 GPIO25 E31 EMIFA12 H36 EMU03 Y4 GPIO26 A34 EMIFA13 E35 EMU04 W3 GPIO27 D32 EMIFA14 G38 EMU05 W4 GPIO28 C33 EMIFA15 F39 EMU06 V4 GPIO29 C34 EMIFA16 K34 EMU07 U4 GPIO30 B36 EMIFA17 F35 EMU08 U3 GPIO31 B34 EMIFA18 J35 EMU09 T3 HOUT AE5 EMIFA19 G39 EMU10 AB4 HYP0CLKN AT10 EMIFA20 C36 EMU11 AA3 HYP0CLKP AT9 EMIFA21 J36 EMU12 U5 HYP0REFRES AM9 EMIFA22 H38 EMU13 T4 HYP0RXFLCLK AJ5 EMIFA23 D36 EMU14 AB3 HYP0RXFLDAT AJ4 EMIFBE0 H34 EMU15 R3 HYP0RXN0 AW10 EMIFBE1 H33 EMU16 T5 HYP0RXN1 AU10 EMIFCE0 G33 EMU17 R4 HYP0RXN2 AV9 EMIFCE1 G32 EMU18 AA4 HYP0RXN3 AW7 EMIFCE2 G34 GPIO00 F29 HYP0RXP0 AW11 EMIFCE3 E36 GPIO01 B30 HYP0RXP1 AU11 EMIFD00 M32 GPIO02 D29 HYP0RXP2 AV10 EMIFD01 J37 GPIO03 A35 HYP0RXP3 AW8 EMIFD02 L33 GPIO04 B29 HYP0RXPMCLK AJ2 EMIFD03 L34 GPIO05 E29 HYP0RXPMDAT AG3 EMIFD04 H39 GPIO06 D30 HYP0TXFLCLK AJ3 EMIFD05 J38 GPIO07 C30 HYP0TXFLDAT AG5 EMIFD06 K37 GPIO08 A30 HYP0TXN0 AP11 EMIFD07 J39 GPIO09 G30 HYP0TXN1 AR10 EMIFD08 K39 GPIO10 F31 HYP0TXN2 AP8 EMIFD09 K38 GPIO11 E30 HYP0TXN3 AR7 EMIFD10 K36 GPIO12 F30 HYP0TXP0 AP12 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Terminals 63 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-4 Terminal Functions — By Signal Name (Part 13 of 23) Table 5-4 Terminal Functions — By Signal Name (Part 14 of 23) Table 5-4 Terminal Functions — By Signal Name (Part 15 of 23) Signal Name Ball Number Signal Name Ball Number Signal Name Ball Number HYP0TXP1 AR11 PCIECLKN AW32 RSV010 C38 HYP0TXP2 AP9 PCIECLKP AW31 RSV011 D38 HYP0TXP3 AR8 PCIEREFRES AM26 RSV012 AK5 HYP0TXPMCLK AH5 PCIERXN0 AU31 RSV013 F23 HYP0TXPMDAT AJ1 PCIERXN1 AV30 RSV014 E23 HYP1CLKN AW5 PCIERXP0 AU32 RSV015 E33 HYP1CLKP AW4 PCIERXP1 AV31 RSV016 F32 HYP1REFRES AM6 PCIETXN0 AT30 RSV017 F26 HYP1RXFLCLK AH4 PCIETXN1 AR29 RSV018 G26 HYP1RXFLDAT AG2 PCIETXP0 AT31 RSV019 AN10 HYP1RXN0 AU7 PCIETXP1 AR30 RSV020 AM7 HYP1RXN1 AV6 POR AK4 RSV021 AM23 HYP1RXN2 AU4 RESETFULL AD3 RSV022 AM28 HYP1RXN3 AV3 RESETSTAT AC5 RSV023 AM25 HYP1RXP0 AU8 RESET AD2 RSV024 AM16 HYP1RXP1 AV7 RIOREFRES AM21 RSV025 AM14 HYP1RXP2 AU5 RIORXN0 AV24 RSV026 AN19 HYP1RXP3 AV4 RIORXN1 AU22 RSV027 D12 HYP1RXPMCLK AF3 RIORXN2 AW22 RSV028 D13 HYP1RXPMDAT AF4 RIORXN3 AV21 RSV029 F13 HYP1TXFLCLK AH3 RIORXP0 AV25 RSV030 AD35 HYP1TXFLDAT AH2 RIORXP1 AU23 RSV031 AC34 HYP1TXN0 AT6 RIORXP2 AW23 RSV032 AB32 HYP1TXN1 AP5 RIORXP3 AV22 AR4 RIOTXN0 AT24 RSV060 (66AK2H12/06 only) AV19 HYP1TXN2 HYP1TXN3 AT3 RIOTXN1 AR23 RSV061 (66AK2H12/06 only) AV18 HYP1TXP0 AT7 RIOTXN2 AP22 AP6 RIOTXN3 AT21 RSV062 (66AK2H12/06 only) AT19 HYP1TXP1 HYP1TXP2 AR5 RIOTXP0 AT25 AT18 HYP1TXP3 AT4 RIOTXP1 AR24 RSV063 (66AK2H12/06 only) HYP1TXPMCLK AH1 RIOTXP2 AP23 RSV064 (66AK2H12/06 only) AW20 HYP1TXPMDAT AF2 RIOTXP3 AT22 F29 RSV000 P2 RSV065 (66AK2H12/06 only) AW19 LENDIAN† LRESETNMIEN AD4 RSV001 P1 AR20 LRESET AE4 RSV002 AN4 RSV066 (66AK2H12/06 only) E32 RSV003 AM4 RSV067 (66AK2H12/06 only) AR19 MAINPLLODSEL† MDCLK AP31 RSV004 B24 AR32 RSV005 A24 RSV068 (66AK2H12/06 only) AN16 MDIO NMI AD5 RSV006 AP38 RSV069 (66AK2H12/06 only) AM19 PACLKSEL AN30 RSV007 AP39 AV34 AU34 RSV070 (66AK2H12/06 only) AU19 PASSCLKN RSV008 PASSCLKP AV33 RSV009 AT34 64 Terminals Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-4 Terminal Functions — By Signal Name (Part 16 of 23) Table 5-4 Terminal Functions — By Signal Name (Part 17 of 23) Table 5-4 Terminal Functions — By Signal Name (Part 18 of 23) Signal Name Ball Number Signal Name Ball Number Signal Name Ball Number RSV071 (66AK2H12/06 only) AU20 RSV189 AR1 SPI1SCS2 D27 RSV190 AT1 SPI1SCS3 E27 RSV072 (66AK2H12/06 only) AT33 RSV191 AP34 SPI2CLK D25 RSV073 (66AK2H12/06 only) AR34 RSV192 AM30 SPI2DIN F28 RSV193 AP32 SPI2DOUT G28 RSV74 AT37 RSV194 AN32 SPI2SCS0 B28 RSV75 AT35 RSV195 AP33 SPI2SCS1 D28 RSV76 AU36 SCL0 N1 SPI2SCS2 A29 RSV77 AV37 SCL1 N4 SPI2SCS3 E25 RSV78 AU37 SCL2 P4 SRIOSGMIICLKN AW35 RSV79 AV36 SDA0 P3 SRIOSGMIICLKP AW34 RSV80 AU35 SDA1 N2 SYSCLKN AK3 RSV81 AW36 SDA2 N3 SYSCLKOUT AK1 RSV099 AM11 SGMII0RXN AW28 SYSCLKP AL3 RSV161 AW16 SGMII0RXP AW29 TCK AE1 RSV162 AW17 SGMII0TXN AU28 TDI AG1 RSV163 AU16 SGMII0TXP AU29 TDO AF1 RSV164 AU17 SGMII1RXN AV27 TIMI0 M2 RSV165 AV15 SGMII1RXP AV28 TIMI1 M1 RSV166 AV16 SGMII1TXN AT27 TIMO0 M3 RSV167 AW13 SGMII1TXP AT28 TIMO1 M4 RSV168 AW14 SGMII2RXN AU25 TMS AE2 RSV169 AU13 SGMII2RXP AU26 TRST AD1 RSV171 AV12 SGMII2TXN AR26 TSCOMPOUT AB1 RSV170 AU14 SGMII2TXP AR27 TSPUSHEVT0 AC2 RSV172 AV13 SGMII3RXN AW25 TSPUSHEVT1 AC1 RSV173 AP17 SGMII3RXP AW26 TSREFCLKN AL1 RSV174 AP18 SGMII3TXN AP25 TSREFCLKP AM1 RSV175 AR16 SGMII3TXP AP26 TSRXCLKOUT0N AP1 RSV176 AR17 SGMIIREFRES AM24 TSRXCLKOUT0P AN1 RSV177 AT15 SPI0CLK B26 TSRXCLKOUT1N AP3 RSV178 AT16 SPI0DIN A26 TSRXCLKOUT1P AN3 RSV179 AP14 SPI0DOUT A27 TSSYNCEVT AC3 RSV180 AP15 SPI0SCS0 F25 UART0CTS L1 RSV181 AR13 SPI0SCS1 C25 UART0RTS L4 RSV182 AR14 SPI0SCS2 E26 UART0RXD K4 RSV183 AT12 SPI0SCS3 D26 UART0TXD K2 RSV184 AT13 SPI1CLK C28 UART1CTS K1 RSV185 AM15 SPI1DIN F27 UART1RTS M5 RSV186 AR2 SPI1DOUT A28 UART1RXD L2 RSV187 AP2 SPI1SCS0 B27 UART1TXD K3 RSV188 AC4 SPI1SCS1 C27 USBCLKM V2 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Terminals 65 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-4 Terminal Functions — By Signal Name (Part 19 of 23) Table 5-4 Terminal Functions — By Signal Name (Part 20 of 23) Table 5-4 Terminal Functions — By Signal Name (Part 21 of 23) Signal Name Ball Number Signal Name Ball Number Signal Name Ball Number USBCLKP W2 VSS VSS USBDM T2 USBDP U2 USBDRVVBUS L3 USBID0 R1 A2, A3, A37, A38, B1, B2, B38, B39, C1, C4, C6, C8, C10, C12, C14, C16, C18, C20, C22, C24, C26, C29, C32, C39, D34, D37, E3, E5, E7, E9, E11, E13, E15, E17, E19 Y12, Y14, Y16, Y18, Y20, Y22, Y24, Y26, Y30, Y33, Y37, AA5, AA7, AA9, AA11, AA13, AA15, AA17, AA19, AA21, AA23, AA25, AA27, AA29, AA35, AB6, AB8 VSS E21, E28, G23, G25, G27, G29, G31, G35, H4, H6, H8, H12, H14, H18, H20, H24, H26, H28, H29, H30, H32, H37, J1, J2, J3, J4, J5, J7, J9, J11, J13, J15, J17, J19 VSS AB10, AB12, AB14, AB16, AB18, AB20, AB22, AB24, AB26, AB30, AB33, AB36, AB37, AC7, AC9, AC11, AC13, AC15, AC17, AC19, AC21, AC23, AC25, AC27 VSS J21, J23, J24, J25, J27, J29, J31, J33, K5, K6, K8, K10, K12, K14, K16, K18, K20, K22, K24, K26, K28, K30, K32, K35, L5, L7, L9, L11, L13, L15, L17, L19, L21, L23 VSS AC29, AC35, AD6, AD8, AD10, AD12, AD14, AD16, AD18, AD20, AD22, AD24, AD26, AD30, AD33, AD37, AE3, AE7, AE9, AE11, AE13, AE15, AE17, AE19 VSS L25, L27, L29, L31, L37, M6, M8, M10, M12, M14, M16, M22, M24, M26, M28, M30, M33, N5, N7, N9, N11, N13, N15, N17, N19, N21, N23, N25, N27, N29 VSS AE21, AE23, AE25, AE27, AE29, AE31, AE35, AF6, AF8, AF10, AF12, AF14, AF16, AF18, AF20, AF22, AF24, AF26, AF28, AF30, AF33, AF37, AG4, AG7 VSS N31, N35, P5, P6, P8, P10, P12, P14, P16, P18, P20, P22, P24, P26, P28, P30, P33, P37, R2, R5, R7, R9, R11, R13, R15, R17, R19, R21, R23, R25, R27, R29, R31, R35 VSS AG9, AG11, AG13, AG15, AG17, AG19, AG21, AG23, AG25, AG27, AG29, AG31, AG35, AH6, AH7, AH8, AH10, AH12, AH14, AH16, AH18, AH20, AH22, AH24 VSS T6, T8, T10, T12, T14, T16, T18, T20, T22, T24, T26, T28, T30, T33, T37, U7, U9, U11, U13, U15, U17, U19, U21, U23, U25, U27, U29, U31, U35, V3, V6, V8, V10, V12 VSS AH26, AH28, AH30, AH33, AH37, AJ6, AJ7, AJ9, AJ11, AJ13, AJ15, AJ17, AJ19, AJ21, AJ23, AJ25, AJ27, AJ29, AJ31, AJ32, AJ35, AK2, AK6, AK8, AK10 VSS V14, V16, V18, V20, V22, V24, V26, V28, V30, V33, V37, W5, W7, W9, W11, W13, W15, W17, W19, W21, W23, W25, W27, W29, W31, W35, Y2, Y6, Y8, Y10 VSS AK12, AK14, AK16, AK18, AK20, AK22, AK24, AK26, AK28, AK30, AK33, AK37, AL5, AL7, AL9, AL11, AL13, AL15, AL17, AL19, AL21, AL23, AL25, AL27, AL29 USBRESREF AA1 USBRX0M Y1 USBRX0P W1 USBTX0M V1 USBTX0P U1 USBVBUS T1 VCL AP36 VCNTL0 AT39 VCNTL1 AR37 VCNTL2 AR36 VCNTL3 AT38 VCNTL4 AU38 VCNTL5 AR35 VD AP35 VDDAHV AK11, AK13, AK15, AK17, AK19, AK21, AK23, AK25, AL10, AL12, AL14, AL16, AL18, AL20, AL22, AL24 VDDALV VDDUSB AF13, AF15, AF17, AF19, AF21, AF23, AG12, AG14, AG16, AG18, AG20, AG22, AH11, AH13, AH15, AH17, AH19, AH21, AH23, AH25, AJ12, AJ14, AJ16, AJ18, AJ20, AJ22, AJ24 AB13 VNWA1 AG24 VNWA2 AD11 VNWA3 M23 VNWA4 V11 VP AA12 VPH Y13 VPP L22, M21 VPTX Y11 66 Terminals Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-4 Terminal Functions — By Signal Name (Part 22 of 23) Table 5-4 Terminal Functions — By Signal Name (Part 23 of 23) Signal Name Ball Number Signal Name Ball Number VSS AL31, AL35, AM3, AM8, AM10, AM12, AM13, AM17, AM18, AM20, AM22, AM32, AM33, AM37, AN2, AN5, AN6, AN7, AN8, AN9, AN11, AN12, AN13, AN14 XFIRXP1 (66AK2H14 only) AW19 XFITXN0 (66AK2H14 only) AT19 XFITXN1 (66AK2H14 only) AR20 XFITXP0 (66AK2H14 only) AT18 XFITXP1 (66AK2H14 only) AR19 VSS AN15, AN17, AN18, AN20, AN21, AN22, AN23, AN24, AN25, AN26, AN27, AN28, AN29, AN31, AN35, AP4, AP7, AP10, AP13, AP16, AP19, AP20, AP21, AP24 VSS AP27, AP28, AP29, AP30, AP37, AR3, AR6, AR9, AR12, AR15, AR18, AR21, AR22, AR25, AR28, AR31, AR33, AT2, AT5, AT8, AT11, AT14, AT17, AT20 VSS AT23, AT26, AT29, AT32, AT36, AU1, AU2, AU3, AU6, AU9, AU12, AU15, AU18, AU21, AU24, AU27, AU30, AU33, AU39, AV1, AV2, AV5, AV8, AV11 VSS AV14, AV17, AV20, AV23, AV26, AV29 , AV32, AV35, AV38, AV39, AW2, AW3, AW6, AW9, AW12, AW15, AW18, AW21, AW24, AW27, AW30, AW33, AW37, AW38 XFICLKN (66AK2H14 only) AU20 XFICLKP (66AK2H14 only) AU19 XFIMDCLK (66AK2H14 only) AR34 XFIMDIO (66AK2H14 only) AT33 XFIREFRES0 (66AK2H14 only) AN16 XFIREFRES1 (66AK2H14 only) AM19 XFIRXN0 (66AK2H14 only) AV19 XFIRXN1 (66AK2H14 only) AW20 XFIRXP0 (66AK2H14 only) AV18 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback End of Table 5-4 Terminals 67 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-5 Terminal Functions — By Ball Number (Part 1 of 38) Table 5-5 Ball Number Signal Name Ball Number A1 (nopin) A2 A3 Terminal Functions — By Ball Number (Part 2 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 3 of 38) Signal Name Ball Number A36 DDR3A_REMAP_EN† B34 GPIO31 VSS A37 VSS B34 EMU33† VSS A38 VSS B35 GPIO23 A4 DDR3AD11 A39 (nopin) B35 EMU25† A5 DDR3ADQS2P B1 VSS B36 GPIO30 A6 DDR3ADQM2 B2 VSS B36 EMU32† A7 DDR3ADQS3N B3 DDR3ADQS1P B37 ARMCLKN A8 DDR3AD27 B4 DDR3AD12 B38 VSS A9 DDR3AA11 B5 DDR3ADQS2N B39 VSS A10 DDR3AA13 B6 DDR3AD23 C1 VSS A11 DDR3ACKE1 B7 DDR3ADQS3P C2 DDR3ADQM0 A12 DDR3ACLKOUTP0 B8 DDR3AD28 C3 DDR3ADQS1N A13 DDR3ACLKOUTP1 B9 DDR3AA08 C4 VSS A14 DDR3ARAS B10 DDR3AA14 C5 DDR3AD22 A15 DDR3ADQS8N B11 DDR3ABA0 C6 VSS A16 DDR3ACB00 B12 DDR3ACLKOUTN0 C7 DDR3AD24 A17 DDR3ADQS4P B13 DDR3ACLKOUTN1 C8 VSS A18 DDR3ADQM5 B14 DDR3ARESET C9 DDR3AA06 A19 DDR3ADQS5N B15 DDR3ADQS8P C10 VSS A20 DDR3AD48 B16 DDR3ACB02 C11 DDR3ABA1 A21 DDR3ADQS6P B17 DDR3ADQS4N C12 VSS A22 DDR3ADQM7 B18 DDR3AD45 C13 DDR3ACAS A23 DDR3ADQS7P B19 DDR3ADQS5P C14 VSS A24 RSV005 B20 DDR3AD49 C15 DDR3ACB01 A25 DDR3ACLKN B21 DDR3ADQS6N C16 VSS A26 SPI0DIN B22 DDR3AD61 C17 DDR3ADQM4 A27 SPI0DOUT B23 DDR3ADQS7N C18 VSS A28 SPI1DOUT B24 RSV004 C19 DDR3AD40 A29 SPI2SCS2 B25 DDR3ACLKP C20 VSS A30 GPIO08 B26 SPI0CLK C21 DDR3AD52 A30 BOOTMODE07† B27 SPI1SCS0 C22 VSS A31 GPIO13 B28 SPI2SCS0 C23 DDR3AD56 A31 BOOTMODE12† B29 GPIO04 C24 VSS A32 GPIO17 B29 BOOTMODE03† C25 SPI0SCS1 A32 EMU19† B30 GPIO01 C26 VSS A33 GPIO20 B30 BOOTMODE00† C27 SPI1SCS1 A33 EMU22† B31 GPIO15 C28 SPI1CLK A34 GPIO26 B31 BOOTMODE_RSVD† C29 VSS A34 EMU28† B32 GPIO19 C30 GPIO07 A35 GPIO03 B32 EMU21† C30 BOOTMODE06† A35 BOOTMODE02† B33 GPIO24 C31 GPIO18 GPIO16 B33 EMU26† C31 EMU20† A36 68 Terminals Signal Name Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-5 Terminal Functions — By Ball Number (Part 4 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 5 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 6 of 38) Ball Number Signal Name Ball Number Signal Name Ball Number Signal Name C32 VSS D31 GPIO22 E30 GPIO11 C33 GPIO28 D31 EMU24† E30 BOOTMODE10† C33 EMU30† D32 GPIO27 E31 GPIO25 C34 GPIO29 D32 EMU29† E31 EMU27† C34 EMU31† D33 GPIO21 E32 GPIO14 C35 EMIFA08 D33 EMU23† E32 MAINPLLODSEL† C36 EMIFA20 D34 VSS E33 RSV015 C37 ARMCLKP D35 EMIFA11 E34 EMIFA04 C38 RSV010 D36 EMIFA23 E35 EMIFA13 C39 VSS D37 VSS E36 EMIFCE3 D1 DDR3ADQS0N D38 RSV011 E37 EMIFOE D2 DDR3AD07 D39 EMIFWAIT1 E38 EMIFWAIT0 D3 DDR3AD14 E1 DDR3ADQS0P E39 EMIFA03 D4 DDR3AD15 E2 DDR3AD05 F1 DDR3AD02 D5 DDR3AD18 E3 VSS F2 DDR3AD06 D6 DDR3AD21 E4 DDR3AD08 F3 DDR3ADQM1 D7 DDR3AD31 E5 VSS F4 DDR3AD09 D8 DDR3AA09 E6 DDR3ADQM3 F5 DDR3AD19 D9 DDR3AA07 E7 VSS F6 DDR3AD26 D10 DDR3AA15 E8 DDR3AA00 F7 DDR3AD25 D11 DDR3ACE0 E9 VSS F8 DDR3AA05 D12 RSV027 E10 DDR3AA12 F9 DDR3AA04 D13 RSV028 E11 VSS F10 DDR3AA10 D14 DDR3ACB06 E12 DDR3AODT0 F11 DDR3ACE1 D15 DDR3ACB04 E13 VSS F12 DDR3AWE D16 DDR3AD36 E14 DDR3ADQM8 F13 RSV029 D17 DDR3AD37 E15 VSS F14 DDR3ACB05 D18 DDR3AD46 E16 DDR3AD32 F15 DDR3ACB03 D19 DDR3AD41 E17 VSS F16 DDR3AD34 D20 DDR3AD50 E18 DDR3AD39 F17 DDR3AD38 D21 DDR3ADQM6 E19 VSS F18 DDR3AD47 D22 DDR3AD63 E20 DDR3AD53 F19 DDR3AD43 D23 DDR3AD58 E21 VSS F20 DDR3AD54 D24 CORESEL2 E22 DDR3AD60 F21 DDR3AD62 D25 SPI2CLK E23 RSV014 F22 DDR3AD59 D26 SPI0SCS3 E24 CORESEL1 F23 RSV013 D27 SPI1SCS2 E25 SPI2SCS3 F24 CORESEL0 D28 SPI2SCS1 E26 SPI0SCS2 F25 SPI0SCS0 D29 GPIO02 E27 SPI1SCS3 F26 RSV017 D29 BOOTMODE01† E28 VSS F27 SPI1DIN D30 GPIO06 E29 GPIO05 F28 SPI2DIN D30 BOOTMODE05† E29 BOOTMODE04† F29 GPIO00 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Terminals 69 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-5 Terminal Functions — By Ball Number (Part 7 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 8 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 9 of 38) Ball Number Signal Name Ball Number Signal Name Ball Number Signal Name F30 GPIO12 G30 GPIO09 H32 VSS F30 BOOTMODE11† G30 BOOTMODE08† H33 EMIFBE1 F31 GPIO10 G31 VSS H34 EMIFBE0 F31 BOOTMODE09† G32 EMIFCE1 H35 EMIFA06 F32 RSV016 G33 EMIFCE0 H36 EMIFA12 F33 EMIFRNW G34 EMIFCE2 H37 VSS F34 EMIFA00 G35 VSS H38 EMIFA22 F35 EMIFA17 G36 EMIFA02 H39 EMIFD04 F36 EMIFWE G37 EMIFA09 J1 VSS F37 EMIFA01 G38 EMIFA14 J2 VSS F38 EMIFA10 G39 EMIFA19 J3 VSS F39 EMIFA15 H1 DDR3AD04 J4 VSS G1 DDR3AD00 H2 DDR3AD01 J5 VSS G2 DDR3AD03 H3 DDR3AD13 J6 DVDD15 G3 DDR3AD10 H4 VSS J7 VSS G4 DDR3AD16 H5 DDR3AD17 J8 DVDD15 G5 DDR3AD20 H6 VSS J9 VSS G6 DDR3AD29 H7 DVDD15 J10 DVDD15 G7 DDR3AD30 H8 VSS J11 VSS G8 DDR3AA02 H9 DVDD15 J12 DVDD15 G9 DDR3AA01 H10 DDR3ARZQ1 J13 VSS G10 DDR3AA03 H11 DVDD15 J14 DVDD15 G11 DDR3ABA2 H12 VSS J15 VSS G12 DDR3ACKE0 H13 DVDD15 J16 DVDD15 G13 DDR3AODT1 H14 VSS J17 VSS G14 DDR3AVREFSSTL H15 DVDD15 J18 DVDD15 G15 DDR3ACB07 H16 DDR3ARZQ0 J19 VSS G16 DDR3AD33 H17 DVDD15 J20 DVDD15 G17 DDR3AD35 H18 VSS J21 VSS G18 DDR3AD42 H19 DVDD15 J22 DVDD15 G19 DDR3AD44 H20 VSS J23 VSS G20 DDR3AD51 H21 DVDD15 J24 VSS G21 DDR3AD55 H22 DDR3ARZQ2 J25 VSS G22 DDR3AD57 H23 DVDD15 J26 DVDD18 G23 VSS H24 VSS J27 VSS G24 CORESEL3 H25 DVDD18 J28 DVDD18 G24 ARMAVSSHARED† H26 VSS J29 VSS G25 VSS H27 DVDD18 J30 CVDD G26 RSV018 H28 VSS J31 VSS G27 VSS H29 VSS J32 DVDD18 G28 SPI2DOUT H30 VSS J33 VSS G29 VSS H31 CVDD J34 EMIFA05 70 Terminals Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-5 Terminal Functions — By Ball Number (Part 10 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 11 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 12 of 38) Ball Number Signal Name Ball Number Signal Name Ball Number Signal Name J35 EMIFA18 K38 EMIFD09 M1 AVSIFSEL1† J36 EMIFA21 K39 EMIFD08 M2 TIMI0 J37 EMIFD01 L1 UART0CTS M2 AVSIFSEL0† J38 EMIFD05 L2 UART1RXD M3 TIMO0 J39 EMIFD07 L3 USBDRVVBUS M4 TIMO1 K1 UART1CTS L4 UART0RTS M5 UART1RTS K2 UART0TXD L5 VSS M6 VSS K3 UART1TXD L6 CVDD M7 CVDD K4 UART0RXD L7 VSS M8 VSS K5 VSS L8 DVDD15 M9 CVDD K6 VSS L9 VSS M10 VSS K7 DVDD15 L10 DVDD15 M11 DVDD15 K8 VSS L11 VSS M12 VSS K9 DVDD15 L12 DVDD15 M13 AVDDA7 K10 VSS L13 VSS M14 VSS K11 DVDD15 L14 DVDD15 M15 AVDDA8 K12 VSS L15 VSS M16 VSS K13 DVDD15 L16 DVDD15 M17 DVDD15 K14 VSS L17 VSS M18 AVDDA9 K15 DVDD15 L18 DVDD15 M19 DVDD15 K16 VSS L19 VSS M20 AVDDA10 K17 DVDD15 L20 DVDD15 M21 VPP K18 VSS L21 VSS M22 VSS K19 DVDD15 L22 VPP M23 VNWA3 K20 VSS L23 VSS M24 VSS K21 DVDD15 L24 DVDD18 M25 CVDD K22 VSS L25 VSS M26 VSS K23 DVDD15 L26 DVDD18 M27 CVDD K24 VSS L27 VSS M28 VSS K25 DVDD18 L28 CVDD M29 DVDD18 K26 VSS L29 VSS M30 VSS K27 DVDD18 L30 DVDD18 M31 DVDD15 K28 VSS L31 VSS M32 EMIFD00 K29 CVDD L32 DVDD15 M33 VSS K30 VSS L33 EMIFD02 M34 EMIFD13 K31 DVDD18 L34 EMIFD03 M35 EMIFD15 K32 VSS L35 EMIFD12 M36 EMIFD14 K33 EMIFA07 L36 EMIFD11 M37 DDR3BD02 K34 EMIFA16 L37 VSS M38 DDR3BDQS0P K35 VSS L38 DDR3BD00 M39 DDR3BDQS0N K36 EMIFD10 L39 DDR3BD03 N1 SCL0 K37 EMIFD06 M1 TIMI1 N2 SDA1 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Terminals 71 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-5 Terminal Functions — By Ball Number (Part 13 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 14 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 15 of 38) Ball Number Signal Name Ball Number Signal Name Ball Number Signal Name N3 SDA2 P6 VSS R9 VSS N4 SCL1 P7 CVDD R10 CVDD N5 VSS P8 VSS R11 VSS N6 CVDD P9 CVDD R12 CVDD N7 VSS P10 VSS R13 VSS N8 CVDD P11 AVDDA6 R14 CVDD N9 VSS P12 VSS R15 VSS N10 CVDD P13 CVDD R16 CVDD N11 VSS P14 VSS R17 VSS N12 CVDD P15 CVDD R18 CVDD N13 VSS P16 VSS R19 VSS N14 CVDD P17 CVDD R20 CVDD N15 VSS P18 VSS R21 VSS N16 CVDD P19 CVDD R22 CVDDT1 N17 VSS P20 VSS R23 VSS N18 CVDD P21 CVDD R24 CVDD N19 VSS P22 VSS R25 VSS N20 AVDDA2 P23 CVDD R26 CVDD N21 VSS P24 VSS R27 VSS N22 CVDD P25 CVDD R28 DVDD15 N23 VSS P26 VSS R29 VSS N24 CVDD P27 CVDD R30 DVDD15 N25 VSS P28 VSS R31 VSS N26 CVDD P29 DVDD15 R32 DDR3BD09 N27 VSS P30 VSS R33 DDR3BD14 N28 AVDDA3 P31 DVDD15 R34 DDR3BD17 N29 VSS P32 DDR3BRZQ1 R35 VSS N30 DVDD18 P33 VSS R36 DDR3BD20 N31 VSS P34 DDR3BDQM1 R37 DDR3BD19 N32 DDR3BD13 P35 DDR3BD10 R38 DDR3BD12 N33 DDR3BD04 P36 DDR3BD15 R39 DDR3BD11 N34 DDR3BD01 P37 VSS T1 USBVBUS N35 VSS P38 DDR3BDQS1N T2 USBDM N36 DDR3BD06 P39 DDR3BDQS1P T3 EMU09 N37 DDR3BD05 R1 USBID0 T4 EMU13 N38 DDR3BD07 R2 VSS T5 EMU16 N39 DDR3BDQM0 R3 EMU15 T6 VSS P1 RSV001 R4 EMU17 T7 DVDD18 P2 RSV000 R5 VSS T8 VSS P3 SDA0 R6 DVDD18 T9 CVDD P4 SCL2 R7 VSS T10 VSS P5 VSS R8 CVDD T11 CVDD 72 Terminals Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-5 Terminal Functions — By Ball Number (Part 16 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 17 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 18 of 38) Ball Number Signal Name Ball Number Signal Name Ball Number Signal Name T12 VSS U15 VSS V18 VSS T13 CVDD1 U16 CVDD1 V19 CVDD T14 VSS U17 VSS V20 VSS T15 CVDD U18 CVDD V21 CVDD1 T16 VSS U19 VSS V22 VSS T17 CVDD U20 CVDD1 V23 CVDD T18 VSS U21 VSS V24 VSS T19 CVDD U22 CVDDT1 V25 CVDD T20 VSS U23 VSS V26 VSS T21 CVDD1 U24 CVDD V27 CVDD T22 VSS U25 VSS V28 VSS T23 CVDD U26 CVDD V29 DVDD15 T24 VSS U27 VSS V30 VSS T25 CVDD U28 DVDD15 V31 DVDD15 T26 VSS U29 VSS V32 DDR3BD30 T27 CVDD U30 DVDD15 V33 VSS T28 VSS U31 VSS V34 DDR3BA05 T29 DVDD15 U32 DDR3BDQM3 V35 DDR3BD24 T30 VSS U33 DDR3BD29 V36 DDR3BD31 T31 DVDD15 U34 DDR3BD26 V37 VSS T32 DDR3BD08 U35 VSS V38 DDR3BDQS3N T33 VSS U36 DDR3BD25 V39 DDR3BDQS3P T34 DDR3BD16 U37 DDR3BD21 W1 USBRX0P T35 DDR3BD18 U38 DDR3BD23 W2 USBCLKP T36 DDR3BD22 U39 DDR3BDQM2 W3 EMU04 T37 VSS V1 USBTX0M W4 EMU05 T38 DDR3BDQS2N V2 USBCLKM W5 VSS T39 DDR3BDQS2P V3 VSS W6 DVDD18 U1 USBTX0P V4 EMU06 W7 VSS U2 USBDP V5 DVDD18 W8 CVDD U3 EMU08 V6 VSS W9 VSS U4 EMU07 V7 DVDD18 W10 CVDD U5 EMU12 V8 VSS W11 VSS U6 DVDD18 V9 CVDD W12 CVDD U7 VSS V10 VSS W13 VSS U8 CVDD V11 VNWA4 W14 CVDD U9 VSS V12 VSS W15 VSS U10 CVDD V13 CVDD1 W16 CVDD1 U11 VSS V14 VSS W17 VSS U12 CVDD V15 CVDD W18 CVDD U13 VSS V16 VSS W19 VSS U14 CVDD1 V17 CVDD1 W20 CVDD Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Terminals 73 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-5 Terminal Functions — By Ball Number (Part 19 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 20 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 21 of 38) Ball Number Signal Name Ball Number Signal Name Ball Number Signal Name W21 VSS Y24 VSS AA27 VSS W22 CVDDT1 Y25 CVDD AA28 DVDD15 W23 VSS Y26 VSS AA29 VSS W24 CVDD Y27 CVDD AA30 DVDD15 W25 VSS Y28 AVDDA11 AA31 DDR3BRZQ0 W26 CVDD Y29 DVDD15 AA32 DDR3BA00 W27 VSS Y30 VSS AA33 DDR3BA08 W28 DVDD15 Y31 DVDD15 AA34 DDR3BBA1 W29 VSS Y32 DDR3BA09 AA35 VSS W30 DVDD15 Y33 VSS AA36 DDR3BCE1 W31 VSS Y34 DDR3BA03 AA37 DDR3BBA0 W32 DDR3BA02 Y35 DDR3BA12 AA38 DDR3BA14 W33 DDR3BA01 Y36 DDR3BA15 AA39 DDR3BA11 W34 DDR3BA04 Y37 VSS AB1 TSCOMPOUT W35 VSS Y38 DDR3BA10 AB2 EMU01 W36 DDR3BA06 Y39 DDR3BA13 AB3 EMU14 W37 DDR3BA07 AA1 USBRESREF AB4 EMU10 W38 DDR3BD27 AA2 EMU00 AB5 DVDD18 W39 DDR3BD28 AA3 EMU11 AB6 VSS Y1 USBRX0M AA4 EMU18 AB7 DVDD18 Y2 VSS AA5 VSS AB8 VSS Y3 EMU02 AA6 DVDD18 AB9 CVDD Y4 EMU03 AA7 VSS AB10 VSS Y5 DVDD18 AA8 CVDD AB11 CVDD Y6 VSS AA9 VSS AB12 VSS Y7 DVDD18 AA10 CVDD AB13 VDDUSB Y8 VSS AA11 VSS AB14 VSS Y9 CVDD AA12 VP AB15 CVDD Y10 VSS AA13 VSS AB16 VSS Y11 VPTX AA14 DVDD33 AB17 CVDD Y12 VSS AA15 VSS AB18 VSS Y13 VPH AA16 CVDD AB19 CVDD Y14 VSS AA17 VSS AB20 VSS Y15 CVDD AA18 CVDD AB21 CVDD Y16 VSS AA19 VSS AB22 VSS Y17 CVDD AA20 CVDD AB23 CVDD Y18 VSS AA21 VSS AB24 VSS Y19 CVDD AA22 CVDD AB25 CVDD Y20 VSS AA23 VSS AB26 VSS Y21 CVDD AA24 CVDD AB27 CVDD Y22 VSS AA25 VSS AB28 AVDDA12 Y23 CVDD AA26 CVDD AB29 DVDD15 74 Terminals Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-5 Terminal Functions — By Ball Number (Part 22 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 23 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 24 of 38) Ball Number Signal Name Ball Number Signal Name Ball Number Signal Name AB30 VSS AC33 DDR3BODT0 AD36 DDR3BCB06 AB31 DVDD15 AC34 RSV031 AD37 VSS AB32 RSV032 AC35 VSS AD38 DDR3BCLKOUTP0 AB33 VSS AC36 DDR3BCAS AD39 DDR3BCLKOUTN0 AB34 DDR3BCE0 AC37 DDR3BWE AE1 TCK AB35 DDR3BBA2 AC38 DDR3BCLKOUTN1 AE2 TMS AB36 VSS AC39 DDR3BCLKOUTP1 AE3 VSS AB37 VSS AD1 TRST AE4 LRESET AB38 DDR3BCKE1 AD2 RESET AE5 HOUT AB39 DDR3BCKE0 AD3 RESETFULL AE6 DVDD18 AC1 TSPUSHEVT1 AD4 LRESETNMIEN AE7 VSS AC2 TSPUSHEVT0 AD5 NMI AE8 CVDD AC3 TSSYNCEVT AD6 VSS AE9 VSS AC4 RSV188 AD7 DVDD18 AE10 CVDD AC5 RESETSTAT AD8 VSS AE11 VSS AC6 DVDD18 AD9 CVDD AE12 CVDD AC7 VSS AD10 VSS AE13 VSS AC8 CVDD AD11 VNWA2 AE14 CVDD AC9 VSS AD12 VSS AE15 VSS AC10 CVDD AD13 CVDD AE16 CVDD AC11 VSS AD14 VSS AE17 VSS AC12 CVDD AD15 CVDD AE18 CVDD AC13 VSS AD16 VSS AE19 VSS AC14 CVDD AD17 CVDD1 AE20 CVDD AC15 VSS AD18 VSS AE21 VSS AC16 CVDD AD19 CVDD1 AE22 CVDD AC17 VSS AD20 VSS AE23 VSS AC18 CVDD1 AD21 CVDD AE24 CVDD AC19 VSS AD22 VSS AE25 VSS AC20 CVDD AD23 CVDD AE26 CVDD AC21 VSS AD24 VSS AE27 VSS AC22 CVDD AD25 CVDD AE28 AVDDA15 AC23 VSS AD26 VSS AE29 VSS AC24 CVDD AD27 CVDD AE30 DVDD15 AC25 VSS AD28 AVDDA14 AE31 VSS AC26 CVDD AD29 DVDD15 AE32 DDR3BCB02 AC27 VSS AD30 VSS AE33 DDR3BCB04 AC28 AVDDA13 AD31 DVDD15 AE34 DDR3BCB07 AC29 VSS AD32 DDR3BRAS AE35 VSS AC30 DVDD15 AD33 VSS AE36 DDR3BCB05 AC31 DDR3BVREFSSTL AD34 DDR3BODT1 AE37 DDR3BDQM8 AC32 DDR3BRESET AD35 RSV030 AE38 DDR3BDQS8N Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Terminals 75 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-5 Terminal Functions — By Ball Number (Part 25 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 26 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 27 of 38) Ball Number Signal Name Ball Number Signal Name Ball Number Signal Name AE39 DDR3BDQS8P AG3 HYP0RXPMDAT AH6 VSS AF1 TDO AG4 VSS AH7 VSS AF2 HYP1TXPMDAT AG5 HYP0TXFLDAT AH8 VSS AF3 HYP1RXPMCLK AG6 DVDD18 AH9 CVDD AF4 HYP1RXPMDAT AG7 VSS AH10 VSS AF5 BOOTCOMPLETE AG8 CVDD AH11 VDDALV AF6 VSS AG9 VSS AH12 VSS AF7 DVDD18 AG10 CVDD AH13 VDDALV AF8 VSS AG11 VSS AH14 VSS AF9 CVDD AG12 VDDALV AH15 VDDALV AF10 VSS AG13 VSS AH16 VSS AF11 AVDDA1 AG14 VDDALV AH17 VDDALV AF12 VSS AG15 VSS AH18 VSS AF13 VDDALV AG16 VDDALV AH19 VDDALV AF14 VSS AG17 VSS AH20 VSS AF15 VDDALV AG18 VDDALV AH21 VDDALV AF16 VSS AG19 VSS AH22 VSS AF17 VDDALV AG20 VDDALV AH23 VDDALV AF18 VSS AG21 VSS AH24 VSS AF19 VDDALV AG22 VDDALV AH25 VDDALV AF20 VSS AG23 VSS AH26 VSS AF21 VDDALV AG24 VNWA1 AH27 CVDD AF22 VSS AG25 VSS AH28 VSS AF23 VDDALV AG26 AVDDA5 AH29 AVDDA4 AF24 VSS AG27 VSS AH30 VSS AF25 CVDD AG28 CVDD AH31 DVDD15 AF26 VSS AG29 VSS AH32 DDR3BD40 AF27 CVDD AG30 DVDD15 AH33 VSS AF28 VSS AG31 VSS AH34 DDR3BD37 AF29 DVDD15 AG32 DDR3BD39 AH35 DDR3BD38 AF30 VSS AG33 DDR3BDQM4 AH36 DDR3BD42 AF31 DVDD15 AG34 DDR3BD35 AH37 VSS AF32 DDR3BCB00 AG35 VSS AH38 DDR3BD46 AF33 VSS AG36 DDR3BD36 AH39 DDR3BD45 AF34 DDR3BCB01 AG37 DDR3BD32 AJ1 HYP0TXPMDAT AF35 DDR3BCB03 AG38 DDR3BD34 AJ2 HYP0RXPMCLK AF36 DDR3BD33 AG39 DDR3BDQM5 AJ3 HYP0TXFLCLK AF37 VSS AH1 HYP1TXPMCLK AJ4 HYP0RXFLDAT AF38 DDR3BDQS4P AH2 HYP1TXFLDAT AJ5 HYP0RXFLCLK AF39 DDR3BDQS4N AH3 HYP1TXFLCLK AJ6 VSS AG1 TDI AH4 HYP1RXFLCLK AJ7 VSS AG2 HYP1RXFLDAT AH5 HYP0TXPMCLK AJ8 CVDD 76 Terminals Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-5 Terminal Functions — By Ball Number (Part 28 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 29 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 30 of 38) Ball Number Signal Name Ball Number Signal Name Ball Number Signal Name AJ9 VSS AK12 VSS AL15 VSS AJ10 CVDD AK13 VDDAHV AL16 VDDAHV AJ11 VSS AK14 VSS AL17 VSS AJ12 VDDALV AK15 VDDAHV AL18 VDDAHV AJ13 VSS AK16 VSS AL19 VSS AJ14 VDDALV AK17 VDDAHV AL20 VDDAHV AJ15 VSS AK18 VSS AL21 VSS AJ16 VDDALV AK19 VDDAHV AL22 VDDAHV AJ17 VSS AK20 VSS AL23 VSS AJ18 VDDALV AK21 VDDAHV AL24 VDDAHV AJ19 VSS AK22 VSS AL25 VSS AJ20 VDDALV AK23 VDDAHV AL26 DVDD18 AJ21 VSS AK24 VSS AL27 VSS AJ22 VDDALV AK25 VDDAHV AL28 DVDD18 AJ23 VSS AK26 VSS AL29 VSS AJ24 VDDALV AK27 DVDD18 AL30 CVDD AJ25 VSS AK28 VSS AL31 VSS AJ26 DVDD18 AK29 CVDD AL32 DVDD15 AJ27 VSS AK30 VSS AL33 DDR3BD55 AJ28 CVDD AK31 DVDD15 AL34 DDR3BD52 AJ29 VSS AK32 DDR3BRZQ2 AL35 VSS AJ30 DVDD15 AK33 VSS AL36 DDR3BD53 AJ31 VSS AK34 DDR3BDQM6 AL37 DDR3BD54 AJ32 VSS AK35 DDR3BD51 AL38 DDR3BDQS6N AJ33 DDR3BD41 AK36 DDR3BD50 AL39 DDR3BDQS6P AJ34 DDR3BD43 AK37 VSS AM1 TSREFCLKP AJ35 VSS AK38 DDR3BD49 AM2 ALTCORECLKP AJ36 DDR3BD44 AK39 DDR3BD48 AM3 VSS AJ37 DDR3BD47 AL1 TSREFCLKN AM4 RSV003 AJ38 DDR3BDQS5N AL2 ALTCORECLKN AM5 CVDD AJ39 DDR3BDQS5P AL3 SYSCLKP AM6 HYP1REFRES AK1 SYSCLKOUT AL4 CORECLKSEL AM7 RSV020 AK2 VSS AL5 VSS AM8 VSS AK3 SYSCLKN AL6 CVDD AM9 HYP0REFRES AK4 POR AL7 VSS AM10 VSS AK5 RSV012 AL8 CVDD AM11 RSV099 AK6 VSS AL9 VSS AM12 VSS AK7 CVDD AL10 VDDAHV AM13 VSS AK8 VSS AL11 VSS AM14 RSV025 AK9 CVDD AL12 VDDAHV AM15 RSV185 AK10 VSS AL13 VSS AM16 RSV024 AK11 VDDAHV AL14 VDDAHV AM17 VSS Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Terminals 77 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-5 Terminal Functions — By Ball Number (Part 31 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 32 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 33 of 38) Ball Number Signal Name Ball Number Signal Name Ball Number Signal Name AM18 VSS RSV068 AP18 RSV174 AM19 (66AK2H14 only) XFIREFRES1 AN16 (66AK2H12/06 only) AP19 VSS AN17 VSS AP20 VSS AM19 (66AK2H12/06 only) RSV069 AN18 VSS AP21 VSS AN19 RSV026 AP22 RIOTXN2 AN20 VSS AN21 VSS AN22 VSS AN23 VSS AN24 VSS AN25 VSS AN26 VSS AN27 VSS AN28 VSS AN29 VSS AM20 VSS AM21 RIOREFRES AM22 VSS AM23 RSV021 AM24 SGMIIREFRES AM25 RSV023 AM26 PCIEREFRES AM27 DVDD18 AM28 RSV022 AM29 DVDD18 AM30 RSV192 AM31 CVDD AM32 VSS AM33 VSS AM34 DDR3BD59 AM35 DDR3BD60 AM36 DDR3BD62 AM37 VSS AM38 DDR3BD61 AM39 DDR3BDQM7 AN1 TSRXCLKOUT0P AN2 VSS AN3 TSRXCLKOUT1P AN4 RSV002 AN5 VSS AN6 VSS AN7 VSS AN8 VSS AN9 VSS AN10 RSV019 AN11 VSS AN12 VSS AN13 VSS AN14 VSS AN15 VSS AN16 (66AK2H14 only) XFIREFRES0 78 Terminals AN30 PACLKSEL AN31 VSS AN32 RSV194 AN33 DDR3BD58 AN34 DDR3BD56 AN35 VSS AN36 DDR3BD57 AN37 DDR3BD63 AN38 DDR3BDQS7P AN39 DDR3BDQS7N AP1 TSRXCLKOUT0N AP2 RSV187 AP3 TSRXCLKOUT1N AP4 VSS AP5 HYP1TXN1 AP6 HYP1TXP1 AP7 VSS AP8 HYP0TXN2 AP9 HYP0TXP2 AP10 VSS AP11 HYP0TXN0 AP12 HYP0TXP0 AP13 VSS AP14 RSV179 AP15 RSV180 AP16 VSS AP17 RSV173 AP23 RIOTXP2 AP24 VSS AP25 SGMII3TXN AP26 SGMII3TXP AP27 VSS AP28 VSS AP29 VSS AP30 VSS AP31 MDCLK AP32 RSV193 AP33 RSV195 AP34 RSV191 AP35 VD AP36 VCL AP37 VSS AP38 RSV006 AP39 RSV007 AR1 RSV189 AR2 RSV186 AR3 VSS AR4 HYP1TXN2 AR5 HYP1TXP2 AR6 VSS AR7 HYP0TXN3 AR8 HYP0TXP3 AR9 VSS AR10 HYP0TXN1 AR11 HYP0TXP1 AR12 VSS AR13 RSV181 AR14 RSV182 AR15 VSS AR16 RSV175 AR17 RSV176 AR18 VSS AR19 (66AK2H14 only) XFITXP1 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-5 Terminal Functions — By Ball Number (Part 34 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 35 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 36 of 38) Ball Number Signal Name Ball Number Signal Name Ball Number Signal Name AR19 (66AK2H12/06 only) RSV067 AT17 VSS AU13 RSV169 AU14 RSV170 XFITXN1 AT18 (66AK2H14 only) XFITXP0 AR20 (66AK2H14 only) AU15 VSS RSV066 AT18 (66AK2H12/06 only) RSV063 AR20 (66AK2H12/06 only) AU16 RSV163 AU17 RSV164 AR21 VSS AR22 VSS AR23 RIOTXN1 AR24 RIOTXP1 AR25 VSS AR26 SGMII2TXN AR27 SGMII2TXP AR28 VSS AR29 PCIETXN1 AR30 PCIETXP1 AR31 VSS AR32 MDIO AT19 (66AK2H14 only) XFITXN0 AU18 VSS AT19 (66AK2H12/06 only) RSV062 AU19 (66AK2H14 only) XFICLKP AT20 VSS RIOTXN3 AU19 (66AK2H12/06 only) RSV070 AT21 AT22 RIOTXP3 AU20 (66AK2H14 only) XFICLKN AT23 VSS RIOTXN0 AU20 (66AK2H12/06 only) RSV071 AT24 AT25 RIOTXP0 AU21 VSS AT26 VSS AU22 RIORXN1 AT27 SGMII1TXN AU23 RIORXP1 AT28 SGMII1TXP AU24 VSS AT29 VSS AU25 SGMII2RXN AT30 PCIETXN0 AU26 SGMII2RXP AT31 PCIETXP0 AU27 VSS AR33 VSS AR34 (66AK2H14 only) XFIMDCLK AR34 (66AK2H12/06 only) RSV073 AT32 VSS AU28 SGMII0TXN XFIMDIO AU29 SGMII0TXP AR35 VCNTL5 AT33 (66AK2H14 only) AU30 VSS AR36 VCNTL2 RSV072 AU31 PCIERXN0 AR37 VCNTL1 AT33 (66AK2H12/06 only) AR38 DDR3BCLKP AT34 RSV009 AR39 DDR3BCLKN AT1 RSV190 AT2 VSS AT3 HYP1TXN3 AT4 HYP1TXP3 AT5 VSS AT6 HYP1TXN0 AT7 HYP1TXP0 AT8 VSS AT9 HYP0CLKP AT10 HYP0CLKN AT11 VSS AT12 RSV183 AT13 RSV184 AT14 VSS AT15 RSV177 AT16 RSV178 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback AT35 RSV75 AT36 VSS AT37 RSV74 AT38 VCNTL3 AT39 VCNTL0 AU1 VSS AU2 VSS AU3 VSS AU4 HYP1RXN2 AU5 HYP1RXP2 AU6 VSS AU7 HYP1RXN0 AU8 HYP1RXP0 AU9 VSS AU10 HYP0RXN1 AU11 HYP0RXP1 AU12 VSS AU32 PCIERXP0 AU33 VSS AU34 RSV008 AU35 RSV80 AU36 RSV76 AU37 RSV78 AU38 VCNTL4 AU39 VSS AV1 VSS AV2 VSS AV3 HYP1RXN3 AV4 HYP1RXP3 AV5 VSS AV6 HYP1RXN1 AV7 HYP1RXP1 AV8 VSS AV9 HYP0RXN2 AV10 HYP0RXP2 Terminals 79 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 5-5 Terminal Functions — By Ball Number (Part 37 of 38) Table 5-5 Terminal Functions — By Ball Number (Part 38 of 38) Ball Number Signal Name Ball Number Signal Name AV11 VSS AW9 VSS AV12 RSV171 AW10 HYP0RXN0 AV13 RSV172 AW11 HYP0RXP0 AV14 VSS AW12 VSS AV15 RSV165 AW13 RSV167 AV16 RSV166 AW14 RSV168 AV17 VSS AW15 VSS AV18 (66AK2H14 only) XFIRXP0 AW16 RSV161 AW17 RSV162 AV18 (66AK2H12/06 only) RSV061 AW18 VSS XFIRXP1 AV19 (66AK2H14 only) XFIRXN0 AW19 (66AK2H14 only) AV19 (66AK2H12/06 only) RSV060 AW19 (66AK2H12/06 only) RSV065 AV20 VSS AW20 (66AK2H14 only) XFIRXN1 AV21 RIORXN3 RIORXP3 AW20 (66AK2H12/06 only) RSV064 AV22 AV23 VSS AW21 VSS AV24 RIORXN0 AW22 RIORXN2 AV25 RIORXP0 AW23 RIORXP2 AV26 VSS AW24 VSS AV27 SGMII1RXN AW25 SGMII3RXN AV28 SGMII1RXP AW26 SGMII3RXP AV29 VSS AW27 VSS AV30 PCIERXN1 AW28 SGMII0RXN AV31 PCIERXP1 AW29 SGMII0RXP AV32 VSS AW30 VSS AV33 PASSCLKP AW31 PCIECLKP AV34 PASSCLKN AW32 PCIECLKN AV35 VSS AW33 VSS AV36 RSV79 AW34 SRIOSGMIICLKP AV37 RSV77 AW35 SRIOSGMIICLKN AV38 VSS AW36 RSV81 AV39 VSS AW37 VSS AW1 (nopin) AW38 VSS AW2 VSS AW39 (nopin) AW3 VSS End of Table 5-5 AW4 HYP1CLKP AW5 HYP1CLKN AW6 VSS AW7 HYP0RXN3 AW8 HYP0RXP3 80 Terminals Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 5.3 Pullup/Pulldown Resistors Proper board design should ensure that input pins to the device always be at a valid logic level and not floating. This may be achieved via pullup/pulldown resistors. The device features internal pullup (IPU) and internal pulldown (IPD) resistors on most pins to eliminate the need, unless otherwise noted, for external pullup/pulldown resistors. An external pullup/pulldown resistor needs to be used in the following situations: • Device Configuration Pins: If the pin is both routed out and are not driven (in Hi-Z state), an external pullup/pulldown resistor must be used, even if the IPU/IPD matches the desired value/state. • Other Input Pins: If the IPU/IPD does not match the desired value/state, use an external pullup/pulldown resistor to pull the signal to the opposite rail. For the device configuration pins (listed in Table 8-29), if they are both routed out and are not driven (in Hi-Z state), it is strongly recommended that an external pullup/pulldown resistor be implemented. Although, internal pullup/pulldown resistors exist on these pins and they may match the desired configuration value, providing external connectivity can help ensure that valid logic levels are latched on these device configuration pins. In addition, applying external pullup/pulldown resistors on the device configuration pins adds convenience to the user in debugging and flexibility in switching operating modes. Tips for choosing an external pullup/pulldown resistor: • Consider the total amount of current that may pass through the pullup or pulldown resistor. Be sure to include the leakage currents of all the devices connected to the net, as well as any internal pullup or pulldown resistors. • Decide a target value for the net. For a pulldown resistor, this should be below the lowest VIL level of all inputs connected to the net. For a pullup resistor, this should be above the highest VIH level of all inputs on the net. A reasonable choice would be to target the VOL or VOH levels for the logic family of the limiting device; which, by definition, have margin to the VIL and VIH levels. • Select a pullup/pulldown resistor with the largest possible value that still ensures that the net will reach the target pulled value when maximum current from all devices on the net is flowing through the resistor. The current to be considered includes leakage current plus, any other internal and external pullup/pulldown resistors on the net. • For bidirectional nets, there is an additional consideration that sets a lower limit on the resistance value of the external resistor. Verify that the resistance is small enough that the weakest output buffer can drive the net to the opposite logic level (including margin). • Remember to include tolerances when selecting the resistor value. • For pullup resistors, also remember to include tolerances on the DVDD rail. For most systems: • A 1-kΩ resistor can be used to oppose the IPU/IPD while meeting the above criteria. Users should confirm this resistor value is correct for their specific application. • A 20-kΩ resistor can be used to compliment the IPU/IPD on the device configuration pins while meeting the above criteria. Users should confirm this resistor value is correct for their specific application. For more detailed information on input current (II), and the low-level/high-level input voltages (VIL and VIH) for the 66AK2H14/12/06 device, see Section 9.3 ‘‘Electrical Characteristics’’ on page 264. To determine which pins on the device include internal pullup/pulldown resistors, see Table 5-3 ‘‘Terminal Functions — Power and Ground’’ on page 58. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Terminals 81 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 6 Memory, Interrupts, and EDMA for 66AK2H14/12/06 6.1 Memory Map Summary for 66AK2H14/12/06 The following table shows the memory map address ranges of the device. Table 6-1 Device Memory Map Summary for 66AK2H14/12/06 (Part 1 of 13) Physical 40 bit Address Start End Bytes ARM View DSP View SOC View 00 0000 0000 00 0003 FFFF 256K ARM ROM Reserved ARM ROM 00 0004 0000 00 007F FFFF 8M-256K Reserved Reserved Reserved 00 0080 0000 00 008F FFFF 1M Reserved L2 SRAM L2 SRAM 00 0090 0000 00 00DF FFFF 5M Reserved Reserved Reserved 00 00E0 0000 00 00E0 7FFF 32K Reserved L1P SRAM L1P SRAM 00 00E0 8000 00 00EF FFFF 1M-32K Reserved Reserved Reserved 00 00F0 0000 00 00F0 7FFF 32K Reserved L1D SRAM L1D SRAM 00 00F0 8000 00 00FF FFFF 1M-32K Reserved Reserved Reserved 00 0100 0000 00 0100 FFFF 64K ARM AXI2VBUSM Master Registers C66x CorePac registers C66x CorePac registers 00 0101 0000 00 010F FFFF 1M-64K Reserved C66x CorePac registers C66x CorePac registers 00 0110 0000 00 0110 FFFF 64K ARM STM stimulus ports C66x CorePac registers C66x CorePac registers 00 0111 0000 00 01BF FFFF 11M-64K Reserved C66x CorePac registers C66x CorePac registers 00 01C0 0000 00 01CF FFFF 1M Reserved Reserved Reserved 00 01D0 0000 00 01D0 007F 128 Tracer_MSMC0_CFG Tracer_MSMC0_CFG Tracer_MSMC0_CFG 00 01D0 0080 00 01D0 7FFF 32K-128 Reserved Reserved Reserved 00 01D0 8000 00 01D0 807F 128 Tracer_MSMC1_CFG Tracer_MSMC1_CFG Tracer_MSMC1_CFG 00 01D0 8080 00 01D0 FFFF 32K-128 Reserved Reserved Reserved 00 01D1 0000 00 01D1 007F 128 Tracer_MSMC2_CFG Tracer_MSMC2_CFG Tracer_MSMC2_CFG 00 01D1 0080 00 01D1 7FFF 32K-128 Reserved Reserved Reserved 00 01D1 8000 00 01D1 807F 128 Tracer_MSMC3_CFG Tracer_MSMC3_CFG Tracer_MSMC3_CFG 00 01D1 8080 00 01D1 FFFF 32K-128 Reserved Reserved Reserved 00 01D2 0000 00 01D2 007F 128 Tracer_QM_M_CFG Tracer_QM_M_CFG Tracer_QM_M_CFG 00 01D2 0080 00 01D2 7FFF 32K-128 Reserved Reserved Reserved 00 01D2 8000 00 01D2 807F 128 Tracer_DDR3A_CFG Tracer_DDR3A_CFG Tracer_DDR3A_CFG 00 01D2 8080 00 01D2 FFFF 32K-128 Reserved Reserved Reserved 00 01D3 0000 00 01D3 007F 128 Tracer_SM_CFG Tracer_SM_CFG Tracer_SM_CFG 00 01D3 0080 00 01D3 7FFF 32K-128 Reserved Reserved Reserved 00 01D3 8000 00 01D3 807F 128 Tracer_QM_CFG1_CFG Tracer_QM_CFG1_CFG Tracer_QM_CFG1_CFG 00 01D3 8080 00 01D3 FFFF 32K-128 Reserved Reserved Reserved 00 01D4 0000 00 01D4 007F 128 Tracer_CFG_CFG Tracer_CFG_CFG Tracer_CFG_CFG 00 01D4 0080 00 01D4 7FFF 32K-128 Reserved Reserved Reserved 00 01D4 8000 00 01D4 807F 128 Tracer_L2_0_CFG Tracer_L2_0_CFG Tracer_L2_0_CFG 00 01D4 8080 00 01D4 FFFF 32K-128 Reserved Reserved Reserved 00 01D5 0000 00 01D5 007F 128 Tracer_L2_1_CFG Tracer_L2_1_CFG Tracer_L2_1_CFG 00 01D5 0080 00 01D5 7FFF 32K-128 Reserved Reserved Reserved 00 01D5 8000 00 01D5 807F 128 Tracer_L2_2_CFG Tracer_L2_2_CFG Tracer_L2_2_CFG 00 01D5 8080 00 01D5 FFFF 32K-128 Reserved Reserved Reserved 00 01D6 0000 00 01D6 007F 128 Tracer_L2_3_CFG Tracer_L2_3_CFG Tracer_L2_3_CFG 82 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-1 Device Memory Map Summary for 66AK2H14/12/06 (Part 2 of 13) Physical 40 bit Address Start End Bytes ARM View DSP View SOC View 00 01D6 0080 00 01D6 7FFF 32K-128 Reserved Reserved Reserved 00 01D6 8000 00 01D6 807F 128 Tracer_L2_4_CFG Tracer_L2_4_CFG Tracer_L2_4_CFG 00 01D6 8080 00 01D6 FFFF 32K-128 Reserved Reserved Reserved 00 01D7 0000 00 01D7 007F 128 Tracer_L2_5_CFG Tracer_L2_5_CFG Tracer_L2_5_CFG 00 01D7 0080 00 01D7 7FFF 32K-128 Reserved Reserved Reserved 00 01D7 8000 00 01D7 807F 128 Tracer_L2_6_CFG Tracer_L2_6_CFG Tracer_L2_6_CFG 00 01D7 8080 00 01D7 FFFF 32K-128 Reserved Reserved Reserved 00 01D8 0000 00 01D8 007F 128 Tracer_L2_7_CFG Tracer_L2_7_CFG Tracer_L2_7_CFG 00 01D8 0080 00 01D8 7FFF 32K-128 Reserved Reserved Reserved 00 01D8 8000 00 01D8 807F 128 Reserved Reserved Reserved 00 01D8 8080 00 01D8 8FFF 32K-128 Reserved Reserved Reserved 00 01D9 0000 00 01D9 007F 128 Reserved Reserved Reserved 00 01D9 0080 00 01D9 7FFF 32K-128 Reserved Reserved Reserved 00 01D9 8000 00 01D9 807F 128 Reserved Reserved Reserved 00 01D9 8080 00 01D9 FFFF 32K-128 Reserved Reserved Reserved 00 01DA 0000 00 01DA 007F 128 Tracer_QM_CFG2_CFG Tracer_QM_CFG2_CFG Tracer_QM_CFG2_CFG 00 01DA 0080 00 01DA 7FFF 32K-128 Reserved Reserved Reserved 00 01DA 8000 00 01DA 807F 128 Reserved Reserved Reserved 00 01DA 8080 00 01DA FFFF 32K-128 Reserved Reserved Reserved 00 01DB 0000 00 01DB 007F 128 Tracer_DDR3B_CFG Tracer_DDR3B_CFG Tracer_DDR3B_CFG 00 01DB 0080 00 01DB 7FFF 32K-128 Reserved Reserved Reserved 00 01DB 8000 00 01DB 807F 128 Reserved Reserved Reserved 00 01DB 8080 00 01DB 8FFF 32K-128 Reserved Reserved Reserved 00 01DC 0000 00 01DC 007F 128 Tracer_TPCC0_4_CFG Tracer_TPCC0_4_CFG Tracer_TPCC0_4_CFG 00 01DC 0080 00 01DC 7FFF 32K-128 Reserved Reserved Reserved 00 01DC 8000 00 01DC 807F 128 Tracer_TPCC1_2_3_CFG Tracer_TPCC1_2_3_CFG Tracer_TPCC1_2_3_CFG 00 01DC 8080 00 01DC FFFF 32K-128 Reserved Reserved Reserved 00 01DD 0000 00 01DD 007F 128 Tracer_INTC_CFG Tracer_INTC_CFG Tracer_INTC_CFG 00 01DD 0080 00 01DD 7FFF 32K-128 Reserved Reserved Reserved 00 01DD 8000 00 01DD 807F 128 Tracer_MSMC4_CFG Tracer_MSMC4_CFG Tracer_MSMC4_CFG 00 01DD 8080 00 01DD FFFF 32K-128 Reserved Reserved Reserved 00 01DE 0000 00 01DE 007F 128 Tracer_MSMC5_CFG Tracer_MSMC5_CFG Tracer_MSMC5_CFG 00 01DE 0000 00 01DE 007F 128 Tracer_MSMC6_CFG Tracer_MSMC6_CFG Tracer_MSMC6_CFG 00 01DE 0000 00 01DE 007F 128 Tracer_MSMC7_CFG Tracer_MSMC7_CFG Tracer_MSMC7_CFG 00 01DE 0080 00 01DE 7FFF 32K-384 Reserved Reserved Reserved 00 01DE 8000 00 01DE 807F 128 Tracer_SPI_ROM_EMIF16_CFG Tracer_SPI_ROM_EMIF16_CFG Tracer_SPI_ROM_EMIF16_CFG 00 01DE 8080 00 01DF FFFF 64K-128 Reserved Reserved Reserved 00 01E0 0000 00 01E3 FFFF 256K Reserved Reserved Reserved 00 01E4 0000 00 01E4 3FFF 16K Reserved Reserved Reserved 00 01E4 4000 00 01E7 FFFF 240k Reserved Reserved Reserved 00 01E8 0000 00 01E8 3FFF 16K ARM CorePac VBUSP Memory Mapped Registers ARM CorePac VBUSP Memory Mapped Registers ARM CorePac VBUSP Memory Mapped Registers 00 01E8 4000 00 01EB FFFF 240k Reserved Reserved Reserved Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 83 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-1 Device Memory Map Summary for 66AK2H14/12/06 (Part 3 of 13) Physical 40 bit Address Start End Bytes ARM View DSP View SOC View 00 01EC 0000 00 01EF FFFF 256K Reserved Reserved Reserved 00 01F0 0000 00 01F7 FFFF 512K Reserved Reserved Reserved 00 01F8 0000 00 01F8 FFFF 64K Reserved Reserved Reserved 00 01F9 0000 00 01F9 FFFF 64K Reserved Reserved Reserved 00 01FA 0000 00 01FB FFFF 128K Reserved Reserved Reserved 00 01FC 0000 00 01FD FFFF 128K Reserved Reserved Reserved 00 01FE 0000 00 01FF FFFF 128K Reserved Reserved Reserved 00 0200 0000 00 020F FFFF 1M Network Coprocessor (Packet Accelerator, 1-gigabit Ethernet switch subsystem and Security Accelerator) Network Coprocessor (Packet Accelerator, 1-gigabit Ethernet switch subsystem and Security Accelerator) Network Coprocessor (Packet Accelerator, 1-gigabit Ethernet switch subsystem and Security Accelerator) 00 0210 0000 00 0210 FFFF 64K Reserved Reserved Reserved 00 0211 0000 00 0211 FFFF 64K Reserved Reserved Reserved 00 0212 0000 00 0213 FFFF 128K Reserved Reserved Reserved 00 0214 0000 00 0215 FFFF 128K Reserved Reserved Reserved 00 0216 0000 00 0217 FFFF 128K Reserved Reserved Reserved 00 0218 0000 00 0218 7FFF 32k Reserved Reserved Reserved 00 0218 8000 00 0218 FFFF 32k Reserved Reserved Reserved 00 0219 0000 00 0219 FFFF 64k Reserved Reserved Reserved 00 021A 0000 00 021A FFFF 64K Reserved Reserved Reserved 00 021B 0000 00 021B FFFF 64K Reserved Reserved Reserved 00 021C 0000 00 021C 03FF 1K Reserved Reserved Reserved 00 021C 0400 00 021C 3FFF 15K Reserved Reserved Reserved 00 021C 4000 00 021C 43FF 1K Reserved Reserved Reserved 00 021C 4400 00 021C 5FFF 7K Reserved Reserved Reserved 00 021C 6000 00 021C 63FF 1K Reserved Reserved Reserved 00 021C 6400 00 021C 7FFF 7K Reserved Reserved Reserved 00 021C 8000 00 021C 83FF 1K Reserved Reserved Reserved 00 021C 8400 00 021C FFFF 31K Reserved Reserved Reserved 00 021D 0000 00 021D 00FF 256 Reserved Reserved Reserved 00 021D 0100 00 021D 3FFF 16K Reserved Reserved Reserved 00 021D 4000 00 021D 40FF 256 Reserved Reserved Reserved 00 021D 4100 00 021D 7FFF 16K Reserved Reserved Reserved 00 021D 8000 00 021D 80FF 256 Reserved Reserved Reserved 00 021D 8100 00 021D BFFF 16K Reserved Reserved Reserved 00 021D C000 00 021D C0FF 256 Reserved Reserved Reserved 00 021D C100 00 021D EFFF 12K-256 Reserved Reserved Reserved 00 021D F000 00 021D F07F 128 Reserved Reserved Reserved 00 021D F080 00 021D FFFF 4K-128 Reserved Reserved Reserved 00 021E 0000 00 021E FFFF 64K Reserved Reserved Reserved 00 021F 0000 00 021F 07FF 2K Reserved Reserved Reserved 00 021F 0800 00 021F 0FFF 2K Reserved Reserved Reserved 00 021F 1000 00 021F 17FF 2K Reserved Reserved Reserved 00 021F 1800 00 021F 3FFF 10K Reserved Reserved Reserved 84 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-1 Device Memory Map Summary for 66AK2H14/12/06 (Part 4 of 13) Physical 40 bit Address Start End Bytes ARM View DSP View SOC View 00 021F 4000 00 021F 47FF 2K Reserved Reserved Reserved 00 021F 4800 00 021F 7FFF 14K Reserved Reserved Reserved 00 021F 8000 00 021F 87FF 2K Reserved Reserved Reserved 00 021F 8800 00 021F BFFF 14K Reserved Reserved Reserved 00 021F C000 00 021F C7FF 2K Reserved Reserved Reserved 00 021F C800 00 021F FFFF 14K Reserved Reserved Reserved 00 0220 0000 00 0220 007F 128 Timer0 Timer0 Timer0 00 0220 0080 00 0220 FFFF 64K-128 Reserved Reserved Reserved 00 0221 0000 00 0221 007F 128 Timer1 Timer1 Timer1 00 0221 0080 00 0221 FFFF 64K-128 Reserved Reserved Reserved 00 0222 0000 00 0222 007F 128 Timer2 Timer2 Timer2 00 0222 0080 00 0222 FFFF 64K-128 Reserved Reserved Reserved 00 0223 0000 00 0223 007F 128 Timer3 Timer3 Timer3 00 0223 0080 00 0223 FFFF 64K-128 Reserved Reserved Reserved 00 0224 0000 00 0224 007F 128 Timer4 (1) Timer4 (1) Timer4 (1) 00 0224 0080 00 0224 FFFF 64K-128 Reserved Reserved Reserved 00 0225 0000 00 0225 007F 128 Timer5 00 0225 0080 00 0225 FFFF 64K-128 Reserved 00 0226 0000 00 0226 007F 128 Timer6 00 0226 0080 00 0226 FFFF 64K-128 Reserved Reserved Reserved 00 0227 0000 00 0227 007F 128 Timer7 (1) Timer7 (1) Timer7 (1) 00 0227 0080 00 0227 FFFF 64K-128 Reserved Reserved Reserved 00 0228 0000 00 0228 007F 128 Timer 8 Timer 8 Timer 8 00 0228 0080 00 0228 FFFF 64K-128 Reserved Reserved Reserved 00 0229 0000 00 0229 007F 128 Timer 9 Timer 9 Timer 9 00 0229 0080 00 0229 FFFF 64K-128 Reserved Reserved Reserved 00 022A 0000 00 022A 007F 128 Timer 10 Timer 10 Timer 10 00 022A 0080 00 022A FFFF 64K-128 Reserved Reserved Reserved 00 022B 0000 00 022B 007F 128 Timer 11 Timer 11 Timer 11 (1) (1) Timer5 (1) Reserved Timer6 (1) Timer5 (1) Reserved Timer6 (1) 00 022B 0080 00 022B FFFF 64K-128 Reserved Reserved Reserved 00 022C 0000 00 022C 007F 128 Timer 12 Timer 12 Timer 12 00 022C 0080 00 022C FFFF 64K-128 Reserved Reserved Reserved 00 022D 0000 00 022D 007F 128 Timer 13 Timer 13 Timer 13 00 022D 0080 00 022D FFFF 64K-128 Reserved Reserved Reserved 00 022E 0000 00 022E 007F 128 Timer 14 Timer 14 Timer 14 00 022E 0080 00 022E FFFF 64K-128 Reserved Reserved Reserved 00 022F 0000 00 022F 007F 128 Timer 15 Timer 15 Timer 15 00 022F 0080 00 022F 00FF 128 Timer 16 Timer 16 Timer 16 00 022F 0100 00 022F 017F 128 Timer 17 Timer 17 Timer 17 00 022F 0180 00 022F 01FF 128 Timer 18 (1) Timer 19 (1) 00 022F 0200 00 022F 027F 128 Timer 18 (1) Timer 18 Timer 19 (1) (1) Timer 19 (1) 00 0230 0000 00 0230 FFFF 64K Reserved Reserved Reserved 00 0231 0000 00 0231 01FF 512 PLL Controller PLL Controller PLL Controller Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 85 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-1 Device Memory Map Summary for 66AK2H14/12/06 (Part 5 of 13) Physical 40 bit Address Start End Bytes ARM View DSP View SOC View 00 0231 0200 00 0231 9FFF 40K-512 Reserved Reserved Reserved 00 0231 A000 00 0231 BFFF 8K HyperLink0 SerDes Config HyperLink0 SerDes Config HyperLink0 SerDes Config 00 0231 C000 00 0231 DFFF 8K HyperLink1 SerDes Config HyperLink1 SerDes Config HyperLink1 SerDes Config 00 0231 E000 00 0231 FFFF 8K 10GbE SerDes Config (66AK2H14 only) 10GbE SerDes Config (66AK2H14 only) 10GbE SerDes Config (66AK2H14 only) 00 0232 0000 00 0232 3FFF 16K PCIE SerDes Config PCIE SerDes Config PCIE SerDes Config 00 0232 4000 00 0232 5FFF 8K Reserved Reserved Reserved 00 0232 6000 00 0232 7FFF 8K Reserved Reserved Reserved 00 0232 8000 00 0232 8FFF 4K DDRB PHY Config DDRB PHY Config DDRB PHY Config 00 0232 9000 00 0232 9FFF 4K DDRA PHY Config DDRA PHY Config DDRA PHY Config 00 0232 A000 00 0232 BFFF 8K PA SerDes Config PA SerDes Config PA SerDes Config 00 0232 C000 00 0232 DFFF 8K SRIO SerDes Config SRIO SerDes Config SRIO SerDes Config 00 0232 E000 00 0232 EFFF 4K Reserved Reserved Reserved 00 0232 F000 00 0232 FFFF 4K Reserved Reserved Reserved 00 0233 0000 00 0233 03FF 1K SmartReflex0 SmartReflex0 SmartReflex0 00 0233 0400 00 0233 07FF 1K SmartReflex1 SmartReflex1 SmartReflex1 00 0233 0400 00 0233 FFFF 62K Reserved Reserved Reserved 00 0234 0000 00 0234 00FF 256 Reserved Reserved Reserved 00 0234 0100 00 0234 3FFF 16K Reserved Reserved Reserved 00 0234 4000 00 0234 40FF 256 Reserved Reserved Reserved 00 0234 4100 00 0234 7FFF 16K Reserved Reserved Reserved 00 0234 8000 00 0234 80FF 256 Reserved Reserved Reserved 00 0234 8100 00 0234 BFFF 16K Reserved Reserved Reserved 00 0234 C000 00 0234 C0FF 256 Reserved Reserved Reserved 00 0234 C100 00 0234 FFFF 16K Reserved Reserved Reserved 00 0235 0000 00 0235 0FFF 4K Power sleep controller (PSC) Power sleep controller (PSC) Power sleep controller (PSC) 00 0235 1000 00 0235 FFFF 64K-4K Reserved Reserved Reserved 00 0236 0000 00 0236 03FF 1K Memory protection unit (MPU) Memory protection unit (MPU) 0 0 Memory protection unit (MPU) 0 00 0236 0400 00 0236 7FFF 31K Reserved Reserved 00 0236 8000 00 0236 83FF 1K Memory protection unit (MPU) Memory protection unit (MPU) 1 1 Memory protection unit (MPU) 1 Reserved Reserved 00 0236 8400 00 0236 FFFF 31K Reserved 00 0237 0000 00 0237 03FF 1K Memory protection unit (MPU) Memory protection unit (MPU) 2 2 00 0237 0400 00 0237 7FFF 31K Reserved 00 0237 8000 00 0237 83FF 1K Memory protection unit (MPU) Memory protection unit (MPU) 3 3 Memory protection unit (MPU) 3 00 0237 8400 00 0237 FFFF 31K Reserved Reserved 00 0238 0000 00 0238 03FF 1K Memory protection unit (MPU) Memory protection unit (MPU) 4 4 Memory protection unit (MPU) 4 00 0238 8000 00 0238 83FF 1K Memory protection unit (MPU) Memory protection unit (MPU) 5 5 Memory protection unit (MPU) 5 00 0238 8400 00 0238 87FF 1K Memory protection unit (MPU) Memory protection unit (MPU) 6 6 Memory protection unit (MPU) 6 86 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Reserved Reserved Memory protection unit (MPU) 2 Reserved Reserved Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-1 Device Memory Map Summary for 66AK2H14/12/06 (Part 6 of 13) Physical 40 bit Address Start End Bytes ARM View 00 0238 8800 00 0238 8BFF 1K Memory protection unit (MPU) Memory protection unit (MPU) 7 7 DSP View Memory protection unit (MPU) 7 SOC View 00 0238 8C00 00 0238 8FFF 1K Memory protection unit (MPU) Memory protection unit (MPU) 8 8 Memory protection unit (MPU) 8 00 0238 9000 00 0238 93FF 1K Memory protection unit (MPU) Memory protection unit (MPU) 9 9 Memory protection unit (MPU) 9 00 0238 9400 00 0238 97FF 1K Memory protection unit (MPU) Memory protection unit (MPU) 10 10 Memory protection unit (MPU) 10 00 0238 9800 00 0238 9BFF 1K Memory protection unit (MPU) Memory protection unit (MPU) 11 11 Memory protection unit (MPU) 11 00 0238 9C00 00 0238 9FFF 1K Memory protection unit (MPU) Memory protection unit (MPU) 12 12 Memory protection unit (MPU) 12 00 0238 A000 00 0238 A3FF 1K Memory protection unit (MPU) Memory protection unit (MPU) 13 13 Memory protection unit (MPU) 13 00 0238 A400 00 0238 A7FF 1K Memory protection unit (MPU) Memory protection unit (MPU) 14 14 Memory protection unit (MPU) 14 00 0238 A800 00 023F FFFF 471K Reserved Reserved Reserved 00 0240 0000 00 0243 FFFF 256K Reserved Reserved Reserved 00 0244 0000 00 0244 3FFF 16K DSP trace formatter 0 DSP trace formatter 0 DSP trace formatter 0 00 0244 4000 00 0244 FFFF 48K Reserved Reserved Reserved 00 0245 0000 00 0245 3FFF 16K DSP trace formatter 1 DSP trace formatter 1 DSP trace formatter 1 00 0245 4000 00 0245 FFFF 48K Reserved Reserved Reserved 00 0246 0000 00 0246 3FFF 16K DSP trace formatter 2 DSP trace formatter 2 DSP trace formatter 2 00 0246 4000 00 0246 FFFF 48K Reserved Reserved Reserved 00 0247 0000 00 0247 3FFF 16K DSP trace formatter 3 DSP trace formatter 3 DSP trace formatter 3 00 0247 4000 00 0247 FFFF 48K Reserved Reserved Reserved 00 0248 0000 00 0248 3FFF 16K DSP trace formatter 4 DSP trace formatter 4 DSP trace formatter 4 00 0248 4000 00 0248 FFFF 48K Reserved Reserved Reserved 00 0249 0000 00 0249 3FFF 16K DSP trace formatter 5 DSP trace formatter 5 DSP trace formatter 5 00 0249 4000 00 0249 FFFF 48K Reserved Reserved Reserved 00 024A 0000 00 024A 3FFF 16K DSP trace formatter 6 DSP trace formatter 6 DSP trace formatter 6 00 024A 4000 00 024A FFFF 48K Reserved Reserved Reserved 00 024B 0000 00 024B 3FFF 16K DSP trace formatter 7 DSP trace formatter 7 DSP trace formatter 7 00 024B 4000 00 024B FFFF 48K Reserved Reserved Reserved 00 024C 0000 00 024C 01FF 512 Reserved Reserved Reserved 00 024C 0200 00 024C 03FF 1K-512 Reserved Reserved Reserved 00 024C 0400 00 024C 07FF 1K Reserved Reserved Reserved 00 024C 0800 00 024C FFFF 62K Reserved Reserved Reserved 00 024D 0000 00 024F FFFF 192K Reserved Reserved Reserved 00 0250 0000 00 0250 007F 128 Reserved Reserved Reserved 00 0250 0080 00 0250 7FFF 32K-128 Reserved Reserved Reserved 00 0250 8000 00 0250 FFFF 32K Reserved Reserved Reserved 00 0251 0000 00 0251 FFFF 64K Reserved Reserved Reserved 00 0252 0000 00 0252 03FF 1K Reserved Reserved Reserved 00 0252 0400 00 0252 FFFF 64K-1K Reserved Reserved Reserved Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 87 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-1 Device Memory Map Summary for 66AK2H14/12/06 (Part 7 of 13) Physical 40 bit Address Start End Bytes ARM View 00 0253 0000 00 0253 007F 128 I C0 I C0 I C0 00 0253 0080 00 0253 03FF 1K-128 Reserved Reserved Reserved 00 0253 0400 00 0253 047F 128 I2C1 I2C1 I2C1 00 0253 0480 00 0253 07FF 1K-128 Reserved Reserved Reserved 00 0253 0800 00 0253 087F 128 I C2 I C2 I C2 00 0253 0880 00 0253 0BFF 1K-128 Reserved Reserved Reserved 00 0253 0C00 00 0253 0C3F 64 UART0 UART0 UART0 00 0253 0C40 00 0253 FFFF 1K-64 Reserved Reserved Reserved 00 0253 1000 00 0253 103F 64 UART1 UART1 UART1 00 0253 1040 00 0253 FFFF 60K-64 Reserved Reserved Reserved 00 0254 0000 00 0255 FFFF 128K Reserved Reserved Reserved 00 0256 0000 00 0257 FFFF 128K ARM CorePac INTC (GIC400) Memory Mapped Registers ARM CorePac INTC (GIC400) Memory Mapped Registers ARM CorePac INTC (GIC400) Memory Mapped Registers Reserved 2 2 DSP View SOC View 2 2 2 2 00 0258 0000 00 025F FFFF 512K Reserved 00 0260 0000 00 0260 1FFF 8K Secondary interrupt controller Secondary interrupt controller (INTC) 0 (INTC) 0 Secondary interrupt controller (INTC) 0 Reserved 00 0260 2000 00 0260 3FFF 8K Reserved Reserved 00 0260 4000 00 0260 5FFF 8K Secondary interrupt controller Secondary interrupt controller (INTC) 1 (INTC) 1 Secondary interrupt controller (INTC) 1 00 0260 6000 00 0260 7FFF 8K Reserved Reserved 00 0260 8000 00 0260 9FFF 8K Secondary interrupt controller Secondary interrupt controller (INTC) 2 (INTC) 2 Secondary interrupt controller (INTC) 2 00 0260 A000 00 0260 BEFF 8K-256 Reserved Reserved Reserved 00 0260 BF00 00 0260 BFFF 256 GPIO Config GPIO Config GPIO Config 00 0260 C000 00 0261 BFFF 64K Reserved Reserved Reserved Reserved Reserved 00 0261 C000 00 0261 FFFF 16K Reserved Reserved Reserved 00 0262 0000 00 0262 0FFF 4K BOOTCFG chip-level registers BOOTCFG chip-level registers BOOTCFG chip-level registers 00 0262 1000 00 0262 FFFF 60K Reserved Reserved Reserved 00 0263 0000 00 0263 FFFF 64K USB PHY Config USB PHY Config USB PHY Config 00 0264 0000 00 0264 07FF 2K Semaphore Config Semaphore Config Semaphore Config 00 0264 0800 00 0264 FFFF 62K Reserved Reserved Reserved 00 0265 0000 00 0267 FFFF 192K Reserved Reserved Reserved 00 0268 0000 00 0268 FFFF 512K USB MMR Config USB MMR Config USB MMR Config 00 0270 0000 00 0270 7FFF 32K EDMA channel controller (TPCC) 0 EDMA channel controller (TPCC) 0 EDMA channel controller (TPCC) 0 00 0270 8000 00 0270 FFFF 32K EDMA channel controller (TPCC) 4 EDMA channel controller (TPCC) 4 EDMA channel controller (TPCC) 4 00 0271 0000 00 0271 FFFF 64K Reserved Reserved Reserved 00 0272 0000 00 0272 7FFF 32K EDMA channel controller (TPCC) 1 EDMA channel controller (TPCC) 1 EDMA channel controller (TPCC) 1 00 0272 8000 00 0272 FFFF 32K EDMA channel controller (TPCC) 3 EDMA channel controller (TPCC) 3 EDMA channel controller (TPCC) 3 00 0273 0000 00 0273 FFFF 64K Reserved Reserved Reserved 00 0274 0000 00 0274 7FFF 32K EDMA channel controller (TPCC) 2 EDMA channel controller (TPCC) 2 EDMA channel controller (TPCC) 2 00 0274 8000 00 0275 FFFF 96K Reserved Reserved Reserved 88 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-1 Device Memory Map Summary for 66AK2H14/12/06 (Part 8 of 13) Physical 40 bit Address Start End Bytes ARM View DSP View SOC View 00 0276 0000 00 0276 03FF 1K EDMA TPCC0 transfer controller (TPTC) 0 EDMA TPCC0 transfer controller (TPTC) 0 EDMA TPCC0 transfer controller (TPTC) 0 00 0276 0400 00 0276 7FFF 31K Reserved Reserved Reserved 00 0276 8000 00 0276 83FF 1K EDMA TPCC0 transfer controller (TPTC) 1 EDMA TPCC0 transfer controller (TPTC) 1 EDMA TPCC0 transfer controller (TPTC) 1 00 0276 8400 00 0276 FFFF 31K Reserved Reserved Reserved 00 0277 0000 00 0277 03FF 1K EDMA TPCC1 transfer controller (TPTC) 0 EDMA TPCC1 transfer controller (TPTC) 0 EDMA TPCC1 transfer controller (TPTC) 0 00 0277 0400 00 0277 7FFF 31K Reserved Reserved Reserved 00 0277 8000 00 0277 83FF 1K EDMA TPCC1 transfer controller (TPTC) 1 EDMA TPCC1 transfer controller (TPTC) 1 EDMA TPCC1 transfer controller (TPTC) 1 00 0278 0400 00 0277 FFFF 31K Reserved Reserved Reserved 00 0278 0000 00 0278 03FF 1K EDMA TPCC1 transfer controller (TPTC) 2 EDMA TPCC1 transfer controller (TPTC) 2 EDMA TPCC1 transfer controller (TPTC) 2 00 0278 0400 00 0278 7FFF 31K Reserved Reserved Reserved 00 0278 8000 00 0278 83FF 1K EDMA TPCC1 transfer controller (TPTC) 3 EDMA TPCC1 transfer controller (TPTC) 3 EDMA TPCC1 transfer controller (TPTC) 3 00 0278 8400 00 0278 FFFF 31K Reserved Reserved Reserved 00 0279 0000 00 0279 03FF 1K EDMA TPCC2 transfer controller (TPTC) 0 EDMA TPCC2 transfer controller (TPTC) 0 EDMA TPCC2 transfer controller (TPTC) 0 00 0279 0400 00 0279 7FFF 31K Reserved Reserved Reserved 00 0279 8000 00 0279 83FF 1K EDMA TPCC2 transfer controller (TPTC) 1 EDMA TPCC2 transfer controller (TPTC) 1 EDMA TPCC2 transfer controller (TPTC) 1 00 0279 8400 00 0279 FFFF 31K Reserved Reserved Reserved 00 027A 0000 00 027A 03FF 1K EDMA TPCC2 transfer controller (TPTC) 2 EDMA TPCC2 transfer controller (TPTC) 2 EDMA TPCC2 transfer controller (TPTC) 2 00 027A 0400 00 027A 7FFF 31K Reserved Reserved Reserved 00 027A 8000 00 027A 83FF 1K EDMA TPCC2 transfer controller (TPTC) 3 EDMA TPCC2 transfer controller (TPTC) 3 EDMA TPCC2 transfer controller (TPTC) 3 00 027A 8400 00 027A FFFF 31K Reserved Reserved Reserved 00 027B 0000 00 027B 03FF 1K EDMA TPCC3 transfer controller (TPTC) 0 EDMA TPCC3 transfer controller (TPTC) 0 EDMA TPCC3 transfer controller (TPTC) 0 00 027B 0400 00 027B 7FFF 31K Reserved Reserved Reserved 00 027B 8000 00 027B 83FF 1K EDMA TPCC3 transfer controller (TPTC) 1 EDMA TPCC3 transfer controller (TPTC) 1 EDMA TPCC3 transfer controller (TPTC) 1 00 027B 8400 00 027B 87FF 1K EDMA TPCC4 transfer controller (TPTC) 0 EDMA TPCC4 transfer controller (TPTC) 0 EDMA TPCC4 transfer controller (TPTC) 0 00 027B 8800 00 027B 8BFF 1K EEDMA TPCC4 transfer controller (TPTC) 1 EEDMA TPCC4 transfer controller EEDMA TPCC4 transfer controller (TPTC) 1 (TPTC) 1 00 027B 8C00 00 027B FFFF 29K Reserved Reserved Reserved 00 027C 0000 00 027C 03FF 1K Reserved Reserved Reserved 00 027C 0400 00 027C FFFF 63K Reserved Reserved Reserved 00 027D 0000 00 027D 3FFF 16K TI embedded trace buffer (TETB) - CorePac0 TI embedded trace buffer (TETB) - TI embedded trace buffer (TETB) CorePac0 CorePac0 00 027D 4000 00 027D 7FFF 16K TBR_SYS_ARM CorePac - Trace TBR_SYS_ARM CorePac - Trace buffer - ARM CorePac buffer - ARM CorePac TBR_SYS_ARM CorePac - Trace buffer - ARM CorePac 00 027D 8000 00 027D FFFF 32K Reserved Reserved Reserved 00 027E 0000 00 027E 3FFF 16K TI embedded trace buffer (TETB) - CorePac1 TI embedded trace buffer (TETB) - TI embedded trace buffer (TETB) CorePac1 CorePac1 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 89 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-1 Device Memory Map Summary for 66AK2H14/12/06 (Part 9 of 13) Physical 40 bit Address Start End Bytes ARM View DSP View SOC View 00 027E 4000 00 027E FFFF 48K Reserved Reserved Reserved 00 027F 0000 00 027F 3FFF 16K TI embedded trace buffer (TETB) - CorePac2 TI embedded trace buffer (TETB) - TI embedded trace buffer (TETB) CorePac2 CorePac2 00 027F 4000 00 027F FFFF 48K Reserved Reserved 00 0280 0000 00 0280 3FFF 16K TI embedded trace buffer (TETB) - CorePac3 TI embedded trace buffer (TETB) - TI embedded trace buffer (TETB) CorePac3 CorePac3 Reserved 00 0280 4000 00 0280 FFFF 48K Reserved Reserved 00 0281 0000 00 0281 3FFF 16K TI embedded trace buffer (TETB) - CorePac4 (66AK2H12/14 only) TI embedded trace buffer (TETB) - TI embedded trace buffer (TETB) CorePac4 (66AK2H12/14 only) CorePac4 (66AK2H12/14 only) Reserved 00 0281 4000 00 0281 FFFF 48K Reserved Reserved 00 0282 0000 00 0282 3FFF 16K TI embedded trace buffer (TETB) - CorePac5 (66AK2H12/14 only) TI embedded trace buffer (TETB) - TI embedded trace buffer (TETB) CorePac5 (66AK2H12/14 only) CorePac5 (66AK2H12/14 only) Reserved 00 0282 4000 00 0282 FFFF 48K Reserved Reserved 00 0283 0000 00 0283 3FFF 16K TI embedded trace buffer (TETB) - CorePac6 (66AK2H12/14 only) TI embedded trace buffer (TETB) - TI embedded trace buffer (TETB) CorePac6 (66AK2H12/14 only) CorePac6 (66AK2H12/14 only) Reserved 00 0283 4000 00 0283 FFFF 48K Reserved Reserved 00 0284 0000 00 0284 3FFF 16K TI embedded trace buffer (TETB) - CorePac7 (66AK2H12/14 only) TI embedded trace buffer (TETB) - TI embedded trace buffer (TETB) CorePac7 (66AK2H12/14 only) CorePac7 (66AK2H12/14 only) Reserved 00 0284 4000 00 0284 FFFF 48K Reserved Reserved 00 0285 0000 00 0285 7FFF 32K TI embedded trace buffer (TETB) - system TI embedded trace buffer (TETB) - TI embedded trace buffer (TETB) system system Reserved 00 0285 8000 00 0285 FFFF 32K Reserved Reserved 00 0286 0000 00 028F FFFF 640K Reserved Reserved Reserved 00 0290 0000 00 0293 FFFF 256K Serial RapidIO configuration (SRIO) Serial RapidIO configuration (SRIO) Serial RapidIO configuration (SRIO) 00 0294 0000 00 029F FFFF 768K Reserved Reserved Reserved 00 02A0 0000 00 02AF FFFF 1M Navigator configuration Navigator configuration Navigator configuration Reserved 00 02B0 0000 00 02BF FFFF 1M Navigator linking RAM Navigator linking RAM Navigator linking RAM 00 02C0 0000 00 02C0 FFFF 64K Reserved Reserved Reserved 00 02C1 0000 00 02C1 FFFF 64K Reserved Reserved Reserved 00 02C2 0000 00 02C3 FFFF 128K Reserved Reserved Reserved 00 02C4 0000 00 02C5 FFFF 128K Reserved Reserved Reserved 00 02C6 0000 00 02C7 FFFF 128K Reserved Reserved Reserved 00 02C8 0000 00 02C8 FFFF 64K Reserved Reserved Reserved 00 02C9 0000 00 02C9 FFFF 64K Reserved Reserved Reserved 00 02CA 0000 00 02CB FFFF 128K Reserved Reserved Reserved 00 02CC 0000 00 02CD FFFF 128K Reserved Reserved Reserved 00 02CE 0000 00 02EF FFFF 15M-896K Reserved Reserved Reserved 00 02F0 0000 00 02FF FFFF 1M 10GbE Config (66AK2H14 only) 10GbE Config (66AK2H14 only) 10GbE Config (66AK2H14 only) 00 0300 0000 00 030F FFFF 1M Debug_SS Configuration Debug_SS Configuration Debug_SS Configuration 00 0310 0000 00 07FF FFFF 79M Reserved Reserved Reserved 00 0800 0000 00 0801 FFFF 128K Extended memory controller (XMC) configuration Extended memory controller (XMC) configuration Extended memory controller (XMC) configuration 90 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-1 Device Memory Map Summary for 66AK2H14/12/06 (Part 10 of 13) Physical 40 bit Address Start End Bytes ARM View DSP View SOC View 00 0802 0000 00 0BBF FFFF 60M-128K Reserved Reserved Reserved 00 0BC0 0000 00 0BCF FFFF 1M Multicore shared memory controller (MSMC) config Multicore shared memory controller (MSMC) config Multicore shared memory controller (MSMC) config 00 0BD0 0000 00 0BFF FFFF 3M Reserved Reserved Reserved 00 0C00 0000 00 0C5F FFFF 6M Multicore shared memory (MSM) Multicore shared memory (MSM) Multicore shared memory (MSM) 00 0C60 0000 00 0FFF FFFF 58M Reserved Reserved Reserved 00 1000 0000 00 107F FFFF 8M Reserved Reserved Reserved 00 1080 0000 00 108F FFFF 1M CorePac0 L2 SRAM CorePac0 L2 SRAM CorePac0 L2 SRAM 00 1090 0000 00 10DF FFFF 5M Reserved Reserved Reserved 00 10E0 0000 00 10E0 7FFF 32K CorePac0 L1P SRAM CorePac0 L1P SRAM CorePac0 L1P SRAM 00 10E0 8000 00 10EF FFFF 1M-32K Reserved Reserved Reserved 00 10F0 0000 00 10F0 7FFF 32K CorePac0 L1D SRAM CorePac0 L1D SRAM CorePac0 L1D SRAM 00 10F0 8000 00 117F FFFF 9M-32K Reserved Reserved Reserved 00 1180 0000 00 118F FFFF 1M CorePac1 L2 SRAM CorePac1 L2 SRAM CorePac1 L2 SRAM 00 1190 0000 00 11DF FFFF 5M Reserved Reserved Reserved 00 11E0 0000 00 11E0 7FFF 32K CorePac1 L1P SRAM CorePac1 L1P SRAM CorePac1 L1P SRAM 00 11E0 8000 00 11EF FFFF 1M-32K Reserved Reserved Reserved 00 11F0 0000 00 11F0 7FFF 32K CorePac1 L1D SRAM CorePac1 L1D SRAM CorePac1 L1D SRAM 00 11F0 8000 00 127F FFFF 9M-32K Reserved Reserved Reserved 00 1280 0000 00 128F FFFF 1M CorePac2 L2 SRAM CorePac2 L2 SRAM CorePac2 L2 SRAM 00 1290 0000 00 12DF FFFF 5M Reserved Reserved Reserved 00 12E0 0000 00 12E0 7FFF 32K CorePac2 L1P SRAM CorePac2 L1P SRAM CorePac2 L1P SRAM 00 12E0 8000 00 12EF FFFF 1M-32K Reserved Reserved Reserved 00 12F0 0000 00 12F0 7FFF 32K CorePac2 L1D SRAM CorePac2 L1D SRAM CorePac2 L1D SRAM 00 12F0 8000 00 137F FFFF 9M-32K Reserved Reserved Reserved 00 1380 0000 00 1388 FFFF 1M CorePac3 L2 SRAM CorePac3 L2 SRAM CorePac3 L2 SRAM 00 1390 0000 00 13DF FFFF 5M Reserved Reserved Reserved 00 13E0 0000 00 13E0 7FFF 32K CorePac3 L1P SRAM CorePac3 L1P SRAM CorePac3 L1P SRAM 00 13E0 8000 00 13EF FFFF 1M-32K Reserved Reserved Reserved 00 13F0 0000 00 13F0 7FFF 32K CorePac3 L1D SRAM CorePac3 L1D SRAM CorePac3 L1D SRAM 00 13F0 8000 00 147F FFFF 9M-32K Reserved Reserved Reserved 00 1480 0000 00 148F FFFF 1M CorePac4 L2 SRAM (66AK2H12/14 only) CorePac4 L2 SRAM (66AK2H12/14 only) CorePac4 L2 SRAM (66AK2H12/14 only) 00 1490 0000 00 14DF FFFF 5M Reserved Reserved Reserved 00 14E0 0000 00 14E0 7FFF 32K CorePac4 L1P SRAM (66AK2H12/14 only) CorePac4 L1P SRAM (66AK2H12/14 only) CorePac4 L1P SRAM (66AK2H12/14 only) 00 14E0 8000 00 14EF FFFF 1M-32K Reserved Reserved Reserved 00 14F0 0000 00 14F0 7FFF 32K CorePac4 L1D SRAM (66AK2H12/14 only) CorePac4 L1D SRAM (66AK2H12/14 only) CorePac4 L1D SRAM (66AK2H12/14 only) 00 14F0 8000 00 157F FFFF 9M-32K Reserved Reserved Reserved 00 1580 0000 00 158F FFFF 1M CorePac5 L2 SRAM (66AK2H12/14 only) CorePac5 L2 SRAM (66AK2H12/14 only) CorePac5 L2 SRAM (66AK2H12/14 only) 00 1590 0000 00 15DF FFFF 5M Reserved Reserved Reserved Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 91 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-1 Device Memory Map Summary for 66AK2H14/12/06 (Part 11 of 13) Physical 40 bit Address Start End Bytes ARM View DSP View SOC View 00 15E0 0000 00 15E0 7FFF 32K CorePac5 L1P SRAM (66AK2H12/14 only) CorePac5 L1P SRAM (66AK2H12/14 only) CorePac5 L1P SRAM (66AK2H12/14 only) 00 15E0 8000 00 15EF FFFF 1M-32K Reserved Reserved Reserved 00 15F0 0000 00 15F0 7FFF 32K CorePac5 L1D SRAM (66AK2H12/14 only) CorePac5 L1D SRAM (66AK2H12/14 only) CorePac5 L1D SRAM (66AK2H12/14 only) 00 15F0 8000 00 167F FFFF 9M-32K Reserved Reserved Reserved 00 1680 0000 00 168F FFFF 1M CorePac6 L2 SRAM (66AK2H12/14 only) CorePac6 L2 SRAM (66AK2H12/14 only) CorePac6 L2 SRAM (66AK2H12/14 only) 00 1690 0000 00 16DF FFFF 5M Reserved Reserved Reserved 00 16E0 0000 00 16E0 7FFF 32K CorePac6 L1P SRAM (66AK2H12/14 only) CorePac6 L1P SRAM (66AK2H12/14 only) CorePac6 L1P SRAM (66AK2H12/14 only) 00 16E0 8000 00 16EF FFFF 1M-32K Reserved Reserved Reserved 00 16F0 0000 00 16F0 7FFF 32K CorePac6 L1D SRAM (66AK2H12/14 only) CorePac6 L1D SRAM (66AK2H12/14 only) CorePac6 L1D SRAM (66AK2H12/14 only) 00 16F0 8000 00 177F FFFF 9M-32K Reserved Reserved Reserved 00 1780 0000 00 178F FFFF 1M CorePac7 L2 SRAM (66AK2H12/14 only) CorePac7 L2 SRAM (66AK2H12/14 only) CorePac7 L2 SRAM (66AK2H12/14 only) 00 1790 0000 00 17DF FFFF 5M Reserved Reserved Reserved 00 17E0 0000 00 17E0 7FFF 32K CorePac7 L1P SRAM (66AK2H12/14 only) CorePac7 L1P SRAM (66AK2H12/14 only) CorePac7 L1P SRAM (66AK2H12/14 only) 00 17E0 8000 00 17EF FFFF 1M-32K Reserved Reserved Reserved 00 17F0 0000 00 17F0 7FFF 32K CorePac7 L1D SRAM (66AK2H12/14 only) CorePac7 L1D SRAM (66AK2H12/14 only) CorePac7 L1D SRAM (66AK2H12/14 only) 00 17F0 8000 00 1FFF FFFF 129M-32K Reserved Reserved Reserved 00 2000 0000 00 200F FFFF 1M System trace manager (STM) configuration System trace manager (STM) configuration System trace manager (STM) configuration 00 2010 0000 00 201F FFFF 1M Reserved Reserved Reserved 00 2020 0000 00 205F FFFF 4M Reserved Reserved Reserved 00 2060 0000 00 206F FFFF 1M Reserved Reserved Reserved 00 2070 0000 00 207F FFFF 1M Reserved Reserved Reserved 00 2080 0000 00 208F FFFF 1M Reserved Reserved Reserved 00 2090 0000 00 209F FFFF 1M Reserved Reserved Reserved 00 20A0 0000 00 20A3 FFFF 256K Reserved Reserved Reserved 00 20A4 0000 00 20A4 FFFF 64K Reserved Reserved Reserved 00 20A5 0000 00 20AF FFFF 704K Reserved Reserved Reserved 00 20B0 0000 00 20B3 FFFF 256K Boot ROM Boot ROM Boot ROM 00 20B4 0000 00 20BE FFFF 704K Reserved Reserved Reserved 00 20BF 0000 00 20BF 01FF 64K Reserved Reserved Reserved 00 20C0 0000 00 20FF FFFF 4M Reserved Reserved Reserved 00 2100 0000 00 2100 03FF 1K Reserved Reserved Reserved 00 2100 0400 00 2100 05FF 512 SPI0 SPI0 SPI0 00 2100 0600 00 2100 07FF 512 SPI1 SPI1 SPI1 00 2100 0800 00 2100 09FF 512 SPI2 SPI2 SPI2 00 2100 0A00 00 2100 0AFF 256 EMIF Config EMIF Config EMIF Config 00 2100 0B00 00 2100 FFFF 62K-768 Reserved Reserved Reserved 00 2101 0000 00 2101 01FF 512 DDR3A EMIF Config DDR3A EMIF Config DDR3A EMIF Config 92 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-1 Device Memory Map Summary for 66AK2H14/12/06 (Part 12 of 13) Physical 40 bit Address Start End Bytes ARM View DSP View SOC View 00 2101 0200 00 2101 07FF 2K-512 Reserved Reserved Reserved 00 2101 0800 00 2101 09FF 512 Reserved Reserved Reserved 00 2101 0A00 00 2101 0FFF 2K-512 Reserved Reserved Reserved 00 2101 1000 00 2101 FFFF 60K Reserved Reserved Reserved 00 2102 0000 00 2103 FFFF 128K DDR3B EMIF configuration DDR3B EMIF configuration DDR3B EMIF configuration 00 2104 0000 00 217F FFFF 4M-256K Reserved Reserved Reserved 00 2140 0000 00 2140 00FF 256 HyperLink0 config HyperLink0 config HyperLink0 config 00 2140 0100 00 2140 01FF 256 HyperLink1 config HyperLink1 config HyperLink1 config 00 2140 0400 00 217F FFFF 4M-512 Reserved Reserved Reserved 00 2180 0000 00 2180 7FFF 32K PCIe config PCIe config PCIe config 00 2180 8000 00 21BF FFFF 4M-32K Reserved Reserved Reserved 00 21C0 0000 00 21FF FFFF 4M Reserved Reserved Reserved 00 2200 0000 00 229F FFFF 10M Reserved Reserved Reserved 00 22A0 0000 00 22A0 FFFF 64K Reserved Reserved Reserved 00 22A1 0000 00 22AF FFFF 1M-64K Reserved Reserved Reserved 00 22B0 0000 00 22B0 FFFF 64K Reserved Reserved Reserved 00 22B1 0000 00 22BF FFFF 1M-64K Reserved Reserved Reserved 00 22C0 0000 00 22C0 FFFF 64K Reserved Reserved Reserved 00 22C1 0000 00 22CF FFFF 1M-64K Reserved Reserved Reserved 00 22D0 0000 00 22D0 FFFF 64K Reserved Reserved Reserved 00 22D1 0000 00 22DF FFFF 1M-64K Reserved Reserved Reserved 00 22E0 0000 00 22E0 FFFF 64K Reserved Reserved Reserved 00 22E1 0000 00 22EF FFFF 1M-64K Reserved Reserved Reserved 00 22F0 0000 00 22F0 FFFF 64K Reserved Reserved Reserved 00 22F1 0000 00 22FF FFFF 1M-64K Reserved Reserved Reserved 00 2300 0000 00 2300 FFFF 64K Reserved Reserved Reserved 00 2301 0000 00 230F FFFF 1M-64K Reserved Reserved Reserved 00 2310 0000 00 2310 FFFF 64K Reserved Reserved Reserved 00 2311 0000 00 231F FFFF 1M-64K Reserved Reserved Reserved 00 2320 0000 00 2324 FFFF 384K Reserved Reserved Reserved 00 2325 0000 00 239F FFFF 8M-384K Reserved Reserved Reserved 00 23A0 0000 00 23BF FFFF 2M Navigator Navigator Navigator 00 23C0 0000 00 23FF FFFF 4M Reserved Reserved Reserved 00 2400 0000 00 27FF FFFF 64M Reserved Reserved Reserved 00 2800 0000 00 2FFF FFFF 128M HyperLink1 data HyperLink1 data HyperLink1 data 00 3000 0000 00 33FF FFFF 64M EMIF16 CE0 EMIF16 CE0 EMIF16 CE0 00 3400 0000 00 37FF FFFF 64M EMIF16 CE1 EMIF16 CE1 EMIF16 CE1 00 3800 0000 00 3BFF FFFF 64M EMIF16 CE2 EMIF16 CE2 EMIF16 CE2 00 3C00 0000 00 3FFF FFFF 64M EMIF16 CE3 EMIF16 CE3 EMIF16 CE3 00 4000 0000 00 4FFF FFFF 256M HyperLink0 data HyperLink0 data HyperLink0 data 00 5000 0000 00 5FFF FFFF 256M PCIe data PCIe data PCIe data 00 6000 0000 00 7FFF FFFF 512M DDR3B data 00 8000 0000 00 FFFF FFFF 2G (2) (3) DDR3A data/DDR3B data Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback DDR3B data (2) (5) DDR3B data (4) DDR3B data DDR3A data (6) Memory, Interrupts, and EDMA for 66AK2H14/12/06 93 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-1 Device Memory Map Summary for 66AK2H14/12/06 (Part 13 of 13) Physical 40 bit Address Start End Bytes ARM View DSP View 01 0000 0000 01 2100 FFFF 528M+64K Reserved Reserved 01 2101 0000 01 2101 01FF 512 DDR3A EMIF configuration 01 2101 0200 07 FFFF FFFF 32G-512 Reserved (7) SOC View Reserved DDR3A EMIF configuration Reserved 08 0000 0000 09 FFFF FFFF 8G DDR3A data DDR3A data 0A 0000 0000 FF FFFF FFFF 984G Reserved Reserved (8) DDR3A EMIF configuration (9) Reserved (8) DDR3A data (9) Reserved End of Table 6-1 1 2 3 4 5 6 7 8 9 66AK2H12/14 only No IO coherency supported for this region. (See ARM CorePac User Guide referenced in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19) This region is mapped to DDR3B. It is aliased of 00 8000 0000 to 00 9FFF FFFF (the first 512MB of DDR3B) if the state of DDR3A_REMAP_EN pin at boot time is ‘0’. This region is aliased of 00 8000 0000 to 00 9FFF FFFF (the first 512MB of DDR3B). This region is mapped to DDR3A or DDR3B depending on the state of DDR3A_REMAP_EN pin at boot time. If the pin is ‘1’, this region is mapped to the first 2GB of DDR3A which is aliased of 08 0000 0000 to 08 7FFF FFFF. If the pin is ‘0’, this region is mapped as 2GB of DDR3B. MPAX from SES port extends the address to this region. This region is aliased to 00 2101 0000-00 2101 01FF. Access to 40-bit address requires XMC MPAX programmation. Access to 40-bit address requires MSMC MPAX programmation. MPAX from SES port need to re-map the region of 00 2101 0000-00 2101 01FF to this region. 94 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 6.2 Memory Protection Unit (MPU) for 66AK2H14/12/06 CFG (configuration) space of all slave devices on the TeraNet is protected by the MPU. The 66AK2H14/12/06 contains fifteen MPUs: • MPU0 is used for main TeraNet_3P_B (SCR_3P (B)) CFG. • MPU1/2/5 are used for QM_SS (one for VBUSM port and one each for the two configuration VBUSP ports). • MPU3/4/6 are reserved. • MPU7 is used for DDR3_B. • MPU8 is used for EMIF16. • MPU9 is used for interrupt controllers connected to TeraNet_3P (SCR_3P). • MPU10 is used for semaphore. • MPU11 is used to protect TeraNet_6P_B (SCR_6P (B)) CPU/6 CFG TeraNet • MPU12/13/14 are used for SPI0/1/2 This section contains MPU register map and details of device-specific MPU registers only. For MPU features and details of generic MPU registers, see the Memory Protection Unit (MPU) for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. The following tables show the configuration of each MPU and the memory regions protected by each MPU. Table 6-2 MPU0- MPU5 Default Configuration MPU0 Main SCR_3P (B) Setting MPU1 (QM_SS DATA PORT) MPU2 (QM_SS CFG1 PORT) MPU3 MPU4 Reserved Reserved MPU5 (QM_SS CFG2 PORT) Default permission Assume allowed Assume allowed Assume allowed Number of allowed IDs supported 16 16 16 16 Assume allowed Number of programmable ranges supported 16 16 16 16 Compare width 1KB granularity 1KB granularity 1KB granularity 1KB granularity End of Table 6-2 Table 6-3 MPU6-MPU11 Default Configuration Setting MPU6 MPU7 DDR3B MPU8 EMIF16 MPU9 INTC Default permission Reserved MPU10 SM MPU11 SCR_6P (B) Assume allowed Assume allowed Assume allowed Assume allowed Assume allowed Number of allowed IDs supported 16 16 16 16 16 Number of programmable ranges supported 16 8 4 2 16 Compare width 1KB granularity 1KB granularity 1KB granularity 1KB granularity 1KB granularity End of Table 6-3 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 95 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-4 MPU12- MPU14 Default Configuration Setting MPU12 SPI0 MPU13 SPI1 MPU14 SPI2 Default permission Assume allowed Assume allowed Assume allowed Number of allowed IDs supported 16 16 16 Number of programmable ranges supported 2 2 2 Compare width 1KB granularity 1KB granularity 1KB granularity End of Table 6-4 Table 6-5 MPU Memory Regions Memory Protection Start Address End Address MPU0 Main CFG SCR 0x01D0_0000 0x01E7_FFFF MPU1 QM_SS DATA PORT 0x23A0_0000 0x23BF_FFFF MPU2 QM_SS CFG1 PORT 0x02A0_0000 0x02AF_FFFF MPU3 Reserved 0x027C_0000 0x027C_03FF MPU4 Reserved 0x0210_0000 0x0215_FFFF MPU5 QM_SS CFG2 PORT 0x02A0_4000 0x02BF_FFFF MPU6 Reserved 0x02C0_0000 0x02CD_FFFF MPU7 DDR3B 0x2101_0000 0xFFFF_FFFF MPU8 SPIROM/EMIF16 0x20B0_0000 0x3FFF_FFFF MPU9 INTC/AINTC 0x0264_0000 0x0264_07FF MPU10 Semaphore 0x0260_0000 0x0260_9FFF MPU11 SCR_6 and CPU/6 CFG SCR 0x0220_0000 0x03FF_FFFF MPU12 SPI0 0x2100_0400 0x2100_07FF MPU13 SPI1 0x2100_0400 0x2100_07FF MPU14 SPI2 0x2100_0800 0x2100_0AFF End of Table 6-5 Table 6-6 shows the unique Master ID assigned to each C66x CorePac and peripherals on the device. Table 6-6 Master ID Settings (Part 1 of 4) Master ID 66AK2H12 66AK2H06 0 C66x CorePac0 Data 1 C66x CorePac1 Data 2 C66x CorePac2 Data 3 C66x CorePac3 Data 4 C66x CorePac4 Data Reserved 5 C66x CorePac5 Data Reserved 6 C66x CorePac6 Data Reserved 7 C66x CorePac7 Data Reserved 8 ARM CorePac 0 non-cache accesses and cache accesses for all ARM cores 9 ARM CorePac 1 non-cache accesses 10 ARM CorePac 2 non-cache accesses 11 ARM CorePac 3 non-cache accesses Reserved Reserved 12 Reserved 13 Reserved 96 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-6 Master ID Settings (Part 2 of 4) Master ID 66AK2H12 66AK2H06 14 Reserved 15 Reserved 16 C66x CorePac0 CFG 17 C66x CorePac1 CFG 18 C66x CorePac2 CFG 19 C66x CorePac3 CFG 20 C66x CorePac4 CFG Reserved 21 C66x CorePac5 CFG Reserved 22 C66x CorePac6 CFG Reserved 23 C66x CorePac7 CFG Reserved 24 Reserved 25 EDMA0_TC0 read 26 EDMA0_TC0 write 27 EDMA0_TC1 read 28 Hyperlink0 29 Hyperlink1 30 SRIO 31 PCIE 32 EDMA0_TC1 write 33 EDMA1_TC0 read 34 EDMA1_TC0 write 35 EDMA1_TC1 read 36 EDMA1_TC1write 37 EDMA1_TC2 read 38 EDMA1_TC2 write 39 EDMA1_TC3 read 40 EDMA1_TC3 write 41 EDMA2_TC0 read 42 EDMA2_TC0 write 43 EDMA2_TC1 read 44 EDMA2_TC1 write 45 EDMA2_TC2 read 46 EDMA2_TC2 write 47 EDMA2_TC3 read 48 EDMA2_TC3 write 49 EDMA3_TC0 read 50 EDMA3_TC0 write 51 EDMA3_TC1 read 52 MSMC (1) 53 EDMA3_TC1 write 54 to 55 SRIO PKTDMA 56 Reserved 57 Reserved 58 Reserved Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 97 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-6 Master ID Settings (Part 3 of 4) Master ID 66AK2H12 66AK2H06 59 Reserved 60 Reserved 61 Reserved 62 EDMA3CC0 63 EDMA3CC1 64 EDMA3CC2 65 Reserved 66 Reserved 67 Reserved 68 to 71 Queue Manager 72 to 79 Reserved 80 Reserved 81 Reserved 82 Reserved 83 EDMA3_CC_TR 84 to 87 10GbE (66AK2H14 only) 88 to 91 Reserved 92 to 95 Packet Coprocessor MST2 96 to 99 Packet Coprocessor MST1 100 to 101 Reserved 102 Reserved 103 Reserved 104 Reserved 105 Reserved 106 Reserved 107 DBG_DAP 108-139 Reserved 140 CPT_L2_0 141 CPT_L2_1 142 CPT_L2_2 143 CPT_L2_3 144 CPT_L2_4 145 CPT_L2_5 146 CPT_L2_6 147 CPT_L2_7 148 CPT_MSMC0 149 CPT_MSMC1 150 CPT_MSMC2 151 CPT_MSMC3 152 CPT_DDR3A 153 CPT_SM 154 CPT_QM_CFG1 155 CPT_QM_M 156 CPT_CFG 98 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-6 Master ID Settings (Part 4 of 4) Master ID 66AK2H12 66AK2H06 157 Reserved 158 Reserved 159 Reserved 160 CPT_QM_CFG2 161 CPT_DDR3B 162 Reserved 163 Reserved 164 CPT_EDMA3CC0_4 165 CPT_EDMA3CC1_2_3 166 CPT_INTC 167 CPT_SPI_ROM_EMIP16 168 USB 169 EDMA4_TC0 read 170 EDMA4_TC0 write 171 EDMA4_TC1 read 172 EDMA4_TC1 write 173 EDMA4_CC_TR 174 CPT_MSMC5 175 CPT_MSMC6 176 CPT_MSMC7 177 CPT_MSMC4 178 Reserved 179 Reserved 180-183 NETCP 184-255 Reserved End of Table 6-6 1 The master ID for MSMC is for the transaction initiated by MSMC internally and sent to the DDR. Note—There are two master ID values assigned to the Queue Manager_second master port, one master ID for external linking RAM and the other one for the PDSP/MCDM accesses. Table 6-7 shows the privilege ID of each C66x CorePac and every mastering peripheral. The table also shows the privilege level (supervisor vs. user), security level (secure vs. non-secure), and access type (instruction read vs. data/DMA read or write) of each master on the device. In some cases, a particular setting depends on software being executed at the time of the access or the configuration of the master peripheral. Table 6-7 Privilege ID Settings (Part 1 of 2) Privilege ID Master Privilege Level 0 C66x CorePac0 SW dependent, driven by MSMC Non-secure DMA 1 C66x CorePac1 SW dependent, driven by MSMC Non-secure DMA 2 C66x CorePac2 SW dependent, driven by MSMC Non-secure DMA 3 C66x CorePac3 SW dependent, driven by MSMC Non-secure DMA 4 C66x CorePac4 SW dependent, driven by MSMC Non-secure DMA Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Security Level Access Type Memory, Interrupts, and EDMA for 66AK2H14/12/06 99 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-7 Privilege ID Settings (Part 2 of 2) Privilege ID Master Privilege Level Security Level Access Type 5 C66x CorePac5 SW dependent, driven by MSMC Non-secure DMA 6 C66x CorePac6 SW dependent, driven by MSMC Non-secure DMA 7 C66x CorePac7 SW dependent, driven by MSMC Non-secure DMA 8 ARM CorePac SW dependent Non-secure DMA 9 SRIO_M and all Packet DMA masters (NetCP, (1) Both QM_CDMA, SRIO_CDMA, 10GbE ), USB Non-secure User/driven by SRIO block, user mode and supervisor mode is determined by per transaction basis. Only the transaction with source ID matching the value in SupervisorID register is granted supervisor mode. DMA 10 QM_Second User Non-secure DMA (2) 11 PCIe Supervisor Non-secure DMA 12 DAP Driven by Emulation SW Non-secure DMA 13 Reserved 14 HyperLink Supervisor Non-secure DMA 15 Reserved End of Table 6-7 1 66AK2H14 only 2 QM_Second provides a path that PDSP uses to access the system memory. 6.2.1 MPU Registers This section includes the offsets for MPU registers and definitions for device-specific MPU registers. For Number of Programmable Ranges supported (PROGx_MPSA, PROGxMPEA) refer to the following tables. 6.2.1.1 MPU Register Map Table 6-8 MPU Registers (Part 1 of 2) Offset Name Description 0h REVID Revision ID 4h CONFIG Configuration 10h IRAWSTAT Interrupt raw status/set 14h IENSTAT Interrupt enable status/clear 18h IENSET Interrupt enable 1Ch IENCLR Interrupt enable clear 20h EOI End of interrupt 200h PROG0_MPSAR Programmable range 0, start address 204h PROG0_MPEAR Programmable range 0, end address 208h PROG0_MPPAR Programmable range 0, memory page protection attributes 210h PROG1_MPSAR Programmable range 1, start address 214h PROG1_MPEAR Programmable range 1, end address 218h PROG1_MPPAR Programmable range 1, memory page protection attributes 220h PROG2_MPSAR Programmable range 2, start address 224h PROG2_MPEAR Programmable range 2, end address 228h PROG2_MPPAR Programmable range 2, memory page protection attributes 230h PROG3_MPSAR Programmable range 3, start address 234h PROG3_MPEAR Programmable range 3, end address 238h PROG3_MPPAR Programmable range 3, memory page protection attributes 100 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-8 MPU Registers (Part 2 of 2) Offset Name Description 240h PROG4_MPSAR Programmable range 4, start address 244h PROG4_MPEAR Programmable range 4, end address 248h PROG4_MPPAR Programmable range 4, memory page protection attributes 250h PROG5_MPSAR Programmable range 5, start address 254h PROG5_MPEAR Programmable range 5, end address 258h PROG5_MPPAR Programmable range 5, memory page protection attributes 260h PROG6_MPSAR Programmable range 6, start address 264h PROG6_MPEAR Programmable range 6, end address 268h PROG6_MPPAR Programmable range 6, memory page protection attributes 270h PROG7_MPSAR Programmable range 7, start address 274h PROG7_MPEAR Programmable range 7, end address 278h PROG7_MPPAR Programmable range 7, memory page protection attributes 280h PROG8_MPSAR Programmable range 8, start address 284h PROG8_MPEAR Programmable range 8, end address 288h PROG8_MPPAR Programmable range 8, memory page protection attributes 290h PROG9_MPSAR Programmable range 9, start address 294h PROG9_MPEAR Programmable range 9, end address 298h PROG9_MPPAR Programmable range 9, memory page protection attributes 2A0h PROG10_MPSAR Programmable range 10, start address 2A4h PROG10_MPEAR Programmable range 10, end address 2A8h PROG10_MPPAR Programmable range 10, memory page protection attributes 2B0h PROG11_MPSAR Programmable range 11, start address 2B4h PROG11_MPEAR Programmable range 11, end address 2B8h PROG11_MPPAR Programmable range 11, memory page protection attributes 2C0h PROG12_MPSAR Programmable range 12, start address 2C4h PROG12_MPEAR Programmable range 12, end address 2C8h PROG12_MPPAR Programmable range 12, memory page protection attributes 2D0h PROG13_MPSAR Programmable range 13, start address 2D4h PROG13_MPEAR Programmable range 13, end address 2Dh PROG13_MPPAR Programmable range 13, memory page protection attributes 2E0h PROG14_MPSAR Programmable range 14, start address 2E4h PROG14_MPEAR Programmable range 14, end address 2E8h PROG14_MPPAR Programmable range 14, memory page protection attributes 2F0h PROG15_MPSAR Programmable range 15, start address 2F4h PROG15_MPEAR Programmable range 15, end address 2F8h PROG15_MPPAR Programmable range 15, memory page protection attributes 300h FLTADDRR Fault address 304h FLTSTAT Fault status 308h FLTCLR Fault clear End of Table 6-8 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 101 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 6.2.1.2 Device-Specific MPU Registers 6.2.1.2.1 Configuration Register (CONFIG) The configuration register (CONFIG) contains the configuration value of the MPU. Table 6-9 Configuration Register Field Descriptions Bits Field Description 31 – 24 ADDR_WIDTH Address alignment for range checking 0 = 1KB alignment 6 = 64KB alignment 23 – 20 NUM_FIXED Number of fixed address ranges 19 – 16 NUM_PROG Number of programmable address ranges 15 – 12 NUM_AIDS Number of supported AIDs 11 – 1 Reserved Reserved. Always read as 0. 0 ASSUME_ALLOWED Assume allowed bit. When an address is not covered by any MPU protection range, this bit determines whether the transfer is assumed to be allowed or not. 0 = Assume disallowed 1 = Assume allowed End of Table 6-9 6.2.2 MPU Programmable Range Registers 6.2.2.1 Programmable Range n Start Address Register (PROGn_MPSAR) The Programmable Address Start Register holds the start address for the range. This register is writeable by a supervisor entity only. If NS = 0 (non-secure mode) in the associated MPPAR register, then the register is also writeable only by a secure entity. The start address must be aligned on a page boundary. The size of the page is 1K byte. The size of the page determines the width of the address field in MPSAR and MPEAR. Figure 6-1 Programmable Range n Start Address Register (PROGn_MPSAR) 31 10 9 0 START_ADDR Reserved R/W R Legend: R = Read only; R/W = Read/Write Table 6-10 Programmable Range n Start Address Register Field Descriptions Bit Field Description 31 – 10 START_ADDR Start address for range n 9–0 Reserved Reserved. Always read as 0. End of Table 6-10 Table 6-11 MPU0-MPU5 Programmable Range n Start Address Register (PROGn_MPSAR) Reset Values (Part 1 of 2) Register MPU0 MPU1 MPU2 MPU3 MPU4 MPU5 PROG0_MPSAR 0x01D0_0000 0x23A0_0000 0x02A0_0000 Reserved Reserved 0x02A0_4000 PROG1_MPSAR 0x01F0_0000 0x23A0_2000 0x02A0_2000 Reserved Reserved 0x02A0_5000 PROG2_MPSAR 0x02F0_0000 0x023A_6000 0x02A0_6000 Reserved Reserved 0x02A0_6400 PROG3_MPSAR 0x0200_0000 0x23A0_6800 0x02A0_6800 Reserved Reserved 0x02A0_7400 PROG4_MPSAR 0x020C_0000 0x23A0_7000 0x02A0_7000 Reserved Reserved 0x02A0_A000 PROG5_MPSAR 0x021C_0000 0x23A0_8000 0x02A0_8000 Reserved Reserved 0x02A0_D000 102 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-11 MPU0-MPU5 Programmable Range n Start Address Register (PROGn_MPSAR) Reset Values (Part 2 of 2) Register MPU0 MPU1 MPU2 MPU3 MPU4 MPU5 PROG6_MPSAR 0x021D_0000 0x23A0_C000 0x02A0_C000 Reserved Reserved 0x02A0_E000 PROG7_MPSAR 0x021F_0000 0x23A0_E000 0x02A0_E000 Reserved Reserved 0x02A0_F000 PROG8_MPSAR 0x0234_0000 0x23A0_F000 0x02A0_F000 Reserved Reserved 0x02A0_F800 PROG9_MPSAR 0x0254_0000 0x23A0_F800 0x02A0_F800 Reserved Reserved 0x02A1_2000 PROG10_MPSAR 0x0258_0000 0x23A1_0000 0x02A1_0000 Reserved Reserved 0x02A1_C000 PROG11_MPSAR 0x0000_0000 0x23A1_C000 0x02A2_0000 Reserved Reserved 0x02A2_8000 PROG12_MPSAR 0x0290_0000 0x23A4_0000 0x02A4_0000 Reserved Reserved 0x02A6_0000 PROG13_MPSAR 0x01E8_0000 0x23A8_0000 0x02A8_0000 Reserved Reserved 0x02AA_0000 PROG14_MPSAR 0x01E8_0800 0x23B0_0000 0x02AC_0000 Reserved Reserved 0x02B0_0000 PROG15_MPSAR 0x01E0_0000 0x23B8_0000 0x02AE_0000 Reserved Reserved 0x02B8_0000 End of Table 6-11 Table 6-12 MPU6-MPU11 Programmable Range n Start Address Register (PROGn_MPSAR) Reset Values Register MPU6 MPU7 MPU8 MPU9 MPU10 MPU11 PROG0_MPSAR Reserved 0x2101_0000 0x3000_0000 0x0260_0000 0x0264_0000 0x0220_0000 PROG1_MPSAR Reserved 0x0000_0000 0x3200_0000 0x0260_4000 0x0000_0000 0x0231_0000 PROG2_MPSAR Reserved 0x0800_0000 0x3400_0000 0x0260_8000 N/A 0x0231_A000 PROG3_MPSAR Reserved 0x1000_0000 0x3600_0000 0x0256_0000 N/A 0x0233_0000 PROG4_MPSAR Reserved 0x1800_0000 0x3800_0000 0x0000_0000 N/A 0x0235_0000 PROG5_MPSAR Reserved 0x2000_0000 0x3A00_0000 0x0000_0000 N/A 0x0263_0000 PROG6_MPSAR Reserved 0x2800_0000 0x3C00_0000 0x0000_0000 N/A 0x0244_0000 PROG7_MPSAR Reserved 0x3000_0000 0x2100_0800 0x0000_0000 N/A 0x024C_0000 PROG8_MPSAR Reserved 0x3800_0000 N/A 0x0000_0000 N/A 0x0250_0000 PROG9_MPSAR Reserved 0x4000_0000 N/A 0x0000_0000 N/A 0x0253_0000 PROG10_MPSAR Reserved 0x4800_0000 N/A 0x0000_0000 N/A 0x0253_0C00 PROG11_MPSAR Reserved 0x5000_0000 N/A 0x0000_0000 N/A 0x0260_B000 PROG12_MPSAR Reserved 0x5800_0000 N/A 0x0000_0000 N/A 0x0262_0000 PROG13_MPSAR Reserved 0x6000_0000 N/A 0x0000_0000 N/A 0x0300_0000 PROG14_MPSAR Reserved 0x6800_0000 N/A 0x0000_0000 N/A 0x021E_0000 PROG15_MPSAR Reserved 0x7000_0000 N/A 0x0000_0000 N/A 0x0268_0000 End of Table 6-12 Table 6-13 MPU12-MPU14 Programmable Range n Start Address Register (PROGn_MPSAR) Reset Values (Part 1 of 2) Register MPU12 MPU13 MPU14 PROG0_MPSAR 0x2100_0400 0x2100_0400 0x2100_0800 PROG1_MPSAR 0x0000_0000 0x0000_0000 0x0000_0000 PROG2_MPSAR N/A N/A N/A PROG3_MPSAR N/A N/A N/A PROG4_MPSAR N/A N/A N/A PROG5_MPSAR N/A N/A N/A PROG6_MPSAR N/A N/A N/A PROG7_MPSAR N/A N/A N/A PROG8_MPSAR N/A N/A N/A Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 103 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-13 MPU12-MPU14 Programmable Range n Start Address Register (PROGn_MPSAR) Reset Values (Part 2 of 2) Register MPU12 MPU13 MPU14 PROG9_MPSAR N/A N/A N/A PROG10_MPSAR N/A N/A N/A PROG11_MPSAR N/A N/A N/A PROG12_MPSAR N/A N/A N/A PROG13_MPSAR N/A N/A N/A PROG14_MPSAR N/A N/A N/A PROG15_MPSAR N/A N/A N/A End of Table 6-13 6.2.2.2 Programmable Range n - End Address Register (PROGn_MPEAR) The programmable address end register holds the end address for the range. This register is writeable by a supervisor entity only. If NS = 0 (non-secure mode) in the associated MPPAR register then the register is also writeable only by a secure entity. The end address must be aligned on a page boundary. The size of the page depends on the MPU number. The page size for MPU1 is 1K byte and for MPU2 it is 64K bytes. The size of the page determines the width of the address field in MPSAR and MPEAR Figure 6-2 Programmable Range n End Address Register (PROGn_MPEAR) 31 10 9 0 END_ADDR Reserved R/W R Legend: R = Read only; R/W = Read/Write Table 6-14 Programmable Range n End Address Register Field Descriptions Bit Field Description 31 – 10 END_ADDR End address for range n 9–0 Reserved Reserved. Always read as 3FFh. End of Table 6-14 Table 6-15 MPU0-MPU5 Programmable Range n End Address Register (PROGn_MPEAR) Reset Values (Part 1 of 2) Register MPU0 MPU1 MPU2 MPU3 MPU4 MPU5 PROG0_MPEAR 0x01DF_FFFF 0x23A0_1FFF 0x02A0_00FF Reserved Reserved 0x02A0_4FFF PROG1_MPEAR 0x01F7_FFFF 0x23A0_5FFF 0x02A0_3FFF Reserved Reserved 0x02A0_5FFF PROG2_MPEAR 0x02FF_FFFF 0x23A0_67FF 0x02A0_63FF Reserved Reserved 0x02A0_67FF PROG3_MPEAR 0x020B_FFFF 0x23A0_6FFF 0x02A0_6FFF Reserved Reserved 0x02A0_7FFF PROG4_MPEAR 0x020F_FFFF 0x23A0_7FFF 0x02A0_73FF Reserved Reserved 0x02A0_BFFF PROG5_MPEAR 0x021C_83FF 0x23A0_BFFF 0x02A0_9FFF Reserved Reserved 0x02A0_DFFF PROG6_MPEAR 0x021D_C0FF 0x23A0_DFFF 0x02A0_CFFF Reserved Reserved 0x02A0_E7FF PROG7_MPEAR 0x021F_C7FF 0x23A0_EFFF 0x02A0_E7FF Reserved Reserved 0x02A0_F7FF PROG8_MPEAR 0x0234_C0FF 0x23A0_F7FF 0x02A0_F7FF Reserved Reserved 0x02A0_FFFF PROG9_MPEAR 0x0255_FFFF 0x23A0_FFFF 0x02A0_FFFF Reserved Reserved 0x02A1_7FFF PROG10_MPEAR 0x025F_FFFF 0x23A1_BFFF 0x02A1_1FFF Reserved Reserved 0x02A1_FFFF PROG11_MPEAR 0x0000_0000 0x23A3_FFFF 0x02A2_5FFF Reserved Reserved 0x02A3_FFFF 104 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-15 MPU0-MPU5 Programmable Range n End Address Register (PROGn_MPEAR) Reset Values (Part 2 of 2) Register MPU0 MPU1 MPU2 MPU3 MPU4 MPU5 PROG12_MPEAR 0x029F_FFFF 0x23A7_FFFF 0x02A5_FFFF Reserved Reserved 0x02A7_FFFF PROG13_MPEAR 0x01E8_07FF 0x23AF_FFFF 0x02A9_FFFF Reserved Reserved 0x02AB_FFFF PROG14_MPEAR 0x01E8_43FF 0x23B7_FFFF 0x02AD_FFFF Reserved Reserved 0x02B7_FFFF PROG15_MPEAR 0x01E7_FFFF 0x23BF_FFFF 0x02AF_FFFF Reserved Reserved 0x02BF_FFFF End of Table 6-15 Table 6-16 MPU6-MPU11 Programmable Range n End Address Register (PROGn_MPEAR) Reset Values Register MPU6 MPU7 MPU8 MPU9 MPU10 MPU11 PROG0_MPEAR Reserved 0x2103_FFFF 0x31FF_FFFF 0x0260_1FFF 0x0264_07FF 0x022F_027F PROG1_MPEAR Reserved 0x07FF_FFFF 0x33FF_FFFF 0x0260_5FFF 0x0000_0000 0x0231_01FF PROG2_MPEAR Reserved 0x0FFF_FFFF 0x35FF_FFFF 0x0260_9FFF N/A 0x0232_FFFF PROG3_MPEAR Reserved 0x17FF_FFFF 0x37FF_FFFF 0x0257_FFFF N/A 0x0233_07FF PROG4_MPEAR Reserved 0x1FFF_FFFF 0x39FF_FFFF Reserved N/A 0x0235_0FFF PROG5_MPEAR Reserved 0x27FF_FFFF 0x3BFF_FFFF Reserved N/A 0x0263_FFFF PROG6_MPEAR Reserved 0x2FFF_FFFF 0x3FFF_FFFF Reserved N/A 0x024B_3FFF PROG7_MPEAR Reserved 0x37FF_FFFF 0x2100_0AFF Reserved N/A 0x024C_0BFF PROG8_MPEAR Reserved 0x3FFF_FFFF N/A Reserved N/A 0x0250_7FFF PROG9_MPEAR Reserved 0x47FF_FFFF N/A Reserved N/A 0x0253_0BFF PROG10_MPEAR Reserved 0x4FFF_FFFF N/A Reserved N/A 0x0253_FFFF PROG11_MPEAR Reserved 0x57FF_FFFF N/A Reserved N/A 0x0260_BFFF PROG12_MPEAR Reserved 0x5FFF_FFFF N/A Reserved N/A 0x0262_0FFF PROG13_MPEAR Reserved 0x67FF_FFFF N/A Reserved N/A 0x03FF_FFFF PROG14_MPEAR Reserved 0x6FFF_FFFF N/A Reserved N/A 0x021E_1FFF PROG15_MPEAR Reserved 0x7FFF_FFFF N/A Reserved N/A 0x026F_FFFF End of Table 6-16 Table 6-17 MPU12-MPU14 Programmable Range n End Address Register (PROGn_MPEAR) Reset Values (Part 1 of 2) Register MPU12 MPU13 MPU14 PROG0_MPEAR 0x2100_07FF 0x2100_07FF 0x2100_0AFF PROG1_MPEAR 0x0000_0000 0x0000_0000 0x0000_0000 PROG2_MPEAR N/A N/A N/A PROG3_MPEAR N/A N/A N/A PROG4_MPEAR N/A N/A N/A PROG5_MPEAR N/A N/A N/A PROG6_MPEAR N/A N/A N/A PROG7_MPEAR N/A N/A N/A PROG8_MPEAR N/A N/A N/A PROG9_MPEAR N/A N/A N/A PROG10_MPEAR N/A N/A N/A PROG11_MPEAR N/A N/A N/A PROG12_MPEAR N/A N/A N/A PROG13_MPEAR N/A N/A N/A Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 105 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-17 MPU12-MPU14 Programmable Range n End Address Register (PROGn_MPEAR) Reset Values (Part 2 of 2) Register MPU12 MPU13 MPU14 PROG14_MPEAR N/A N/A N/A PROG15_MPEAR N/A N/A N/A End of Table 6-17 6.2.2.3 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPAR) The programmable address memory protection page attribute register holds the permissions for the region. This register is writeable only by a non-debug supervisor entity. If NS = 0 (secure mode) then the register is also writeable only by a non-debug secure entity. The NS bit is writeable only by a non-debug secure entity. For debug accesses, the register is writeable only when NS = 1 or EMU = 1. Figure 6-3 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPAR) 31 26 25 24 23 22 21 20 19 18 17 16 15 Reserved AID15 AID14 AID13 AID12 AID11 AID10 AID9 AID8 AID7 AID6 AID5 R R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 AID4 AID3 AID2 AID1 AID0 AIDX Reserved NS EMU SR SW SX UR UW UX R/W R/W R/W R/W R/W R/W R R/W R/W R/W R/W R/W R/W R/W R/W Legend: R = Read only; R/W = Read/Write Table 6-18 Programmable Range n Memory Protection Page Attribute Register Field Descriptions (Part 1 of 3) Bits Name Description 31 – 26 Reserved Reserved. Always read as 0. 25 AID15 Controls access from ID = 15 0 = Access is not checked for permissions 1 = Access is checked for permissions 24 AID14 Controls access from ID = 14 0 = Access is not checked for permissions 1 = Access is checked for permissions 23 AID13 Controls access from ID = 13 0 = Access is not checked for permissions 1 = Access is checked for permissions 22 AID12 Controls access from ID = 12 0 = Access is not checked for permissions 1 = Access is checked for permissions 21 AID11 Controls access from ID = 11 0 = Access is not checked for permissions 1 = Access is checked for permissions 20 AID10 Controls access from ID = 10 0 = Access is not checked for permissions 1 = Access is checked for permissions 19 AID9 Controls access from ID = 9 0 = Access is not checked for permissions 1 = Access is checked for permissions 18 AID8 Controls access from ID = 8 0 = Access is not checked for permissions 1 = Access is checked for permissions 106 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-18 Programmable Range n Memory Protection Page Attribute Register Field Descriptions (Part 2 of 3) Bits Name Description 17 AID7 Controls access from ID = 7 0 = Access is not checked for permissions 1 = Access is checked for permissions 16 AID6 Controls access from ID = 6 0 = Access is not checked for permissions 1 = Access is checked for permissions 15 AID5 Controls access from ID = 5 0 = Access is not checked for permissions 1 = Access is checked for permissions 14 AID4 Controls access from ID = 4 0 = Access is not checked for permissions 1 = Access is checked for permissions 13 AID3 Controls access from ID = 3 0 = Access is not checked for permissions 1 = Access is checked for permissions 12 AID2 Controls access from ID = 2 0 = Access is not checked for permissions 1 = Access is checked for permissions 11 AID1 Controls access from ID = 1 0 = Access is not checked for permissions 1 = Access is checked for permissions 10 AID0 Controls access from ID = 0 0 = Access is not checked for permissions 1 = Access is checked for permissions 9 AIDX Controls access from ID > 15 0 = Access is not checked for permissions 1 = Access is checked for permissions 8 Reserved Reserved. Always reads as 0. 7 NS Non-secure access permission 0 = Only secure access allowed 1 = Non-secure access allowed 6 EMU Emulation (debug) access permission. This bit is ignored if NS = 1 0 = Debug access not allowed 1 = Debug access allowed 5 SR Supervisor Read permission 0 = Access not allowed 1 = Access allowed 4 SW Supervisor Write permission 0 = Access not allowed 1 = Access allowed 3 SX Supervisor Execute permission 0 = Access not allowed 1 = Access allowed 2 UR User Read permission 0 = Access not allowed 1 = Access allowed Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 107 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-18 Programmable Range n Memory Protection Page Attribute Register Field Descriptions (Part 3 of 3) Bits Name Description 1 UW User Write permission 0 = Access not allowed 1 = Access allowed 0 UX User Execute permission 0 = Access not allowed 1 = Access allowed End of Table 6-181 Table 6-19 MPU0-MPU5 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPAR) Reset Values Register MPU0 MPU1 MPU2 MPU3 MPU4 MPU5 PROG0_MPPAR 0x03FF_FCB6 0x03FF_FCB6 0x03FF_FCB6 Reserved Reserved 0x03FF_FCB4 PROG1_MPPAR 0x03FF_FCB6 0x03FF_FCB4 0x03FF_FCB4 Reserved Reserved 0x03FF_FCB4 PROG2_MPPAR 0x03FF_FCB6 0x03FF_FCA4 0x03FF_FCA4 Reserved Reserved 0x03FF_FCA4 PROG3_MPPAR 0x03FF_FCB6 0x03FF_FCB4 0x03FF_FCB4 Reserved Reserved 0x03FF_FCF4 PROG4_MPPAR 0x03FF_FCB6 0x03FF_FCF4 0x03FF_FCF4 Reserved Reserved 0x03FF_FCB4 PROG5_MPPAR 0x03FF_FCB6 0x03FF_FCB4 0x03FF_FCB4 Reserved Reserved 0x03FF_FCB4 PROG6_MPPAR 0x03FF_FCB6 0x03FF_FCB4 0x03FF_FCB4 Reserved Reserved 0x03FF_FCB4 PROG7_MPPAR 0x03FF_FCB6 0x03FF_FCB4 0x03FF_FCB4 Reserved Reserved 0x03FF_FCB4 PROG8_MPPAR 0x03FF_FCB6 0x03FF_FCB4 0x03FF_FCB4 Reserved Reserved 0x03FF_FCF4 PROG9_MPPAR 0x03FF_FCB6 0x03FF_FCF4 0x03FF_FCF4 Reserved Reserved 0x03FF_FCB4 PROG10_MPPAR 0x03FF_FCB6 0x03FF_FCB4 0x03FF_FCB4 Reserved Reserved 0x03FF_FCF4 PROG11_MPPAR 0x03FF_FCB6 0x03FF_FCF4 0x03FF_FCF4 Reserved Reserved 0x03FF_FCF4 PROG12_MPPAR 0x03FF_FCB4 0x03FF_FCA4 0x03FF_FCA4 Reserved Reserved 0x03FF_FCA4 PROG13_MPPAR 0x03FF_FCB6 0x03FF_FCB6 0x03FF_FCB6 Reserved Reserved 0x03FF_FCB6 PROG14_MPPAR 0x03FF_FCB0 0x03FF_FCA4 0x03FF_FCB6 Reserved Reserved 0x03FF_FCA4 PROG15_MPPAR 0x03FF_FCB6 0x03FF_FCA4 0x03FF_FCB6 Reserved Reserved 0x03FF_FCA4 End of Table 6-19 108 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-20 MPU6-MPU11 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPAR) Reset Values Register MPU6 MPU7 MPU8 MPU9 MPU10 MPU11 PROG0_MPPAR Reserved 0x03FF_FCB6 0x03FF_FCBF 0x03FF_FCB6 0x03FF_FCB6 0x03FF_FCB6 PROG1_MPPAR Reserved 0x03FF_FCBF 0x03FF_FCBF 0x03FF_FCB6 0x03FF_FCB6 0x03FF_FCB0 PROG2_MPPAR Reserved 0x03FF_FCBF 0x03FF_FCBF 0x03FF_FCB6 N/A 0x03FF_FCB6 PROG3_MPPAR Reserved 0x03FF_FCBF 0x03FF_FCBF 0x03FF_FCB6 N/A 0x03FF_FCB0 PROG4_MPPAR Reserved 0x03FF_FCBF 0x03FF_FCBF 0x03FF_FCB6 N/A 0x03FF_FCB0 PROG5_MPPAR Reserved 0x03FF_FCBF 0x03FF_FCBF 0x03FF_FCB6 N/A 0x03FF_FCB6 PROG6_MPPAR Reserved 0x03FF_FCBF 0x03FF_FCBF 0x03FF_FCB6 N/A 0x03FF_FCB6 PROG7_MPPAR Reserved 0x03FF_FCBF 0x03FF_FCB6 0x03FF_FCB6 N/A 0x03FF_FCB0 PROG8_MPPAR Reserved 0x03FF_FCBF N/A 0x03FF_FCB6 N/A 0x03FF_FCB0 PROG9_MPPAR Reserved 0x03FF_FCBF N/A 0x03FF_FCB6 N/A 0x03FF_FCB6 PROG10_MPPAR Reserved 0x03FF_FCBF N/A 0x03FF_FCB6 N/A 0x03FF_FCB6 PROG11_MPPAR Reserved 0x03FF_FCBF N/A 0x03FF_FCB6 N/A 0x03FF_FCB6 PROG12_MPPAR Reserved 0x03FF_FCBF N/A 0x03FF_FCB6 N/A 0x03FF_FCB0 PROG13_MPPAR Reserved 0x03FF_FCBF N/A 0x03FF_FCB6 N/A 0x03FF_FCB6 PROG14_MPPAR Reserved 0x03FF_FCBF N/A 0x03FF_FCB6 N/A 0x03FF_FCB0 PROG15_MPPAR Reserved 0x03FF_FCBF N/A 0x03FF_FCB6 N/A 0x03FF_FCB6 End of Table 6-20 Table 6-21 MPU12-MPU14 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPAR) Reset Values Register MPU12 MPU13 MPU14 PROG0_MPPAR 0x03FF_FCBF 0x03FF_FCBF 0x03FF_FCBF PROG1_MPPAR 0x03FF_FCBF 0x03FF_FCBF 0x03FF_FCBF PROG2_MPPAR 0x0000_0000 0x0000_0000 0x0000_0000 PROG3_MPPAR N/A N/A N/A PROG4_MPPAR N/A N/A N/A PROG5_MPPAR N/A N/A N/A PROG6_MPPAR N/A N/A N/A PROG7_MPPAR N/A N/A N/A PROG8_MPPAR N/A N/A N/A PROG9_MPPAR N/A N/A N/A PROG10_MPPAR N/A N/A N/A PROG11_MPPAR N/A N/A N/A PROG12_MPPAR N/A N/A N/A PROG13_MPPAR N/A N/A N/A PROG14_MPPAR N/A N/A N/A PROG15_MPPAR N/A N/A N/A End of Table 6-21 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 109 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 6.3 Interrupts for 66AK2H14/12/06 This section discusses the interrupt sources, controller, and topology. Also provided are tables describing the interrupt events. 6.3.1 Interrupt Sources and Interrupt Controller The CPU interrupts on the 66AK2H14/12/06 device are configured through the C66x CorePac Interrupt Controller. The Interrupt Controller allows for up to 128 system events to be programmed to any of the 12 CPU interrupt inputs (CPUINT4 - CPUINT15), the CPU exception input (EXCEP), or the advanced emulation logic. The 128 system events consist of both internally-generated events (within the CorePac) and chip-level events. Additional system events are routed to each of the C66x CorePacs to provide chip-level events that are not required as CPU interrupts/exceptions to be routed to the Interrupt Controller as emulation events. In addition, error-class events or infrequently used events are also routed through the system event router to offload the C66x CorePac interrupt selector. This is accomplished through the CorePac Interuupt Controller blocks, CIC[2:0]. This is clocked using CPU/6. The event controllers consist of simple combination logic to provide additional events to each C66x CorePac, ARM GIC (ARM Generic Interrupt Controller) plus the EDMA3CC. CIC0 has 104 event outputs which provides 20 broadcast events and 18 additional events to each of the C66x CorePacs, 0 through 3. Similarly, CIC1 has 104 event outputs which provides 20 broadcast events and 18 additional events to each of the C66x CorePacs, 4 through 7 (66AK2H12/14 only). CIC2 has 103 event outputs which provides 8, 20, 8, 8, 8, and 16 events to EDMA3CC0, EDMA3CC1, EDMA3C2, EDMA3CC3, EDMA3CC4, and HyperLinks respectively. The events that are routed to the C66x CorePacs for Advanced Event Triggering (AET) purposes from those EDMA3CC and FSYNC events that are not otherwise provided to each C66x CorePac. Modules such as CP_MPU, BOOT_CFG, and CP_Tracer have level interrupts and EOI handshaking interface. The EOI value is 0 for CP_MPU, BOOT_CFG, and CP_Tracer. 110 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 The following figures show the 66AK2H14/12/06 interrupt topologies. Figure 6-4 66AK2H14/12 Interrupt Topology 57 Shared Primary Events 19 Unique Primary Events 12 Reserved Events 18 Secondary Events 26 QMSS q_pend Events 19 Unique Primary Events 18 Secondary Events 9 QMSS q_pend Events C66x CorePac0 C66x CorePac1 CIC0 19 Unique Primary Events 18 Secondary Events C66x CorePac2 32 QMSS lo Events 19 Unique Primary Events 18 Secondary Events 402 Common Events 20 Broadcast Events from CIC0 19 Unique Primary Events 402 Common Events 18 Secondary Events 12 Reserved Events C66x CorePac4 19 Unique Primary Events 18 Secondary Events 26 QMSS q_pend Events C66x CorePac3 C66x CorePac5 CIC1 19 Unique Primary Events 18 Secondary Events C66x CorePac6 9 QMSS q_pend Events 19 Unique Primary Events 18 Secondary Events 32 QMSS_lo Events C66x CorePac7 20 Broadcast Events from CIC1 8 Shared Events 24 × 2 Primary Events 39 QMSS q_pend Events 8 × 2 Secondary Events 56 Primary Events 32 QMSS_1 hi Events 8 Secondary Events 44 Primary Events 32 QMSS_2 hi Events 20 Secondary Events HyperLink EDMA3 CC0 EDMA3 CC1 CIC2 56 Primary Events 357 Common Events 8 Secondary Events 56 Primary Events 19 Reserved Events 8 Secondary Events 56 Primary Events 66AK2H14/12 8 Secondary Events 36 Peripherals Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 480 SPI Events EDMA3 CC2 EDMA3 CC3 EDMA3 CC4 ARM INTC Memory, Interrupts, and EDMA for 66AK2H14/12/06 111 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 6-5 66AK2H06 Interrupt Topology 57 Shared Primary Events 19 Unique Primary Events 12 Reserved Events 18 Secondary Events 26 QMSS q_pend Events 19 Unique Primary Events 18 Secondary Events 9 QMSS q_pend Events C66x CorePac0 C66x CorePac1 CIC0 19 Unique Primary Events 18 Secondary Events C66x CorePac2 32 QMSS lo Events 19 Unique Primary Events 18 Secondary Events 402 Common Events C66x CorePac3 20 Broadcast Events from CIC0 4 Shared Events 24 × 2 Primary Events 39 QMSS q_pend Events 8 × 2 Secondary Events 56 Primary Events 32 QMSS_1 hi Events 8 Secondary Events 44 Primary Events 32 QMSS_2 hi Events 20 Secondary Events HyperLink EDMA3 CC0 EDMA3 CC1 CIC2 56 Primary Events 357 Common Events 8 Secondary Events 56 Primary Events 19 Reserved Events 8 Secondary Events 56 Primary Events 66AK2H06 8 Secondary Events 36 480 SPI Events Peripherals EDMA3 CC2 EDMA3 CC3 EDMA3 CC4 ARM INTC Table 6-22 shows the mapping of system events. Table 6-22 System Event Mapping — C66x CorePac Primary Interrupts (Part 1 of 4) Event No. Event Name Description 0 EVT0 Event combiner 0 output 1 EVT1 Event combiner 1 output 2 EVT2 Event combiner 2 output 3 EVT3 Event combiner 3 output 4 TETB_HFULLINTN TETB is half full 5 TETB_FULLINTN TETB is full 6 TETB_ACQINTN TETB Acquisition complete interrupt 7 TETB_OVFLINTN TETB Overflow condition interrupt 8 TETB_UNFLINTN TETB Underflow condition interrupt 9 EMU_DTDMA Emulation interrupt for host scan, DTDMA transfer complete and AET 112 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-22 Event No. System Event Mapping — C66x CorePac Primary Interrupts (Part 2 of 4) Event Name Description 10 MSMC_MPF_ERRORN Memory protection fault indicators for system master PrivID = 0 (C66x CorePac) 11 Reserved Reserved 12 Reserved Reserved 13 IDMA0 IDMA channel 0 interrupt 14 IDMA1 IDMA channel 1 interrupt 15 SEM_ERRN Semaphore error interrupt 16 SEM_INTN Semaphore interrupt 17 PCIE_INT4_PLUS_N PCIE0 MSI interrupt 18 Reserved Reserved 19 Reserved Reserved 20 SRIO_INTDST16_PLUS_N SRIO interrupt 21 Reserved Reserved 22 Reserved Reserved 23 CIC_OUT35 CIC Interrupt Controller output 24 CIC_2_OUT102 CIC Interrupt Controller output 25 CIC_2_OUT94_PLUS_N CIC Interrupt Controller output 26 CIC_OUT68_PLUS_10_MUL_N CIC Interrupt Controller output (1) 27 CIC_OUT69_PLUS_10_MUL_N CIC Interrupt Controller output (1) 28 CIC_OUT70_PLUS_10_MUL_N CIC Interrupt Controller output (1) 29 CIC_OUT71_PLUS_10_MUL_N CIC Interrupt Controller output (1) 30 CIC_OUT72_PLUS_10_MUL_N CIC Interrupt Controller output (1) 31 CIC_OUT73_PLUS_10_MUL_N CIC Interrupt Controller output (1) 32 CIC_OUT16 CIC Interrupt Controller output (1) 33 CIC_OUT17 CIC Interrupt Controller output (1) 34 CIC_OUT18 CIC Interrupt Controller output (1) 35 CIC_OUT19 CIC Interrupt Controller output (1) 36 CIC_OUT20 CIC Interrupt Controller output (1) 37 CIC_OUT21 CIC Interrupt Controller output (1) 38 CIC_OUT22 CIC Interrupt Controller output (1) 39 CIC_OUT23 CIC Interrupt Controller output (1) 40 CIC_OUT32 CIC Interrupt Controller output (1) 41 CIC_OUT33 CIC Interrupt Controller output (1) 42 CIC_OUT13_PLUS_16_MUL_N CIC Interrupt Controller output (1) (1) 43 CIC_OUT14_PLUS_16_MUL_N CIC Interrupt Controller output (1) 44 CIC_OUT15_PLUS_16_MUL_N CIC Interrupt Controller output (1) 45 CIC_OUT64_PLUS_10_MUL_N CIC Interrupt Controller output (1) 46 CIC_OUT65_PLUS_10_MUL_N CIC Interrupt Controller output (1) 47 CIC_OUT66_PLUS_10_MUL_N CIC Interrupt Controller output (1) 48 QMSS_INTD_1_HIGH_N Navigator 1 accumulated hi-priority interrupt 0 49 QMSS_INTD_1_HIGH_8_PLUS_N Navigator 1 accumulated hi-priority interrupt 8 50 QMSS_INTD_1_HIGH_16_PLUS_N Navigator 1 accumulated hi-priority interrupt 16 51 QMSS_INTD_1_HIGH_24_PLUS_N Navigator 1 accumulated hi-priority interrupt 24 52 QMSS_INTD_2_HIGH_N Navigator 2 accumulated hi-priority interrupt 0 53 QMSS_INTD_2_HIGH_8_PLUS_N Navigator 2 accumulated hi-priority interrupt 8 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 113 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-22 System Event Mapping — C66x CorePac Primary Interrupts (Part 3 of 4) Event No. Event Name Description 54 QMSS_INTD_2_HIGH_16_PLUS_N Navigator 2 accumulated hi-priority interrupt 16 55 QMSS_INTD_2_HIGH_24_PLUS_N Navigator 2 accumulated hi-priority interrupt 24 56 CIC_OUT0 CIC Interrupt Controller output (1) 57 CIC_OUT1 CIC Interrupt Controller output (1) 58 CIC_OUT2 CIC Interrupt Controller output (1) 59 CIC_OUT3 CIC Interrupt Controller output (1) 60 CIC_OUT4 CIC Interrupt Controller output (1) 61 CIC_OUT5 CIC Interrupt Controller output (1) 62 CIC_OUT6 CIC Interrupt Controller output (1) 63 CIC_OUT7 CIC Interrupt Controller output (1) 64 TIMER_N_INTL Local timer interrupt low 65 TIMER_N_INTH Local timer interrupt high 66 TIMER_8_INTL Timer interrupt low 67 TIMER_8_INTH Timer interrupt high 68 TIMER_9_INTL Timer interrupt low 69 TIMER_9_INTH Timer interrupt high 70 TIMER_10_INTL Timer interrupt low 71 TIMER_10_INTH Timer interrupt high 72 TIMER_11_INTL Timer interrupt low 73 TIMER_11_INTH Timer interrupt high 74 CIC_OUT8_PLUS_16_MUL_N CIC Interrupt Controller output (1) 75 CIC_OUT9_PLUS_16_MUL_N CIC Interrupt Controller output (1) 76 CIC_OUT10_PLUS_16_MUL_N CIC Interrupt Controller output (1) 77 CIC_OUT11_PLUS_16_MUL_N CIC Interrupt Controller output (1) 78 TIMER_14_INTL Timer interrupt low 79 TIMER_14_INTH Timer interrupt high 80 TIMER_15_INTL Timer interrupt low 81 TIMER_15_INTH Timer interrupt high 82 GPIO_INT8 Local GPIO interrupt 83 GPIO_INT9 Local GPIO interrupt 84 GPIO_INT10 Local GPIO interrupt 85 GPIO_INT11 Local GPIO interrupt 86 GPIO_INT12 Local GPIO interrupt 87 Reserved Reserved 88 Reserved Reserved 89 Reserved Reserved 90 Reserved Reserved 91 Reserved Reserved 92 Reserved Reserved 93 Reserved Reserved 94 Reserved Reserved 95 CIC_OUT67_PLUS_10_MUL_N CIC Interrupt Controller output 96 INTERR Dropped C66x CorePac interrupt event 97 EMC_IDMAERR Invalid IDMA parameters 114 Memory, Interrupts, and EDMA for 66AK2H14/12/06 (1) Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-22 Event No. System Event Mapping — C66x CorePac Primary Interrupts (Part 4 of 4) Event Name Description 98 Reserved Reserved 99 CIC_2_SPECIAL_BROADCAST CIC Interrupt Controller output 100 EFIINT0 EFI interrupt from Side A 101 EFIINT1 EFI interrupt from Side B 102 GPIO_INT13 Local GPIO interrupt 103 GPIO_INT14 Local GPIO interrupt 104 GPIO_INT15 Local GPIO interrupt 105 IPC_GRN Boot CFG 106 GPIO_INTN GPIO interrupt 107 CIC_OUT12_PLUS_16_MUL_N CIC Interrupt Controller output (1) 108 CIC_OUT34 CIC Interrupt Controller output (1) 109 CIC_2_OUT13 CIC Interrupt Controller output (1) 110 MDMAERREVT DMA internal bus error event 111 Reserved Reserved 112 EDMACC_0_4_TC_AET_INT EDMA3CC0_4 AET event 113 PMC_ED Single bit error detected during DMA read 114 EDMACC_1_2_TC_AET_INT EDMA3CC1_2 AET event 115 EDMACC_1_3_TC_AET_INT EDMA3CC3_4 AET event 116 UMC_ED1 Corrected bit error detected 117 UMC_ED2 Uncorrected bit error detected 118 PDC_INT Power down sleep interrupt 119 SYS_CMPA SYS CPU MP fault event 120 PMC_CMPA CPU memory protection fault 121 PMC_DMPA DMA memory protection fault 122 DMC_CMPA CPU memory protection fault 123 DMC_DMPA DMA memory protection fault 124 UMC_CMPA CPU memory protection fault 125 UMC_DMPA DMA memory protection fault 126 EMC_CMPA CPU memory protection fault 127 EMC_BUSERR Bus error interrupt End of Table 6-22 1 For C66x CorePac[0-3], this generic primary interrupt comes from CIC0 and for C66x CorePac[4-7], this generic primary interrupt comes from CIC1. Note—Event No. 0 is identical to ARM GIC interrupt ID 0 Table 6-23 System Event Mapping — ARM CorePac Interrupts (Part 1 of 12) Event No. Event Name Description 0 RSTMUX_INT8 Boot config watchdog timer expiration (timer 16) event for ARM Core 0 1 RSTMUX_INT9 Boot config watchdog timer expiration (timer 17) event for ARM Core 1 2 RSTMUX_INT10 Boot config watchdog timer expiration (timer 18) event for ARM Core 2 (1) 3 RSTMUX_INT11 Boot config watchdog timer expiration (timer 19) event for ARM Core 3 (1) 4 IPC_GR8 Boot config IPCG 5 IPC_GR9 Boot config IPCG Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 115 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-23 System Event Mapping — ARM CorePac Interrupts (Part 2 of 12) Event No. Event Name Description 6 IPC_GR10 Boot config IPCG 7 IPC_GR11 Boot config IPCG 8 SEM_INT8 Semaphore interrupt 9 SEM_INT9 Semaphore interrupt 10 SEM_INT10 Semaphore interrupt 11 SEM_INT11 Semaphore interrupt 12 SEM_ERR8 Semaphore error interrupt 13 SEM_ERR9 Semaphore error interrupt 14 SEM_ERR10 Semaphore error interrupt 15 SEM_ERR11 Semaphore error interrupt 16 MSMC_MPF_ERROR8 Memory protection fault indicators for system master PrivID = 8 17 MSMC_MPF_ERROR9 Memory protection fault indicators for system master PrivID = 9 18 MSMC_MPF_ERROR10 Memory protection fault indicators for system master PrivID = 10 19 MSMC_MPF_ERROR11 Memory protection fault indicators for system master PrivID = 11 20 ARM_NPMUIRQ0 ARM performance monitoring unit interrupt request 21 ARM_NPMUIRQ1 ARM performance monitoring unit interrupt request 22 ARM_NPMUIRQ2 ARM performance monitoring unit interrupt request 23 ARM_NPMUIRQ3 ARM performance monitoring unit interrupt request 24 ARM_NINTERRIRQ ARM internal memory ECC error interrupt request 25 ARM_NAXIERRIRQ ARM bus error interrupt request 26 PCIE_INT0 PCIE legacy INTA interrupt 27 PCIE_INT1 PCIE legacy INTB interrupt 28 PCIE_INT2 PCIE legacy INTC interrupt 29 PCIE_INT3 PCIE legacy INTD interrupt 30 PCIE_INT4 PCIE MSI interrupt 31 PCIE_INT5 PCIE MSI interrupt 32 PCIE_INT6 PCIE MSI interrupt 33 PCIE_INT7 PCIE MSI interrupt 34 PCIE_INT8 PCIE MSI interrupt 35 PCIE_INT9 PCIE MSI interrupt 36 PCIE_INT10 PCIE MSI interrupt 37 PCIE_INT11 PCIE MSI interrupt 38 PCIE_INT12 PCIE error interrupt 39 PCIE_INT13 PCIE power management interrupt 40 QMSS_QUE_PEND_658 Navigator transmit queue pending event for indicated queue 41 QMSS_QUE_PEND_659 Navigator transmit queue pending event for indicated queue 42 QMSS_QUE_PEND_660 Navigator transmit queue pending event for indicated queue 43 QMSS_QUE_PEND_661 Navigator transmit queue pending event for indicated queue 44 QMSS_QUE_PEND_662 Navigator transmit queue pending event for indicated queue 45 QMSS_QUE_PEND_663 Navigator transmit queue pending event for indicated queue 46 QMSS_QUE_PEND_664 Navigator transmit queue pending event for indicated queue 47 QMSS_QUE_PEND_665 Navigator transmit queue pending event for indicated queue 48 QMSS_QUE_PEND_8704 Navigator transmit queue pending event for indicated queue 49 QMSS_QUE_PEND_8705 Navigator transmit queue pending event for indicated queue 116 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-23 System Event Mapping — ARM CorePac Interrupts (Part 3 of 12) Event No. Event Name Description 50 QMSS_QUE_PEND_8706 Navigator transmit queue pending event for indicated queue 51 QMSS_QUE_PEND_8707 Navigator transmit queue pending event for indicated queue 52 QMSS_QUE_PEND_8708 Navigator transmit queue pending event for indicated queue 53 QMSS_QUE_PEND_8709 Navigator transmit queue pending event for indicated queue 54 QMSS_QUE_PEND_8710 Navigator transmit queue pending event for indicated queue 55 QMSS_QUE_PEND_8711 Navigator transmit queue pending event for indicated queue 56 QMSS_QUE_PEND_8712 Navigator transmit queue pending event for indicated queue 57 QMSS_QUE_PEND_8713 Navigator transmit queue pending event for indicated queue 58 QMSS_QUE_PEND_8714 Navigator transmit queue pending event for indicated queue 59 QMSS_QUE_PEND_8715 Navigator transmit queue pending event for indicated queue 60 QMSS_QUE_PEND_8716 Navigator transmit queue pending event for indicated queue 61 QMSS_QUE_PEND_8717 Navigator transmit queue pending event for indicated queue 62 QMSS_QUE_PEND_8718 Navigator transmit queue pending event for indicated queue 63 QMSS_QUE_PEND_8719 Navigator transmit queue pending event for indicated queue 64 QMSS_QUE_PEND_8720 Navigator transmit queue pending event for indicated queue 65 QMSS_QUE_PEND_8721 Navigator transmit queue pending event for indicated queue 66 QMSS_QUE_PEND_8722 Navigator transmit queue pending event for indicated queue 67 QMSS_QUE_PEND_8723 Navigator transmit queue pending event for indicated queue 68 QMSS_QUE_PEND_8724 Navigator transmit queue pending event for indicated queue 69 QMSS_QUE_PEND_8725 Navigator transmit queue pending event for indicated queue 70 QMSS_QUE_PEND_8726 Navigator transmit queue pending event for indicated queue 71 QMSS_QUE_PEND_8727 Navigator transmit queue pending event for indicated queue 72 QMSS_QUE_PEND_8728 Navigator transmit queue pending event for indicated queue 73 QMSS_QUE_PEND_8729 Navigator transmit queue pending event for indicated queue 74 QMSS_QUE_PEND_8730 Navigator transmit queue pending event for indicated queue 75 QMSS_QUE_PEND_8731 Navigator transmit queue pending event for indicated queue 76 QMSS_QUE_PEND_8732 Navigator transmit queue pending event for indicated queue 77 QMSS_QUE_PEND_8733 Navigator transmit queue pending event for indicated queue 78 QMSS_QUE_PEND_8734 Navigator transmit queue pending event for indicated queue 79 QMSS_QUE_PEND_8735 Navigator transmit queue pending event for indicated queue 80 TIMER_0_INTL Timer interrupt low 81 TIMER_0_INTH Timer interrupt high 82 TIMER_1_INTL Timer interrupt low 83 TIMER_1_INTH Timer interrupt high 84 TIMER_2_INTL Timer interrupt low 85 TIMER_2_INTH Timer interrupt high 86 TIMER_3_INTL Timer interrupt low 87 TIMER_3_INTH Timer interrupt high 88 TIMER_4_INTL Timer interrupt low (1) 89 TIMER_4_INTH Timer interrupt high 90 TIMER_5_INTL Timer interrupt low 91 TIMER_5_INTH Timer interrupt high (1) 92 TIMER_6_INTL Timer interrupt low 93 TIMER_6_INTH Timer interrupt high Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback (1) (1) (1) (1) Memory, Interrupts, and EDMA for 66AK2H14/12/06 117 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-23 System Event Mapping — ARM CorePac Interrupts (Part 4 of 12) Event No. Event Name Description 94 TIMER_7_INTL Timer interrupt low (1) 95 TIMER_7_INTH Timer interrupt high 96 TIMER_8_INTL Timer interrupt low 97 TIMER_8_INTH Timer interrupt high 98 TIMER_9_INTL Timer interrupt low 99 TIMER_9_INTH Timer interrupt high 100 TIMER_10_INTL Timer interrupt low 101 TIMER_10_INTH Timer interrupt high 102 TIMER_11_INTL Timer interrupt low 103 TIMER_11_INTH Timer interrupt high 104 TIMER_12_INTL Timer interrupt low 105 TIMER_12_INTH Timer interrupt high 106 TIMER_13_INTL Timer interrupt low 107 TIMER_13_INTH Timer interrupt high 108 TIMER_14_INTL Timer interrupt low 109 TIMER_14_INTH Timer interrupt high 110 TIMER_15_INTL Timer interrupt low 111 TIMER_15_INTH Timer interrupt high 112 TIMER_16_INTL Timer interrupt low 113 TIMER_16_INTH Timer interrupt high 114 TIMER_17_INTL Timer interrupt low 115 TIMER_17_INTH Timer interrupt high 116 TIMER_18_INTL Timer interrupt low 117 TIMER_18_INTH Timer interrupt high 118 TIMER_19_INTL Timer interrupt low (1) 119 TIMER_19_INTH Timer interrupt high 120 GPIO_INT0 GPIO interrupt 121 GPIO_INT1 GPIO interrupt 122 GPIO_INT2 GPIO interrupt 123 GPIO_INT3 GPIO interrupt 124 GPIO_INT4 GPIO interrupt 125 GPIO_INT5 GPIO interrupt 126 GPIO_INT6 GPIO interrupt 127 GPIO_INT7 GPIO interrupt 128 GPIO_INT8 GPIO interrupt 129 GPIO_INT9 GPIO interrupt 130 GPIO_INT10 GPIO interrupt 131 GPIO_INT11 GPIO interrupt 132 GPIO_INT12 GPIO interrupt 133 GPIO_INT13 GPIO interrupt 134 GPIO_INT14 GPIO interrupt 135 GPIO_INT15 GPIO interrupt 136 GPIO_INT16 GPIO interrupt 137 GPIO_INT17 GPIO interrupt 118 Memory, Interrupts, and EDMA for 66AK2H14/12/06 (1) (1) (1) (1) Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-23 System Event Mapping — ARM CorePac Interrupts (Part 5 of 12) Event No. Event Name Description 138 GPIO_INT18 GPIO interrupt 139 GPIO_INT19 GPIO interrupt 140 GPIO_INT20 GPIO interrupt 141 GPIO_INT21 GPIO interrupt 142 GPIO_INT22 GPIO interrupt 143 GPIO_INT23 GPIO interrupt 144 GPIO_INT24 GPIO interrupt 145 GPIO_INT25 GPIO interrupt 146 GPIO_INT26 GPIO interrupt 147 GPIO_INT27 GPIO interrupt 148 GPIO_INT28 GPIO interrupt 149 GPIO_INT29 GPIO interrupt 150 GPIO_INT30 GPIO interrupt 151 GPIO_INT31 GPIO interrupt 152 SRIO_INT00 SRIO interrupt 153 SRIO_INT01 SRIO interrupt 154 SRIO_INT02 SRIO interrupt 155 SRIO_INT03 SRIO interrupt 156 SRIO_INT04 SRIO interrupt 157 SRIO_INT05 SRIO interrupt 158 SRIO_INT06 SRIO interrupt 159 SRIO_INT07 SRIO interrupt 160 SRIO_INT08 SRIO interrupt 161 SRIO_INT09 SRIO interrupt 162 SRIO_INT10 SRIO interrupt 163 SRIO_INT11 SRIO interrupt 164 SRIO_INT12 SRIO interrupt 165 SRIO_INT13 SRIO interrupt 166 SRIO_INT14 SRIO interrupt 167 SRIO_INT15 SRIO interrupt 168 SRIO_INT16 SRIO interrupt 169 SRIO_INT17 SRIO interrupt 170 SRIO_INT18 SRIO interrupt 171 SRIO_INT19 SRIO interrupt 172 SRIO_INT20 SRIO interrupt 173 SRIO_INT21 SRIO interrupt 174 SRIO_INT22 SRIO interrupt 175 SRIO_INT23 SRIO interrupt 176 SRIO_INT_PKTDMA_0 SRIO interrupt for Packet DMA starvation 177 QMSS_INTD_1_PKTDMA_0 Navigator interrupt for Packet DMA starvation 178 QMSS_INTD_1_PKTDMA_1 Navigator interrupt for Packet DMA starvation 179 QMSS_INTD_1_HIGH_0 Navigator hi interrupt 180 QMSS_INTD_1_HIGH_1 Navigator hi interrupt 181 QMSS_INTD_1_HIGH_2 Navigator hi interrupt Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 119 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-23 System Event Mapping — ARM CorePac Interrupts (Part 6 of 12) Event No. Event Name Description 182 QMSS_INTD_1_HIGH_3 Navigator hi interrupt 183 QMSS_INTD_1_HIGH_4 Navigator hi interrupt 184 QMSS_INTD_1_HIGH_5 Navigator hi interrupt 185 QMSS_INTD_1_HIGH_6 Navigator hi interrupt 186 QMSS_INTD_1_HIGH_7 Navigator hi interrupt 187 QMSS_INTD_1_HIGH_8 Navigator hi interrupt 188 QMSS_INTD_1_HIGH_9 Navigator hi interrupt 189 QMSS_INTD_1_HIGH_10 Navigator hi interrupt 190 QMSS_INTD_1_HIGH_11 Navigator hi interrupt 191 QMSS_INTD_1_HIGH_12 Navigator hi interrupt 192 QMSS_INTD_1_HIGH_13 Navigator hi interrupt 193 QMSS_INTD_1_HIGH_14 Navigator hi interrupt 194 QMSS_INTD_1_HIGH_15 Navigator hi interrupt 195 QMSS_INTD_1_HIGH_16 Navigator hi interrupt 196 QMSS_INTD_1_HIGH_17 Navigator hi interrupt 197 QMSS_INTD_1_HIGH_18 Navigator hi interrupt 198 QMSS_INTD_1_HIGH_19 Navigator hi interrupt 199 QMSS_INTD_1_HIGH_20 Navigator hi interrupt 200 QMSS_INTD_1_HIGH_21 Navigator hi interrupt 201 QMSS_INTD_1_HIGH_22 Navigator hi interrupt 202 QMSS_INTD_1_HIGH_23 Navigator hi interrupt 203 QMSS_INTD_1_HIGH_24 Navigator hi interrupt 204 QMSS_INTD_1_HIGH_25 Navigator hi interrupt 205 QMSS_INTD_1_HIGH_26 Navigator hi interrupt 206 QMSS_INTD_1_HIGH_27 Navigator hi interrupt 207 QMSS_INTD_1_HIGH_28 Navigator hi interrupt 208 QMSS_INTD_1_HIGH_29 Navigator hi interrupt 209 QMSS_INTD_1_HIGH_30 Navigator hi interrupt 210 QMSS_INTD_1_HIGH_31 Navigator hi interrupt 211 QMSS_INTD_1_LOW_0 Navigator interrupt 212 QMSS_INTD_1_LOW_1 Navigator interrupt 213 QMSS_INTD_1_LOW_2 Navigator interrupt 214 QMSS_INTD_1_LOW_3 Navigator interrupt 215 QMSS_INTD_1_LOW_4 Navigator interrupt 216 QMSS_INTD_1_LOW_5 Navigator interrupt 217 QMSS_INTD_1_LOW_6 Navigator interrupt 218 QMSS_INTD_1_LOW_7 Navigator interrupt 219 QMSS_INTD_1_LOW_8 Navigator interrupt 220 QMSS_INTD_1_LOW_9 Navigator interrupt 221 QMSS_INTD_1_LOW_10 Navigator interrupt 222 QMSS_INTD_1_LOW_11 Navigator interrupt 223 QMSS_INTD_1_LOW_12 Navigator interrupt 224 QMSS_INTD_1_LOW_13 Navigator interrupt 225 QMSS_INTD_1_LOW_14 Navigator interrupt 120 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-23 System Event Mapping — ARM CorePac Interrupts (Part 7 of 12) Event No. Event Name Description 226 QMSS_INTD_1_LOW_15 Navigator interrupt 227 QMSS_INTD_2_PKTDMA_0 Navigator interrupt for Packet DMA starvation 228 QMSS_INTD_2_PKTDMA_1 Navigator interrupt for Packet DMA starvation 229 QMSS_INTD_2_HIGH_0 Navigator second hi interrupt 230 QMSS_INTD_2_HIGH_1 Navigator second hi interrupt 231 QMSS_INTD_2_HIGH_2 Navigator second hi interrupt 232 QMSS_INTD_2_HIGH_3 Navigator second hi interrupt 233 QMSS_INTD_2_HIGH_4 Navigator second hi interrupt 234 QMSS_INTD_2_HIGH_5 Navigator second hi interrupt 235 QMSS_INTD_2_HIGH_6 Navigator second hi interrupt 236 QMSS_INTD_2_HIGH_7 Navigator second hi interrupt 237 QMSS_INTD_2_HIGH_8 Navigator second hi interrupt 238 QMSS_INTD_2_HIGH_9 Navigator second hi interrupt 239 QMSS_INTD_2_HIGH_10 Navigator second hi interrupt 240 QMSS_INTD_2_HIGH_11 Navigator second hi interrupt 241 QMSS_INTD_2_HIGH_12 Navigator second hi interrupt 242 QMSS_INTD_2_HIGH_13 Navigator second hi interrupt 243 QMSS_INTD_2_HIGH_14 Navigator second hi interrupt 244 QMSS_INTD_2_HIGH_15 Navigator second hi interrupt 245 QMSS_INTD_2_HIGH_16 Navigator second hi interrupt 246 QMSS_INTD_2_HIGH_17 Navigator second hi interrupt 247 QMSS_INTD_2_HIGH_18 Navigator second hi interrupt 248 QMSS_INTD_2_HIGH_19 Navigator second hi interrupt 249 QMSS_INTD_2_HIGH_20 Navigator second hi interrupt 250 QMSS_INTD_2_HIGH_21 Navigator second hi interrupt 251 QMSS_INTD_2_HIGH_22 Navigator second hi interrupt 252 QMSS_INTD_2_HIGH_23 Navigator second hi interrupt 253 QMSS_INTD_2_HIGH_24 Navigator second hi interrupt 254 QMSS_INTD_2_HIGH_25 Navigator second hi interrupt 255 QMSS_INTD_2_HIGH_26 Navigator second hi interrupt 256 QMSS_INTD_2_HIGH_27 Navigator second hi interrupt 257 QMSS_INTD_2_HIGH_28 Navigator second hi interrupt 258 QMSS_INTD_2_HIGH_29 Navigator second hi interrupt 259 QMSS_INTD_2_HIGH_30 Navigator second hi interrupt 260 QMSS_INTD_2_HIGH_31 Navigator second hi interrupt 261 QMSS_INTD_2_LOW_0 Navigator second interrupt 262 QMSS_INTD_2_LOW_1 Navigator second interrupt 263 QMSS_INTD_2_LOW_2 Navigator second interrupt 264 QMSS_INTD_2_LOW_3 Navigator second interrupt 265 QMSS_INTD_2_LOW_4 Navigator second interrupt 266 QMSS_INTD_2_LOW_5 Navigator second interrupt 267 QMSS_INTD_2_LOW_6 Navigator second interrupt 268 QMSS_INTD_2_LOW_7 Navigator second interrupt 269 QMSS_INTD_2_LOW_8 Navigator second interrupt Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 121 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-23 System Event Mapping — ARM CorePac Interrupts (Part 8 of 12) Event No. Event Name Description 270 QMSS_INTD_2_LOW_9 Navigator second interrupt 271 QMSS_INTD_2_LOW_10 Navigator second interrupt 272 QMSS_INTD_2_LOW_11 Navigator second interrupt 273 QMSS_INTD_2_LOW_12 Navigator second interrupt 274 QMSS_INTD_2_LOW_13 Navigator second interrupt 275 QMSS_INTD_2_LOW_14 Navigator second interrupt 276 QMSS_INTD_2_LOW_15 Navigator second interrupt 277 UART_0_UARTINT UART0 interrupt 278 UART_0_URXEVT UART0 receive event 279 UART_0_UTXEVT UART0 transmit event 280 UART_1_UARTINT UART1 interrupt 281 UART_1_URXEVT UART1 receive event 282 UART_1_UTXEVT UART1 transmit event 283 I2C_0_INT I2C interrupt 284 I2C_0_REVT I2C receive event 285 I2C_0_XEVT I2C transmit event 286 I2C_1_INT I2C interrupt 287 I2C_1_REVT I2C receive event 288 I2C_1_XEVT I2C transmit event 289 I2C_2_INT I2C interrupt 290 I2C_2_REVT I2C receive event 291 I2C_2_XEVT I2C transmit event 292 SPI_0_INT0 SPI interrupt 293 SPI_0_INT1 SPI interrupt 294 SPI_0_XEVT SPI DMA TX event 295 SPI_0_REVT SPI DMA RX event 296 SPI_1_INT0 SPI interrupt 297 SPI_1_INT1 SPI interrupt 298 SPI_1_XEVT SPI DMA TX event 299 SPI_1_REVT SPI DMA RX event 300 SPI_2_INT0 SPI interrupt 301 SPI_2_INT1 SPI interrupt 302 SPI_2_XEVT SPI DMA TX event 303 SPI_2_REVT SPI DMA RX event 304 DBGTBR_DMAINT Debug trace buffer (TBR) DMA event 305 DBGTBR_ACQCOMP Debug trace buffer (TBR) Acquisition has been completed 306 ARM_TBR_DMA ARM trace buffer (TBR) DMA event 307 ARM_TBR_ACQ ARM trace buffer (TBR) Acquisition has been completed 308 NETCP_MDIO_LINK_INT0 Packet Accelerator subsystem MDIO interrupt 309 NETCP_MDIO_LINK_INT1 Packet Accelerator subsystem MDIO interrupt 310 NETCP_MDIO_USER_INT0 Packet Accelerator subsystem MDIO interrupt 311 NETCP_MDIO_USER_INT1 Packet Accelerator subsystem MDIO interrupt 312 NETCP_MISC_INT Packet Accelerator subsystem MDIO interrupt 313 NETCP_PKTDMA_INT0 Packet Accelerator Packet DMA starvation interrupt 122 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-23 Event No. System Event Mapping — ARM CorePac Interrupts (Part 9 of 12) Event Name Description 314 EDMACC_0_GINT EDMA3CC0 global completion interrupt 315 EDMACC_0_TC_0_INT EDMA3CC0 individual completion interrupt 316 EDMACC_0_TC_1_INT EDMA3CC0 individual completion interrupt 317 EDMACC_0_TC_2_INT EDMA3CC0 individual completion interrupt 318 EDMACC_0_TC_3_INT EDMA3CC0 individual completion interrupt 319 EDMACC_0_TC_4_INT EDMA3CC0 individual completion interrupt 320 EDMACC_0_TC_5_INT EDMA3CC0 individual completion interrupt 321 EDMACC_0_TC_6_INT EDMA3CC0 individual completion interrupt 322 EDMACC_0_TC_7_INT EDMA3CC0 individual completion interrupt 323 EDMACC_1_GINT EDMA3CC1 global completion interrupt 324 EDMACC_1_TC_0_INT EDMA3CC1 individual completion interrupt 325 EDMACC_1_TC_1_INT EDMA3CC1 individual completion interrupt 326 EDMACC_1_TC_2_INT EDMA3CC1 individual completion interrupt 327 EDMACC_1_TC_3_INT EDMA3CC1 individual completion interrupt 328 EDMACC_1_TC_4_INT EDMA3CC1 individual completion interrupt 329 EDMACC_1_TC_5_INT EDMA3CC1 individual completion interrupt 330 EDMACC_1_TC_6_INT EDMA3CC1 individual completion interrupt 331 EDMACC_1_TC_7_INT EDMA3CC1 individual completion interrupt 332 EDMACC_2_GINT EDMA3CC2 global completion interrupt 333 EDMACC_2_TC_0_INT EDMA3CC2 individual completion interrupt 334 EDMACC_2_TC_1_INT EDMA3CC2 individual completion interrupt 335 EDMACC_2_TC_2_INT EDMA3CC2 individual completion interrupt 336 EDMACC_2_TC_3_INT EDMA3CC2 individual completion interrupt 337 EDMACC_2_TC_4_INT EDMA3CC2 individual completion interrupt 338 EDMACC_2_TC_5_INT EDMA3CC2 individual completion interrupt 339 EDMACC_2_TC_6_INT EDMA3CC2 individual completion interrupt 340 EDMACC_2_TC_7_INT EDMA3CC2 individual completion interrupt 341 EDMACC_3_GINT EDMA3CC3 global completion interrupt 342 EDMACC_3_TC_0_INT EDMA3CC3 individual completion interrupt 343 EDMACC_3_TC_1_INT EDMA3CC3 individual completion interrupt 344 EDMACC_3_TC_2_INT EDMA3CC3 individual completion interrupt 345 EDMACC_3_TC_3_INT EDMA3CC3 individual completion interrupt 346 EDMACC_3_TC_4_INT EDMA3CC3 individual completion interrupt 347 EDMACC_3_TC_5_INT EDMA3CC3 individual completion interrupt 348 EDMACC_3_TC_6_INT EDMA3CC3 individual completion interrupt 349 EDMACC_3_TC_7_INT EDMA3CC3 individual completion interrupt 350 EDMACC_4_GINT EDMA3CC4 global completion interrupt 351 EDMACC_4_TC_0_INT EDMA3CC4 individual completion interrupt 352 EDMACC_4_TC_1_INT EDMA3CC4 individual completion interrupt 353 EDMACC_4_TC_2_INT EDMA3CC4 individual completion interrupt 354 EDMACC_4_TC_3_INT EDMA3CC4 individual completion interrupt 355 EDMACC_4_TC_4_INT EDMA3CC4 individual completion interrupt 356 EDMACC_4_TC_5_INT EDMA3CC4 individual completion interrupt 357 EDMACC_4_TC_6_INT EDMA3CC4 individual completion interrupt Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 123 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-23 Event No. System Event Mapping — ARM CorePac Interrupts (Part 10 of 12) Event Name Description 358 EDMACC_4_TC_7_INT EDMA3CC4 individual completion interrupt 359 SR_0_PO_VCON_SMPSERR_INT SmartReflex SMPS Error interrupt 360 SR_0_SMARTREFLEX_INTREQ0 SmartReflex controller interrupt 361 SR_0_SMARTREFLEX_INTREQ1 SmartReflex controller interrupt 362 SR_0_SMARTREFLEX_INTREQ2 SmartReflex controller interrupt 363 SR_0_SMARTREFLEX_INTREQ3 SmartReflex controller interrupt 364 SR_0_VPNOSMPSACK SmartReflex VPVOLTUPDATE has been asserted but SMPS has not been responded to in a defined time interval 365 SR_0_VPEQVALUE SmartReflex SRSINTERUPT is asserted, but the new voltage is not different from the current SMPS voltage 366 SR_0_VPMAXVDD SmartReflex The new voltage required is equal to or greater than MaxVdd 367 SR_0_VPMINVDD SmartReflex The new voltage required is equal to or less than MinVdd 368 SR_0_VPINIDLE SmartReflex. Indicating that the FSM of voltage processor is in idle 369 SR_0_VPOPPCHANGEDONE SmartReflex Indicating that the average frequency error is within the desired limit 370 SR_0_VPSMPSACK SmartReflex VPVOLTUPDATE asserted and SMPS has acknowledged in a defined time interval 371 SR_0_SR_TEMPSENSOR SmartReflex temperature threshold crossing interrupt 372 SR_0_SR_TIMERINT Smart Reflex internal timer expiration interrupt 373 SR_1_PO_VCON_SMPSERR_INT SmartReflex SMPS Error interrupt 374 SR_1_SMARTREFLEX_INTREQ0 SmartReflex controller interrupt 375 SR_1_SMARTREFLEX_INTREQ1 SmartReflex controller interrupt 376 SR_1_SMARTREFLEX_INTREQ2 SmartReflex controller interrupt 377 SR_1_SMARTREFLEX_INTREQ3 SmartReflex controller interrupt 378 SR_1_VPNOSMPSACK SmartReflex VPVOLTUPDATE has been asserted but SMPS has not been responded to in a defined time interval 379 SR_1_VPEQVALUE SmartReflex SRSINTERUPT is asserted, but the new voltage is not different from the current SMPS voltage 380 SR_1_VPMAXVDD SmartReflex The new voltage required is equal to or greater than MaxVdd 381 SR_1_VPMINVDD SmartReflex The new voltage required is equal to or less than MinVdd 382 SR_1_VPINIDLE SmartReflex. Indicating that the FSM of voltage processor is in idle 383 SR_1_VPOPPCHANGEDONE SmartReflex Indicating that the average frequency error is within the desired limit 384 SR_1_VPSMPSACK SmartReflex VPVOLTUPDATE asserted and SMPS has acknowledged in a defined time interval 385 SR_1_SR_TEMPSENSOR SmartReflex temperature threshold crossing interrupt 386 SR_1_SR_TIMERINT Smart Reflex internal timer expiration interrupt 387 HYPERLINK_0_INT HyperLink 0 interrupt 388 HYPERLINK_1_INT HyperLink 1 interrupt 389 ARM_NCTIIRQ0 ARM cross trigger (CTI) IRQ interrupt 390 ARM_NCTIIRQ1 ARM cross trigger (CTI) IRQ interrupt 391 ARM_NCTIIRQ2 ARM cross trigger (CTI) IRQ interrupt 392 ARM_NCTIIRQ3 ARM cross trigger (CTI) IRQ interrupt 393 USB_INT00 USB event ring 0 interrupt 394 USB_INT01 USB event ring 1 interrupt 395 USB_INT02 USB event ring 2 interrupt 396 USB_INT03 USB event ring 3 interrupt 397 USB_INT04 USB event ring 4 interrupt 398 USB_OABSINT USB OABS interrupt 124 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-23 Event No. System Event Mapping — ARM CorePac Interrupts (Part 11 of 12) Event Name Description 399 USB_MISCINT USB miscellaneous interrupt 400 Reserved Reserved 401 Reserved Reserved 402 10GbE_LINK_INT0 10 Gigabit Ethernet subsystem MDIO interrupt (66AK2H14 only) 403 10GbE_USER_INT0 10 Gigabit Ethernet subsystem MDIO interrupt (66AK2H14 only) 404 10GbE_LINK_INT1 10 Gigabit Ethernet subsystem MDIO interrupt (66AK2H14 only) 405 10GbE_USER_INT1 10 Gigabit Ethernet subsystem MDIO interrupt (66AK2H14 only) 406 10GbE_MISC_INT 10 Gigabit Ethernet subsystem MDIO interrupt (66AK2H14 only) 407 10GbE_INT_PKTDMA_0 10 Gigabit Ethernet Packet DMA starvation interrupt (66AK2H14 only) 408 Reserved Reserved 409 Reserved Reserved 410 Reserved Reserved 411 Reserved Reserved 412 Reserved Reserved 413 Reserved Reserved 414 Reserved Reserved 415 Reserved Reserved 416 Reserved Reserved 417 Reserved Reserved 418 Reserved Reserved 419 Reserved Reserved 420 Reserved Reserved 421 Reserved Reserved 422 Reserved Reserved 423 Reserved Reserved 424 Reserved Reserved 425 Reserved Reserved 426 Reserved Reserved 427 Reserved Reserved 428 Reserved Reserved 429 Reserved Reserved 430 Reserved Reserved 431 Reserved Reserved 432 Reserved Reserved 433 Reserved Reserved 434 Reserved Reserved 435 Reserved Reserved 436 Reserved Reserved 437 Reserved Reserved 438 Reserved Reserved 439 Reserved Reserved 440 Reserved Reserved 441 Reserved Reserved 442 Reserved Reserved Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 125 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-23 System Event Mapping — ARM CorePac Interrupts (Part 12 of 12) Event No. Event Name Description 443 Reserved Reserved 444 Reserved Reserved 445 Reserved Reserved 446 Reserved Reserved 447 Reserved Reserved 448 CIC_2_OUT29 CIC2 interrupt 449 CIC_2_OUT30 CIC2 interrupt 450 CIC_2_OUT31 CIC2 interrupt 451 CIC_2_OUT32 CIC2 interrupt 452 CIC_2_OUT33 CIC2 interrupt 453 CIC_2_OUT34 CIC2 interrupt 454 CIC_2_OUT35 CIC2 interrupt 455 CIC_2_OUT36 CIC2 interrupt 456 CIC_2_OUT37 CIC2 interrupt 457 CIC_2_OUT38 CIC2 interrupt 458 CIC_2_OUT39 CIC2 interrupt 459 CIC_2_OUT40 CIC2 interrupt 460 CIC_2_OUT41 CIC2 interrupt 461 CIC_2_OUT42 CIC2 interrupt 462 CIC_2_OUT43 CIC2 interrupt 463 CIC_2_OUT44 CIC2 interrupt 464 CIC_2_OUT45 CIC2 interrupt 465 CIC_2_OUT46 CIC2 interrupt 466 CIC_2_OUT47 CIC2 interrupt 467 CIC_2_OUT18 CIC2 interrupt 468 CIC_2_OUT19 CIC2 interrupt 469 CIC_2_OUT22 CIC2 interrupt 470 CIC_2_OUT23 CIC2 interrupt 471 CIC_2_OUT50 CIC2 interrupt 472 CIC_2_OUT51 CIC2 interrupt 473 CIC_2_OUT66 CIC2 interrupt 474 CIC_2_OUT67 CIC2 interrupt 475 CIC_2_OUT88 CIC2 interrupt 476 CIC_2_OUT89 CIC2 interrupt 477 CIC_2_OUT90 CIC2 interrupt 478 CIC_2_OUT91 CIC2 interrupt 479 CIC_2_OUT92 CIC2 interrupt End of Table 6-23 1 66AK2H12/14 only 126 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-24, Table 6-25, and Table 6-26 list the CIC0, CIC1, and CIC2 event inputs. Table 6-24 CIC0 Event Inputs — C66x CorePac Secondary Interrupts (Part 1 of 11) Event No. Event Name Description 0 EDMACC_1_ERRINT EDMA3CC1 error interrupt 1 EDMACC_1_MPINT EDMA3CC1 memory protection interrupt 2 EDMACC_1_TC_0_ERRINT EDMA3CC1 TPTC0 error interrupt 3 EDMACC_1_TC_1_ERRINT EDMA3CC1 TPTC1 error interrupt 4 EDMACC_1_TC_2_ERRINT EDMA3CC1 TPTC2 error interrupt 5 EDMACC_1_TC_3_ERRINT EDMA3CC1 TPTC3 error interrupt 6 EDMACC_1_GINT EDMA3CC1 GINT 7 Reserved Reserved 8 EDMACC_1_TC_0_INT EDMA3CC1 individual completion interrupt 9 EDMACC_1_TC_1_INT EDMA3CC1 individual completion interrupt 10 EDMACC_1_TC_2_INT EDMA3CC1 individual completion interrupt 11 EDMACC_1_TC_3_INT EDMA3CC1 individual completion interrupt 12 EDMACC_1_TC_4_INT EDMA3CC1 individual completion interrupt 13 EDMACC_1_TC_5_INT EDMA3CC1 individual completion interrupt 14 EDMACC_1_TC_6_INT EDMA3CC1 individual completion interrupt 15 EDMACC_1_TC_7_INT EDMA3CC1 individual completion interrupt 16 EDMACC_2_ERRINT EDMA3CC2 error interrupt 17 EDMACC_2_MPINT EDMA3CC2 memory protection interrupt 18 EDMACC_2_TC_0_ERRINT EDMA3CC2 TPTC0 error interrupt 19 EDMACC_2_TC_1_ERRINT EDMA3CC2 TPTC1 error interrupt 20 EDMACC_2_TC_2_ERRINT EDMA3CC2 TPTC2 error interrupt 21 EDMACC_2_TC_3_ERRINT EDMA3CC2 TPTC3 error interrupt 22 EDMACC_2_GINT EDMA3CC2 GINT 23 Reserved Reserved 24 EDMACC_2_TC_0_INT EDMA3CC2 individual completion interrupt 25 EDMACC_2_TC_1_INT EDMA3CC2 individual completion interrupt 26 EDMACC_2_TC_2_INT EDMA3CC2 individual completion interrupt 27 EDMACC_2_TC_3_INT EDMA3CC2 individual completion interrupt 28 EDMACC_2_TC_4_INT EDMA3CC2 individual completion interrupt 29 EDMACC_2_TC_5_INT EDMA3CC2 individual completion interrupt 30 EDMACC_2_TC_6_INT EDMA3CC2 individual completion interrupt 31 EDMACC_2_TC_7_INT EDMA3CC2 individual completion interrupt 32 EDMACC_0_ERRINT EDMA3CC0 error interrupt 33 EDMACC_0_MPINT EDMA3CC0 memory protection interrupt 34 EDMACC_0_TC_0_ERRINT EDMA3CC0 TPTC0 error interrupt 35 EDMACC_0_TC_1_ERRINT EDMA3CC0 TPTC1 error interrupt 36 EDMACC_0_GINT EDMA3CC0 global completion interrupt 37 Reserved Reserved 38 EDMACC_0_TC_0_INT EDMA3CC0 individual completion interrupt 39 EDMACC_0_TC_1_INT EDMA3CC0 individual completion interrupt 40 EDMACC_0_TC_2_INT EDMA3CC0 individual completion interrupt 41 EDMACC_0_TC_3_INT EDMA3CC0 individual completion interrupt Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 127 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-24 CIC0 Event Inputs — C66x CorePac Secondary Interrupts (Part 2 of 11) Event No. Event Name Description 42 EDMACC_0_TC_4_INT EDMA3CC0 individual completion interrupt 43 EDMACC_0_TC_5_INT EDMA3CC0 individual completion interrupt 44 EDMACC_0_TC_6_INT EDMA3CC0 individual completion interrupt 45 EDMACC_0_TC_7_INT EDMA3CC0 individual completion interrupt 46 Reserved Reserved 47 QMSS_QUE_PEND_652 Navigator transmit queue pending event for indicated queue 48 PCIE_INT12 PCIE protocol error interrupt 49 PCIE_INT13 PCIE power management interrupt 50 PCIE_INT0 PCIE legacy INTA interrupt 51 PCIE_INT1 PCIE legacy INTB interrupt 52 PCIE_INT2 PCIE legacy INTC interrupt 53 PCIE_INT3 PCIE legacy INTD interrupt 54 SPI_0_INT0 SPI0 interrupt0 55 SPI_0_INT1 SPI0 interrupt1 56 SPI_0_XEVT SPI0 transmit event 57 SPI_0_REVT SPI0 receive event 58 I2C_0_INT I2C0 interrupt 59 I2C_0_REVT I2C0 receive event 60 I2C_0_XEVT I2C0 transmit event 61 Reserved Reserved 62 Reserved Reserved 63 DBGTBR_DMAINT Debug trace buffer (TBR) DMA event 64 MPU_12_INT MPU12 addressing violation interrupt and protection violation interrupt 65 DBGTBR_ACQCOMP Debug trace buffer (TBR) acquisition has been completed 66 MPU_13_INT MPU13 addressing violation interrupt and protection violation interrupt 67 MPU_14_INT MPU14 addressing violation interrupt and protection violation interrupt 68 NETCP_MDIO_LINK_INT0 Packet Accelerator 0 subsystem MDIO interrupt 69 NETCP_MDIO_LINK_INT1 Packet Accelerator 0 subsystem MDIO interrupt 70 NETCP_MDIO_USER_INT0 Packet Accelerator 0 subsystem MDIO interrupt 71 NETCP_MDIO_USER_INT1 Packet Accelerator 0 subsystem MDIO interrupt 72 NETCP_MISC_INT Packet Accelerator 0 subsystem misc interrupt 73 TRACER_CORE_0_INT Tracer sliding time window interrupt for DSP0 L2 74 TRACER_CORE_1_INT Tracer sliding time window interrupt for DSP1 L2 75 TRACER_CORE_2_INT Tracer sliding time window interrupt for DSP2 L2 76 TRACER_CORE_3_INT Tracer sliding time window interrupt for DSP3 L2 77 TRACER_DDR_INT Tracer sliding time window interrupt for MSMC-DDR3A 78 TRACER_MSMC_0_INT Tracer sliding time window interrupt for MSMC SRAM bank0 79 TRACER_MSMC_1_INT Tracer sliding time window interrupt for MSMC SRAM bank1 80 TRACER_MSMC_2_INT Tracer sliding time window interrupt for MSMC SRAM bank2 81 TRACER_MSMC_3_INT Tracer sliding time window interrupt for MSMC SRAM bank3 82 TRACER_CFG_INT Tracer sliding time window interrupt for CFG0 TeraNet 83 TRACER_QMSS_QM_CFG1_INT Tracer sliding time window interrupt for Navigator CFG1 slave port 84 TRACER_QMSS_DMA_INT Tracer sliding time window interrupt for Navigator DMA internal bus slave port 85 TRACER_SEM_INT Tracer sliding time window interrupt for Semaphore 128 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-24 CIC0 Event Inputs — C66x CorePac Secondary Interrupts (Part 3 of 11) Event No. Event Name Description 86 PSC_ALLINT Power & Sleep Controller interrupt 87 MSMC_SCRUB_CERROR Correctable (1-bit) soft error detected during scrub cycle 88 BOOTCFG_INT Chip-level MMR Error Register 89 SR_0_PO_VCON_SMPSERR_INT SmartReflex SMPS error interrupt 90 MPU_0_INT MPU0 addressing violation interrupt and protection violation interrupt 91 QMSS_QUE_PEND_653 Navigator transmit queue pending event for indicated queue 92 MPU_1_INT MPU1 addressing violation interrupt and protection violation interrupt. 93 QMSS_QUE_PEND_654 Navigator transmit queue pending event for indicated queue 94 MPU_2_INT MPU2 addressing violation interrupt and protection violation interrupt. 95 QMSS_QUE_PEND_655 Navigator transmit queue pending event for indicated queue 96 Reserved Reserved 97 QMSS_QUE_PEND_656 Navigator transmit queue pending event for indicated queue 98 MSMC_DEDC_CERROR Correctable (1-bit) soft error detected on SRAM read 99 MSMC_DEDC_NC_ERROR Non-correctable (2-bit) soft error detected on SRAM read 100 MSMC_SCRUB_NC_ERROR Non-correctable (2-bit) soft error detected during scrub cycle 101 MSMC_MPF_ERROR0 Memory protection fault indicators for system master PrivID = 0 102 MSMC_MPF_ERROR8 Memory protection fault indicators for system master PrivID = 8 103 MSMC_MPF_ERROR9 Memory protection fault indicators for system master PrivID = 9 104 MSMC_MPF_ERROR10 Memory protection fault indicators for system master PrivID = 10 105 MSMC_MPF_ERROR11 Memory protection fault indicators for system master PrivID = 11 106 MSMC_MPF_ERROR12 Memory protection fault indicators for system master PrivID = 12 107 MSMC_MPF_ERROR13 Memory protection fault indicators for system master PrivID = 13 108 MSMC_MPF_ERROR14 Memory protection fault indicators for system master PrivID = 14 109 MSMC_MPF_ERROR15 Memory protection fault indicators for system master PrivID = 15 110 DDR3_0_ERR DDR3A_EMIF error interrupt 111 HYPERLINK_0_INT HyperLink 0 interrupt 112 SRIO_INTDST0 SRIO interrupt 113 SRIO_INTDST1 SRIO interrupt 114 SRIO_INTDST2 SRIO interrupt 115 SRIO_INTDST3 SRIO interrupt 116 SRIO_INTDST4 SRIO interrupt 117 SRIO_INTDST5 SRIO interrupt 118 SRIO_INTDST6 SRIO interrupt 119 SRIO_INTDST7 SRIO interrupt 120 SRIO_INTDST8 SRIO interrupt 121 SRIO_INTDST9 SRIO interrupt 122 SRIO_INTDST10 SRIO interrupt 123 SRIO_INTDST11 SRIO interrupt 124 SRIO_INTDST12 SRIO interrupt 125 SRIO_INTDST13 SRIO interrupt 126 SRIO_INTDST14 SRIO interrupt 127 SRIO_INTDST15 SRIO interrupt 128 AEMIF_EASYNCERR Asynchronous EMIF16 error interrupt 129 TRACER_CORE_4_INT Tracer sliding time window interrupt for DSP4 L2 (66AK2H12/14 only) Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 129 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-24 CIC0 Event Inputs — C66x CorePac Secondary Interrupts (Part 4 of 11) Event No. Event Name Description 130 TRACER_CORE_5_INT Tracer sliding time window interrupt for DSP5 L2 (66AK2H12/14 only) 131 TRACER_CORE_6_INT Tracer sliding time window interrupt for DSP6 L2 (66AK2H12/14 only) 132 TRACER_CORE_7_INT Tracer sliding time window interrupt for DSP7 L2 (66AK2H12/14 only) 133 QMSS_INTD_1_PKTDMA_0 Navigator interrupt for Packet DMA starvation 134 QMSS_INTD_1_PKTDMA_1 Navigator interrupt for Packet DMA starvation 135 SRIO_INT_PKTDMA_0 IPC interrupt generation 136 NETCP_PKTDMA_INT0 Packet Accelerator0 Packet DMA starvation interrupt 137 SR_0_SMARTREFLEX_INTREQ0 SmartReflex controller interrupt 138 SR_0_SMARTREFLEX_INTREQ1 SmartReflex controller interrupt 139 SR_0_SMARTREFLEX_INTREQ2 SmartReflex controller interrupt 140 SR_0_SMARTREFLEX_INTREQ3 SmartReflex controller interrupt 141 SR_0_VPNOSMPSACK SmartReflex VPVOLTUPDATE has been asserted but SMPS has not been responded to in a defined time interval 142 SR_0_VPEQVALUE SmartReflex SRSINTERUPT is asserted, but the new voltage is not different from the current SMPS voltage 143 SR_0_VPMAXVDD SmartReflex. The new voltage required is equal to or greater than MaxVdd 144 SR_0_VPMINVDD SmartReflex. The new voltage required is equal to or less than MinVdd 145 SR_0_VPINIDLE SmartReflex indicating that the FSM of voltage processor is in idle 146 SR_0_VPOPPCHANGEDONE SmartReflex indicating that the average frequency error is within the desired limit 147 Reserved Reserved 148 UART_0_UARTINT UART0 interrupt 149 UART_0_URXEVT UART0 receive event 150 UART_0_UTXEVT UART0 transmit event 151 QMSS_QUE_PEND_657 Navigator transmit queue pending event for indicated queue 152 QMSS_QUE_PEND_658 Navigator transmit queue pending event for indicated queue 153 QMSS_QUE_PEND_659 Navigator transmit queue pending event for indicated queue 154 QMSS_QUE_PEND_660 Navigator transmit queue pending event for indicated queue 155 QMSS_QUE_PEND_661 Navigator transmit queue pending event for indicated queue 156 QMSS_QUE_PEND_662 Navigator transmit queue pending event for indicated queue 157 QMSS_QUE_PEND_663 Navigator transmit queue pending event for indicated queue 158 QMSS_QUE_PEND_664 Navigator transmit queue pending event for indicated queue 159 QMSS_QUE_PEND_665 Navigator transmit queue pending event for indicated queue 160 SR_0_VPSMPSACK SmartReflex VPVOLTUPDATE asserted and SMPS has acknowledged in a defined time interval 161 ARM_TBR_DMA ARM trace buffer (TBR) DMA event 162 ARM_TBR_ACQ ARM trace buffer (TBR) acquisition has been completed 163 ARM_NINTERRIRQ ARM internal memory ECC error interrupt request 164 ARM_NAXIERRIRQ ARM bus error interrupt request 165 SR_0_SR_TEMPSENSOR SmartReflex temperature threshold crossing interrupt 166 SR_0_SR_TIMERINT SmartReflex internal timer expiration interrupt 167 Reserved Reserved 168 Reserved Reserved 169 Reserved Reserved 170 Reserved Reserved 171 Reserved Reserved 130 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-24 CIC0 Event Inputs — C66x CorePac Secondary Interrupts (Part 5 of 11) Event No. Event Name Description 172 Reserved Reserved 173 Reserved Reserved 174 Reserved Reserved 175 TIMER_7_INTL Timer interrupt low (1) 176 TIMER_7_INTH Timer interrupt high (1) (1) 177 TIMER_6_INTL Timer interrupt low 178 TIMER_6_INTH Timer interrupt high (1) 179 TIMER_5_INTL Timer interrupt low 180 TIMER_5_INTH Timer interrupt high (1) (1) (1) 181 TIMER_4_INTL Timer interrupt low 182 TIMER_4_INTH Timer interrupt high 183 TIMER_3_INTL Timer interrupt low 184 TIMER_3_INTH Timer interrupt high 185 TIMER_2_INTL Timer interrupt low 186 TIMER_2_INTH Timer interrupt high 187 TIMER_1_INTL Timer interrupt low 188 TIMER_1_INTH Timer interrupt high 189 TIMER_0_INTL Timer interrupt low 190 TIMER_0_INTH Timer interrupt high 191 Reserved Reserved 192 Reserved Reserved 193 Reserved Reserved 194 Reserved Reserved 195 Reserved Reserved 196 Reserved Reserved 197 Reserved Reserved 198 Reserved Reserved 199 Reserved Reserved 200 Reserved Reserved 201 Reserved Reserved 202 Reserved Reserved 203 Reserved Reserved 204 Reserved Reserved 205 Reserved Reserved 206 Reserved Reserved 207 EDMACC_4_ERRINT EDMA3CC4 error interrupt 208 EDMACC_4_MPINT EDMA3CC4 memory protection interrupt 209 EDMACC_4_TC_0_ERRINT EDMA3CC4 TPTC0 error interrupt 210 EDMACC_4_TC_1_ERRINT EDMA3CC4 TPTC1 error interrupt 211 EDMACC_4_GINT EDMA3CC4 GINT 212 EDMACC_4_TC_0_INT EDMA3CC4 individual completion interrupt 213 EDMACC_4_TC_1_INT EDMA3CC4 individual completion interrupt 214 EDMACC_4_TC_2_INT EDMA3CC4 individual completion interrupt 215 EDMACC_4_TC_3_INT EDMA3CC4 individual completion interrupt Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback (1) Memory, Interrupts, and EDMA for 66AK2H14/12/06 131 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-24 CIC0 Event Inputs — C66x CorePac Secondary Interrupts (Part 6 of 11) Event No. Event Name Description 216 EDMACC_4_TC_4_INT EDMA3CC4 individual completion interrupt 217 EDMACC_4_TC_5_INT EDMA3CC4 individual completion interrupt 218 EDMACC_4_TC_6_INT EDMA3CC4 individual completion interrupt 219 EDMACC_4_TC_7_INT EDMA3CC4 individual completion interrupt 220 EDMACC_3_ERRINT EDMA3CC3 error interrupt 221 EDMACC_3_MPINT EDMA3CC3 memory protection interrupt 222 EDMACC_3_TC_0_ERRINT EDMA3CC3 TPTC0 error interrupt 223 EDMACC_3_TC_1_ERRINT EDMA3CC3 TPTC1 error interrupt 224 EDMACC_3_GINT EDMA3CC3 GINT 225 EDMACC_3_TC_0_INT EDMA3CC3 individual completion interrupt 226 EDMACC_3_TC_1_INT EDMA3CC3 individual completion interrupt 227 EDMACC_3_TC_2_INT EDMA3CC3 individual completion interrupt 228 EDMACC_3_TC_3_INT EDMA3CC3 individual completion interrupt 229 EDMACC_3_TC_4_INT EDMA3CC3 individual completion interrupt 230 EDMACC_3_TC_5_INT EDMA3CC3 individual completion interrupt 231 EDMACC_3_TC_6_INT EDMA3CC3 individual completion interrupt 232 EDMACC_3_TC_7_INT EDMA3CC3 individual completion interrupt 233 UART_1_UARTINT UART1 interrupt 234 UART_1_URXEVT UART1 receive event 235 UART_1_UTXEVT UART1 transmit event 236 I2C_1_INT I2C1 interrupt 237 I2C_1_REVT I2C1 receive event 238 I2C_1_XEVT I2C1 transmit event 239 SPI_1_INT0 SPI1 interrupt0 240 SPI_1_INT1 SPI1 interrupt1 241 SPI_1_XEVT SPI1 transmit event 242 SPI_1_REVT SPI1 receive event 243 MPU_5_INT MPU5 addressing violation interrupt and protection violation interrupt 244 MPU_8_INT MPU8 addressing violation interrupt and protection violation interrupt 245 MPU_9_INT MPU9 addressing violation interrupt and protection violation interrupt 246 MPU_11_INT MPU11 addressing violation interrupt and protection violation interrupt 247 Reserved Reserved 248 Reserved Reserved 249 MPU_7_INT MPU7 addressing violation interrupt and protection violation interrupt 250 MPU_10_INT MPU10 addressing violation interrupt and protection violation interrupt 251 SPI_2_INT0 SPI2 interrupt0 252 SPI_2_INT1 SPI2 interrupt1 253 SPI_2_XEVT SPI2 transmit event 254 SPI_2_REVT SPI2 receive event 255 I2C_2_INT I2C2 interrupt 256 I2C_2_REVT I2C2 receive event 257 I2C_2_XEVT I2C2 transmit event 258 10GbE_LINK_INT0 10 Gigabit Ethernet subsystem MDIO interrupt (66AK2H14 only) 259 10GbE_LINK_INT1 10 Gigabit Ethernet subsystem MDIO interrupt (66AK2H14 only) 132 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-24 CIC0 Event Inputs — C66x CorePac Secondary Interrupts (Part 7 of 11) Event No. Event Name Description 260 10GbE_USER_INT0 10 Gigabit Ethernet subsystem MDIO interrupt (66AK2H14 only) 261 10GbE_USER_INT1 10 Gigabit Ethernet subsystem MDIO interrupt (66AK2H14 only) 262 10GbE_MISC_INT 10 Gigabit Ethernet subsystem MDIO interrupt (66AK2H14 only) 263 10GbE_INT_PKTDMA_0 10 Gigabit Ethernet Packet DMA starvation interrupt (66AK2H14 only) 264 Reserved Reserved 265 Reserved Reserved 266 Reserved Reserved 267 Reserved Reserved 268 Reserved Reserved 269 Reserved Reserved 270 Reserved Reserved 271 Reserved Reserved 272 Reserved Reserved 273 Reserved Reserved 274 Reserved Reserved 275 Reserved Reserved 276 Reserved Reserved 277 Reserved Reserved 278 Reserved Reserved 279 Reserved Reserved 280 Reserved Reserved 281 Reserved Reserved 282 Reserved Reserved 283 Reserved Reserved 284 Reserved Reserved 285 Reserved Reserved 286 Reserved Reserved 287 Reserved Reserved 288 Reserved Reserved 289 Reserved Reserved 290 Reserved Reserved 291 Reserved Reserved 292 QMSS_QUE_PEND_666 Navigator transmit queue pending event for indicated queue 293 QMSS_QUE_PEND_667 Navigator transmit queue pending event for indicated queue 294 QMSS_QUE_PEND_668 Navigator transmit queue pending event for indicated queue 295 QMSS_QUE_PEND_669 Navigator transmit queue pending event for indicated queue 296 QMSS_QUE_PEND_670 Navigator transmit queue pending event for indicated queue 297 QMSS_QUE_PEND_671 Navigator transmit queue pending event for indicated queue 298 QMSS_QUE_PEND_8844 Navigator transmit queue pending event for indicated queue 299 QMSS_QUE_PEND_8845 Navigator transmit queue pending event for indicated queue 300 QMSS_QUE_PEND_8846 Navigator transmit queue pending event for indicated queue 301 QMSS_QUE_PEND_8847 Navigator transmit queue pending event for indicated queue 302 QMSS_QUE_PEND_8848 Navigator transmit queue pending event for indicated queue 303 QMSS_QUE_PEND_8849 Navigator transmit queue pending event for indicated queue Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 133 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-24 CIC0 Event Inputs — C66x CorePac Secondary Interrupts (Part 8 of 11) Event No. Event Name Description 304 QMSS_QUE_PEND_8850 Navigator transmit queue pending event for indicated queue 305 QMSS_QUE_PEND_8851 Navigator transmit queue pending event for indicated queue 306 QMSS_QUE_PEND_8852 Navigator transmit queue pending event for indicated queue 307 QMSS_QUE_PEND_8853 Navigator transmit queue pending event for indicated queue 308 QMSS_QUE_PEND_8854 Navigator transmit queue pending event for indicated queue 309 QMSS_QUE_PEND_8855 Navigator transmit queue pending event for indicated queue 310 QMSS_QUE_PEND_8856 Navigator transmit queue pending event for indicated queue 311 QMSS_QUE_PEND_8857 Navigator transmit queue pending event for indicated queue 312 QMSS_QUE_PEND_8858 Navigator transmit queue pending event for indicated queue 313 QMSS_QUE_PEND_8859 Navigator transmit queue pending event for indicated queue 314 QMSS_QUE_PEND_8860 Navigator transmit queue pending event for indicated queue 315 QMSS_QUE_PEND_8861 Navigator transmit queue pending event for indicated queue 316 QMSS_QUE_PEND_8862 Navigator transmit queue pending event for indicated queue 317 QMSS_QUE_PEND_8863 Navigator transmit queue pending event for indicated queue 318 QMSS_INTD_2_PKTDMA_0 Navigator ECC error interrupt 319 QMSS_INTD_2_PKTDMA_1 Navigator ECC error interrupt 320 QMSS_INTD_1_LOW_0 Navigator interrupt low 321 QMSS_INTD_1_LOW_1 Navigator interrupt low 322 QMSS_INTD_1_LOW_2 Navigator interrupt low 323 QMSS_INTD_1_LOW_3 Navigator interrupt low 324 QMSS_INTD_1_LOW_4 Navigator interrupt low 325 QMSS_INTD_1_LOW_5 Navigator interrupt low 326 QMSS_INTD_1_LOW_6 Navigator interrupt low 327 QMSS_INTD_1_LOW_7 Navigator interrupt low 328 QMSS_INTD_1_LOW_8 Navigator interrupt low 329 QMSS_INTD_1_LOW_9 Navigator interrupt low 330 QMSS_INTD_1_LOW_10 Navigator interrupt low 331 QMSS_INTD_1_LOW_11 Navigator interrupt low 332 QMSS_INTD_1_LOW_12 Navigator interrupt low 333 QMSS_INTD_1_LOW_13 Navigator interrupt low 334 QMSS_INTD_1_LOW_14 Navigator interrupt low 335 QMSS_INTD_1_LOW_15 Navigator interrupt low 336 QMSS_INTD_2_LOW_0 Navigator second interrupt low 337 QMSS_INTD_2_LOW_1 Navigator second interrupt low 338 QMSS_INTD_2_LOW_2 Navigator second interrupt low 339 QMSS_INTD_2_LOW_3 Navigator second interrupt low 340 QMSS_INTD_2_LOW_4 Navigator second interrupt low 341 QMSS_INTD_2_LOW_5 Navigator second interrupt low 342 QMSS_INTD_2_LOW_6 Navigator second interrupt low 343 QMSS_INTD_2_LOW_7 Navigator second interrupt low 344 QMSS_INTD_2_LOW_8 Navigator second interrupt low 345 QMSS_INTD_2_LOW_9 Navigator second interrupt low 346 QMSS_INTD_2_LOW_10 Navigator second interrupt low 347 QMSS_INTD_2_LOW_11 Navigator second interrupt low 134 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-24 CIC0 Event Inputs — C66x CorePac Secondary Interrupts (Part 9 of 11) Event No. Event Name Description 348 QMSS_INTD_2_LOW_12 Navigator second interrupt low 349 QMSS_INTD_2_LOW_13 Navigator second interrupt low 350 QMSS_INTD_2_LOW_14 Navigator second interrupt low 351 QMSS_INTD_2_LOW_15 Navigator second interrupt low 352 TRACER_EDMACC_0 Tracer sliding time window interrupt for EDMA3CC0 353 TRACER_EDMACC_123_INT Tracer sliding time window interrupt for EDMA3CC1, EDMA3CC2 and EDMA3CC3 354 TRACER_CIC_INT Tracer sliding time window interrupt for interrupt controllers (CIC) 355 TRACER_MSMC_4_INT Tracer sliding time window interrupt for MSMC SRAM bank4 356 TRACER_MSMC_5_INT Tracer sliding time window interrupt for MSMC SRAM bank5 357 TRACER_MSMC_6_INT Tracer sliding time window interrupt for MSMC SRAM bank6 358 TRACER_MSMC_7_INT Tracer sliding time window interrupt for MSMC SRAM bank7 359 TRACER_SPI_ROM_EMIF_INT Tracer sliding time window interrupt for SPI/ROM/EMIF16 modules 360 TRACER_QMSS_QM_CFG2_INT Tracer sliding time window interrupt for QM2 361 Reserved Reserved 362 Reserved Reserved 363 TRACER_DDR_1_INT Tracer sliding time window interrupt for DDR3B 364 Reserved Reserved 365 HYPERLINK_1_INT HyperLink 1 interrupt 366 Reserved Reserved 367 Reserved Reserved 368 Reserved Reserved 369 Reserved Reserved 370 Reserved Reserved 371 Reserved Reserved 372 Reserved Reserved 373 Reserved Reserved 374 Reserved Reserved 375 Reserved Reserved 376 Reserved Reserved 377 Reserved Reserved 378 Reserved Reserved 379 Reserved Reserved 380 Reserved Reserved 381 Reserved Reserved 382 Reserved Reserved 383 Reserved Reserved 384 Reserved Reserved 385 Reserved Reserved 386 Reserved Reserved 387 Reserved Reserved 388 Reserved Reserved 389 Reserved Reserved 390 Reserved Reserved 391 Reserved Reserved Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 135 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-24 CIC0 Event Inputs — C66x CorePac Secondary Interrupts (Part 10 of 11) Event No. Event Name Description 392 Reserved Reserved 393 Reserved Reserved 394 Reserved Reserved 395 Reserved Reserved 396 Reserved Reserved 397 Reserved Reserved 398 Reserved Reserved 399 Reserved Reserved 400 Reserved Reserved 401 Reserved Reserved 402 Reserved Reserved 403 Reserved Reserved 404 Reserved Reserved 405 Reserved Reserved 406 Reserved Reserved 407 Reserved Reserved 408 Reserved Reserved 409 Reserved Reserved 410 Reserved Reserved 411 Reserved Reserved 412 Reserved Reserved 413 Reserved Reserved 414 Reserved Reserved 415 Reserved Reserved 416 Reserved Reserved 417 Reserved Reserved 418 Reserved Reserved 419 Reserved Reserved 420 Reserved Reserved 421 Reserved Reserved 422 USB_INT00 USB interrupt 423 USB_INT04 USB interrupt 424 USB_INT05 USB interrupt 425 USB_INT06 USB interrupt 426 USB_INT07 USB interrupt 427 USB_INT08 USB interrupt 428 USB_INT09 USB interrupt 429 USB_INT10 USB interrupt 430 USB_INT11 USB interrupt 431 USB_MISCINT USB miscellaneous interrupt 432 USB_OABSINT USB OABS interrupt 433 TIMER_12_INTL Timer interrupt low 434 TIMER_12_INTH Timer interrupt high 435 TIMER_13_INTL Timer interrupt low 136 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-24 CIC0 Event Inputs — C66x CorePac Secondary Interrupts (Part 11 of 11) Event No. Event Name Description 436 TIMER_13_INTH Timer interrupt high 437 TIMER_14_INTL Timer interrupt low 438 TIMER_14_INTH Timer interrupt high 439 TIMER_15_INTL Timer interrupt low 440 TIMER_15_INTH Timer interrupt high 441 TIMER_16_INTL Timer interrupt low 442 TIMER_17_INTL Timer interrupt low 443 TIMER_18_INTL Timer interrupt low (1) 444 TIMER_19_INTL Timer interrupt low (1) 445 DDR3_1_ERR DDR3B_EMIF error interrupt 446 GPIO_INT16 GPIO interrupt 447 GPIO_INT17 GPIO interrupt 448 GPIO_INT18 GPIO interrupt 449 GPIO_INT19 GPIO interrupt 450 GPIO_INT20 GPIO interrupt 451 GPIO_INT21 GPIO interrupt 452 GPIO_INT22 GPIO interrupt 453 GPIO_INT23 GPIO interrupt 454 GPIO_INT24 GPIO interrupt 455 GPIO_INT25 GPIO interrupt 456 GPIO_INT26 GPIO interrupt 457 GPIO_INT27 GPIO interrupt 458 GPIO_INT28 GPIO interrupt 459 GPIO_INT29 GPIO interrupt 460 GPIO_INT30 GPIO interrupt 461 GPIO_INT31 GPIO interrupt 462 SRIO_INTDST16 SRIOI interrupt 463 SRIO_INTDST17 SRIOI interrupt 464 SRIO_INTDST18 SRIOI interrupt 465 SRIO_INTDST19 SRIOI interrupt 466 PCIE_INT4 PCIE MSI interrupt 467 PCIE_INT5 PCIE MSI interrupt 468 PCIE_INT6 PCIE MSI interrupt 469 PCIE_INT7 PCIE MSI interrupt 470 SEM_INT12 Semaphore interrupt 471 SEM_INT13 Semaphore interrupt 472 SEM_ERR12 Semaphore error interrupt 473 SEM_ERR13 Semaphore error interrupt End of Table 6-24 1 66AK2H12/14 only Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 137 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-25 CIC1 Event Inputs — C66x CorePac Secondary Interrupts (Part 1 of 11) Event No. Event Name Description 0 EDMACC_1_ERRINT EDMA3CC1 error interrupt 1 EDMACC_1_MPINT EDMA3CC1 memory protection interrupt 2 EDMACC_1_TC_0_ERRINT EDMA3CC1 TPTC0 error interrupt 3 EDMACC_1_TC_1_ERRINT EDMA3CC1 TPTC1 error interrupt 4 EDMACC_1_TC_2_ERRINT EDMA3CC1 TPTC2 error interrupt 5 EDMACC_1_TC_3_ERRINT EDMA3CC1 TPTC3 error interrupt 6 EDMACC_1_GINT EDMA3CC1 GINT 7 Reserved Reserved 8 EDMACC_1_TC_0_INT EDMA3CC1 individual completion interrupt 9 EDMACC_1_TC_1_INT EDMA3CC1 individual completion interrupt 10 EDMACC_1_TC_2_INT EDMA3CC1 individual completion interrupt 11 EDMACC_1_TC_3_INT EDMA3CC1 individual completion interrupt 12 EDMACC_1_TC_4_INT EDMA3CC1 individual completion interrupt 13 EDMACC_1_TC_5_INT EDMA3CC1 individual completion interrupt 14 EDMACC_1_TC_6_INT EDMA3CC1 individual completion interrupt 15 EDMACC_1_TC_7_INT EDMA3CC1 individual completion interrupt 16 EDMACC_2_ERRINT EDMA3CC2 error interrupt 17 EDMACC_2_MPINT EDMA3CC2 memory protection interrupt 18 EDMACC_2_TC_0_ERRINT EDMA3CC2 TPTC0 error interrupt 19 EDMACC_2_TC_1_ERRINT EDMA3CC2 TPTC1 error interrupt 20 EDMACC_2_TC_2_ERRINT EDMA3CC2 TPTC2 error interrupt 21 EDMACC_2_TC_3_ERRINT EDMA3CC2 TPTC3 error interrupt 22 EDMACC_2_GINT EDMA3CC2 GINT 23 Reserved Reserved 24 EDMACC_2_TC_0_INT EDMA3CC2 individual completion interrupt 25 EDMACC_2_TC_1_INT EDMA3CC2 individual completion interrupt 26 EDMACC_2_TC_2_INT EDMA3CC2 individual completion interrupt 27 EDMACC_2_TC_3_INT EDMA3CC2 individual completion interrupt 28 EDMACC_2_TC_4_INT EDMA3CC2 individual completion interrupt 29 EDMACC_2_TC_5_INT EDMA3CC2 individual completion interrupt 30 EDMACC_2_TC_6_INT EDMA3CC2 individual completion interrupt 31 EDMACC_2_TC_7_INT EDMA3CC2 individual completion interrupt 32 EDMACC_0_ERRINT EDMA3CC0 error interrupt 33 EDMACC_0_MPINT EDMA3CC0 memory protection interrupt 34 EDMACC_0_TC_0_ERRINT EDMA3CC0 TPTC0 error interrupt 35 EDMACC_0_TC_1_ERRINT EDMA3CC0 TPTC1 error interrupt 36 EDMACC_0_GINT EDMA3CC0 GINT 37 Reserved Reserved 38 EDMACC_0_TC_0_INT EDMA3CC0 individual completion interrupt 39 EDMACC_0_TC_1_INT EDMA3CC0 individual completion interrupt 40 EDMACC_0_TC_2_INT EDMA3CC0 individual completion interrupt 41 EDMACC_0_TC_3_INT EDMA3CC0 individual completion interrupt 42 EDMACC_0_TC_4_INT EDMA3CC0 individual completion interrupt 138 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-25 CIC1 Event Inputs — C66x CorePac Secondary Interrupts (Part 2 of 11) Event No. Event Name Description 43 EDMACC_0_TC_5_INT EDMA3CC0 individual completion interrupt 44 EDMACC_0_TC_6_INT EDMA3CC0 individual completion interrupt 45 EDMACC_0_TC_7_INT EDMA3CC0 individual completion interrupt 46 Reserved Reserved 47 QMSS_QUE_PEND_658 Navigator transmit queue pending event for indicated queue 48 PCIE_INT12 PCIE interrupt 49 PCIE_INT13 PCIE interrupt 50 PCIE_INT0 PCIE interrupt 51 PCIE_INT1 PCIE interrupt 52 PCIE_INT2 PCIE interrupt 53 PCIE_INT3 PCIE interrupt 54 SPI_0_INT0 SPI0 interrupt 55 SPI_0_INT1 SPI0 interrupt 56 SPI_0_XEVT SPI0 transmit event 57 SPI_0_REVT SPI0 receive event 58 I2C_0_INT I2C0 interrupt 59 I2C_0_REVT I2C0 receive event 60 I2C_0_XEVT I2C0 transmit event 61 Reserved Reserved 62 Reserved Reserved 63 DBGTBR_DMAINT Debug trace buffer (TBR) DMA event 64 MPU_12_INT MPU12 interrupt 65 DBGTBR_ACQCOMP Debug trace buffer (TBR) acquisition has been completed 66 MPU_13_INT MPU13 interrupt 67 MPU_14_INT MPU14 interrupt 68 NETCP_MDIO_LINK_INT0 Packet Accelerator 0 subsystem MDIO interrupt 69 NETCP_MDIO_LINK_INT1 Packet Accelerator 0 subsystem MDIO interrupt 70 NETCP_MDIO_USER_INT0 Packet Accelerator 0 subsystem MDIO interrupt 71 NETCP_MDIO_USER_INT1 Packet Accelerator 0 subsystem MDIO interrupt 72 NETCP_MISC_INT Packet Accelerator 0 subsystem misc interrupt 73 TRACER_CORE_0_INT Tracer sliding time window interrupt for DSP0 L2 74 TRACER_CORE_1_INT Tracer sliding time window interrupt for DSP1 L2 75 TRACER_CORE_2_INT Tracer sliding time window interrupt for DSP2 L2 76 TRACER_CORE_3_INT Tracer sliding time window interrupt for DSP3 L2 77 TRACER_DDR_INT Tracer sliding time window interrupt for MSMC-DDR3A 78 TRACER_MSMC_0_INT Tracer sliding time window interrupt for MSMC SRAM bank0 79 TRACER_MSMC_1_INT Tracer sliding time window interrupt for MSMC SRAM bank1 80 TRACER_MSMC_2_INT Tracer sliding time window interrupt for MSMC SRAM bank2 81 TRACER_MSMC_3_INT Tracer sliding time window interrupt for MSMC SRAM bank3 82 TRACER_CFG_INT Tracer sliding time window interrupt for CFG0 TeraNet 83 TRACER_QMSS_QM_CFG1_INT Tracer sliding time window interrupt for Navigator CFG1 slave port 84 TRACER_QMSS_DMA_INT Tracer sliding time window interrupt for Navigator DMA internal bus slave port 85 TRACER_SEM_INT Tracer sliding time window interrupt for Semaphore 86 PSC_ALLINT Power & Sleep Controller interrupt Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 139 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-25 CIC1 Event Inputs — C66x CorePac Secondary Interrupts (Part 3 of 11) Event No. Event Name Description 87 MSMC_SCRUB_CERROR Correctable (1-bit) soft error detected during scrub cycle 88 BOOTCFG_INT Chip-level MMR Error Register 89 SR_0_PO_VCON_SMPSERR_INT SmartReflex SMPS error interrupt 90 MPU_0_INT MPU0 addressing violation interrupt and protection violation interrupt. 91 QMSS_QUE_PEND_659 Navigator transmit queue pending event for indicated queue 92 MPU_1_INT MPU1 addressing violation interrupt and protection violation interrupt. 93 QMSS_QUE_PEND_660 Navigator transmit queue pending event for indicated queue 94 MPU_2_INT MPU2 addressing violation interrupt and protection violation interrupt. 95 QMSS_QUE_PEND_661 Navigator transmit queue pending event for indicated queue 96 Reserved Reserved 97 QMSS_QUE_PEND_662 Navigator transmit queue pending event for indicated queue 98 MSMC_DEDC_CERROR Correctable (1-bit) soft error detected on SRAM read 99 MSMC_DEDC_NC_ERROR Non-correctable (2-bit) soft error detected on SRAM read 100 MSMC_SCRUB_NC_ERROR Non-correctable (2-bit) soft error detected during scrub cycle 101 Reserved Reserved 102 MSMC_MPF_ERROR8 Memory protection fault indicators for system master PrivID = 8 103 MSMC_MPF_ERROR9 Memory protection fault indicators for system master PrivID = 9 104 MSMC_MPF_ERROR10 Memory protection fault indicators for system master PrivID = 10 105 MSMC_MPF_ERROR11 Memory protection fault indicators for system master PrivID = 11 106 MSMC_MPF_ERROR12 Memory protection fault indicators for system master PrivID = 12 107 MSMC_MPF_ERROR13 Memory protection fault indicators for system master PrivID = 13 108 MSMC_MPF_ERROR14 Memory protection fault indicators for system master PrivID = 14 109 MSMC_MPF_ERROR15 Memory protection fault indicators for system master PrivID = 15 110 DDR3_0_ERR DDR3A_EMIF Error interrupt 111 HYPERLINK_0_INT HyperLink 0 interrupt 112 SRIO_INTDST0 SRIO interrupt 113 SRIO_INTDST1 SRIO interrupt 114 SRIO_INTDST2 SRIO interrupt 115 SRIO_INTDST3 SRIO interrupt 116 SRIO_INTDST4 SRIO interrupt 117 SRIO_INTDST5 SRIO interrupt 118 SRIO_INTDST6 SRIO interrupt 119 SRIO_INTDST7 SRIO interrupt 120 SRIO_INTDST8 SRIO interrupt 121 SRIO_INTDST9 SRIO interrupt 122 SRIO_INTDST10 SRIO interrupt 123 SRIO_INTDST11 SRIO interrupt 124 SRIO_INTDST12 SRIO interrupt 125 SRIO_INTDST13 SRIO interrupt 126 SRIO_INTDST14 SRIO interrupt 127 SRIO_INTDST15 SRIO interrupt 128 AEMIF_EASYNCERR Asynchronous EMIF16 error interrupt 129 TRACER_CORE_4_INT Tracer sliding time window interrupt for DSP4 L2 (66AK2H12/14 only) 130 TRACER_CORE_5_INT Tracer sliding time window interrupt for DSP5 L2 (66AK2H12/14 only) 140 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-25 CIC1 Event Inputs — C66x CorePac Secondary Interrupts (Part 4 of 11) Event No. Event Name Description 131 TRACER_CORE_6_INT Tracer sliding time window interrupt for DSP6 L2 (66AK2H12/14 only) 132 TRACER_CORE_7_INT Tracer sliding time window interrupt for DSP7 L2 (66AK2H12/14 only) 133 QMSS_INTD_1_PKTDMA_0 Navigator interrupt for Packet DMA starvation 134 QMSS_INTD_1_PKTDMA_1 Navigator interrupt for Packet DMA starvation 135 SRIO_INT_PKTDMA_0 IPC interrupt generation 136 NETCP_PKTDMA_INT0 Packet Accelerator0 Packet DMA starvation interrupt 137 SR_0_SMARTREFLEX_INTREQ0 SmartReflex controller interrupt 138 SR_0_SMARTREFLEX_INTREQ1 SmartReflex controller interrupt 139 SR_0_SMARTREFLEX_INTREQ2 SmartReflex controller interrupt 140 SR_0_SMARTREFLEX_INTREQ3 SmartReflex controller interrupt 141 SR_0_VPNOSMPSACK SmartReflex VPVOLTUPDATE has been asserted but SMPS has not been responded to in a defined time interval 142 SR_0_VPEQVALUE SmartReflex SRSINTERUPT is asserted, but the new voltage is not different from the current SMPS voltage 143 SR_0_VPMAXVDD SmartReflex. The new voltage required is equal to or greater than MaxVdd 144 SR_0_VPMINVDD SmartReflex. The new voltage required is equal to or less than MinVdd 145 SR_0_VPINIDLE SmartReflex indicating that the FSM of voltage processor is in idle 146 SR_0_VPOPPCHANGEDONE SmartReflex indicating that the average frequency error is within the desired limit 147 Reserved Reserved 148 UART_0_UARTINT UART0 interrupt 149 UART_0_URXEVT UART0 receive event 150 UART_0_UTXEVT UART0 transmit event 151 QMSS_QUE_PEND_663 Navigator transmit queue pending event for indicated queue 152 QMSS_QUE_PEND_664 Navigator transmit queue pending event for indicated queue 153 QMSS_QUE_PEND_665 Navigator transmit queue pending event for indicated queue 154 QMSS_QUE_PEND_666 Navigator transmit queue pending event for indicated queue 155 QMSS_QUE_PEND_667 Navigator transmit queue pending event for indicated queue 156 QMSS_QUE_PEND_668 Navigator transmit queue pending event for indicated queue 157 QMSS_QUE_PEND_669 Navigator transmit queue pending event for indicated queue 158 QMSS_QUE_PEND_670 Navigator transmit queue pending event for indicated queue 159 QMSS_QUE_PEND_671 Navigator transmit queue pending event for indicated queue 160 SR_0_VPSMPSACK SmartReflex VPVOLTUPDATE asserted and SMPS has acknowledged in a defined time interval 161 ARM_TBR_DMA ARM trace buffer (TBR) DMA event 162 ARM_TBR_ACQ ARM trace buffer (TBR) Acquisition has been completed 163 ARM_NINTERRIRQ ARM internal memory ECC error interrupt request 164 ARM_NAXIERRIRQ ARM bus error interrupt request 165 SR_0_SR_TEMPSENSOR SmartReflex temperature threshold crossing interrupt 166 SR_0_SR_TIMERINT SmartReflex internal timer expiration interrupt 167 Reserved Reserved 168 Reserved Reserved 169 Reserved Reserved 170 Reserved Reserved 171 Reserved Reserved 172 Reserved Reserved Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 141 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-25 CIC1 Event Inputs — C66x CorePac Secondary Interrupts (Part 5 of 11) Event No. Event Name Description 173 Reserved Reserved 174 Reserved Reserved 175 TIMER_7_INTL Timer interrupt low 176 TIMER_7_INTH Timer interrupt high (1) 177 TIMER_6_INTL Timer interrupt low 178 TIMER_6_INTH Timer interrupt high 179 TIMER_5_INTL Timer interrupt low (1) 180 TIMER_5_INTH Timer interrupt high 181 TIMER_4_INTL Timer interrupt low 182 TIMER_4_INTH Timer interrupt high (1) 183 TIMER_3_INTL Timer interrupt low 184 TIMER_3_INTH Timer interrupt high 185 TIMER_2_INTL Timer interrupt low 186 TIMER_2_INTH Timer interrupt high 187 TIMER_1_INTL Timer interrupt low 188 TIMER_1_INTH Timer interrupt high 189 TIMER_0_INTL Timer interrupt low 190 TIMER_0_INTH Timer interrupt high 191 Reserved Reserved 192 Reserved Reserved 193 Reserved Reserved 194 Reserved Reserved 195 Reserved Reserved 196 Reserved Reserved 197 Reserved Reserved 198 Reserved Reserved 199 Reserved Reserved 200 Reserved Reserved 201 Reserved Reserved 202 Reserved Reserved 203 Reserved Reserved 204 Reserved Reserved 205 Reserved Reserved 206 Reserved Reserved 207 EDMACC_4_ERRINT EDMA3CC4 error interrupt 208 EDMACC_4_MPINT EDMA3CC4 memory protection interrupt 209 EDMACC_4_TC_0_ERRINT EDMA3CC4 TPTC0 error interrupt 210 EDMACC_4_TC_1_ERRINT EDMA3CC4 TPTC1 error interrupt 211 EDMACC_4_GINT EDMA3CC4 GINT 212 EDMACC_4_TC_0_INT EDMA3CC4 individual completion interrupt 213 EDMACC_4_TC_1_INT EDMA3CC4 individual completion interrupt 214 EDMACC_4_TC_2_INT EDMA3CC4 individual completion interrupt 215 EDMACC_4_TC_3_INT EDMA3CC4 individual completion interrupt 216 EDMACC_4_TC_4_INT EDMA3CC4 individual completion interrupt 142 Memory, Interrupts, and EDMA for 66AK2H14/12/06 (1) (1) (1) (1) (1) Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-25 CIC1 Event Inputs — C66x CorePac Secondary Interrupts (Part 6 of 11) Event No. Event Name Description 217 EDMACC_4_TC_5_INT EDMA3CC4 individual completion interrupt 218 EDMACC_4_TC_6_INT EDMA3CC4 individual completion interrupt 219 EDMACC_4_TC_7_INT EDMA3CC4 individual completion interrupt 220 EDMACC_3_ERRINT EDMA3CC3 error interrupt 221 EDMACC_3_MPINT EDMA3CC3 memory protection interrupt 222 EDMACC_3_TC_0_ERRINT EDMA3CC3 TPTC0 error interrupt 223 EDMACC_3_TC_1_ERRINT EDMA3CC3 TPTC1 error interrupt 224 EDMACC_3_GINT EDMA3CC3 GINT 225 EDMACC_3_TC_0_INT EDMA3CC3 individual completion interrupt 226 EDMACC_3_TC_1_INT EDMA3CC3 individual completion interrupt 227 EDMACC_3_TC_2_INT EDMA3CC3 individual completion interrupt 228 EDMACC_3_TC_3_INT EDMA3CC3 individual completion interrupt 229 EDMACC_3_TC_4_INT EDMA3CC3 individual completion interrupt 230 EDMACC_3_TC_5_INT EDMA3CC3 individual completion interrupt 231 EDMACC_3_TC_6_INT EDMA3CC3 individual completion interrupt 232 EDMACC_3_TC_7_INT EDMA3CC3 individual completion interrupt 233 UART_1_UARTINT UART1 interrupt 234 UART_1_URXEVT UART1 receive event 235 UART_1_UTXEVT UART1 transmit event 236 I2C_1_INT I2C1 interrupt 237 I2C_1_REVT I2C1 receive event 238 I2C_1_XEVT I2C1 transmit event 239 SPI_1_INT0 SPI1 interrupt0 240 SPI_1_INT1 SPI1 interrupt1 241 SPI_1_XEVT SPI1 transmit event 242 SPI_1_REVT SPI1 receive event 243 MPU_5_INT MPU5 addressing violation interrupt and protection violation interrupt 244 MPU_8_INT MPU8 addressing violation interrupt and protection violation interrupt 245 MPU_9_INT MPU9 addressing violation interrupt and protection violation interrupt 246 MPU_11_INT MPU11 addressing violation interrupt and protection violation interrupt 247 Reserved Reserved 248 Reserved Reserved 249 MPU_7_INT MPU7 addressing violation interrupt and protection violation interrupt 250 MPU_10_INT MPU10 addressing violation interrupt and protection violation interrupt 251 SPI_2_INT0 SPI2 interrupt0 252 SPI_2_INT1 SPI2 interrupt1 253 SPI_2_XEVT SPI2 transmit event 254 SPI_2_REVT SPI2 receive event 255 I2C_2_INT I2C2 interrupt 256 I2C_2_REVT I2C2 receive event 257 I2C_2_XEVT I2C2 transmit event 258 10GbE_LINK_INT0 10 Gigabit Ethernet subsystem MDIO interrupt (66AK2H14 only) 259 10GbE_LINK_INT1 10 Gigabit Ethernet subsystem MDIO interrupt (66AK2H14 only) 260 10GbE_USER_INT0 10 Gigabit Ethernet subsystem MDIO interrupt (66AK2H14 only) Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 143 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-25 Event No. CIC1 Event Inputs — C66x CorePac Secondary Interrupts (Part 7 of 11) Event Name Description 261 10GbE_USER_INT1 10 Gigabit Ethernet subsystem MDIO interrupt (66AK2H14 only) 262 10GbE_MISC_INT 10 Gigabit Ethernet subsystem MDIO interrupt (66AK2H14 only) 263 10GbE_INT_PKTDMA_0 10 Gigabit Ethernet Packet DMA starvation interrupt (66AK2H14 only) 264 Reserved Reserved 265 Reserved Reserved 266 Reserved Reserved 267 Reserved Reserved 268 Reserved Reserved 269 Reserved Reserved 270 Reserved Reserved 271 Reserved Reserved 272 Reserved Reserved 273 Reserved Reserved 274 Reserved Reserved 275 Reserved Reserved 276 Reserved Reserved 277 Reserved Reserved 278 Reserved Reserved 279 Reserved Reserved 280 Reserved Reserved 281 Reserved Reserved 282 Reserved Reserved 283 Reserved Reserved 284 Reserved Reserved 285 Reserved Reserved 286 Reserved Reserved 287 Reserved Reserved 288 Reserved Reserved 289 Reserved Reserved 290 Reserved Reserved 291 Reserved Reserved 292 QMSS_QUE_PEND_652 Navigator transmit queue pending event for indicated queue 293 QMSS_QUE_PEND_653 Navigator transmit queue pending event for indicated queue 294 QMSS_QUE_PEND_654 Navigator transmit queue pending event for indicated queue 295 QMSS_QUE_PEND_655 Navigator transmit queue pending event for indicated queue 296 QMSS_QUE_PEND_656 Navigator transmit queue pending event for indicated queue 297 QMSS_QUE_PEND_657 Navigator transmit queue pending event for indicated queue 298 QMSS_QUE_PEND_8844 Navigator transmit queue pending event for indicated queue 299 QMSS_QUE_PEND_8845 Navigator transmit queue pending event for indicated queue 300 QMSS_QUE_PEND_8846 Navigator transmit queue pending event for indicated queue 301 QMSS_QUE_PEND_8847 Navigator transmit queue pending event for indicated queue 302 QMSS_QUE_PEND_8848 Navigator transmit queue pending event for indicated queue 303 QMSS_QUE_PEND_8849 Navigator transmit queue pending event for indicated queue 304 QMSS_QUE_PEND_8850 Navigator transmit queue pending event for indicated queue 144 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-25 Event No. CIC1 Event Inputs — C66x CorePac Secondary Interrupts (Part 8 of 11) Event Name Description 305 QMSS_QUE_PEND_8851 Navigator transmit queue pending event for indicated queue 306 QMSS_QUE_PEND_8852 Navigator transmit queue pending event for indicated queue 307 QMSS_QUE_PEND_8853 Navigator transmit queue pending event for indicated queue 308 QMSS_QUE_PEND_8854 Navigator transmit queue pending event for indicated queue 309 QMSS_QUE_PEND_8855 Navigator transmit queue pending event for indicated queue 310 QMSS_QUE_PEND_8856 Navigator transmit queue pending event for indicated queue 311 QMSS_QUE_PEND_8857 Navigator transmit queue pending event for indicated queue 312 QMSS_QUE_PEND_8858 Navigator transmit queue pending event for indicated queue 313 QMSS_QUE_PEND_8859 Navigator transmit queue pending event for indicated queue 314 QMSS_QUE_PEND_8860 Navigator transmit queue pending event for indicated queue 315 QMSS_QUE_PEND_8861 Navigator transmit queue pending event for indicated queue 316 QMSS_QUE_PEND_8862 Navigator transmit queue pending event for indicated queue 317 QMSS_QUE_PEND_8863 Navigator transmit queue pending event for indicated queue 318 QMSS_INTD_2_PKTDMA_0 Navigator ECC error interrupt 319 QMSS_INTD_2_PKTDMA_1 Navigator ECC error interrupt 320 QMSS_INTD_1_LOW_0 Navigator interrupt low 321 QMSS_INTD_1_LOW_1 Navigator interrupt low 322 QMSS_INTD_1_LOW_2 Navigator interrupt low 323 QMSS_INTD_1_LOW_3 Navigator interrupt low 324 QMSS_INTD_1_LOW_4 Navigator interrupt low 325 QMSS_INTD_1_LOW_5 Navigator interrupt low 326 QMSS_INTD_1_LOW_6 Navigator interrupt low 327 QMSS_INTD_1_LOW_7 Navigator interrupt low 328 QMSS_INTD_1_LOW_8 Navigator interrupt low 329 QMSS_INTD_1_LOW_9 Navigator interrupt low 330 QMSS_INTD_1_LOW_10 Navigator interrupt low 331 QMSS_INTD_1_LOW_11 Navigator interrupt low 332 QMSS_INTD_1_LOW_12 Navigator interrupt low 333 QMSS_INTD_1_LOW_13 Navigator interrupt low 334 QMSS_INTD_1_LOW_14 Navigator interrupt low 335 QMSS_INTD_1_LOW_15 Navigator interrupt low 336 QMSS_INTD_2_LOW_0 Navigator second interrupt low 337 QMSS_INTD_2_LOW_1 Navigator second interrupt low 338 QMSS_INTD_2_LOW_2 Navigator second interrupt low 339 QMSS_INTD_2_LOW_3 Navigator second interrupt low 340 QMSS_INTD_2_LOW_4 Navigator second interrupt low 341 QMSS_INTD_2_LOW_5 Navigator second interrupt low 342 QMSS_INTD_2_LOW_6 Navigator second interrupt low 343 QMSS_INTD_2_LOW_7 Navigator second interrupt low 344 QMSS_INTD_2_LOW_8 Navigator second interrupt low 345 QMSS_INTD_2_LOW_9 Navigator second interrupt low 346 QMSS_INTD_2_LOW_10 Navigator second interrupt low 347 QMSS_INTD_2_LOW_11 Navigator second interrupt low 348 QMSS_INTD_2_LOW_12 Navigator second interrupt low Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 145 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-25 CIC1 Event Inputs — C66x CorePac Secondary Interrupts (Part 9 of 11) Event No. Event Name Description 349 QMSS_INTD_2_LOW_13 Navigator second interrupt low 350 QMSS_INTD_2_LOW_14 Navigator second interrupt low 351 QMSS_INTD_2_LOW_15 Navigator second interrupt low 352 TRACER_EDMACC_0 Tracer sliding time window interrupt for EDMA3CC0 353 TRACER_EDMACC_123_INT Tracer sliding time window interrupt for EDMA3CC1, EDMA3CC2 and EDMA3CC3 354 TRACER_CIC_INT Tracer sliding time window interrupt for interrupt controllers (CIC) 355 TRACER_MSMC_4_INT Tracer sliding time window interrupt for MSMC SRAM bank4 356 TRACER_MSMC_5_INT Tracer sliding time window interrupt for MSMC SRAM bank5 357 TRACER_MSMC_6_INT Tracer sliding time window interrupt for MSMC SRAM bank6 358 TRACER_MSMC_7_INT Tracer sliding time window interrupt for MSMC SRAM bank7 359 TRACER_SPI_ROM_EMIF_INT Tracer sliding time window interrupt for SPI/ROM/EMIF16 modules 360 TRACER_QMSS_QM_CFG2_INT Tracer sliding time window interrupt for QM2 361 Reserved Reserved 362 Reserved Reserved 363 TRACER_DDR_1_INT Tracer sliding time window interrupt for DDR3B 364 Reserved Reserved 365 HYPERLINK_1_INT HyperLink 1 interrupt 366 Reserved Reserved 367 Reserved Reserved 368 Reserved Reserved 369 Reserved Reserved 370 Reserved Reserved 371 Reserved Reserved 372 Reserved Reserved 373 Reserved Reserved 374 Reserved Reserved 375 Reserved Reserved 376 Reserved Reserved 377 Reserved Reserved 378 Reserved Reserved 379 Reserved Reserved 380 Reserved Reserved 381 Reserved Reserved 382 Reserved Reserved 383 Reserved Reserved 384 Reserved Reserved 385 Reserved Reserved 386 Reserved Reserved 387 Reserved Reserved 388 Reserved Reserved 389 Reserved Reserved 390 Reserved Reserved 391 Reserved Reserved 392 Reserved Reserved 146 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-25 CIC1 Event Inputs — C66x CorePac Secondary Interrupts (Part 10 of 11) Event No. Event Name Description 393 Reserved Reserved 394 Reserved Reserved 395 Reserved Reserved 396 Reserved Reserved 397 Reserved Reserved 398 Reserved Reserved 399 Reserved Reserved 400 Reserved Reserved 401 Reserved Reserved 402 Reserved Reserved 403 Reserved Reserved 404 Reserved Reserved 405 Reserved Reserved 406 Reserved Reserved 407 Reserved Reserved 408 Reserved Reserved 409 Reserved Reserved 410 Reserved Reserved 411 Reserved Reserved 412 Reserved Reserved 413 Reserved Reserved 414 Reserved Reserved 415 Reserved Reserved 416 Reserved Reserved 417 Reserved Reserved 418 Reserved Reserved 419 Reserved Reserved 420 Reserved Reserved 421 Reserved Reserved 422 USB_INT00 USB interrupt 423 USB_INT04 USB interrupt 424 USB_INT05 USB interrupt 425 USB_INT06 USB interrupt 426 USB_INT07 USB interrupt 427 USB_INT08 USB interrupt 428 USB_INT09 USB interrupt 429 USB_INT10 USB interrupt 430 USB_INT11 USB interrupt 431 USB_MISCINT USB miscellaneous interrupt 432 USB_OABSINT USB OABS interrupt 433 TIMER_12_INTL Timer interrupt low 434 TIMER_12_INTH Timer interrupt high 435 TIMER_13_INTL Timer interrupt low 436 TIMER_13_INTH Timer interrupt high Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 147 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-25 Event No. CIC1 Event Inputs — C66x CorePac Secondary Interrupts (Part 11 of 11) Event Name Description 437 TIMER_14_INTL Timer interrupt low 438 TIMER_14_INTH Timer interrupt high 439 TIMER_15_INTL Timer interrupt low 440 TIMER_15_INTH Timer interrupt high 441 TIMER_16_INTL Timer interrupt low 442 TIMER_17_INTL Timer interrupt low 443 TIMER_18_INTL Timer interrupt low (1) 444 TIMER_19_INTL Timer interrupt low 445 DDR3_1_ERR DDR3B_EMIF error interrupt 446 GPIO_INT16 GPIO interrupt 447 GPIO_INT17 GPIO interrupt 448 GPIO_INT18 GPIO interrupt 449 GPIO_INT19 GPIO interrupt 450 GPIO_INT20 GPIO interrupt 451 GPIO_INT21 GPIO interrupt 452 GPIO_INT22 GPIO interrupt 453 GPIO_INT23 GPIO interrupt 454 GPIO_INT24 GPIO interrupt 455 GPIO_INT25 GPIO interrupt 456 GPIO_INT26 GPIO interrupt 457 GPIO_INT27 GPIO interrupt 458 GPIO_INT28 GPIO interrupt 459 GPIO_INT29 GPIO interrupt 460 GPIO_INT30 GPIO interrupt 461 GPIO_INT31 GPIO interrupt 462 SRIO_INTDST20 SRIOI interrupt 463 SRIO_INTDST21 SRIOI interrupt 464 SRIO_INTDST22 SRIOI interrupt 465 SRIO_INTDST23 SRIOI interrupt 466 PCIE_INT8 PCIE MSI interrupt (1) 467 PCIE_INT9 PCIE MSI interrupt 468 PCIE_INT10 PCIE MSI interrupt 469 PCIE_INT11 PCIE MSI interrupt 470 SEM_INT12 Semaphore interrupt 471 SEM_INT13 Semaphore interrupt 472 SEM_ERR12 Semaphore error interrupt 473 SEM_ERR13 Semaphore error interrupt 474 Reserved Reserved End of Table 6-25 1 66AK2H12/14 only 148 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-26 CIC2 Event Inputs (Secondary Events for EDMA3CC0 and Hyperlink) (Part 1 of 11) Event No. Event Name Description 0 GPIO_INT8 GPIO interrupt 1 GPIO_INT9 GPIO interrupt 2 GPIO_INT10 GPIO interrupt 3 GPIO_INT11 GPIO interrupt 4 GPIO_INT12 GPIO interrupt 5 GPIO_INT13 GPIO interrupt 6 GPIO_INT14 GPIO interrupt 7 GPIO_INT15 GPIO interrupt 8 DBGTBR_DMAINT Debug trace buffer (TBR) DMA event 9 Reserved Reserved 10 Reserved Reserved 11 TETB_FULLINT0 TETB0 is full 12 TETB_HFULLINT0 TETB0 is half full 13 TETB_ACQINT0 TETB0 acquisition has been completed 14 TETB_FULLINT1 TETB1 is full 15 TETB_HFULLINT1 TETB1 is half full 16 TETB_ACQINT1 TETB1 acquisition has been completed 17 TETB_FULLINT2 TETB2 is full 18 TETB_HFULLINT2 TETB2 is half full 19 TETB_ACQINT2 TETB2 acquisition has been completed 20 TETB_FULLINT3 TETB3 is full 21 TETB_HFULLINT3 TETB3 is half full 22 TETB_ACQINT3 TETB3 acquisition has been completed 23 Reserved Reserved 24 QMSS_INTD_1_HIGH_16 Navigator hi interrupt 25 QMSS_INTD_1_HIGH_17 Navigator hi interrupt 26 QMSS_INTD_1_HIGH_18 Navigator hi interrupt 27 QMSS_INTD_1_HIGH_19 Navigator hi interrupt 28 QMSS_INTD_1_HIGH_20 Navigator hi interrupt 29 QMSS_INTD_1_HIGH_21 Navigator hi interrupt 30 QMSS_INTD_1_HIGH_22 Navigator hi interrupt 31 QMSS_INTD_1_HIGH_23 Navigator hi interrupt 32 QMSS_INTD_1_HIGH_24 Navigator hi interrupt 33 QMSS_INTD_1_HIGH_25 Navigator hi interrupt 34 QMSS_INTD_1_HIGH_26 Navigator hi interrupt 35 QMSS_INTD_1_HIGH_27 Navigator hi interrupt 36 QMSS_INTD_1_HIGH_28 Navigator hi interrupt 37 QMSS_INTD_1_HIGH_29 Navigator hi interrupt 38 QMSS_INTD_1_HIGH_30 Navigator hi interrupt 39 QMSS_INTD_1_HIGH_31 Navigator hi interrupt 40 NETCP_MDIO_LINK_INT0 Packet Accelerator 0 subsystem MDIO interrupt 41 NETCP_MDIO_LINK_INT1 Packet Accelerator 0 subsystem MDIO interrupt 42 NETCP_MDIO_USER_INT0 Packet Accelerator 0 subsystem MDIO interrupt Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 149 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-26 CIC2 Event Inputs (Secondary Events for EDMA3CC0 and Hyperlink) (Part 2 of 11) Event No. Event Name Description 43 NETCP_MDIO_USER_INT1 Packet Accelerator 0 subsystem MDIO interrupt 44 NETCP_MISC_INT Packet Accelerator 0 subsystem MDIO interrupt 45 TRACER_CORE_0_INT Tracer sliding time window interrupt for DSP0 L2 46 TRACER_CORE_1_INT Tracer sliding time window interrupt for DSP1 L2 47 TRACER_CORE_2_INT Tracer sliding time window interrupt for DSP2 L2 48 TRACER_CORE_3_INT Tracer sliding time window interrupt for DSP3 L2 49 TRACER_DDR_INT Tracer sliding time window interrupt for MSMC-DDR3A 50 TRACER_MSMC_0_INT Tracer sliding time window interrupt for MSMC SRAM bank0 51 TRACER_MSMC_1_INT Tracer sliding time window interrupt for MSMC SRAM bank1 52 TRACER_MSMC_2_INT Tracer sliding time window interrupt for MSMC SRAM bank2 53 TRACER_MSMC_3_INT Tracer sliding time window interrupt for MSMC SRAM bank3 54 TRACER_CFG_INT Tracer sliding time window interrupt for TeraNet CFG 55 TRACER_QMSS_QM_CFG1_INT Tracer sliding time window interrupt for Navigator CFG1 slave port 56 TRACER_QMSS_DMA_INT Tracer sliding time window interrupt for Navigator DMA internal bus slave port 57 TRACER_SEM_INT Tracer sliding time window interrupt for Semaphore interrupt 58 SEM_ERR0 Semaphore error interrupt 59 SEM_ERR1 Semaphore error interrupt 60 SEM_ERR2 Semaphore error interrupt 61 SEM_ERR3 Semaphore error interrupt 62 BOOTCFG_INT BOOTCFG error interrupt 63 NETCP_PKTDMA_INT0 Packet Accelerator0 Packet DMA starvation interrupt 64 MPU_0_INT MPU0 interrupt 65 MSMC_SCRUB_CERROR MSMC error interrupt 66 MPU_1_INT MPU1 interrupt 67 SRIO_INT_PKTDMA_0 Packet Accelerator0 Packet DMA interrupt 68 MPU_2_INT MPU2 interrupt 69 QMSS_INTD_1_PKTDMA_0 Navigator Packet DMA interrupt 70 Reserved Reserved 71 QMSS_INTD_1_PKTDMA_1 Navigator Packet DMA interrupt 72 MSMC_DEDC_CERROR MSMC error interrupt 73 MSMC_DEDC_NC_ERROR MSMC error interrupt 74 MSMC_SCRUB_NC_ERROR MSMC error interrupt 75 Reserved Reserved 76 MSMC_MPF_ERROR0 Memory protection fault indicators for system master PrivID = 0 77 MSMC_MPF_ERROR1 Memory protection fault indicators for system master PrivID = 1 78 MSMC_MPF_ERROR2 Memory protection fault indicators for system master PrivID = 2 79 MSMC_MPF_ERROR3 Memory protection fault indicators for system master PrivID = 3 80 MSMC_MPF_ERROR4 Memory protection fault indicators for system master PrivID = 4 81 MSMC_MPF_ERROR5 Memory protection fault indicators for system master PrivID = 5 82 MSMC_MPF_ERROR6 Memory protection fault indicators for system master PrivID = 6 83 MSMC_MPF_ERROR7 Memory protection fault indicators for system master PrivID = 7 84 MSMC_MPF_ERROR8 Memory protection fault indicators for system master PrivID = 8 85 MSMC_MPF_ERROR9 Memory protection fault indicators for system master PrivID = 9 86 MSMC_MPF_ERROR10 Memory protection fault indicators for system master PrivID = 10 150 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-26 CIC2 Event Inputs (Secondary Events for EDMA3CC0 and Hyperlink) (Part 3 of 11) Event No. Event Name Description 87 MSMC_MPF_ERROR11 Memory protection fault indicators for system master PrivID = 11 88 MSMC_MPF_ERROR12 Memory protection fault indicators for system master PrivID = 12 89 MSMC_MPF_ERROR13 Memory protection fault indicators for system master PrivID = 13 90 MSMC_MPF_ERROR14 Memory protection fault indicators for system master PrivID = 14 91 MSMC_MPF_ERROR15 Memory protection fault indicators for system master PrivID = 15 92 Reserved Reserved 93 SRIO_INTDST0 SRIO interrupt 94 SRIO_INTDST1 SRIO interrupt 95 SRIO_INTDST2 SRIO interrupt 96 SRIO_INTDST3 SRIO interrupt 97 SRIO_INTDST4 SRIO interrupt 98 SRIO_INTDST5 SRIO interrupt 99 SRIO_INTDST6 SRIO interrupt 100 SRIO_INTDST7 SRIO interrupt 101 SRIO_INTDST8 SRIO interrupt 102 SRIO_INTDST9 SRIO interrupt 103 SRIO_INTDST10 SRIO interrupt 104 SRIO_INTDST11 SRIO interrupt 105 SRIO_INTDST12 SRIO interrupt 106 SRIO_INTDST13 SRIO interrupt 107 SRIO_INTDST14 SRIO interrupt 108 SRIO_INTDST15 SRIO interrupt 109 SRIO_INTDST16 SRIO interrupt 110 SRIO_INTDST17 SRIO interrupt 111 SRIO_INTDST18 SRIO interrupt 112 SRIO_INTDST19 SRIO interrupt 113 SRIO_INTDST20 SRIO interrupt 114 SRIO_INTDST21 SRIO interrupt 115 SRIO_INTDST22 SRIO interrupt 116 SRIO_INTDST23 SRIO interrupt 117 AEMIF_EASYNCERR Asynchronous EMIF16 error interrupt 118 TETB_FULLINT4 TETB4 is full 119 TETB_HFULLINT4 TETB4 is half full 120 TETB_ACQINT4 TETB4 acquisition has been completed 121 TETB_FULLINT5 TETB5 is full 122 TETB_HFULLINT5 TETB5 is half full 123 TETB_ACQINT5 TETB5 acquisition has been completed 124 TETB_FULLINT6 TETB6 is full 125 TETB_HFULLINT6 TETB6 is half full 126 TETB_ACQINT6 TETB6 acquisition has been completed 127 TETB_FULLINT7 TETB7 is full 128 TETB_HFULLINT7 TETB7 is half full 129 TETB_ACQINT7 TETB7 acquisition has been completed 130 TRACER_CORE_4_INT Tracer sliding time window interrupt for DSP4 L2 (66AK2H12/14 only) Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 151 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-26 CIC2 Event Inputs (Secondary Events for EDMA3CC0 and Hyperlink) (Part 4 of 11) Event No. Event Name Description 131 TRACER_CORE_5_INT Tracer sliding time window interrupt for DSP5 L2 (66AK2H12/14 only) 132 TRACER_CORE_6_INT Tracer sliding time window interrupt for DSP6 L2 (66AK2H12/14 only) 133 TRACER_CORE_7_INT Tracer sliding time window interrupt for DSP7 L2 (66AK2H12/14 only) 134 SEM_ERR4 Semaphore error interrupt 135 SEM_ERR5 Semaphore error interrupt 136 SEM_ERR6 Semaphore error interrupt 137 SEM_ERR7 Semaphore error interrupt 138 QMSS_INTD_1_HIGH_0 Navigator hi interrupt 139 QMSS_INTD_1_HIGH_1 Navigator hi interrupt 140 QMSS_INTD_1_HIGH_2 Navigator hi interrupt 141 QMSS_INTD_1_HIGH_3 Navigator hi interrupt 142 QMSS_INTD_1_HIGH_4 Navigator hi interrupt 143 QMSS_INTD_1_HIGH_5 Navigator hi interrupt 144 QMSS_INTD_1_HIGH_6 Navigator hi interrupt 145 QMSS_INTD_1_HIGH_7 Navigator hi interrupt 146 QMSS_INTD_1_HIGH_8 Navigator hi interrupt 147 QMSS_INTD_1_HIGH_9 Navigator hi interrupt 148 QMSS_INTD_1_HIGH_10 Navigator hi interrupt 149 QMSS_INTD_1_HIGH_11 Navigator hi interrupt 150 QMSS_INTD_1_HIGH_12 Navigator hi interrupt 151 QMSS_INTD_1_HIGH_13 Navigator hi interrupt 152 QMSS_INTD_1_HIGH_14 Navigator hi interrupt 153 QMSS_INTD_1_HIGH_15 Navigator hi interrupt 154 QMSS_INTD_2_HIGH_0 Navigator second hi interrupt 155 QMSS_INTD_2_HIGH_1 Navigator second hi interrupt 156 QMSS_INTD_2_HIGH_2 Navigator second hi interrupt 157 QMSS_INTD_2_HIGH_3 Navigator second hi interrupt 158 QMSS_INTD_2_HIGH_4 Navigator second hi interrupt 159 QMSS_INTD_2_HIGH_5 Navigator second hi interrupt 160 QMSS_INTD_2_HIGH_6 Navigator second hi interrupt 161 QMSS_INTD_2_HIGH_7 Navigator second hi interrupt 162 QMSS_INTD_2_HIGH_8 Navigator second hi interrupt 163 QMSS_INTD_2_HIGH_9 Navigator second hi interrupt 164 QMSS_INTD_2_HIGH_10 Navigator second hi interrupt 165 QMSS_INTD_2_HIGH_11 Navigator second hi interrupt 166 QMSS_INTD_2_HIGH_12 Navigator second hi interrupt 167 QMSS_INTD_2_HIGH_13 Navigator second hi interrupt 168 QMSS_INTD_2_HIGH_14 Navigator second hi interrupt 169 QMSS_INTD_2_HIGH_15 Navigator second hi interrupt 170 QMSS_INTD_2_HIGH_16 Navigator second hi interrupt 171 QMSS_INTD_2_HIGH_17 Navigator second hi interrupt 172 QMSS_INTD_2_HIGH_18 Navigator second hi interrupt 173 QMSS_INTD_2_HIGH_19 Navigator second hi interrupt 174 QMSS_INTD_2_HIGH_20 Navigator second hi interrupt 152 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-26 CIC2 Event Inputs (Secondary Events for EDMA3CC0 and Hyperlink) (Part 5 of 11) Event No. Event Name Description 175 QMSS_INTD_2_HIGH_21 Navigator second hi interrupt 176 QMSS_INTD_2_HIGH_22 Navigator second hi interrupt 177 QMSS_INTD_2_HIGH_23 Navigator second hi interrupt 178 QMSS_INTD_2_HIGH_24 Navigator second hi interrupt 179 QMSS_INTD_2_HIGH_25 Navigator second hi interrupt 180 QMSS_INTD_2_HIGH_26 Navigator second hi interrupt 181 QMSS_INTD_2_HIGH_27 Navigator second hi interrupt 182 QMSS_INTD_2_HIGH_28 Navigator second hi interrupt 183 QMSS_INTD_2_HIGH_29 Navigator second hi interrupt 184 QMSS_INTD_2_HIGH_30 Navigator second hi interrupt 185 QMSS_INTD_2_HIGH_31 Navigator second hi interrupt 186 MPU_12_INT MPU12 addressing violation interrupt and protection violation interrupt 187 MPU_13_INT MPU13 addressing violation interrupt and protection violation interrupt 188 MPU_14_INT MPU14 addressing violation interrupt and protection violation interrupt 189 Reserved Reserved 190 Reserved Reserved 191 Reserved Reserved 192 Reserved Reserved 193 Reserved Reserved 194 Reserved Reserved 195 Reserved Reserved 196 Reserved Reserved 197 Reserved Reserved 198 Reserved Reserved 199 TRACER_QMSS_QM_CFG2_INT Tracer sliding time window interrupt for Navigator CFG2 slave port 200 TRACER_EDMACC_0 Tracer sliding time window interrupt foR EDMA3CC0 201 TRACER_EDMACC_123_INT Tracer sliding time window interrupt for EDMA3CC1, EDMA3CC2 and EDMA3CC3 202 TRACER_CIC_INT Tracer sliding time window interrupt for interrupt controllers (CIC) 203 Reserved Reserved 204 MPU_5_INT MPU5 addressing violation interrupt and protection violation interrupt 205 Reserved Reserved 206 MPU_7_INT MPU7 addressing violation interrupt and protection violation interrupt 207 MPU_8_INT MPU8 addressing violation interrupt and protection violation interrupt 208 QMSS_INTD_2_PKTDMA_0 Navigator ECC error interrupt 209 QMSS_INTD_2_PKTDMA_1 Navigator ECC error interrupt 210 SR_0_VPSMPSACK SmartReflex VPVOLTUPDATE asserted and SMPS has acknowledged in a defined time interval 211 DDR3_0_ERR DDR3A error interrupt 212 HYPERLINK_0_INT HyperLink 0 interrupt 213 EDMACC_0_ERRINT EDMA3CC0 error interrupt 214 EDMACC_0_MPINT EDMA3CC0 memory protection interrupt 215 EDMACC_0_TC_0_ERRINT EDMA3CC0 TPTC0 error interrupt 216 EDMACC_0_TC_1_ERRINT EDMA3CC0 TPTC1 error interrupt 217 EDMACC_1_ERRINT EDMA3CC1 error interrupt 218 EDMACC_1_MPINT EDMA3CC1 memory protection interrupt Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 153 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-26 CIC2 Event Inputs (Secondary Events for EDMA3CC0 and Hyperlink) (Part 6 of 11) Event No. Event Name Description 219 EDMACC_1_TC_0_ERRINT EDMA3CC1 TPTC0 error interrupt 220 EDMACC_1_TC_1_ERRINT EDMA3CC1 TPTC1 error interrupt 221 EDMACC_1_TC_2_ERRINT EDMA3CC1 TPTC2 error interrupt 222 EDMACC_1_TC_3_ERRINT EDMA3CC1 TPTC3 error interrupt 223 EDMACC_2_ERRINT EDMA3CC2 error interrupt 224 EDMACC_2_MPINT EDMA3CC2 memory protection interrupt 225 EDMACC_2_TC_0_ERRINT EDMA3CC2 TPTC0 error interrupt 226 EDMACC_2_TC_1_ERRINT EDMA3CC2 TPTC1 error interrupt 227 EDMACC_2_TC_2_ERRINT EDMA3CC2 TPTC2 error interrupt 228 EDMACC_2_TC_3_ERRINT EDMA3CC2 TPTC3 error interrupt 229 EDMACC_3_ERRINT EDMA3CC3 error interrupt 230 EDMACC_3_MPINT EDMA3CC3 memory protection interrupt 231 EDMACC_3_TC_0_ERRINT EDMA3CC3 TPTC0 error interrupt 232 EDMACC_3_TC_1_ERRINT EDMA3CC3 TPTC1 error interrupt 233 EDMACC_4_ERRINT EDMA3CC4 error interrupt 234 EDMACC_4_MPINT EDMA3CC4 memory protection interrupt 235 EDMACC_4_TC_0_ERRINT EDMA3CC4 TPTC0 error interrupt 236 EDMACC_4_TC_1_ERRINT EDMA3CC4 TPTC1 error interrupt 237 QMSS_QUE_PEND_652 Navigator transmit queue pending event for indicated queue 238 QMSS_QUE_PEND_653 Navigator transmit queue pending event for indicated queue 239 QMSS_QUE_PEND_654 Navigator transmit queue pending event for indicated queue 240 QMSS_QUE_PEND_655 Navigator transmit queue pending event for indicated queue 241 QMSS_QUE_PEND_656 Navigator transmit queue pending event for indicated queue 242 QMSS_QUE_PEND_657 Navigator transmit queue pending event for indicated queue 243 QMSS_QUE_PEND_658 Navigator transmit queue pending event for indicated queue 244 QMSS_QUE_PEND_659 Navigator transmit queue pending event for indicated queue 245 QMSS_QUE_PEND_660 Navigator transmit queue pending event for indicated queue 246 QMSS_QUE_PEND_661 Navigator transmit queue pending event for indicated queue 247 QMSS_QUE_PEND_662 Navigator transmit queue pending event for indicated queue 248 QMSS_QUE_PEND_663 Navigator transmit queue pending event for indicated queue 249 QMSS_QUE_PEND_664 Navigator transmit queue pending event for indicated queue 250 QMSS_QUE_PEND_665 Navigator transmit queue pending event for indicated queue 251 QMSS_QUE_PEND_666 Navigator transmit queue pending event for indicated queue 252 QMSS_QUE_PEND_667 Navigator transmit queue pending event for indicated queue 253 QMSS_QUE_PEND_668 Navigator transmit queue pending event for indicated queue 254 QMSS_QUE_PEND_669 Navigator transmit queue pending event for indicated queue 255 QMSS_QUE_PEND_670 Navigator transmit queue pending event for indicated queue 256 QMSS_QUE_PEND_671 Navigator transmit queue pending event for indicated queue 257 QMSS_QUE_PEND_8844 Navigator transmit queue pending event for indicated queue 258 QMSS_QUE_PEND_8845 Navigator transmit queue pending event for indicated queue 259 QMSS_QUE_PEND_8846 Navigator transmit queue pending event for indicated queue 260 QMSS_QUE_PEND_8847 Navigator transmit queue pending event for indicated queue 261 QMSS_QUE_PEND_8848 Navigator transmit queue pending event for indicated queue 262 QMSS_QUE_PEND_8849 Navigator transmit queue pending event for indicated queue 154 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-26 Event No. CIC2 Event Inputs (Secondary Events for EDMA3CC0 and Hyperlink) (Part 7 of 11) Event Name Description 263 QMSS_QUE_PEND_8850 Navigator transmit queue pending event for indicated queue 264 QMSS_QUE_PEND_8851 Navigator transmit queue pending event for indicated queue 265 QMSS_QUE_PEND_8852 Navigator transmit queue pending event for indicated queue 266 QMSS_QUE_PEND_8853 Navigator transmit queue pending event for indicated queue 267 QMSS_QUE_PEND_8854 Navigator transmit queue pending event for indicated queue 268 QMSS_QUE_PEND_8855 Navigator transmit queue pending event for indicated queue 269 QMSS_QUE_PEND_8856 Navigator transmit queue pending event for indicated queue 270 QMSS_QUE_PEND_8857 Navigator transmit queue pending event for indicated queue 271 QMSS_QUE_PEND_8858 Navigator transmit queue pending event for indicated queue 272 QMSS_QUE_PEND_8859 Navigator transmit queue pending event for indicated queue 273 QMSS_QUE_PEND_8860 Navigator transmit queue pending event for indicated queue 274 QMSS_QUE_PEND_8861 Navigator transmit queue pending event for indicated queue 275 QMSS_QUE_PEND_8862 Navigator transmit queue pending event for indicated queue 276 QMSS_QUE_PEND_8863 Navigator transmit queue pending event for indicated queue 277 10GbE_LINK_INT0 10 Gigabit Ethernet subsystem MDIO interrupt (66AK2H14 only) 278 10GbE_LINK_INT1 10 Gigabit Ethernet subsystem MDIO interrupt (66AK2H14 only) 279 10GbE_USER_INT0 10 Gigabit Ethernet subsystem MDIO interrupt (66AK2H14 only) 280 10GbE_USER_INT1 10 Gigabit Ethernet subsystem MDIO interrupt (66AK2H14 only) 281 10GbE_MISC_INT 10 Gigabit Ethernet subsystem MDIO interrupt (66AK2H14 only) 282 10GbE_INT_PKTDMA_0 10 Gigabit Ethernet Packet DMA starvation interrupt 283 SEM_INT0 Semaphore interrupt 284 SEM_INT1 Semaphore interrupt 285 SEM_INT2 Semaphore interrupt 286 SEM_INT3 Semaphore interrupt 287 SEM_INT4 Semaphore interrupt 288 SEM_INT5 Semaphore interrupt 289 SEM_INT6 Semaphore interrupt 290 SEM_INT7 Semaphore interrupt 291 SEM_INT8 Semaphore interrupt 292 SEM_INT9 Semaphore interrupt 293 SEM_INT10 Semaphore interrupt 294 SEM_INT11 Semaphore interrupt 295 SEM_INT12 Semaphore interrupt 296 SEM_INT13 Semaphore interrupt 297 SEM_INT14 Semaphore interrupt 298 SEM_INT15 Semaphore interrupt 299 SEM_ERR8 Semaphore error interrupt 300 SEM_ERR9 Semaphore error interrupt 301 SEM_ERR10 Semaphore error interrupt 302 SEM_ERR11 Semaphore error interrupt 303 SEM_ERR12 Semaphore error interrupt 304 SEM_ERR13 Semaphore error interrupt 305 SEM_ERR14 Semaphore error interrupt 306 SEM_ERR15 Semaphore error interrupt Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 155 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-26 Event No. CIC2 Event Inputs (Secondary Events for EDMA3CC0 and Hyperlink) (Part 8 of 11) Event Name Description 307 DDR3_1_ERR DDR3B error interrupt 308 HYPERLINK_1_INT HyperLink 1 interrupt 309 Reserved Reserved 310 Reserved Reserved 311 Reserved Reserved 312 Reserved Reserved 313 Reserved Reserved 314 Reserved Reserved 315 Reserved Reserved 316 Reserved Reserved 317 Reserved Reserved 318 Reserved Reserved 319 Reserved Reserved 320 Reserved Reserved 321 Reserved Reserved 322 Reserved Reserved 323 Reserved Reserved 324 Reserved Reserved 325 Reserved Reserved 326 Reserved Reserved 327 Reserved Reserved 328 Reserved Reserved 329 Reserved Reserved 330 Reserved Reserved 331 Reserved Reserved 332 Reserved Reserved 333 Reserved Reserved 334 Reserved Reserved 335 Reserved Reserved 336 Reserved Reserved 337 Reserved Reserved 338 Reserved Reserved 339 Reserved Reserved 340 Reserved Reserved 341 Reserved Reserved 342 Reserved Reserved 343 Reserved Reserved 344 Reserved Reserved 345 Reserved Reserved 346 Reserved Reserved 347 Reserved Reserved 348 Reserved Reserved 349 Reserved Reserved 350 Reserved Reserved 156 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-26 CIC2 Event Inputs (Secondary Events for EDMA3CC0 and Hyperlink) (Part 9 of 11) Event No. Event Name Description 351 Reserved Reserved 352 Reserved Reserved 353 Reserved Reserved 354 Reserved Reserved 355 Reserved Reserved 356 Reserved Reserved 357 Reserved Reserved 358 Reserved Reserved 359 Reserved Reserved 360 Reserved Reserved 361 Reserved Reserved 362 PSC_ALLINT PSC interrupt 363 Reserved Reserved 364 Reserved Reserved 365 Reserved Reserved 366 Reserved Reserved 367 Reserved Reserved 368 Reserved Reserved 369 Reserved Reserved 370 Reserved Reserved 371 Reserved Reserved 372 MPU_9_INT MPU9 addressing violation interrupt and protection violation interrupt 373 MPU_10_INT MPU10 addressing violation interrupt and protection violation interrupt 374 MPU_11_INT MPU11 addressing violation interrupt and protection violation interrupt 375 TRACER_MSMC_4_INT Tracer sliding time window interrupt for MSMC SRAM Bank 4 376 TRACER_MSMC_5_INT Tracer sliding time window interrupt for MSMC SRAM Bank 4 377 TRACER_MSMC_6_INT Tracer sliding time window interrupt for MSMC SRAM Bank 4 378 TRACER_MSMC_7_INT Tracer sliding time window interrupt for MSMC SRAM Bank 4 379 TRACER_DDR_1_INT Tracer sliding time window interrupt for DDR3B 380 Reserved Reserved 381 Reserved Reserved 382 Reserved Reserved 383 Reserved Reserved 384 TRACER_SPI_ROM_EMIF_INT Tracer sliding time window interrupt for SPI/ROM/EMIF16 modules 385 Reserved Reserved 386 Reserved Reserved 387 TIMER_8_INTL Timer interrupt low 388 TIMER_8_INTH Timer interrupt high 389 TIMER_9_INTL Timer interrupt low 390 TIMER_9_INTH Timer interrupt high 391 TIMER_10_INTL Timer interrupt low 392 TIMER_10_INTH Timer interrupt high 393 TIMER_11_INTL Timer interrupt low 394 TIMER_11_INTH Timer interrupt high Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 157 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-26 Event No. CIC2 Event Inputs (Secondary Events for EDMA3CC0 and Hyperlink) (Part 10 of 11) Event Name Description 395 TIMER_14_INTL Timer interrupt low 396 TIMER_14_INTH Timer interrupt high 397 TIMER_15_INTL Timer interrupt low 398 TIMER_15_INTH Timer interrupt high 399 USB_INT00 USB interrupt 400 USB_INT04 USB interrupt 401 USB_INT05 USB interrupt 402 USB_INT06 USB interrupt 403 USB_INT07 USB interrupt 404 USB_INT08 USB interrupt 405 USB_INT09 USB interrupt 406 USB_INT10 USB interrupt 407 USB_INT11 USB interrupt 408 USB_MISCINT USB miscellaneous interrupt 409 USB_OABSINT USB OABS interrupt 410 Reserved Reserved 411 Reserved Reserved 412 Reserved Reserved 413 Reserved Reserved 414 Reserved Reserved 415 Reserved Reserved 416 Reserved Reserved 417 Reserved Reserved 418 Reserved Reserved 419 Reserved Reserved 420 Reserved Reserved 421 Reserved Reserved 422 Reserved Reserved 423 Reserved Reserved 424 Reserved Reserved 425 Reserved Reserved 426 Reserved Reserved 427 Reserved Reserved 428 Reserved Reserved 429 Reserved Reserved 430 Reserved Reserved 431 Reserved Reserved 432 Reserved Reserved 433 Reserved Reserved 434 Reserved Reserved 435 Reserved Reserved 436 Reserved Reserved 437 Reserved Reserved 438 Reserved Reserved 158 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-26 CIC2 Event Inputs (Secondary Events for EDMA3CC0 and Hyperlink) (Part 11 of 11) Event No. Event Name Description 439 Reserved Reserved 440 Reserved Reserved 441 Reserved Reserved 442 TETB_OVFLINT0 ETB0 overflow (emulation trace buffer) 443 TETB_UNFLINT0 ETB0 underflow 444 TETB_OVFLINT1 ETB1 overflow (emulation trace buffer) 445 TETB_UNFLINT1 ETB1 underflow 446 TETB_OVFLINT2 ETB2 overflow (emulation trace buffer) 447 TETB_UNFLINT2 ETB2 underflow 448 TETB_OVFLINT3 ETB3 overflow (emulation trace buffer) 449 TETB_UNFLINT3 ETB3 underflow 450 TETB_OVFLINT4 ETB4 overflow (emulation trace buffer) 451 TETB_UNFLINT4 ETB4 underflow 452 TETB_OVFLINT5 ETB5 overflow (emulation trace buffer) 453 TETB_UNFLINT5 ETB5 underflow 454 TETB_OVFLINT6 ETB6 overflow (emulation trace buffer) 455 TETB_UNFLINT6 ETB6 underflow 456 TETB_OVFLINT7 ETB7 overflow (emulation trace buffer) 457 TETB_UNFLINT7 ETB7 underflow 458 ARM_TBR_DMA ARM trace buffer 459 Reserved Reserved 460 Reserved Reserved 461 Reserved Reserved 462 Reserved Reserved 463 GPIO_INT0 GPIO interrupt 464 GPIO_INT1 GPIO interrupt 465 GPIO_INT2 GPIO interrupt 466 GPIO_INT3 GPIO interrupt 467 GPIO_INT4 GPIO interrupt 468 GPIO_INT5 GPIO interrupt 469 GPIO_INT6 GPIO interrupt 470 GPIO_INT7 GPIO interrupt 471 IPC_GR0 IPC interrupt generation 472 IPC_GR1 IPC interrupt generation 473 IPC_GR2 IPC interrupt generation 474 IPC_GR3 IPC interrupt generation 475 IPC_GR4 IPC interrupt generation 476 IPC_GR5 IPC interrupt generation 477 IPC_GR6 IPC interrupt generation 478 IPC_GR7 IPC interrupt generation End of Table 6-26 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 159 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 6.3.2 CIC Registers This section includes the CIC memory map information and registers. 6.3.2.1 CIC0 Register Map Table 6-27 CIC0 Registers (Part 1 of 7) Address Offset Register Mnemonic Register Name 0x0 REVISION_REG Revision Register 0x4 CONTROL_REG Control Register 0xc HOST_CONTROL_REG Host Control Register 0x10 GLOBAL_ENABLE_HINT_REG Global Host Interrupt Enable Register 0x20 STATUS_SET_INDEX_REG Status Set Index Register 0x24 STATUS_CLR_INDEX_REG Status Clear Index Register 0x28 ENABLE_SET_INDEX_REG Enable Set Index Register 0x2C ENABLE_CLR_INDEX_REG Enable Clear Index Register 0x34 HINT_ENABLE_SET_INDEX_REG Host Interrupt Enable Set Index Register 0x38 HINT_ENABLE_CLR_INDEX_REG Host Interrupt Enable Clear Index Register 0x200 RAW_STATUS_REG0 Raw Status Register 0 0x204 RAW_STATUS_REG1 Raw Status Register 1 0x208 RAW_STATUS_REG2 Raw Status Register 2 0x20C RAW_STATUS_REG3 Raw Status Register 3 0x210 RAW_STATUS_REG4 Raw Status Register 4 0x214 RAW_STATUS_REG5 Raw Status Register 5 0x218 RAW_STATUS_REG6 Raw Status Register 6 0x21C RAW_STATUS_REG7 Raw Status Register 7 0x220 RAW_STATUS_REG8 Raw Status Register 8 0x224 RAW_STATUS_REG9 Raw Status Register 9 0x228 RAW_STATUS_REG10 Raw Status Register 10 0x22C RAW_STATUS_REG11 Raw Status Register 11 0x230 RAW_STATUS_REG12 Raw Status Register 12 0x234 RAW_STATUS_REG13 Raw Status Register 13 0x238 RAW_STATUS_REG14 Raw Status Register 14 0x23C RAW_STATUS_REG15 Raw Status Register 15 0x280 ENA_STATUS_REG0 Enabled Status Register 0 0x284 ENA_STATUS_REG1 Enabled Status Register 1 0x288 ENA_STATUS_REG2 Enabled Status Register 2 0x28C ENA_STATUS_REG3 Enabled Status Register 3 0x290 ENA_STATUS_REG4 Enabled Status Register 4 0x294 ENA_STATUS_REG5 Enabled Status Register 5 0x298 ENA_STATUS_REG6 Enabled Status Register 6 0x29C ENA_STATUS_REG7 Enabled Status Register 7 0x2A0 ENA_STATUS_REG8 Enabled Status Register 8 0x2A4 ENA_STATUS_REG9 Enabled Status Register 9 0x2A8 ENA_STATUS_REG10 Enabled Status Register10 0x2AC ENA_STATUS_REG11 Enabled Status Register 11 0x2B0 ENA_STATUS_REG12 Enabled Status Register 12 160 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-27 CIC0 Registers (Part 2 of 7) Address Offset Register Mnemonic Register Name 0x2B4 ENA_STATUS_REG13 Enabled Status Register 13 0x2B8 ENA_STATUS_REG14 Enabled Status Register 14 0x2BC ENA_STATUS_REG15 Enabled Status Register 15 0x300 ENABLE_REG0 Enable Register 0 0x304 ENABLE_REG1 Enable Register 1 0x308 ENABLE_REG2 Enable Register 2 0x30C ENABLE_REG3 Enable Register 3 0x310 ENABLE_REG4 Enable Register 4 0x314 ENABLE_REG5 Enable Register 5 0x318 ENABLE_REG6 Enable Register 6 0x31C ENABLE_REG7 Enable Register 7 0x320 ENABLE_REG8 Enable Register 8 0x324 ENABLE_REG9 Enable Register 9 0x328 ENABLE_REG10 Enable Register 10 0x32C ENABLE_REG11 Enable Register 11 0x330 ENABLE_REG12 Enable Register 12 0x334 ENABLE_REG13 Enable Register 13 0x338 ENABLE_REG14 Enable Register 14 0x33C ENABLE_REG15 Enable Register 15 0x380 ENABLE_CLR_REG0 Enable Clear Register 0 0x384 ENABLE_CLR_REG1 Enable Clear Register 1 0x388 ENABLE_CLR_REG2 Enable Clear Register 2 0x38C ENABLE_CLR_REG3 Enable Clear Register 3 0x390 ENABLE_CLR_REG4 Enable Clear Register 4 0x394 ENABLE_CLR_REG5 Enable Clear Register 5 0x398 ENABLE_CLR_REG6 Enable Clear Register 6 0x39C ENABLE_CLR_REG7 Enable Clear Register 7 0x3A0 ENABLE_CLR_REG8 Enable Clear Register 8 0x3A4 ENABLE_CLR_REG9 Enable Clear Register 9 0x3A8 ENABLE_CLR_REG10 Enable Clear Register 10 0x3AC ENABLE_CLR_REG11 Enable Clear Register 11 0x3B0 ENABLE_CLR_REG12 Enable Clear Register 12 0x3B4 ENABLE_CLR_REG13 Enable Clear Register 13 0x3B8 ENABLE_CLR_REG14 Enable Clear Register 14 0x38C ENABLE_CLR_REG15 Enable Clear Register 15 0x400 CH_MAP_REG0 Interrupt Channel Map Register for 0 to 0+3 0x404 CH_MAP_REG1 Interrupt Channel Map Register for 4 to 4+3 0x408 CH_MAP_REG2 Interrupt Channel Map Register for 8 to 8+3 0x40C CH_MAP_REG3 Interrupt Channel Map Register for 12 to 12+3 0x410 CH_MAP_REG4 Interrupt Channel Map Register for 16 to 16+3 0x414 CH_MAP_REG5 Interrupt Channel Map Register for 20 to 20+3 0x418 CH_MAP_REG6 Interrupt Channel Map Register for 24 to 24+3 0x41C CH_MAP_REG7 Interrupt Channel Map Register for 28 to 28+3 0x420 CH_MAP_REG8 Interrupt Channel Map Register for 32 to 32+3 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 161 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-27 CIC0 Registers (Part 3 of 7) Address Offset Register Mnemonic Register Name 0x424 CH_MAP_REG9 Interrupt Channel Map Register for 36 to 36+3 0x428 CH_MAP_REG10 Interrupt Channel Map Register for 40 to 40+3 0x42C CH_MAP_REG11 Interrupt Channel Map Register for 44 to 44+3 0x430 CH_MAP_REG12 Interrupt Channel Map Register for 48 to 48+3 0x434 CH_MAP_REG13 Interrupt Channel Map Register for 52 to 52+3 0x438 CH_MAP_REG14 Interrupt Channel Map Register for 56 to 56+3 0x43C CH_MAP_REG15 Interrupt Channel Map Register for 60 to 60+3 0x440 CH_MAP_REG16 Interrupt Channel Map Register for 64 to 64+3 0x444 CH_MAP_REG17 Interrupt Channel Map Register for 68 to 68+3 0x448 CH_MAP_REG18 Interrupt Channel Map Register for 72 to 72+3 0x44C CH_MAP_REG19 Interrupt Channel Map Register for 76 to 76+3 0x450 CH_MAP_REG20 Interrupt Channel Map Register for 80 to 80+3 0x454 CH_MAP_REG21 Interrupt Channel Map Register for 84 to 84+3 0x458 CH_MAP_REG22 Interrupt Channel Map Register for 88 to 88+3 0x45C CH_MAP_REG23 Interrupt Channel Map Register for 92 to 92+3 0x460 CH_MAP_REG24 Interrupt Channel Map Register for 96 to 96+3 0x464 CH_MAP_REG25 Interrupt Channel Map Register for 100 to 100+3 0x468 CH_MAP_REG26 Interrupt Channel Map Register for 104 to 104+3 0x46C CH_MAP_REG27 Interrupt Channel Map Register for 108 to 108+3 0x470 CH_MAP_REG28 Interrupt Channel Map Register for 112 to 112+3 0x474 CH_MAP_REG29 Interrupt Channel Map Register for 116 to 116+3 0x478 CH_MAP_REG30 Interrupt Channel Map Register for 120 to 120+3 0x47C CH_MAP_REG31 Interrupt Channel Map Register for 124 to 124+3 0x480 CH_MAP_REG32 Interrupt Channel Map Register for 128 to 128+3 0x484 CH_MAP_REG33 Interrupt Channel Map Register for 132 to 132+3 0x488 CH_MAP_REG34 Interrupt Channel Map Register for 136 to 136+3 0x48C CH_MAP_REG35 Interrupt Channel Map Register for 140 to 140+3 0x490 CH_MAP_REG36 Interrupt Channel Map Register for 144 to 144+3 0x494 CH_MAP_REG37 Interrupt Channel Map Register for 148 to 148+3 0x498 CH_MAP_REG38 Interrupt Channel Map Register for 152 to 152+3 0x49C CH_MAP_REG39 Interrupt Channel Map Register for 156 to 156+3 0x4A0 CH_MAP_REG40 Interrupt Channel Map Register for 160 to 160+3 0x4A4 CH_MAP_REG41 Interrupt Channel Map Register for 164 to 164+3 0x4A8 CH_MAP_REG42 Interrupt Channel Map Register for 168 to 168+3 0x4AC CH_MAP_REG43 Interrupt Channel Map Register for 172 to 172+3 0x4B0 CH_MAP_REG44 Interrupt Channel Map Register for 176 to 176+3 0x4B4 CH_MAP_REG45 Interrupt Channel Map Register for 180 to 180+3 0x4B8 CH_MAP_REG46 Interrupt Channel Map Register for 184 to 184+3 0x4BC CH_MAP_REG47 Interrupt Channel Map Register for 188 to 188+3 0x4C0 CH_MAP_REG48 Interrupt Channel Map Register for 192 to 192+3 0x4C4 CH_MAP_REG49 Interrupt Channel Map Register for 196 to 196+3 0x4C8 CH_MAP_REG50 Interrupt Channel Map Register for 200 to 200+3 0x4CC CH_MAP_REG51 Interrupt Channel Map Register for 204 to 204+3 0X4D0 CH_MAP_REG52 Interrupt Channel Map Register for 208 to 208+3 162 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-27 CIC0 Registers (Part 4 of 7) Address Offset Register Mnemonic Register Name 0X4D4 CH_MAP_REG53 Interrupt Channel Map Register for 212 to 212+3 0X4D8 CH_MAP_REG54 Interrupt Channel Map Register for 216 to 216+3 0X4DC CH_MAP_REG55 Interrupt Channel Map Register for 220 to 220+3 0X4E0 CH_MAP_REG56 Interrupt Channel Map Register for 224 to 224+3 0X4E4 CH_MAP_REG57 Interrupt Channel Map Register for 228 to 228+3 0X4E8 CH_MAP_REG58 Interrupt Channel Map Register for 232 to 232+3 0X4FC CH_MAP_REG59 Interrupt Channel Map Register for 236 to 236+3 0X4F0 CH_MAP_REG60 Interrupt Channel Map Register for 240 to 240+3 0X4F4 CH_MAP_REG61 Interrupt Channel Map Register for 244 to 244+3 0X4F8 CH_MAP_REG62 Interrupt Channel Map Register for 248 to 248+3 0X4FC CH_MAP_REG63 Interrupt Channel Map Register for 252 to 252+3 0X500 CH_MAP_REG64 Interrupt Channel Map Register for 256 to 256+3 0X504 CH_MAP_REG65 Interrupt Channel Map Register for 260 to 260+3 0X508 CH_MAP_REG66 Interrupt Channel Map Register for 264 to 264+3 0X50C CH_MAP_REG67 Interrupt Channel Map Register for 268 to 268+3 0X510 CH_MAP_REG68 Interrupt Channel Map Register for 272 to 272+3 0X514 CH_MAP_REG69 Interrupt Channel Map Register for 276 to 276+3 0X518 CH_MAP_REG70 Interrupt Channel Map Register for 280 to 280+3 0X51C CH_MAP_REG71 Interrupt Channel Map Register for 284 to 284+3 0X520 CH_MAP_REG72 Interrupt Channel Map Register for 288 to 288+3 0X524 CH_MAP_REG73 Interrupt Channel Map Register for 292 to 292+3 0X528 CH_MAP_REG74 Interrupt Channel Map Register for 296 to 296+3 0X52C CH_MAP_REG75 Interrupt Channel Map Register for 300 to 300+3 0X520 CH_MAP_REG76 Interrupt Channel Map Register for 304 to 304+3 0X524 CH_MAP_REG77 Interrupt Channel Map Register for 308 to 308+3 0X528 CH_MAP_REG78 Interrupt Channel Map Register for 312 to 312+3 0x52C CH_MAP_REG79 Interrupt Channel Map Register for 316 to 316+3 0x530 CH_MAP_REG80 Interrupt Channel Map Register for 320 to 320+3 0x534 CH_MAP_REG81 Interrupt Channel Map Register for 324 to 324+3 0x538 CH_MAP_REG82 Interrupt Channel Map Register for 328 to 328+3 0x53C CH_MAP_REG83 Interrupt Channel Map Register for 332 to332+3 0x540 CH_MAP_REG84 Interrupt Channel Map Register for336 to 336+3 0x544 CH_MAP_REG85 Interrupt Channel Map Register for 340 to 340+3 0x548 CH_MAP_REG86 Interrupt Channel Map Register for 344 to 344+3 0x54C CH_MAP_REG87 Interrupt Channel Map Register for 348 to 348+3 0x550 CH_MAP_REG88 Interrupt Channel Map Register for 352 to 352+3 0x554 CH_MAP_REG89 Interrupt Channel Map Register for 356 to 356+3 0x558 CH_MAP_REG90 Interrupt Channel Map Register for 360 to 360+3 0x55C CH_MAP_REG91 Interrupt Channel Map Register for 364 to 364+3 0x560 CH_MAP_REG92 Interrupt Channel Map Register for 368 to 368+3 0x564 CH_MAP_REG93 Interrupt Channel Map Register for372 to 372+3 0x568 CH_MAP_REG94 Interrupt Channel Map Register for 376 to 376+3 0x56C CH_MAP_REG95 Interrupt Channel Map Register for 380 to 380+3 0x570 CH_MAP_REG96 Interrupt Channel Map Register for 384 to 384+3 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 163 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-27 CIC0 Registers (Part 5 of 7) Address Offset Register Mnemonic Register Name 0x574 CH_MAP_REG97 Interrupt Channel Map Register for 388 to 388+3 0x578 CH_MAP_REG98 Interrupt Channel Map Register for 392 to 392+3 0x57C CH_MAP_REG99 Interrupt Channel Map Register for 396 to 396+3 0x580 CH_MAP_REG100 Interrupt Channel Map Register for 400 to 400+3 0x584 CH_MAP_REG101 Interrupt Channel Map Register for 404 to 404+3 0x588 CH_MAP_REG102 Interrupt Channel Map Register for 408 to 408+3 0x58C CH_MAP_REG103 Interrupt Channel Map Register for 412 to412+3 0x590 CH_MAP_REG104 Interrupt Channel Map Register for 416 to 416+3 0x594 CH_MAP_REG105 Interrupt Channel Map Register for 420 to 420+3 0x598 CH_MAP_REG106 Interrupt Channel Map Register for 424 to 424+3 0x59C CH_MAP_REG107 Interrupt Channel Map Register for 428 to 428+3 0x5A0 CH_MAP_REG108 Interrupt Channel Map Register for 432 to 432+3 0x5A4 CH_MAP_REG109 Interrupt Channel Map Register for 436 to 436+3 0x5A8 CH_MAP_REG110 Interrupt Channel Map Register for 440 to 440+3 0x5AC CH_MAP_REG111 Interrupt Channel Map Register for 444 to 444+3 0x5B0 CH_MAP_REG112 Interrupt Channel Map Register for 448 to 448+3 0x5B4 CH_MAP_REG113 Interrupt Channel Map Register for 452 to 452+3 0x5B8 CH_MAP_REG114 Interrupt Channel Map Register for 456 to 456+3 0x5BC CH_MAP_REG115 Interrupt Channel Map Register for 460 to 460+3 0x5C0 CH_MAP_REG116 Interrupt Channel Map Register for 464 to 464+3 0x5C4 CH_MAP_REG117 Interrupt Channel Map Register for 468 to 468+3 0x5C8 CH_MAP_REG118 Interrupt Channel Map Register for 472 to 472+3 0x5CC CH_MAP_REG119 Interrupt Channel Map Register for 476 to 476+3 0x5D0 CH_MAP_REG120 Interrupt Channel Map Register for 480 to 480+3 0x5D4 CH_MAP_REG121 Interrupt Channel Map Register for 484 to 484+3 0x5D8 CH_MAP_REG122 Interrupt Channel Map Register for 488 to 488+3 0x5DC CH_MAP_REG123 Interrupt Channel Map Register for 482 to 492+3 0x5E0 CH_MAP_REG124 Interrupt Channel Map Register for 496 to 496+3 0x5E4 CH_MAP_REG125 Interrupt Channel Map Register for 500 to 500+3 0x5E8 CH_MAP_REG126 Interrupt Channel Map Register for 504 to 504+3 0x5EC CH_MAP_REG127 Interrupt Channel Map Register for 508 to 508+3 0x5F0 CH_MAP_REG128 Interrupt Channel Map Register for 512 to 512+3 0x5F4 CH_MAP_REG129 Interrupt Channel Map Register for 516 to 516+3 0x5F8 CH_MAP_REG130 Interrupt Channel Map Register for 520 to 520+3 0x5FC CH_MAP_REG131 Interrupt Channel Map Register for 524 to 524+3 0x600 CH_MAP_REG132 Interrupt Channel Map Register for 528 to 528+3 0x604 CH_MAP_REG133 Interrupt Channel Map Register for 532 to 532+3 0x608 CH_MAP_REG134 Interrupt Channel Map Register for 536 to 536+3 0x60C CH_MAP_REG135 Interrupt Channel Map Register for 540 to 540+3 0x610 CH_MAP_REG136 Interrupt Channel Map Register for 544 to 544+3 0x614 CH_MAP_REG137 Interrupt Channel Map Register for 548 to 548+3 0x618 CH_MAP_REG138 Interrupt Channel Map Register for 552 to 552+3 0x61C CH_MAP_REG139 Interrupt Channel Map Register for 556 to 556+3 0x620 CH_MAP_REG140 Interrupt Channel Map Register for 560 to 560+3 164 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-27 CIC0 Registers (Part 6 of 7) Address Offset Register Mnemonic Register Name 0x624 CH_MAP_REG141 Interrupt Channel Map Register for 564 to 564+3 0x628 CH_MAP_REG142 Interrupt Channel Map Register for 568 to 568+3 0x62C CH_MAP_REG143 Interrupt Channel Map Register for 572 to 572+3 0x630 CH_MAP_REG144 Interrupt Channel Map Register for 576 to 576+3 0x634 CH_MAP_REG145 Interrupt Channel Map Register for 580 to 580+3 0x638 CH_MAP_REG146 Interrupt Channel Map Register for 584 to 584+3 0x63C CH_MAP_REG147 Interrupt Channel Map Register for 588 to 588+3 0x640 CH_MAP_REG148 Interrupt Channel Map Register for 592 to 592+3 0x644 CH_MAP_REG149 Interrupt Channel Map Register for 596 to 596+3 0x648 CH_MAP_REG150 Interrupt Channel Map Register for 600 to 600+3 0x64C CH_MAP_REG151 Interrupt Channel Map Register for 604 to 604+3 0x650 CH_MAP_REG152 Interrupt Channel Map Register for 608 to 608+3 0x654 CH_MAP_REG153 Interrupt Channel Map Register for 612 to 612+3 0x658 CH_MAP_REG154 Interrupt Channel Map Register for 616 to 616+3 0x65C CH_MAP_REG155 Interrupt Channel Map Register for 620 to 620+3 0x660 CH_MAP_REG156 Interrupt Channel Map Register for 624 to 624+3 0x664 CH_MAP_REG157 Interrupt Channel Map Register for 628 to 628+3 0x668 CH_MAP_REG158 Interrupt Channel Map Register for 632 to 632+3 0x66C CH_MAP_REG159 Interrupt Channel Map Register for 636 to 636+3 0x670 CH_MAP_REG160 Interrupt Channel Map Register for 640 to 640+3 0x674 CH_MAP_REG161 Interrupt Channel Map Register for 644 to 644+3 0x678 CH_MAP_REG162 Interrupt Channel Map Register for 648 to 648+3 0x67C CH_MAP_REG163 Interrupt Channel Map Register for 652 to 652+3 0x680 CH_MAP_REG164 Interrupt Channel Map Register for 656 to 656+3 0x684 CH_MAP_REG165 Interrupt Channel Map Register for 660 to 660+3 0x688 CH_MAP_REG166 Interrupt Channel Map Register for 664 to 664+3 0x68C CH_MAP_REG167 Interrupt Channel Map Register for 668 to 668+3 0x690 CH_MAP_REG168 Interrupt Channel Map Register for 672 to 672+3 0x694 CH_MAP_REG169 Interrupt Channel Map Register for 676 to 676+3 0x698 CH_MAP_REG170 Interrupt Channel Map Register for 680 to 680+3 0x69C CH_MAP_REG171 Interrupt Channel Map Register for 684 to 684+3 0x800 HINT_MAP_REG0 Host Interrupt Map Register for 0 to 0+3 0x804 HINT_MAP_REG1 Host Interrupt Map Register for 4 to 4+3 0x808 HINT_MAP_REG2 Host Interrupt Map Register for 8 to 8+3 0x80c HINT_MAP_REG3 Host Interrupt Map Register for 12 to 12+3 0x810 HINT_MAP_REG4 Host Interrupt Map Register for 16 to 16+3 0x814 HINT_MAP_REG5 Host Interrupt Map Register for 20 to 20+3 0x818 HINT_MAP_REG6 Host Interrupt Map Register for 24 to 24+3 0x81c HINT_MAP_REG7 Host Interrupt Map Register for 28 to 28+3 0x820 HINT_MAP_REG8 Host Interrupt Map Register for 32 to 32+3 0x824 HINT_MAP_REG9 Host Interrupt Map Register for 36 to 36+3 0x828 HINT_MAP_REG10 Host Interrupt Map Register for 40 to 40+3 0x82c HINT_MAP_REG11 Host Interrupt Map Register for 44 to 44+3 0x830 HINT_MAP_REG12 Host Interrupt Map Register for 48 to 48+3 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 165 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-27 CIC0 Registers (Part 7 of 7) Address Offset Register Mnemonic Register Name 0x834 HINT_MAP_REG13 Host Interrupt Map Register for 52 to 52+3 0x838 HINT_MAP_REG14 Host Interrupt Map Register for 56 to 56+3 0x83c HINT_MAP_REG15 Host Interrupt Map Register for 60 to 60+3 0x840 HINT_MAP_REG16 Host Interrupt Map Register for 64 to 64+3 0x844 HINT_MAP_REG17 Host Interrupt Map Register for 68 to 68+3 0x848 HINT_MAP_REG18 Host Interrupt Map Register for 72 to 72+3 0x84c HINT_MAP_REG19 Host Interrupt Map Register for 76 to 76+3 0x1500 ENABLE_HINT_REG0 Host Interrupt Enable Register 0 0x1504 ENABLE_HINT_REG1 Host Interrupt Enable Register 1 0x1508 ENABLE_HINT_REG2 Host Interrupt Enable Register 2 End of Table 6-27 6.3.2.2 CIC1 Register Map Table 6-28 CIC1 Registers (Part 1 of 7) Address Offset Register Mnemonic Register Name 0x0 REVISION_REG Revision Register 0x10 GLOBAL_ENABLE_HINT_REG Global Host Interrupt Enable Register 0x20 STATUS_SET_INDEX_REG Status Set Index Register 0x24 STATUS_CLR_INDEX_REG Status Clear Index Register 0x28 ENABLE_SET_INDEX_REG Enable Set Index Register 0x2c ENABLE_CLR_INDEX_REG Enable Clear Index Register 0x34 HINT_ENABLE_SET_INDEX_REG Host Interrupt Enable Set Index Register 0x38 HINT_ENABLE_CLR_INDEX_REG Host Interrupt Enable Clear Index Register 0x200 RAW_STATUS_REG0 Raw Status Register 0 0x204 RAW_STATUS_REG1 Raw Status Register 1 0x208 RAW_STATUS_REG2 Raw Status Register 2 0x20C RAW_STATUS_REG3 Raw Status Register 3 0x210 RAW_STATUS_REG4 Raw Status Register 4 0x214 RAW_STATUS_REG5 Raw Status Register 5 0x218 RAW_STATUS_REG6 Raw Status Register 6 0x21C RAW_STATUS_REG7 Raw Status Register 7 0x220 RAW_STATUS_REG8 Raw Status Register 8 0x224 RAW_STATUS_REG9 Raw Status Register 9 0x228 RAW_STATUS_REG10 Raw Status Register 10 0x22C RAW_STATUS_REG11 Raw Status Register 11 0x230 RAW_STATUS_REG12 Raw Status Register 12 0x234 RAW_STATUS_REG13 Raw Status Register 13 0x238 RAW_STATUS_REG14 Raw Status Register 14 0x23C RAW_STATUS_REG15 Raw Status Register 15 0x280 ENA_STATUS_REG0 Enabled Status Register 0 0x284 ENA_STATUS_REG1 Enabled Status Register 1 0x288 ENA_STATUS_REG2 Enabled Status Register 2 0x28C ENA_STATUS_REG3 Enabled Status Register 3 166 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-28 CIC1 Registers (Part 2 of 7) Address Offset Register Mnemonic Register Name 0x290 ENA_STATUS_REG4 Enabled Status Register 4 0x294 ENA_STATUS_REG5 Enabled Status Register 5 0x298 ENA_STATUS_REG6 Enabled Status Register 6 0x29C ENA_STATUS_REG7 Enabled Status Register 7 0x2A0 ENA_STATUS_REG8 Enabled Status Register 8 0x2A4 ENA_STATUS_REG9 Enabled Status Register 9 0x2A8 ENA_STATUS_REG10 Enabled Status Register10 0x2AC ENA_STATUS_REG11 Enabled Status Register 11 0x2B0 ENA_STATUS_REG12 Enabled Status Register 12 0x2B4 ENA_STATUS_REG13 Enabled Status Register 13 0x2B8 ENA_STATUS_REG14 Enabled Status Register 14 0x2BC ENA_STATUS_REG15 Enabled Status Register 15 0x300 ENABLE_REG0 Enable Register 0 0x304 ENABLE_REG1 Enable Register 1 0x308 ENABLE_REG2 Enable Register 2 0x30C ENABLE_REG3 Enable Register 3 0x310 ENABLE_REG4 Enable Register 4 0x314 ENABLE_REG5 Enable Register 5 0x318 ENABLE_REG6 Enable Register 6 0x31C ENABLE_REG7 Enable Register 7 0x320 ENABLE_REG8 Enable Register 8 0x324 ENABLE_REG9 Enable Register 9 0x328 ENABLE_REG10 Enable Register 10 0x32C ENABLE_REG11 Enable Register 11 0x330 ENABLE_REG12 Enable Register 12 0x334 ENABLE_REG13 Enable Register 13 0x338 ENABLE_REG14 Enable Register 14 0x33C ENABLE_REG15 Enable Register 15 0x380 ENABLE_CLR_REG0 Enable Clear Register 0 0x384 ENABLE_CLR_REG1 Enable Clear Register 1 0x388 ENABLE_CLR_REG2 Enable Clear Register 2 0x38C ENABLE_CLR_REG3 Enable Clear Register 3 0x390 ENABLE_CLR_REG4 Enable Clear Register 4 0x394 ENABLE_CLR_REG5 Enable Clear Register 5 0x398 ENABLE_CLR_REG6 Enable Clear Register 6 0x39C ENABLE_CLR_REG7 Enable Clear Register 7 0x3A0 ENABLE_CLR_REG8 Enable Clear Register 8 0x3A4 ENABLE_CLR_REG9 Enable Clear Register 9 0x3A8 ENABLE_CLR_REG10 Enable Clear Register 10 0x3AC ENABLE_CLR_REG11 Enable Clear Register 11 0x3B0 ENABLE_CLR_REG12 Enable Clear Register 12 0x3B4 ENABLE_CLR_REG13 Enable Clear Register 13 0x3B8 ENABLE_CLR_REG14 Enable Clear Register 14 0x38C ENABLE_CLR_REG15 Enable Clear Register 15 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 167 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-28 CIC1 Registers (Part 3 of 7) Address Offset Register Mnemonic Register Name 0x400 CH_MAP_REG0 Interrupt Channel Map Register for 0 to 0+3 0x404 CH_MAP_REG1 Interrupt Channel Map Register for 4 to 4+3 0x408 CH_MAP_REG2 Interrupt Channel Map Register for 8 to 8+3 0x40c CH_MAP_REG3 Interrupt Channel Map Register for 12 to 12+3 0x410 CH_MAP_REG4 Interrupt Channel Map Register for 16 to 16+3 0x414 CH_MAP_REG5 Interrupt Channel Map Register for 20 to 20+3 0x418 CH_MAP_REG6 Interrupt Channel Map Register for 24 to 24+3 0x41c CH_MAP_REG7 Interrupt Channel Map Register for 28 to 28+3 0x420 CH_MAP_REG8 Interrupt Channel Map Register for 32 to 32+3 0x424 CH_MAP_REG9 Interrupt Channel Map Register for 36 to 36+3 0x428 CH_MAP_REG10 Interrupt Channel Map Register for 40 to 40+3 0x42c CH_MAP_REG11 Interrupt Channel Map Register for 44 to 44+3 0x430 CH_MAP_REG12 Interrupt Channel Map Register for 48 to 48+3 0x434 CH_MAP_REG13 Interrupt Channel Map Register for 52 to 52+3 0x438 CH_MAP_REG14 Interrupt Channel Map Register for 56 to 56+3 0x43c CH_MAP_REG15 Interrupt Channel Map Register for 60 to 60+3 0x440 CH_MAP_REG16 Interrupt Channel Map Register for 64 to 64+3 0x444 CH_MAP_REG17 Interrupt Channel Map Register for 68 to 68+3 0x448 CH_MAP_REG18 Interrupt Channel Map Register for 72 to 72+3 0x44c CH_MAP_REG19 Interrupt Channel Map Register for 76 to 76+3 0x450 CH_MAP_REG20 Interrupt Channel Map Register for 80 to 80+3 0x454 CH_MAP_REG21 Interrupt Channel Map Register for 84 to 84+3 0x458 CH_MAP_REG22 Interrupt Channel Map Register for 88 to 88+3 0x45c CH_MAP_REG23 Interrupt Channel Map Register for 92 to 92+3 0x460 CH_MAP_REG24 Interrupt Channel Map Register for 96 to 96+3 0x464 CH_MAP_REG25 Interrupt Channel Map Register for 100 to 100+3 0x468 CH_MAP_REG26 Interrupt Channel Map Register for 104 to 104+3 0x46c CH_MAP_REG27 Interrupt Channel Map Register for 108 to 108+3 0x470 CH_MAP_REG28 Interrupt Channel Map Register for 112 to 112+3 0x474 CH_MAP_REG29 Interrupt Channel Map Register for 116 to 116+3 0x478 CH_MAP_REG30 Interrupt Channel Map Register for 120 to 120+3 0x47c CH_MAP_REG31 Interrupt Channel Map Register for 124 to 124+3 0x480 CH_MAP_REG32 Interrupt Channel Map Register for 128 to 128+3 0x484 CH_MAP_REG33 Interrupt Channel Map Register for 132 to 132+3 0x488 CH_MAP_REG34 Interrupt Channel Map Register for 136 to 136+3 0x48c CH_MAP_REG35 Interrupt Channel Map Register for 140 to 140+3 0x490 CH_MAP_REG36 Interrupt Channel Map Register for 144 to 144+3 0x494 CH_MAP_REG37 Interrupt Channel Map Register for 148 to 148+3 0x498 CH_MAP_REG38 Interrupt Channel Map Register for 152 to 152+3 0x49c CH_MAP_REG39 Interrupt Channel Map Register for 156 to 156+3 0x4A0 CH_MAP_REG40 Interrupt Channel Map Register for 160 to 160+3 0x4A4 CH_MAP_REG41 Interrupt Channel Map Register for 164 to 164+3 0x4A8 CH_MAP_REG42 Interrupt Channel Map Register for 168 to 168+3 0x4AC CH_MAP_REG43 Interrupt Channel Map Register for 172 to 172+3 168 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-28 CIC1 Registers (Part 4 of 7) Address Offset Register Mnemonic Register Name 0x4B0 CH_MAP_REG44 Interrupt Channel Map Register for 176 to 176+3 0x4B4 CH_MAP_REG45 Interrupt Channel Map Register for 180 to 180+3 0x4B8 CH_MAP_REG46 Interrupt Channel Map Register for 184 to 184+3 0x4BC CH_MAP_REG47 Interrupt Channel Map Register for 188 to 188+3 0x4C0 CH_MAP_REG48 Interrupt Channel Map Register for 192 to 192+3 0x4C4 CH_MAP_REG49 Interrupt Channel Map Register for 196 to 196+3 0x4C8 CH_MAP_REG50 Interrupt Channel Map Register for 200 to 200+3 0x4CC CH_MAP_REG51 Interrupt Channel Map Register for 204 to 204+3 0X4D0 CH_MAP_REG52 Interrupt Channel Map Register for 208 to 208+3 0X4D4 CH_MAP_REG53 Interrupt Channel Map Register for 212 to 212+3 0X4D8 CH_MAP_REG54 Interrupt Channel Map Register for 216 to 216+3 0X4DC CH_MAP_REG55 Interrupt Channel Map Register for 220 to 220+3 0X4E0 CH_MAP_REG56 Interrupt Channel Map Register for 224 to 224+3 0X4E4 CH_MAP_REG57 Interrupt Channel Map Register for 228 to 228+3 0X4E8 CH_MAP_REG58 Interrupt Channel Map Register for 232 to 232+3 0X4FC CH_MAP_REG59 Interrupt Channel Map Register for 236 to 236+3 0X4F0 CH_MAP_REG60 Interrupt Channel Map Register for 240 to 240+3 0X4F4 CH_MAP_REG61 Interrupt Channel Map Register for 244 to 244+3 0X4F8 CH_MAP_REG62 Interrupt Channel Map Register for 248 to 248+3 0X4FC CH_MAP_REG63 Interrupt Channel Map Register for 252 to 252+3 0X500 CH_MAP_REG64 Interrupt Channel Map Register for 256 to 256+3 0X504 CH_MAP_REG65 Interrupt Channel Map Register for 260 to 260+3 0X508 CH_MAP_REG66 Interrupt Channel Map Register for 264 to 264+3 0X50C CH_MAP_REG67 Interrupt Channel Map Register for 268 to 268+3 0X510 CH_MAP_REG68 Interrupt Channel Map Register for 272 to 272+3 0X514 CH_MAP_REG69 Interrupt Channel Map Register for 276 to 276+3 0X518 CH_MAP_REG70 Interrupt Channel Map Register for 280 to 280+3 0X51C CH_MAP_REG71 Interrupt Channel Map Register for 284 to 284+3 0X520 CH_MAP_REG72 Interrupt Channel Map Register for 288 to 288+3 0X524 CH_MAP_REG73 Interrupt Channel Map Register for 292 to 292+3 0X528 CH_MAP_REG74 Interrupt Channel Map Register for 296 to 296+3 0X52C CH_MAP_REG75 Interrupt Channel Map Register for 300 to 300+3 0X520 CH_MAP_REG76 Interrupt Channel Map Register for 304 to 304+3 0X524 CH_MAP_REG77 Interrupt Channel Map Register for 308 to 308+3 0X528 CH_MAP_REG78 Interrupt Channel Map Register for 312 to 312+3 0x52C CH_MAP_REG79 Interrupt Channel Map Register for 316 to 316+3 0x530 CH_MAP_REG80 Interrupt Channel Map Register for 320 to 320+3 0x534 CH_MAP_REG81 Interrupt Channel Map Register for 324 to 324+3 0x538 CH_MAP_REG82 Interrupt Channel Map Register for 328 to 328+3 0x53C CH_MAP_REG83 Interrupt Channel Map Register for 332 to332+3 0x540 CH_MAP_REG84 Interrupt Channel Map Register for336 to 336+3 0x544 CH_MAP_REG85 Interrupt Channel Map Register for 340 to 340+3 0x548 CH_MAP_REG86 Interrupt Channel Map Register for 344 to 344+3 0x54C CH_MAP_REG87 Interrupt Channel Map Register for 348 to 348+3 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 169 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-28 CIC1 Registers (Part 5 of 7) Address Offset Register Mnemonic Register Name 0x550 CH_MAP_REG88 Interrupt Channel Map Register for 352 to 352+3 0x554 CH_MAP_REG89 Interrupt Channel Map Register for 356 to 356+3 0x558 CH_MAP_REG90 Interrupt Channel Map Register for 360 to 360+3 0x55C CH_MAP_REG91 Interrupt Channel Map Register for 364 to 364+3 0x560 CH_MAP_REG92 Interrupt Channel Map Register for 368 to 368+3 0x564 CH_MAP_REG93 Interrupt Channel Map Register for372 to 372+3 0x568 CH_MAP_REG94 Interrupt Channel Map Register for 376 to 376+3 0x56C CH_MAP_REG95 Interrupt Channel Map Register for 380 to 380+3 0x570 CH_MAP_REG96 Interrupt Channel Map Register for 384 to 384+3 0x574 CH_MAP_REG97 Interrupt Channel Map Register for 388 to 388+3 0x578 CH_MAP_REG98 Interrupt Channel Map Register for 392 to 392+3 0x57C CH_MAP_REG99 Interrupt Channel Map Register for 396 to 396+3 0x580 CH_MAP_REG100 Interrupt Channel Map Register for 400 to 400+3 0x584 CH_MAP_REG101 Interrupt Channel Map Register for 404 to 404+3 0x588 CH_MAP_REG102 Interrupt Channel Map Register for 408 to 408+3 0x58C CH_MAP_REG103 Interrupt Channel Map Register for 412 to412+3 0x590 CH_MAP_REG104 Interrupt Channel Map Register for 416 to 416+3 0x594 CH_MAP_REG105 Interrupt Channel Map Register for 420 to 420+3 0x598 CH_MAP_REG106 Interrupt Channel Map Register for 424 to 424+3 0x59C CH_MAP_REG107 Interrupt Channel Map Register for 428 to 428+3 0x5A0 CH_MAP_REG108 Interrupt Channel Map Register for 432 to 432+3 0x5A4 CH_MAP_REG109 Interrupt Channel Map Register for 436 to 436+3 0x5A8 CH_MAP_REG110 Interrupt Channel Map Register for 440 to 440+3 0x5AC CH_MAP_REG111 Interrupt Channel Map Register for 444 to 444+3 0x5B0 CH_MAP_REG112 Interrupt Channel Map Register for 448 to 448+3 0x5B4 CH_MAP_REG113 Interrupt Channel Map Register for 452 to 452+3 0x5B8 CH_MAP_REG114 Interrupt Channel Map Register for 456 to 456+3 0x5BC CH_MAP_REG115 Interrupt Channel Map Register for 460 to 460+3 0x5C0 CH_MAP_REG116 Interrupt Channel Map Register for 464 to 464+3 0x5C4 CH_MAP_REG117 Interrupt Channel Map Register for 468 to 468+3 0x5C8 CH_MAP_REG118 Interrupt Channel Map Register for 472 to 472+3 0x5CC CH_MAP_REG119 Interrupt Channel Map Register for 476 to 476+3 0x5D0 CH_MAP_REG120 Interrupt Channel Map Register for 480 to 480+3 0x5D4 CH_MAP_REG121 Interrupt Channel Map Register for 484 to 484+3 0x5D8 CH_MAP_REG122 Interrupt Channel Map Register for 488 to 488+3 0x5DC CH_MAP_REG123 Interrupt Channel Map Register for 482 to 492+3 0x5E0 CH_MAP_REG124 Interrupt Channel Map Register for 496 to 496+3 0x5E4 CH_MAP_REG125 Interrupt Channel Map Register for 500 to 500+3 0x5E8 CH_MAP_REG126 Interrupt Channel Map Register for 504 to 504+3 0x5EC CH_MAP_REG127 Interrupt Channel Map Register for 508 to 508+3 0x5F0 CH_MAP_REG128 Interrupt Channel Map Register for 512 to 512+3 0x5F4 CH_MAP_REG129 Interrupt Channel Map Register for 516 to 516+3 0x5F8 CH_MAP_REG130 Interrupt Channel Map Register for 520 to 520+3 0x5FC CH_MAP_REG131 Interrupt Channel Map Register for 524 to 524+3 170 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-28 CIC1 Registers (Part 6 of 7) Address Offset Register Mnemonic Register Name 0x600 CH_MAP_REG132 Interrupt Channel Map Register for 528 to 528+3 0x604 CH_MAP_REG133 Interrupt Channel Map Register for 532 to 532+3 0x608 CH_MAP_REG134 Interrupt Channel Map Register for 536 to 536+3 0x60C CH_MAP_REG135 Interrupt Channel Map Register for 540 to 540+3 0x610 CH_MAP_REG136 Interrupt Channel Map Register for 544 to 544+3 0x614 CH_MAP_REG137 Interrupt Channel Map Register for 548 to 548+3 0x618 CH_MAP_REG138 Interrupt Channel Map Register for 552 to 552+3 0x61C CH_MAP_REG139 Interrupt Channel Map Register for 556 to 556+3 0x620 CH_MAP_REG140 Interrupt Channel Map Register for 560 to 560+3 0x624 CH_MAP_REG141 Interrupt Channel Map Register for 564 to 564+3 0x628 CH_MAP_REG142 Interrupt Channel Map Register for 568 to 568+3 0x62C CH_MAP_REG143 Interrupt Channel Map Register for 572 to 572+3 0x630 CH_MAP_REG144 Interrupt Channel Map Register for 576 to 576+3 0x634 CH_MAP_REG145 Interrupt Channel Map Register for 580 to 580+3 0x638 CH_MAP_REG146 Interrupt Channel Map Register for 584 to 584+3 0x63C CH_MAP_REG147 Interrupt Channel Map Register for 588 to 588+3 0x640 CH_MAP_REG148 Interrupt Channel Map Register for 592 to 592+3 0x644 CH_MAP_REG149 Interrupt Channel Map Register for 596 to 596+3 0x648 CH_MAP_REG150 Interrupt Channel Map Register for 600 to 600+3 0x64C CH_MAP_REG151 Interrupt Channel Map Register for 604 to 604+3 0x650 CH_MAP_REG152 Interrupt Channel Map Register for 608 to 608+3 0x654 CH_MAP_REG153 Interrupt Channel Map Register for 612 to 612+3 0x658 CH_MAP_REG154 Interrupt Channel Map Register for 616 to 616+3 0x65C CH_MAP_REG155 Interrupt Channel Map Register for 620 to 620+3 0x660 CH_MAP_REG156 Interrupt Channel Map Register for 624 to 624+3 0x664 CH_MAP_REG157 Interrupt Channel Map Register for 628 to 628+3 0x668 CH_MAP_REG158 Interrupt Channel Map Register for 632 to 632+3 0x66C CH_MAP_REG159 Interrupt Channel Map Register for 636 to 636+3 0x670 CH_MAP_REG160 Interrupt Channel Map Register for 640 to 640+3 0x674 CH_MAP_REG161 Interrupt Channel Map Register for 644 to 644+3 0x678 CH_MAP_REG162 Interrupt Channel Map Register for 648 to 648+3 0x67C CH_MAP_REG163 Interrupt Channel Map Register for 652 to 652+3 0x680 CH_MAP_REG164 Interrupt Channel Map Register for 656 to 656+3 0x684 CH_MAP_REG165 Interrupt Channel Map Register for 660 to 660+3 0x688 CH_MAP_REG166 Interrupt Channel Map Register for 664 to 664+3 0x68C CH_MAP_REG167 Interrupt Channel Map Register for 668 to 668+3 0x690 CH_MAP_REG168 Interrupt Channel Map Register for 672 to 672+3 0x694 CH_MAP_REG169 Interrupt Channel Map Register for 676 to 676+3 0x698 CH_MAP_REG170 Interrupt Channel Map Register for 680 to 680+3 0x69C CH_MAP_REG171 Interrupt Channel Map Register for 684 to 684+3 0x800 HINT_MAP_REG0 Host Interrupt Map Register for 0 to 0+3 0x804 HINT_MAP_REG1 Host Interrupt Map Register for 4 to 4+3 0x808 HINT_MAP_REG2 Host Interrupt Map Register for 8 to 8+3 0x80c HINT_MAP_REG3 Host Interrupt Map Register for 12 to 12+3 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 171 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-28 CIC1 Registers (Part 7 of 7) Address Offset Register Mnemonic Register Name 0x810 HINT_MAP_REG4 Host Interrupt Map Register for 16 to 16+3 0x814 HINT_MAP_REG5 Host Interrupt Map Register for 20 to 20+3 0x818 HINT_MAP_REG6 Host Interrupt Map Register for 24 to 24+3 0x81c HINT_MAP_REG7 Host Interrupt Map Register for 28 to 28+3 0x820 HINT_MAP_REG8 Host Interrupt Map Register for 32 to 32+3 0x824 HINT_MAP_REG9 Host Interrupt Map Register for 36 to 36+3 0x828 HINT_MAP_REG10 Host Interrupt Map Register for 40 to 40+3 0x82c HINT_MAP_REG11 Host Interrupt Map Register for 44 to 44+3 0x830 HINT_MAP_REG12 Host Interrupt Map Register for 48 to 48+3 0x834 HINT_MAP_REG13 Host Interrupt Map Register for 52 to 52+3 0x1500 ENABLE_HINT_REG0 Host Interrupt Enable Register 0 0x1504 ENABLE_HINT_REG1 Host Interrupt Enable Register 1 End of Table 6-28 6.3.2.3 CIC2 Register Map Table 6-29 CIC2 Registers (Part 1 of 4) Address Offset Register Mnemonic Register Name 0x0 REVISION_REG Revision Register 0x10 GLOBAL_ENABLE_HINT_REG Global Host Interrupt Enable Register 0x20 STATUS_SET_INDEX_REG Status Set Index Register 0x24 STATUS_CLR_INDEX_REG Status Clear Index Register 0x28 ENABLE_SET_INDEX_REG Enable Set Index Register 0x2c ENABLE_CLR_INDEX_REG Enable Clear Index Register 0x34 HINT_ENABLE_SET_INDEX_REG Host Interrupt Enable Set Index Register 0x38 HINT_ENABLE_CLR_INDEX_REG Host Interrupt Enable Clear Index Register 0x200 RAW_STATUS_REG0 Raw Status Register 0 0x204 RAW_STATUS_REG1 Raw Status Register 1 0x208 RAW_STATUS_REG2 Raw Status Register 2 0x20C RAW_STATUS_REG3 Raw Status Register 3 0x210 RAW_STATUS_REG4 Raw Status Register 4 0x214 RAW_STATUS_REG5 Raw Status Register 5 0x218 RAW_STATUS_REG6 Raw Status Register 6 0x21C RAW_STATUS_REG7 Raw Status Register 7 0x220 RAW_STATUS_REG8 Raw Status Register 8 0x224 RAW_STATUS_REG9 Raw Status Register 9 0x228 RAW_STATUS_REG10 Raw Status Register 10 0x22C RAW_STATUS_REG11 Raw Status Register 11 0x230 RAW_STATUS_REG12 Raw Status Register 12 0x234 RAW_STATUS_REG13 Raw Status Register 13 0x238 RAW_STATUS_REG14 Raw Status Register 14 0x23C RAW_STATUS_REG15 Raw Status Register 15 0x280 ENA_STATUS_REG0 Enabled Status Register 0 0x284 ENA_STATUS_REG1 Enabled Status Register 1 172 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-29 CIC2 Registers (Part 2 of 4) Address Offset Register Mnemonic Register Name 0x288 ENA_STATUS_REG2 Enabled Status Register 2 0x28C ENA_STATUS_REG3 Enabled Status Register 3 0x290 ENA_STATUS_REG4 Enabled Status Register 4 0x294 ENA_STATUS_REG5 Enabled Status Register 5 0x298 ENA_STATUS_REG6 Enabled Status Register 6 0x29C ENA_STATUS_REG7 Enabled Status Register 7 0x2A0 ENA_STATUS_REG8 Enabled Status Register 8 0x2A4 ENA_STATUS_REG9 Enabled Status Register 9 0x2A8 ENA_STATUS_REG10 Enabled Status Register10 0x2AC ENA_STATUS_REG11 Enabled Status Register 11 0x2B0 ENA_STATUS_REG12 Enabled Status Register 12 0x2B4 ENA_STATUS_REG13 Enabled Status Register 13 0x2B8 ENA_STATUS_REG14 Enabled Status Register 14 0x2BC ENA_STATUS_REG15 Enabled Status Register 15 0x300 ENABLE_REG0 Enable Register 0 0x304 ENABLE_REG1 Enable Register 1 0x308 ENABLE_REG2 Enable Register 2 0x30C ENABLE_REG3 Enable Register 3 0x310 ENABLE_REG4 Enable Register 4 0x314 ENABLE_REG5 Enable Register 5 0x318 ENABLE_REG6 Enable Register 6 0x31C ENABLE_REG7 Enable Register 7 0x320 ENABLE_REG8 Enable Register 8 0x324 ENABLE_REG9 Enable Register 9 0x328 ENABLE_REG10 Enable Register 10 0x32C ENABLE_REG11 Enable Register 11 0x330 ENABLE_REG12 Enable Register 12 0x334 ENABLE_REG13 Enable Register 13 0x338 ENABLE_REG14 Enable Register 14 0x33C ENABLE_REG15 Enable Register 15 0x380 ENABLE_CLR_REG0 Enable Clear Register 0 0x384 ENABLE_CLR_REG1 Enable Clear Register 1 0x388 ENABLE_CLR_REG2 Enable Clear Register 2 0x38C ENABLE_CLR_REG3 Enable Clear Register 3 0x390 ENABLE_CLR_REG4 Enable Clear Register 4 0x394 ENABLE_CLR_REG5 Enable Clear Register 5 0x398 ENABLE_CLR_REG6 Enable Clear Register 6 0x39C ENABLE_CLR_REG7 Enable Clear Register 7 0x3A0 ENABLE_CLR_REG8 Enable Clear Register 8 0x3A4 ENABLE_CLR_REG9 Enable Clear Register 9 0x3A8 ENABLE_CLR_REG10 Enable Clear Register 10 0x3AC ENABLE_CLR_REG11 Enable Clear Register 11 0x3B0 ENABLE_CLR_REG12 Enable Clear Register 12 0x3B4 ENABLE_CLR_REG13 Enable Clear Register 13 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 173 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-29 CIC2 Registers (Part 3 of 4) Address Offset Register Mnemonic 0x3B8 ENABLE_CLR_REG14 Enable Clear Register 14 0x38C ENABLE_CLR_REG15 Enable Clear Register 15 0x400 CH_MAP_REG0 Interrupt Channel Map Register for 0 to 0+3 0x404 CH_MAP_REG1 Interrupt Channel Map Register for 4 to 4+3 0x408 CH_MAP_REG2 Interrupt Channel Map Register for 8 to 8+3 0x40c CH_MAP_REG3 Interrupt Channel Map Register for 12 to 12+3 0x410 CH_MAP_REG4 Interrupt Channel Map Register for 16 to 16+3 0x414 CH_MAP_REG5 Interrupt Channel Map Register for 20 to 20+3 0x418 CH_MAP_REG6 Interrupt Channel Map Register for 24 to 24+3 0x41c CH_MAP_REG7 Interrupt Channel Map Register for 28 to 28+3 0x420 CH_MAP_REG8 Interrupt Channel Map Register for 32 to 32+3 0x424 CH_MAP_REG9 Interrupt Channel Map Register for 36 to 36+3 0x428 CH_MAP_REG10 Interrupt Channel Map Register for 40 to 40+3 0x42c CH_MAP_REG11 Interrupt Channel Map Register for 44 to 44+3 0x430 CH_MAP_REG12 Interrupt Channel Map Register for 48 to 48+3 0x434 CH_MAP_REG13 Interrupt Channel Map Register for 52 to 52+3 0x438 CH_MAP_REG14 Interrupt Channel Map Register for 56 to 56+3 0x43c CH_MAP_REG15 Interrupt Channel Map Register for 60 to 60+3 0x5C0 CH_MAP_REG116 Interrupt Channel Map Register for 464 to 464+3 0x5C4 CH_MAP_REG117 Interrupt Channel Map Register for 468 to 468+3 0x5C8 CH_MAP_REG118 Interrupt Channel Map Register for 472 to 472+3 0x5CC CH_MAP_REG119 Interrupt Channel Map Register for 476 to 476+3 0x5D0 CH_MAP_REG120 Interrupt Channel Map Register for 480 to 480+3 0x5D4 CH_MAP_REG121 Interrupt Channel Map Register for 484 to 484+3 0x5D8 CH_MAP_REG122 Interrupt Channel Map Register for 488 to 488+3 0x5DC CH_MAP_REG123 Interrupt Channel Map Register for 482 to 492+3 0x5E0 CH_MAP_REG124 Interrupt Channel Map Register for 496 to 496+3 0x5E4 CH_MAP_REG125 Interrupt Channel Map Register for 500 to 500+3 0x5E8 CH_MAP_REG126 Interrupt Channel Map Register for 504 to 504+3 0x5EC CH_MAP_REG127 Interrupt Channel Map Register for 508 to 508+3 0x5F0 CH_MAP_REG128 Interrupt Channel Map Register for 512 to 512+3 0x5F4 CH_MAP_REG129 Interrupt Channel Map Register for 516 to 516+3 0x5F8 CH_MAP_REG130 Interrupt Channel Map Register for 520 to 520+3 0x5FC CH_MAP_REG131 Interrupt Channel Map Register for 524 to 524+3 0x600 CH_MAP_REG132 Interrupt Channel Map Register for 528 to 528+3 0x604 CH_MAP_REG133 Interrupt Channel Map Register for 532 to 532+3 0x608 CH_MAP_REG134 Interrupt Channel Map Register for 536 to 536+3 0x60C CH_MAP_REG135 Interrupt Channel Map Register for 540 to 540+3 0x610 CH_MAP_REG136 Interrupt Channel Map Register for 544 to 544+3 0x614 CH_MAP_REG137 Interrupt Channel Map Register for 548 to 548+3 0x618 CH_MAP_REG138 Interrupt Channel Map Register for 552 to 552+3 0x61C CH_MAP_REG139 Interrupt Channel Map Register for 556 to 556+3 0x620 CH_MAP_REG140 Interrupt Channel Map Register for 560 to 560+3 0x624 CH_MAP_REG141 Interrupt Channel Map Register for 564 to 564+3 174 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Register Name Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-29 CIC2 Registers (Part 4 of 4) Address Offset Register Mnemonic Register Name 0x628 CH_MAP_REG142 Interrupt Channel Map Register for 568 to 568+3 0x62C CH_MAP_REG143 Interrupt Channel Map Register for 572 to 572+3 0x630 CH_MAP_REG144 Interrupt Channel Map Register for 576 to 576+3 0x634 CH_MAP_REG145 Interrupt Channel Map Register for 580 to 580+3 0x638 CH_MAP_REG146 Interrupt Channel Map Register for 584 to 584+3 0x63C CH_MAP_REG147 Interrupt Channel Map Register for 588 to 588+3 0x640 CH_MAP_REG148 Interrupt Channel Map Register for 592 to 592+3 0x644 CH_MAP_REG149 Interrupt Channel Map Register for 596 to 596+3 0x648 CH_MAP_REG150 Interrupt Channel Map Register for 600 to 600+3 0x64C CH_MAP_REG151 Interrupt Channel Map Register for 604 to 604+3 0x650 CH_MAP_REG152 Interrupt Channel Map Register for 608 to 608+3 0x654 CH_MAP_REG153 Interrupt Channel Map Register for 612 to 612+3 0x658 CH_MAP_REG154 Interrupt Channel Map Register for 616 to 616+3 0x65C CH_MAP_REG155 Interrupt Channel Map Register for 620 to 620+3 0x660 CH_MAP_REG156 Interrupt Channel Map Register for 624 to 624+3 0x664 CH_MAP_REG157 Interrupt Channel Map Register for 628 to 628+3 0x668 CH_MAP_REG158 Interrupt Channel Map Register for 632 to 632+3 0x66C CH_MAP_REG159 Interrupt Channel Map Register for 636 to 636+3 0x670 CH_MAP_REG160 Interrupt Channel Map Register for 640 to 640+3 0x674 CH_MAP_REG161 Interrupt Channel Map Register for 644 to 644+3 0x678 CH_MAP_REG162 Interrupt Channel Map Register for 648 to 648+3 0x67C CH_MAP_REG163 Interrupt Channel Map Register for 652 to 652+3 0x680 CH_MAP_REG164 Interrupt Channel Map Register for 656 to 656+3 0x684 CH_MAP_REG165 Interrupt Channel Map Register for 660 to 660+3 0x688 CH_MAP_REG166 Interrupt Channel Map Register for 664 to 664+3 0x68C CH_MAP_REG167 Interrupt Channel Map Register for 668 to 668+3 0x690 CH_MAP_REG168 Interrupt Channel Map Register for 672 to 672+3 0x694 CH_MAP_REG169 Interrupt Channel Map Register for 676 to 676+3 0x698 CH_MAP_REG170 Interrupt Channel Map Register for 680 to 680+3 0x69C CH_MAP_REG171 Interrupt Channel Map Register for 684 to 684+3 0x800 HINT_MAP_REG0 Host Interrupt Map Register for 0 to 0+3 0x804 HINT_MAP_REG1 Host Interrupt Map Register for 4 to 4+3 0x808 HINT_MAP_REG2 Host Interrupt Map Register for 8 to 8+3 0x80c HINT_MAP_REG3 Host Interrupt Map Register for 12 to 12+3 0x810 HINT_MAP_REG4 Host Interrupt Map Register for 16 to 16+3 0x814 HINT_MAP_REG5 Host Interrupt Map Register for 20 to 20+3 0x818 HINT_MAP_REG6 Host Interrupt Map Register for 24 to 24+3 0x81c HINT_MAP_REG7 Host Interrupt Map Register for 28 to 28+3 0x820 HINT_MAP_REG8 Host Interrupt Map Register for 32 to 32+3 0x824 HINT_MAP_REG9 Host Interrupt Map Register for 36 to 36+3 0x828 HINT_MAP_REG10 Host Interrupt Map Register for 40 to 40+3 0x1500 ENABLE_HINT_REG0 Host Interrupt Enable Register 0 0x1504 ENABLE_HINT_REG1 Host Interrupt Enable Register 1 End of Table 6-29 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 175 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 6.3.3 Inter-Processor Register Map Table 6-30 IPC Generation Registers (IPCGRx) Address Start Address End Size Register Name Description 0x02620200 0x02620203 4B NMIGR0 NMI Event Generation Register for C66x CorePac0 0x02620204 0x02620207 4B NMIGR1 NMI Event Generation Register for C66x CorePac1 0x02620208 0x0262020B 4B NMIGR2 NMI Event Generation Register for C66x CorePac2 0x0262020C 0x0262020F 4B NMIGR3 NMI Event Generation Register for C66x CorePac3 0x02620210 0x02620213 4B NMIGR4 NMI Event Generation Register for C66x CorePac4 (66AK2H12/14 only) 0x02620214 0x02620217 4B NMIGR5 NMI Event Generation Register for C66x CorePac5 (66AK2H12/14 only) 0x02620218 0x0262021B 4B NMIGR6 NMI Event Generation Register for C66x CorePac6(66AK2H12/14 only) 0x0262021C 0x0262021F 4B NMIGR7 NMI Event Generation Register for C66x CorePac7(66AK2H12/14 only) 0x02620220 0x0262023F 32B Reserved 0x02620240 0x02620243 4B IPCGR0 IPC Generation Register for C66x CorePac0 0x02620244 0x02620247 4B IPCGR1 IPC Generation Register for C66x CorePac1 0x02620248 0x0262024B 4B IPCGR2 IPC Generation Register for C66x CorePac2 0x0262024C 0x0262024F 4B IPCGR3 IPC Generation Register for C66x CorePac3 0x02620250 0x02620253 4B IPCGR4 IPC Generation Register for C66x CorePac4 (66AK2H12/14 only) 0x02620254 0x02620257 4B IPCGR5 IPC Generation Register for C66x CorePac5 (66AK2H12/14 only) 0x02620258 0x0262025B 4B IPCGR6 IPC Generation Register for C66x CorePac6 (66AK2H12/14 only) 0x0262025C 0x0262025F 4B IPCGR7 IPC Generation Register for C66x CorePac7 (66AK2H12/14 only) 0x02620260 0x02620263 4B IPCGR8 IPC Generation Register for ARM CorePac0 0x02620264 0x02620267 4B IPCGR9 IPC Generation Register for ARM CorePac1 0x02620268 0x0262026B 4B IPCGR10 IPC Generation Register for ARM CorePac2 (66AK2H12/14 only) IPC Generation Register for ARM CorePac3 (66AK2H12/14 only) 0x0262026C 0x0262026F 4B IPCGR11 0x02620270 0x0262027B 12B Reserved 0x0262027C 0x0262027F 4B IPCGRH IPC Generation Register for Host 0x02620280 0x02620283 4B IPCAR0 IPC Acknowledgement Register for C66x CorePac0 0x02620284 0x02620287 4B IPCAR1 IPC Acknowledgement Register for C66x CorePac1 0x02620288 0x0262028B 4B IPCAR2 IPC Acknowledgement Register for C66x CorePac2 0x0262028C 0x0262028F 4B IPCAR3 IPC Acknowledgement Register for C66x CorePac3 0x02620290 0x02620293 4B IPCAR4 IPC Acknowledgement Register for C66x CorePac4 (66AK2H12/14 only) 0x02620294 0x02620297 4B IPCAR5 IPC Acknowledgement Register for C66x CorePac5 (66AK2H12/14 only) 0x02620298 0x0262029B 4B IPCAR6 IPC Acknowledgement Register for C66x CorePac6 (66AK2H12/14 only) 0x0262029C 0x0262029F 4B IPCAR7 IPC Acknowledgement Register for C66x CorePac7 (66AK2H12/14 only) 0x026202A0 0x026202A3 4B IPCAR8 IPC Acknowledgement Register for ARM CorePac0 0x026202A4 0x026202A7 4B IPCAR9 IPC Acknowledgement Register for ARM CorePac1 0x026202A8 0x026202AB 4B IPCAR10 IPC Acknowledgement Register for ARM CorePac2 (66AK2H12/14 only) IPC Acknowledgement Register for ARM CorePac3 (66AK2H12/14 only) 0x026202AC 0x026202AF 4B IPCAR11 0x026202B0 0x026202BB 12B Reserved 0x026202A0 0x026202BB 28B Reserved 0x026202BC 0x026202BF 4B IPCARH IPC Acknowledgement Register for host End of Table 6-30 176 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 6.3.4 NMI and LRESET The Non-Maskable Interrupts (NMI) can be generated by chip-level registers and the LRESET can be generated by software writing into LPSC registers. LRESET and NMI can also be asserted by device pins or watchdog timers. One NMI pin and one LRESET pin are shared by all eight C66x CorePacs on the device. The CORESEL[3:0] pins can be configured to select between the eight C66x CorePacs available as shown in Table 6-31. Table 6-31 LRESET and NMI Decoding CORESEL[3:0] Pin Input LRESET Pin Input NMI Pin Input LRESETNMIEN Pin Input Reset Mux Block Output XXXX X X 1 No local reset or NMI assertion 0000 0 X 0 Assert local reset to C66x CorePac0 0001 0 X 0 Assert local reset to C66x CorePac1 0010 0 X 0 Assert local reset to C66x CorePac2 0011 0 X 0 Assert local reset to C66x CorePac3 0100 0 X 0 Assert local reset to C66x CorePac4 (66AK2H12/14 only) 0101 0 X 0 Assert local reset to C66x CorePac5 (66AK2H12/14 only) 0110 0 X 0 Assert local reset to C66x CorePac6(66AK2H12/14 only) 0111 0 X 0 Assert local reset to C66x CorePac7 (66AK2H12/14 only) 1XXX 0 X 0 Assert local reset to all C66x CorePacs 0000 1 1 0 De-assert local reset & NMI to C66x CorePac0 0001 1 1 0 De-assert local reset & NMI to C66x CorePac1 0010 1 1 0 De-assert local reset & NMI to C66x CorePac2 0011 1 1 0 De-assert local reset & NMI to C66x CorePac3 0100 1 1 0 De-assert local reset & NMI to C66x CorePac4 (66AK2H12/14 only) 0101 1 1 0 De-assert local reset & NMI to C66x CorePac5 (66AK2H12/14 only) 0110 1 1 0 De-assert local reset & NMI to C66x CorePac6 (66AK2H12/14 only) 0111 1 1 0 De-assert local reset & NMI to C66x CorePac7 (66AK2H12/14 only) 1XXX 1 1 0 De-assert local reset & NMI to all C66x CorePacs 0000 1 0 0 Assert NMI to C66x CorePac0 0001 1 0 0 Assert NMI to C66x CorePac1 0010 1 0 0 Assert NMI to C66x CorePac2 0011 1 0 0 Assert NMI to C66x CorePac3 0100 1 0 0 Assert NMI to C66x CorePac4 (66AK2H12/14 only) 0101 1 0 0 Assert NMI to C66x CorePac5 (66AK2H12/14 only) 0110 1 0 0 Assert NMI to C66x CorePac6 (66AK2H12/14 only) 0111 1 0 0 Assert NMI to C66x CorePac7 (66AK2H12/14 only) 1XXX 1 0 0 Assert NMI to all C66x CorePacs End of Table 6-31 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 177 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 6.4 Enhanced Direct Memory Access (EDMA3) Controller for 66AK2H14/12/06 The primary purpose of the EDMA3 is to service user-programmed data transfers between two memory-mapped slave endpoints on the device. The EDMA3 services software-driven paging transfers (e.g., data movement between external memory and internal memory), performs sorting or subframe extraction of various data structures, services event driven peripherals, and offloads data transfers from the device C66x DSP CorePac or the ARM CorePac. There are 5 EDMA channel controllers on the device: • EDMA3CC0 has two transfer controllers: TPTC0 and TPTC1 • EDMA3CC1 has four transfer controllers: TPTC0, TPTC1, TPTC2, and TPTC3 • EDMA3CC2 has four transfer controllers: TPTC0, TPTC1, TPTC2, and TPTC3 • EDMA3CC3 has two transfer controllers: TPTC0 and TPTC1 • EDMA3CC4 has two transfer controllers: TPTC0 and TPTC1 In the context of this document, TPTCx is associated with EDMA3CCy, and is referred to as EDMA3CCy TPTCx. Each of the transfer controllers has a direct connection to the switch fabric. Section 7.2 ‘‘Switch Fabric Connections Matrix - Data Space’’ on page 187 lists the peripherals that can be accessed by the transfer controllers. EDMA3CC0 is optimized to be used for transfers to/from/within the MSMC and DDR3A/DDR3B subsytems. The others are used for the remaining traffic. Each EDMA3 channel controller includes the following features: • Fully orthogonal transfer description – 3 transfer dimensions: › Array (multiple bytes) › Frame (multiple arrays) › Block (multiple frames) – Single event can trigger transfer of array, frame, or entire block – Independent indexes on source and destination • Flexible transfer definition: – Increment or FIFO transfer addressing modes – Linking mechanism allows for ping-pong buffering, circular buffering, and repetitive/continuous transfers, all with no CPU intervention – Chaining allows multiple transfers to execute with one event • 512 PaRAM entries for all EDMA3CC: – Used to define transfer context for channels – Each PaRAM entry can be used as a DMA entry, QDMA entry, or link entry • 64 DMA channels for all EDMA3CC: – Manually triggered (CPU writes to channel controller register) – External event triggered – Chain triggered (completion of one transfer triggers another) • 8 Quick DMA (QDMA) channels per EDMA3CCx: – Used for software-driven transfers – Triggered upon writing to a single PaRAM set entry • Two transfer controllers and two event queues with programmable system-level priority for EDMA3CC0, EDMA3CC3, and EDMA3CC4 178 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 • • • Four transfer controllers and four event queues with programmable system-level priority each for DMA3CC1 and EDMA3CC2 Interrupt generation for transfer completion and error conditions Debug visibility – Queue watermarking/threshold allows detection of maximum usage of event queues – Error and status recording to facilitate debug 6.4.1 EDMA3 Device-Specific Information The EDMA supports two addressing modes: constant addressing and increment addressing mode. Constant addressing mode is applicable to a very limited set of use cases. For most applications, increment mode can be used. Constant addressing mode is not supported by any other peripheral or internal memory in the SoC. Note that increment mode is supported by all peripherals. For more information on these two addressing modes, see the Enhanced Direct Memory Access 3 (EDMA3) for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. For the range of memory addresses that includes EDMA3 channel controller (EDMA3CC) control registers and EDMA3 transfer controller (TPTC) control registers, see Section 6.1 ‘‘Memory Map Summary for 66AK2H14/12/06’’ on page 82. For memory offsets and other details on EDMA3CC and TPTC Control Register entries, see the Enhanced Direct Memory Access 3 (EDMA3) for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. 6.4.2 EDMA3 Channel Controller Configuration Table 6-32 shows the configuration for each of the EDMA3 channel controllers present on the device. Table 6-32 EDMA3 Channel Controller Configuration Description EDMA3 CC0 EDMA3 CC1 EDMA3 CC2 EDMA3 CC3 EDMA3 CC4 Number of DMA channels in channel controller 64 64 64 64 64 Number of QDMA channels 8 8 8 8 8 Number of interrupt channels 64 64 64 64 64 Number of PaRAM set entries 512 512 512 512 512 Number of event queues 2 4 4 2 2 Number of transfer controllers 2 4 4 2 2 Memory protection existence Yes Yes Yes Yes Yes Number of memory protection and shadow regions 8 8 8 8 8 End of Table 6-32 6.4.3 EDMA3 Transfer Controller Configuration Each transfer controller on the device is designed differently based on considerations like performance requirements, system topology (like main TeraNet bus width, external memory bus width), etc. The parameters that determine the transfer controller configurations are: • FIFOSIZE: Determines the size in bytes for the data FIFO that is the temporary buffer for the in-flight data. The data FIFO is where the read return data read by the TC read controller from the source endpoint is stored and subsequently written out to the destination endpoint by the TC write controller. • BUSWIDTH: The width of the read and write data buses in bytes, for the TC read and write controller, respectively. This is typically equal to the bus width of the main TeraNet interface. • Default Burst Size (DBS): The DBS is the maximum number of bytes per read/write command issued by a transfer controller. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 179 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 • DSTREGDEPTH: This determines the number of destination FIFO register sets. The number of destination FIFO register sets for a transfer controller determines the maximum number of outstanding transfer requests. Note—All four parameters listed above are fixed by the design of the device. Table 6-33 shows the configuration of each of the EDMA3 transfer controllers present on the device. Table 6-33 EDMA3 Transfer Controller Configuration EDMA3 CC0/CC4 EDMA3 CC1 EDMA3 CC2 EDMA3CC3 Parameter TC0 TC1 TC0 TC1 TC2 TC3 TC0 TC1 TC2 TC3 TC0 TC1 FIFOSIZE 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes 16 bytes BUSWIDTH 32 bytes 32 bytes 16 bytes 16 bytes 16 bytes 16 bytes 16 bytes 16 bytes 16 bytes 16 bytes 16 bytes DSTREGDEPTH 4 entries 4 entries 4 entries 4 entries 4 entries 4 entries 4 entries 4 entries 4 entries 4 entries 4 entries 4 entries DBS 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 64 bytes 64 bytes 128 bytes 128 bytes 128 bytes End of Table 6-33 6.4.4 EDMA3 Channel Synchronization Events The EDMA3 supports up to 64 DMA channels for all EDMA3CC that can be used to service system peripherals and to move data between system memories. DMA channels can be triggered by synchronization events generated by system peripherals. The following tables list the source of the synchronization event associated with each of the EDMA EDMA3CC DMA channels. On the 66AK2H14/12/06, the association of each synchronization event and DMA channel is fixed and cannot be reprogrammed. For more detailed information on the EDMA3 module and how EDMA3 events are enabled, captured, processed, prioritized, linked, chained, and cleared, etc., see the Enhanced Direct Memory Access 3 (EDMA3) for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. Table 6-34 EDMA3CC0 Events for 66AK2H14/12/06 (Part 1 of 3) Event No. Event Name Description 0 TIMER_8_INTL Timer interrupt low 1 TIMER_8_INTH Timer interrupt high 2 TIMER_9_INTL Timer interrupt low 3 TIMER_9_INTH Timer interrupt high 4 TIMER_10_INTL Timer interrupt low 5 TIMER_10_INTH Timer interrupt high 6 TIMER_11_INTL Timer interrupt low 7 TIMER_11_INTH Timer interrupt high 8 CIC_2_OUT66 CIC2 Interrupt Controller output 9 CIC_2_OUT67 CIC2 Interrupt Controller output 10 CIC_2_OUT68 CIC2 Interrupt Controller output 11 CIC_2_OUT69 CIC2 Interrupt Controller output 12 CIC_2_OUT70 CIC2 Interrupt Controller output 13 CIC_2_OUT71 CIC2 Interrupt Controller output 14 CIC_2_OUT72 CIC2 Interrupt Controller output 15 CIC_2_OUT73 CIC2 Interrupt Controller output 16 GPIO_INT8 GPIO interrupt 180 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-34 EDMA3CC0 Events for 66AK2H14/12/06 (Part 2 of 3) Event No. Event Name Description 17 GPIO_INT9 GPIO interrupt 18 GPIO_INT10 GPIO interrupt 19 GPIO_INT11 GPIO interrupt 20 GPIO_INT12 GPIO interrupt 21 GPIO_INT13 GPIO interrupt 22 GPIO_INT14 GPIO interrupt 23 GPIO_INT15 GPIO interrupt 24 TIMER_4_INTL Timer interrupt low 25 TIMER_4_INTH Timer interrupt high (1) (1) (1) 26 TIMER_5_INTL Timer interrupt low 27 TIMER_5_INTH Timer interrupt high (1) (1) 28 TIMER_6_INTL Timer interrupt low 29 TIMER_6_INTH Timer interrupt high (1) 30 TIMER_7_INTL Timer interrupt low 31 TIMER_7_INTH Timer interrupt high 32 GPIO_INT0 GPIO interrupt 33 GPIO_INT1 GPIO interrupt 34 GPIO_INT2 GPIO interrupt 35 GPIO_INT3 GPIO interrupt 36 GPIO_INT4 GPIO interrupt 37 GPIO_INT5 GPIO interrupt 38 GPIO_INT6 GPIO interrupt 39 GPIO_INT7 GPIO interrupt 40 TIMER_0_INTL Timer interrupt low 41 TIMER_0_INTH Timer interrupt high 42 TIMER_1_INTL Timer interrupt low 43 TIMER_1_INTH Timer interrupt high 44 TIMER_2_INTL Timer interrupt low 45 TIMER_2_INTH Timer interrupt high 46 TIMER_3_INTL Timer interrupt low 47 TIMER_3_INTH Timer interrupt high 48 SRIO_INTDST0 SRIO interrupt 49 SRIO_INTDST1 SRIO interrupt 50 SRIO_INTDST2 SRIO interrupt 51 SRIO_INTDST3 SRIO interrupt 52 SRIO_INTDST4 SRIO interrupt 53 SRIO_INTDST5 SRIO interrupt 54 SRIO_INTDST6 SRIO interrupt 55 SRIO_INTDST7 SRIO interrupt 56 Reserved Reserved 57 Reserved Reserved 58 Reserved Reserved 59 Reserved Reserved 60 Reserved Reserved Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback (1) (1) Memory, Interrupts, and EDMA for 66AK2H14/12/06 181 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-34 EDMA3CC0 Events for 66AK2H14/12/06 (Part 3 of 3) Event No. Event Name Description 61 Reserved Reserved 62 Reserved Reserved 63 Reserved Reserved End of Table 6-34 1 66AK2H12/14 only Table 6-35 EDMA3CC1 Events for 66AK2H14/12/06 (Part 1 of 2) Event No. Event Name Description 0 SPI_0_INT0 SPI0 interrupt 1 SPI_0_INT1 SPI0 interrupt 2 SPI_0_XEVT SPI0 transmit event 3 SPI_0_REVT SPI0 receive event 4 SEM_INT8 Semaphore interrupt 5 SEM_INT9 Semaphore interrupt 6 GPIO_INT0 GPIO interrupt 7 GPIO_INT1 GPIO interrupt 8 GPIO_INT2 GPIO interrupt 9 GPIO_INT3 GPIO interrupt 10 Reserved Reserved 11 Reserved Reserved 12 Reserved Reserved 13 Reserved Reserved 14 SEM_INT0 Semaphore interrupt 15 SEM_INT1 Semaphore interrupt 16 SEM_INT2 Semaphore interrupt 17 SEM_INT3 Semaphore interrupt 18 SEM_INT4 Semaphore interrupt 19 SEM_INT5 Semaphore interrupt 20 SEM_INT6 Semaphore interrupt 21 SEM_INT7 Semaphore interrupt 22 TIMER_8_INTL Timer interrupt low 23 TIMER_8_INTH Timer interrupt high 24 TIMER_9_INTL Timer interrupt low 25 TIMER_9_INTH Timer interrupt high 26 TIMER_10_INTL Timer interrupt low 27 TIMER_10_INTH Timer interrupt high 28 TIMER_11_INTL Timer interrupt low 29 TIMER_11_INTH Timer interrupt high 30 TIMER_12_INTL Timer interrupt low 31 TIMER_12_INTH Timer interrupt high 32 TIMER_13_INTL Timer interrupt low 33 TIMER_13_INTH Timer interrupt high 34 TIMER_14_INTL Timer interrupt low 35 TIMER_14_INTH Timer interrupt high 182 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-35 Event No. EDMA3CC1 Events for 66AK2H14/12/06 (Part 2 of 2) Event Name Description 36 TIMER_15_INTL Timer interrupt low 37 TIMER_15_INTH Timer interrupt high 38 SEM_INT10 Semaphore interrupt 39 SEM_INT11 Semaphore interrupt 40 SEM_INT12 Semaphore interrupt 41 SEM_INT13 Semaphore interrupt 42 CIC_2_OUT0 CIC2 Interrupt Controller output 43 CIC_2_OUT1 CIC2 Interrupt Controller output 44 CIC_2_OUT2 CIC2 Interrupt Controller output 45 CIC_2_OUT3 CIC2 Interrupt Controller output 46 CIC_2_OUT4 CIC2 Interrupt Controller output 47 CIC_2_OUT5 CIC2 Interrupt Controller output 48 CIC_2_OUT6 CIC2 Interrupt Controller output 49 CIC_2_OUT7 CIC2 Interrupt Controller output 50 CIC_2_OUT8 CIC2 Interrupt Controller output 51 Reserved Reserved 52 Reserved Reserved 53 I2C_0_REVT I2C0 receive 54 I2C_0_XEVT I2C0 transmit 55 CIC_2_OUT13 CIC2 Interrupt Controller output 56 CIC_2_OUT14 CIC2 Interrupt Controller output 57 CIC_2_OUT15 CIC2 Interrupt Controller output 58 CIC_2_OUT16 CIC2 Interrupt Controller output 59 CIC_2_OUT17 CIC2 Interrupt Controller output 60 CIC_2_OUT18 CIC2 Interrupt Controller output 61 CIC_2_OUT19 CIC2 Interrupt Controller output 62 Reserved Reserved 63 Reserved Reserved End of Table 6-35 Table 6-36 EDMA3CC2 Events for 66AK2H14/12/06 (Part 1 of 3) Event No. Event Name Description 0 Reserved Reserved 1 Reserved Reserved 2 Reserved Reserved 3 Reserved Reserved 4 Reserved Reserved 5 Reserved Reserved 6 TETB_FULLINT4 TETB4 is full 7 TETB_HFULLINT4 TETB4 is half full 8 TETB_FULLINT5 TETB5 is full 9 TETB_HFULLINT5 TETB5 is half full 10 TETB_FULLINT6 TETB6 is full Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 183 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-36 EDMA3CC2 Events for 66AK2H14/12/06 (Part 2 of 3) Event No. Event Name Description 11 TETB_HFULLINT6 TETB6 is half full 12 TETB_FULLINT7 TETB7 is full 13 TETB_HFULLINT7 TETB7 is half full 14 SRIO_INTDST0 SRIO interrupt 15 SRIO_INTDST1 SRIO interrupt 16 SRIO_INTDST2 SRIO interrupt 17 SRIO_INTDST3 SRIO interrupt 18 SRIO_INTDST4 SRIO interrupt 19 SRIO_INTDST5 SRIO interrupt 20 SRIO_INTDST6 SRIO interrupt 21 SRIO_INTDST7 SRIO interrupt 22 Reserved Reserved 23 Reserved Reserved 24 Reserved Reserved 25 Reserved Reserved 26 GPIO_INT0 GPIO interrupt 27 GPIO_INT1 GPIO interrupt 28 GPIO_INT2 GPIO interrupt 29 GPIO_INT3 GPIO interrupt 30 GPIO_INT4 GPIO interrupt 31 GPIO_INT5 GPIO interrupt 32 GPIO_INT6 GPIO interrupt 33 GPIO_INT7 GPIO interrupt 34 Reserved Reserved 35 Reserved Reserved 36 Reserved Reserved 37 Reserved Reserved 38 CIC_2_OUT48 CIC2 Interrupt Controller output 39 Reserved Reserved 40 UART_0_URXEVT UART0 receive event 41 UART_0_UTXEVT UART0 transmit event 42 CIC_2_OUT22 CIC2 Interrupt Controller output 43 CIC_2_OUT23 CIC2 Interrupt Controller output 44 CIC_2_OUT24 CIC2 Interrupt Controller output 45 CIC_2_OUT25 CIC2 Interrupt Controller output 46 CIC_2_OUT26 CIC2 Interrupt Controller output 47 CIC_2_OUT27 CIC2 Interrupt Controller output 48 CIC_2_OUT28 CIC2 Interrupt Controller output 49 SPI_0_XEVT SPI0 transmit event 50 SPI_0_REVT SPI0 receive event 51 Reserved Reserved 52 Reserved Reserved 53 Reserved Reserved 54 Reserved Reserved 184 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-36 EDMA3CC2 Events for 66AK2H14/12/06 (Part 3 of 3) Event No. Event Name Description 55 Reserved Reserved 56 Reserved Reserved 57 Reserved Reserved 58 Reserved Reserved 59 Reserved Reserved 60 Reserved Reserved 61 Reserved Reserved 62 Reserved Reserved 63 Reserved Reserved End of Table 6-36 Table 6-37 EDMA3CC3 Events for 66AK2H14/12/06 (Part 1 of 2) Event No. Event Name Description 0 SPI_2_INT0 SPI2 interrupt 1 SPI_2_INT1 SPI2 interrupt 2 SPI_2_XEVT SPI2 transmit event 3 SPI_2_REVT SPI2 receive event 4 I2C_2_REVT I2C2 receive 5 I2C_2_XEVT I2C2 transmit 6 UART_1_URXEVT UART1 receive event 7 UART_1_UTXEVT UART1 transmit event 8 SPI_1_INT0 SPI1 interrupt 9 SPI_1_INT1 SPI1 interrupt 10 SPI_1_XEVT SPI1 transmit event 11 SPI_1_REVT SPI1 receive event 12 I2C_0_REVT I2C0 receive 13 I2C_0_XEVT I2C0 transmit 14 I2C_1_REVT I2C1 receive 15 I2C_1_XEVT I2C1 transmit 16 SRIO_INTDST0 SRIO interrupt 17 SRIO_INTDST1 SRIO interrupt 18 SRIO_INTDST2 SRIO interrupt 19 SRIO_INTDST3 SRIO interrupt 20 SRIO_INTDST4 SRIO interrupt 21 SRIO_INTDST5 SRIO interrupt 22 SRIO_INTDST6 SRIO interrupt 23 SRIO_INTDST7 SRIO interrupt 24 Reserved Reserved 25 Reserved Reserved 26 Reserved Reserved 27 Reserved Reserved 28 Reserved Reserved 29 Reserved Reserved Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 185 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-37 EDMA3CC3 Events for 66AK2H14/12/06 (Part 2 of 2) Event No. Event Name Description 30 Reserved Reserved 31 Reserved Reserved 32 TETB_FULLINT0 TETB0 is full 33 TETB_HFULLINT0 TETB0 is half full 34 TETB_FULLINT1 TETB1 is full 35 TETB_HFULLINT1 TETB1 is half full 36 TETB_FULLINT2 TETB2 is full 37 TETB_HFULLINT2 TETB2 is half full 38 TETB_FULLINT3 TETB3 is full 39 TETB_HFULLINT3 TETB3 is half full 40 Reserved Reserved 41 Reserved Reserved 42 Reserved Reserved 43 Reserved Reserved 44 Reserved Reserved 45 Reserved Reserved 46 Reserved Reserved 47 Reserved Reserved 48 Reserved Reserved 49 Reserved Reserved 50 Reserved Reserved 51 Reserved Reserved 52 Reserved Reserved 53 Reserved Reserved 54 Reserved Reserved 55 Reserved Reserved 56 CIC_2_OUT57 CIC2 Interrupt Controller output 57 CIC_2_OUT50 CIC2 Interrupt Controller output 58 CIC_2_OUT51 CIC2 Interrupt Controller output 59 CIC_2_OUT52 CIC2 Interrupt Controller output 60 CIC_2_OUT53 CIC2 Interrupt Controller output 61 CIC_2_OUT54 CIC2 Interrupt Controller output 62 CIC_2_OUT55 CIC2 Interrupt Controller output 63 CIC_2_OUT56 CIC2 Interrupt Controller output End of Table 6-37 Table 6-38 EDMA3CC4 Events for 66AK2H14/12/06 (Part 1 of 3) Event No. Event Name Description 0 GPIO_INT16 GPIO interrupt 1 GPIO_INT17 GPIO interrupt 2 GPIO_INT18 GPIO interrupt 3 GPIO_INT19 GPIO interrupt 4 GPIO_INT20 GPIO interrupt 186 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-38 EDMA3CC4 Events for 66AK2H14/12/06 (Part 2 of 3) Event No. Event Name Description 5 GPIO_INT21 GPIO interrupt 6 GPIO_INT22 GPIO interrupt 7 GPIO_INT23 GPIO interrupt 8 Reserved Reserved 9 Reserved Reserved 10 Reserved Reserved 11 Reserved Reserved 12 Reserved Reserved 13 Reserved Reserved 14 Reserved Reserved 15 Reserved Reserved 16 Reserved Reserved 17 Reserved Reserved 18 Reserved Reserved 19 Reserved Reserved 20 Reserved Reserved 21 Reserved Reserved 22 Reserved Reserved 23 Reserved Reserved 24 TIMER_8_INTL Timer interrupt low 25 TIMER_8_INTH Timer interrupt high 26 TIMER_14_INTL Timer interrupt low 27 TIMER_14_INTH Timer interrupt high 28 TIMER_15_INTL Timer interrupt low 29 TIMER_15_INTH Timer interrupt high 30 DBGTBR_DMAINT Debug trace buffer (TBR) DMA event 31 ARM_TBR_DMA ARM trace buffer (TBR) DMA event 32 QMSS_QUE_PEND_658 Navigator transmit queue pending event for indicated queue 33 QMSS_QUE_PEND_659 Navigator transmit queue pending event for indicated queue 34 QMSS_QUE_PEND_660 Navigator transmit queue pending event for indicated queue 35 QMSS_QUE_PEND_661 Navigator transmit queue pending event for indicated queue 36 QMSS_QUE_PEND_662 Navigator transmit queue pending event for indicated queue 37 QMSS_QUE_PEND_663 Navigator transmit queue pending event for indicated queue 38 QMSS_QUE_PEND_664 Navigator transmit queue pending event for indicated queue 39 QMSS_QUE_PEND_665 Navigator transmit queue pending event for indicated queue 40 QMSS_QUE_PEND_8736 Navigator transmit queue pending event for indicated queue 41 QMSS_QUE_PEND_8737 Navigator transmit queue pending event for indicated queue 42 QMSS_QUE_PEND_8738 Navigator transmit queue pending event for indicated queue 43 QMSS_QUE_PEND_8739 Navigator transmit queue pending event for indicated queue 44 QMSS_QUE_PEND_8740 Navigator transmit queue pending event for indicated queue 45 QMSS_QUE_PEND_8741 Navigator transmit queue pending event for indicated queue 46 QMSS_QUE_PEND_8742 Navigator transmit queue pending event for indicated queue 47 QMSS_QUE_PEND_8743 Navigator transmit queue pending event for indicated queue 48 ARM_NCNTVIRQ3 ARM virtual timer interrupt for core 3 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Memory, Interrupts, and EDMA for 66AK2H14/12/06 187 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 6-38 EDMA3CC4 Events for 66AK2H14/12/06 (Part 3 of 3) Event No. Event Name Description 49 ARM_NCNTVIRQ2 ARM virtual timer interrupt for core 2 50 ARM_NCNTVIRQ1 ARM virtual timer interrupt for core 1 51 ARM_NCNTVIRQ0 ARM virtual timer interrupt for core 0 52 ARM_NCNTPNSIRQ3 ARM non secure timer interrupt for core 3 53 ARM_NCNTPNSIRQ2 ARM non secure timer interrupt for core 2 54 ARM_NCNTPNSIRQ1 ARM non secure timer interrupt for core 1 55 ARM_NCNTPNSIRQ0 ARM non secure timer interrupt for core 0 56 CIC_2_OUT82 CIC2 Interrupt Controller output 57 CIC_2_OUT83 CIC2 Interrupt Controller output 58 CIC_2_OUT84 CIC2 Interrupt Controller output 59 CIC_2_OUT85 CIC2 Interrupt Controller output 60 CIC_2_OUT86 CIC2 Interrupt Controller output 61 CIC_2_OUT87 CIC2 Interrupt Controller output 62 CIC_2_OUT88 CIC2 Interrupt Controller output 63 CIC_2_OUT89 CIC2 Interrupt Controller output End of Table 6-38 188 Memory, Interrupts, and EDMA for 66AK2H14/12/06 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 7 System Interconnect On the KeyStone II devices, the C66x CorePac, the EDMA3 transfer controllers, and the system peripherals are interconnected through the TeraNets, which are non-blocking switch fabrics enabling fast and contention-free internal data movement. The TeraNets provide low-latency, concurrent data transfers between master peripherals and slave peripherals. The TeraNets also allow for seamless arbitration between the system masters when accessing system slaves. The ARM CorePac is connected to the MSMC and the debug subsystem directly, and to other masters via the TeraNets. Through the MSMC, the ARM CorePacs can be interconnected to DDR3A and TeraNet 3_A, which allows the ARM CorePacs to access to the peripheral buses: • TeraNet 3P_A for peripheral configuration • TeraNet 6P_A for Cortex-A15 processor Boot ROM • TeraNet 3_C for DDR3B 7.1 Internal Buses and Switch Fabrics The C66x CorePacs, the ARM CorePacs, the EDMA3 traffic controllers, and the various system peripherals can be classified into two categories: masters and slaves. • Masters are capable of initiating read and write transfers in the system and do not rely on the EDMA3 for their data transfers. • Slaves on the other hand rely on the masters to perform transfers to and from them. Examples of masters include the EDMA3 traffic controllers, SRIO, and network coprocessor packet DMA. Examples of slaves include the SPI, UART, and I2C. The masters and slaves in the device communicate through the TeraNet (switch fabric). The device contains two types of switch fabric: • Data TeraNet is a high-throughput interconnect mainly used to move data across the system • Configuration TeraNet is mainly used to access peripheral registers Some peripherals have both a data bus and a configuration bus interface, while others only have one type of interface. Furthermore, the bus interface width and speed varies from peripheral to peripheral. Note that the data TeraNet also connects to the configuration TeraNet. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback System Interconnect 189 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 7.2 Switch Fabric Connections Matrix - Data Space The figures below show the connections between masters and slaves through various sections of the TeraNet. Figure 7-1 TeraNet 3_A-1 Bridge_11 Bridge_1 66AK2H Tracer_SPI_ ROM_EMIF16 Bridge_2 From TeraNet_3_C TeraNet 3_A-1 CPU/3 Bridge_3 SRIO Packet DMA M QM Packet DMA M QM_2 Packet DMA M Debug_SS M TNet_3_D CPU/3 M TNet_3_G CPU/3 TNet_6P_A CPU/6 MPU_8 S EMIF16 MPU_12 S SPI_0 MPU_13 S SPI_1 MPU_14 S SPI_2 S Boot_ROM S Boot_ROM ARM Bridge_5 Bridge_6 Bridge_7 To TeraNet_3_C Bridge_8 Bridge_9 Bridge_10 Bridge_12 To TeraNet_3P_A Bridge_13 USB_MST 190 System Interconnect Bridge_14 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 7-2 TeraNet 3_A-2 S MPU_1 66AK2H Tracer_QM_M QM_SS Tracer_SPI_ ROM_EMIF16 NETCP TC_0 EDMA CC1 TC_1 TC_2 TC_3 TC_0 EDMA CC2 TC_1 TC_2 TC_3 EDMA CC3 M M M M M M M M M M TC_1 M M SRIO_M M PCIe M TC_0 PCIe L2 Cache_0_A L2 Cache_0_B L2 Cache_1_A L2 Cache_1_B TNet_3_L CPU/3 TeraNet 3_A-2 10GbE (66AK2H14 only) CPU/3 S L2 Cache_2_A L2 Cache_2_B L2 Cache_3_A L2 Cache_3_B To TeraNet C66x SDMA L2 Cache_4_A L2 Cache_4_B L2 Cache_5_A L2 Cache_5_B L2 Cache_6_A L2 Cache_6_B L2 Cache_7_A L2 Cache_7_B Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback System Interconnect 191 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 7-3 XMC TeraNet 3_C ´8 66AK2H HyperLink 0 M HyperLink 1 M TeraNet 3_B CPU/3 ARM CorePac S SES S SMS S HyperLink 0 S HyperLink 1 S Tracer_ MSMC0-8 MSMC M M DDR3A BR_SES_0 Bridge_6 Bridge_7 From TeraNet_3_A Bridge_8 Bridge_9 CPU/3 Bridge_5 BR_SES_1 TNet_SES CPU/1 BR_SES_2 BR_SMS_0 BR_SMS_1 TNet_SMS CPU/1 BR_SMS_2 QM_Second 192 M EDMA CC0 TC_0 TC_1 M M EDMA CC4 TC_0 M M TC_1 System Interconnect TeraNet 3_C Bridge_10 TNet_msmc_sys CPU/1 To TeraNet_3_A To TeraNet_3P_A CPU Port Sys Port TNet_3_U CPU/3 MPU_7 DDR3B Tracer_DDRB Bridge_1 To TeraNet_3_A Bridge_2 Bridge_3 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 7-4 TeraNet C66x to SDMA 66AK2H L2 Cache_0_A L2 Cache_0_B L2 Cache_1_A L2 Cache_1_B L2 Cache_2_A L2 Cache_2_B L2 Cache_3_A L2 Cache_3_B TNet_3_M CPU/3 Tracer_L2_0 TNet_3_N CPU/3 Tracer_L2_1 TNet_3_O CPU/3 Tracer_L2_2 TNet_3_P CPU/3 Tracer_L2_3 TNet_3_Q CPU/3 Tracer_L2_4 TNet_3_R CPU/3 Tracer_L2_5 TNet_3_S CPU/3 Tracer_L2_6 TNet_3_T CPU/3 Tracer_L2_7 S CorePac_0 S CorePac_1 S CorePac_2 S CorePac_3 S CorePac_4 S CorePac_5 S CorePac_6 S CorePac_7 From TeraNet 3_A-2 L2 Cache_4_A L2 Cache_4_B L2 Cache_5_A L2 Cache_5_B L2 Cache_6_A L2 Cache_6_B L2 Cache_7_A L2 Cache_7_B Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback System Interconnect 193 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 The following tables list the master and slave end point connections. Intersecting cells may contain one of the following: • Y — There is a connection between this master and that slave. • - — There is NO connection between this master and that slave. • n — A numeric value indicates that the path between this master and that slave goes through bridge n. Table 7-1 Data Space Interconnect (Part 1 of 2) CorePac2_SDMA CorePac3_SDMA CorePac4_SDMA CorePac5_SDMA CorePac6_SDMA CorePac7_SDMA DBG_STM DDR3B HyperLink1 MSMC_SES MSMC_SMS PCIE QM Y Y Y Y Y Y Y Y - 10 - - ses_2 sms_2 Y Y - - - - - - - - - - - - - - - - - - - CorePac1_CFG - - - - - - - - - - - - - - - - - - - - CorePac2_CFG - - - - - - - - - - - - - - - - - - - - CorePac3_CFG - - - - - - - - - - - - - - - - - - - - CorePac4_CFG - - - - - - - - - - - - - - - - - - - - CorePac5_CFG - - - - - - - - - - - - - - - - - - - - CorePac6_CFG - - - - - - - - - - - - - - - - - - - - SPI(0-2) CorePac1_SDMA - - (1) HyperLink0 CorePac0_SDMA - - 10GbE BootROM_ARM - CorePac0_CFG Masters AEMIF16 BootROM_C66x Slaves CorePac7_CFG - - - - - - - - - - - - - - - - - - - - CPT_CFG - - - - - - - - - - - Y - - - - - - - - CPT_DDR3A - - - - - - - - - - - Y - - - - - - - - CPT_DDR3B - - - - - - - - - - - Y - - - - - - - - CPT_INTC - - - - - - - - - - - Y - - - - - - - - CPT_L2_(0-7) - - - - - - - - - - - Y - - - - - - - - CPT_MSMC(0-7) - - - - - - - - - - - Y - - - - - - - - CPT_QM_CFG1 - - - - - - - - - - - Y - - - - - - - - CPT_QM_CFG2 - - - - - - - - - - - Y - - - - - - - - CPT_QM_M - - - - - - - - - - - Y - - - - - - - - CPT_SPI_ROM_EMIF16 - - - - - - - - - - - Y - - - - - - - - CPT_TPCC(0_4)T - - - - - - - - - - - Y - - - - - - - - CPT_TPCC(1_2_3)T - - - - - - - - - - - Y - - - - - - - - DBG_DAP Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y EDMA0_CC_TR - - - - - - - - - - - - - - - - - - - - EDMA0_TC0_RD 2,11 2,11 2,11 Y Y Y Y Y Y Y Y - Y Y Y SES_0 SMS_0 Y Y 2,11 EDMA0_TC0_WR 2,11 - - Y Y Y Y Y Y Y Y - Y Y Y SES_0 SMS_0 Y Y 2,11 EDMA0_TC1_RD 3,11 3,11 3,11 Y Y Y Y Y Y Y Y - Y Y Y SES_1 SMS_1 Y - 3,11 EDMA0_TC1_WR 3,11 - - Y Y Y Y Y Y Y Y - Y Y Y SES_1 SMS_1 Y - 3,11 - - - - - - - - - - - - - - - - - - - - EDMA1_TC0_RD 11 11 11 Y Y Y Y Y Y Y Y - 5 Y Y SES_0 SMS_0 Y Y 11 EDMA1_TC0_WR 11 - - Y Y Y Y Y Y Y Y Y 5 Y Y SES_0 SMS_0 Y Y 11 EDMA1_TC1_RD 11 Y Y Y Y Y Y Y Y Y Y - 6 Y Y SES_1 SMS_1 Y Y 11 EDMA1_TC1_WR 11 - - Y Y Y Y Y Y Y Y - 6 Y Y SES_1 SMS_1 Y Y 11 EDMA1_CC_TR 194 System Interconnect Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 7-1 Data Space Interconnect (Part 2 of 2) CorePac7_SDMA CorePac6_SDMA CorePac5_SDMA CorePac4_SDMA CorePac3_SDMA Y Y Y Y Y - 7 Y Y SES_1 SMS_1 Y - 11 Y Y Y Y Y Y - 7 Y Y SES_1 SMS_1 Y - 11 EDMA1_TC3_RD 11 Y Y Y Y Y Y Y Y Y Y - 8 Y Y SES_1 SMS_1 Y - 11 EDMA1_TC3_WR 11 - - Y Y Y Y Y Y Y Y Y 8 Y Y SES_1 SMS_1 Y - 11 EDMA2_CC_TR MSMC_SES SPI(0-2) Y Y QM Y Y PCIE Y - MSMC_SMS Y - HyperLink1 Y 11 HyperLink0 11 EDMA1_TC2_WR DDR3B EDMA1_TC2_RD Masters DBG_STM BootROM_C66x CorePac2_SDMA BootROM_ARM CorePac1_SDMA AEMIF16 CorePac0_SDMA Slaves - - - - - - - - - - - - - - - - - - - - EDMA2_TC0_RD 11 Y Y Y Y Y Y Y Y Y Y - 9 Y Y SES_2 SMS_2 Y Y 11 EDMA2_TC0_WR 11 - - Y Y Y Y Y Y Y Y Y 9 Y Y SES_2 SMS_2 Y Y 11 EDMA2_TC1_RD 11 Y Y Y Y Y Y Y Y Y Y - 10 Y Y SES_2 SMS_2 Y Y 11 EDMA2_TC1_WR 11 - - Y Y Y Y Y Y Y Y - 10 Y Y SES_2 SMS_2 Y Y 11 EDMA2_TC2_RD 11 Y Y Y Y Y Y Y Y Y Y - 5 Y Y SES_0 SMS_0 Y - 11 EDMA2_TC2_WR 11 - - Y Y Y Y Y Y Y Y Y 5 Y Y SES_0 SMS_0 Y - 11 EDMA2_TC3_RD 11 Y Y Y Y Y Y Y Y Y Y - 6 Y Y SES_0 SMS_0 Y - 11 EDMA2_TC3_WR 11 - - Y Y Y Y Y Y Y Y - 6 Y Y SES_0 SMS_0 Y - 11 - - - - - - - - - - - - - - - - - - - - EDMA3_TC0_RD 11 Y Y Y Y Y Y Y Y Y Y - 7 Y Y SES_1 SMS_1 Y Y 11 EDMA3_TC0_WR 11 - - Y Y Y Y Y Y Y Y Y 7 Y Y SES_1 SMS_1 Y Y 11 EDMA3_TC1_RD 11 Y Y Y Y Y Y Y Y Y Y - 8 Y Y SES_1 SMS_1 Y - 11 EDMA3_TC1_WR 11 - - Y Y Y Y Y Y Y Y - 8 Y Y SES_1 SMS_1 Y - 11 EDMA3_CC_TR EDMA4_CC_TR - - - - - - - - - - - - - - - - - - - - EDMA4_TC0_RD 2,11 2,11 2,11 Y Y Y Y Y Y Y Y - Y Y Y SES_1 SMS_1 Y Y 2,11 EDMA4_TC0_WR 2,11 - - Y Y Y Y Y Y Y Y - Y Y Y SES_1 SMS_1 Y Y 2,11 EDMA4_TC1_RD 3,11 3,11 3,11 Y Y Y Y Y Y Y Y - Y Y Y SES_1 SMS_1 Y - 3,11 EDMA4_TC1_WR 3,11 - - Y Y Y Y Y Y Y Y - Y Y Y SES_1 SMS_1 Y - 3,11 11 1,11 1,11 Y Y Y Y Y Y Y Y - Y - - Y Y Y Y Y HyperLink1_Master 11 1,11 1,11 Y Y Y Y Y Y Y Y - Y - - Y Y Y Y Y MSMC_SYS 11 11 11 Y Y Y Y Y Y Y Y Y Y Y Y - - Y Y 11 HyperLink0_Master NETCP - - - Y Y Y Y Y Y Y Y - 7 - - SES_1 SMS_1 Y Y - 11 - - Y Y Y Y Y Y Y Y Y 10 10 10 SES_2 SMS_2 - Y 11 QM_Master1 - - - Y Y Y Y Y Y Y Y - 5 Y Y SES_0 SMS_0 - Y - QM_Master2 - - - Y Y Y Y Y Y Y Y - 8 Y Y SES_1 SMS_1 - Y - PCIE QM_SEC - - - Y Y Y Y Y Y Y Y Y Y Y Y SES_2 SMS_2 - - - SRIO 11 - - Y Y Y Y Y Y Y Y Y 9 Y Y SES_2 SMS_2 - Y 11 SRIO Packet DMA 11 - - Y Y Y Y Y Y Y Y - 9 - - SES_2 SMS_2 - Y - - - - Y Y Y Y Y Y Y Y Y 5 Y Y SES_0 SMS_0 - Y - USB End of Table 7-1 1 66AK2H14 only Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback System Interconnect 195 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 7.3 TeraNet Switch Fabric Connections Matrix - Configuration Space The figures below show the connections between masters and slaves through various sections of the TeraNet. Figure 7-5 TeraNet 3P_A S MPU (´ 15) MPU_2 M QM_SS_ CFG1 MPU_6 M QM_SS_ CFG2 MPU_10 S Semaphore S S CC0 TC (´ 2) S S CC4 TC (´ 2) S S CC1 TC (´ 4) S S CC2 TC (´ 4) S S CC3 TC (´ 2) S ARM INTC S CP_INTC0-2 Bridge_12 Bridge_13 From TeraNet_3_A Tracer_QM_CFG1 Bridge_14 Tracer_QM_CFG2 From TeraNet_3_C M CorePac_1 M CorePac_2 M CorePac_3 M CorePac_4 M CorePac_5 M CorePac_6 M CorePac_7 M TeraNet 3P_A CorePac_0 CPU/3 Tracer_SM Tracer _EDMA CC0 & CC4 Tracer _EDMA CC1 - CC3 TNet_3P_M CPU/3 TNet_3P_C CPU/3 TNet_3P_L CPU/3 MPU_9 Tracer_INTC TETB CorePac (´ 8) DBG_TBR_SYS (Debug_SS) TBR_SYS_ ARM_CorePac MPU_0 To TeraNet_3P_B Tracer_CFG To TeraNet_3P_Tracer 66AK2H 196 System Interconnect Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 TeraNet 3P_B From TeraNet_3P_A TeraNet 3P_B CPU/3 Figure 7-6 TNet_3P_N CPU/3 S CP_T0-T8 (MSMC) TNet_3P_D CPU/3 S CP_T (´ 23) S SRIO S NetCP S 10GbE (66AK2H14 only) MPU_11 Bridge 20 To TeraNet_6P_B 66AK2H Figure 7-7 TeraNet 6P_B Bridge 20 TeraNet 6P_B CPU/6 From TeraNet_3P_B 66AK2H Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback S Timer (´ 20) S OTP S Debug SS S PLL_CTL S GPSC S BOOT_CFG S UART (´ 2) S I C (´ 3) S GPIO 2 S USB PHY CFG S PCIe SerDes CFG S HyperLink SerDes CFG S SRIO SerDes CFG S NetCP SerDes CFG S DDR3B PHY CFG S DDR3A PHY CFG S USB MMR CFG S SmartReflex0 S SmartReflex1 System Interconnect 197 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 TeraNet 3P_Tracer M Tracer_MSMC_1 M Tracer_MSMC_2 M Tracer_MSMC_3 M Tracer_MSMC_4 M Tracer_MSMC_5 M Tracer_MSMC_6 M Tracer_MSMC_7 M Tracer_MSMC_8 M From TeraNet_3P_A Tracer_SM M Tracer_CIC M Tracer_DDRB M Tracer_QM_CFG1 M Tracer_QM_CFG2 M Tracer_QM_M M Tracer_L2_0-7 (´ 8) M Tracer_CFG M Tracer_EDMA3CC0_4 M Tracer_EDMA3CC1_2_3 M Tracer_SPI_ ROM_EMIF16 198 System Interconnect M 66AK2H TeraNet 3P_P CPU/3 Tracer_MSMC_0 TeraNet 3P_Tracer CPU/3 Figure 7-8 S Debug_SS STM Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 The following tables list the master and slave end point connections. Intersecting cells may contain one of the following: • Y — There is a connection between this master and that slave. • - — There is NO connection between this master and that slave. • n — A numeric value indicates that the path between this master and that slave goes through bridge n. Table 7-2 Configuration Space Interconnect - Section 1 (Part 1 of 2) 10GbE_CFG 10GbE_SERDES_CFG ADTF(0-7)_CFG ARM_CFG BOOTCFG_CFG CP_INTC_CFG CPT_CFG_CFG CPT_DDR3A_CFG CPT_DDR3B_CFG CPT_INTC(0-2)_CFG CPT_L2_(0-7)_CFG CPT_MSMC(0-7)_CFG CPT_QM_CFG1_CFG CPT_QM_CFG2_CFG CPT_QM_M_CFG CPT_SPI_ROM_EMIF16_CFG DBG_CFG DBG_TBR_SYS DDR3A_PHY_CFG DDR3B_PHY_CFG EDMA0_CC_CFG EDMA0_TC(0-1)_CFG EDMA1_CC_CFG EDMA1_TC(0-3)_CFG EDMA2_CC_CFG EDMA2_TC(0-3)_CFG EDMA3_CC_CFG EDMA3_TC(0-1)_CFG EDMA4_CC_CFG Slaves - - - - - - - - - - - - - - - - - - - - - - - - - - - - - CorePac0_CFG Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y CorePac1_CFG Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y CorePac2_CFG Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y CorePac3_CFG Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y CorePac4_CFG Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y CorePac5_CFG Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y CorePac6_CFG Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Masters 10GbE (1) CorePac7_CFG Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y DBG_DAP Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y EDMA0_CC_TR - - - - - - - - - - - - - - - - - - - - - Y - - - - - - - EDMA0_TC0_RD - - - - - - - - - - - - - - - - - 12 - - 12 12 12 12 12 12 12 12 12 EDMA0_TC0_WR - - - - - - - - - - - - - - - - - - - - 12 12 12 12 12 12 12 12 12 EDMA0_TC1_RD - - - - - - - - - - - - - - - - - 12 - - 12 12 12 12 12 12 12 12 12 EDMA0_TC1_WR - - - - - - - - - - - - - - - - - - - - 12 12 12 12 12 12 12 12 12 EDMA1_CC_TR - - - - - - - - - - - - - - - - - - - - - - - Y - - - - - EDMA1_TC0_RD 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 EDMA1_TC0_WR 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 - 12 12 12 12 12 12 12 12 12 12 12 EDMA1_TC1_RD - - - - - - - - - - - - - - - - - - - - 13 13 13 13 13 13 13 13 13 EDMA1_TC1_WR - - - - - - - - - - - - - - - - - - - - 13 13 13 13 13 13 13 13 13 EDMA1_TC2_RD - - - - - - - - - - - - - - - - - - - - 14 14 14 14 14 14 14 14 14 EDMA1_TC2_WR - - - - - - - - - - - - - - - - - - - - 14 14 14 14 14 14 14 14 14 EDMA1_TC3_RD 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 EDMA1_TC3_WR 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 - 12 12 12 12 12 12 12 12 12 12 12 EDMA2_CC_TR - - EDMA2_TC0_RD 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 EDMA2_TC0_WR 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 - 12 12 12 12 12 12 12 12 12 12 12 EDMA2_TC1_RD - - - - - - - - - - - - - - - - - - - - 13 13 13 13 13 13 13 13 13 EDMA2_TC1_WR - - - - - - - - - - - - - - - - - - - - 13 13 13 13 13 13 13 13 13 EDMA2_TC2_RD 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 - - - - - - Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback - - - - - - - - - - - - - - - - - Y - System Interconnect - - 199 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 7-2 Configuration Space Interconnect - Section 1 (Part 2 of 2) EDMA4_CC_CFG EDMA3_TC(0-1)_CFG EDMA3_CC_CFG EDMA2_TC(0-3)_CFG EDMA2_CC_CFG EDMA1_TC(0-3)_CFG EDMA1_CC_CFG EDMA0_TC(0-1)_CFG EDMA0_CC_CFG DDR3B_PHY_CFG DDR3A_PHY_CFG DBG_TBR_SYS CPT_SPI_ROM_EMIF16_CFG CPT_QM_M_CFG CPT_QM_CFG2_CFG CPT_QM_CFG1_CFG CPT_MSMC(0-7)_CFG CPT_L2_(0-7)_CFG CPT_INTC(0-2)_CFG CPT_DDR3B_CFG CPT_DDR3A_CFG CPT_CFG_CFG CP_INTC_CFG BOOTCFG_CFG ADTF(0-7)_CFG 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 - 12 12 12 12 12 12 12 12 12 12 12 EDMA2_TC3_RD - - - - - - - - DBG_CFG EDMA2_TC2_WR ARM_CFG Masters 10GbE_CFG 10GbE_SERDES_CFG Slaves - - - - - - - - - - - - 14 14 14 14 14 14 14 14 14 EDMA2_TC3_WR - - - - - - - - - - - - - - - - - - - - 14 14 14 14 14 14 14 14 14 EDMA3_CC_TR - - - - - - - - - - - - - - - - - - - - - - - - - - - - - EDMA3_TC0_RD 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 EDMA3_TC0_WR 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 EDMA3_TC1_RD - - - - - - - - - - - - - - - - - 14 - - 14 14 14 14 14 14 14 14 14 EDMA3_TC1_WR - - - - - - - - - - - - - - - - - - - - 14 14 14 14 14 14 14 14 14 EDMA4_CC_TR - - - - - - - - - - - - - - - - - - - - - EDMA4_TC0_RD - - - - - - - - - - - - - - - - - 12 - - 12 12 12 12 12 12 12 12 12 EDMA4_TC0_WR - - - - - - - - - - - - - - - - - - - - 12 12 12 12 12 12 12 12 12 EDMA4_TC1_RD - - - - - - - - - - - - - - - - - 12 - - 12 12 12 12 12 12 12 12 12 EDMA4_TC1_WR - - - - - - - - - - - - - - - - - - - 12 12 12 12 12 12 12 12 12 - HyperLink0_Master 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 - - - - - - - - - 12 12 12 12 12 12 12 12 12 12 12 HyperLink1_Master 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 - 12 12 12 12 12 12 12 12 12 12 12 MSMC_SYS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y NETCP - - - - - - - - - - - - - - - - - - - - - - - - - - - - - PCIE 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 QM_Master1 - - - - - - - - - - - - - - - - - - - - 12 - 12 - 12 - 12 - 12 QM_Master2 - - - - - - - - - - - - - - - - - - - - 12 - 12 - 12 - 12 - 12 QM_SEC 12 - - 12 - - - - - - - - - - - - - - - - - - - - - SRIO 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 SRIO Packet DMA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - USB - - - - - - - - - - - - - - - - - 12 - - - - - - - - - - - - - - - End of Table 7-2 1 66AK2H14 only 200 System Interconnect Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 7-3 Configuration Space Interconnect - Section 2 (Part 1 of 2) Masters EDMA4_TC(0-1)_CFG GIC_CFG GPIO_CFG HYPERLINK0_SERDES_CFG HYPERLINK1_SERDES_CFG I C(0-2)_CFG 2 MPU(0-14)_CFG NETCP_CFG NETCP_SERDES_CFG PCIE_SERDES_CFG PLL_CTL_CFG PSC_CFG QM_CFG1 QM_CFG2 SRIO_CFG SRIO_SERDES_CFG TBR_SYS_ARM TETB0_CFG TETB1_CFG TETB2_CFG TETB3_CFG TETB4_CFG TETB5_CFG TETB6_CFG TETB7_CFG TIMER(0-19)_CFG UART(0-1)_CFG USB_MMR_CFG USB_PHY_CFG Slaves 10GbE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - CorePac0_CFG Y - Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y CorePac1_CFG Y - Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y CorePac2_CFG Y - Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y CorePac3_CFG Y - Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y CorePac4_CFG Y - Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y CorePac5_CFG Y - Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y CorePac6_CFG Y - Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y CorePac7_CFG Y - Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y DBG_DAP Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y EDMA0_CC_TR - - - - - - - - - - - - - - - - - - - - - - - - - - - - - EDMA0_TC0_RD 12 - - - - - - - - - - - - - - - - - - - - 12 12 - - - - - - EDMA0_TC0_WR 12 - - - - - - - - - - - - - - - - - - - - - - - - - - - EDMA0_TC1_RD 12 - - - - - - - - - - - - - - - - - - - - 12 12 - - - - - - - EDMA0_TC1_WR 12 - - - - - - - - - - - - - - - - - - - - - - - - - - - - EDMA1_CC_TR - - - - - - - - - - - - - - - - - - - - - - - - - - - - - EDMA1_TC0_RD 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 - - - - 12 12 - - 12 12 12 12 EDMA1_TC0_WR 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 - - - - - - 12 12 12 12 - - EDMA1_TC1_RD 13 - - - - - - - - - - - - - - - - 13 13 - - - - 13 - - - - - EDMA1_TC1_WR 13 - - - - - - - - - - - - - - - - - - - - - - - - - - - - EDMA1_TC2_RD 14 - - - - - - - - - - - - - - - - - - 14 14 - - - 14 - - - - EDMA1_TC2_WR 14 - - - - - - - - - - - - - - - - - - - - - - - - - - - - EDMA1_TC3_RD 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 - - - - 12 12 - - 12 12 12 12 EDMA1_TC3_WR 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 - - - - - - - - 12 12 12 12 EDMA2_CC_TR - - - - - - - - - - EDMA2_TC0_RD 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 - - - - Y Y - - 12 12 12 12 EDMA2_TC0_WR 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 - - - - - - - - 12 12 12 12 EDMA2_TC1_RD 13 - - - - - - - - - - - - - - - - 13 13 - - - - 13 - - - - - EDMA2_TC1_WR 13 - - - - - - - - - - - - - - - - - - - - - - - - - - - - EDMA2_TC2_RD 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 - - - - 12 12 - - 12 12 12 12 EDMA2_TC2_WR 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 - - 12 12 12 12 EDMA2_TC3_RD 14 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14 14 - - - 14 - - - - EDMA2_TC3_WR 14 - - - - - - - - - - - - - - - - - - - - - - - - - - - - EDMA3_CC_TR - - - - - - - - - - - - - - - - - - - - - - - - - - - - EDMA3_TC0_RD 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 EDMA3_TC0_WR 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 - - Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback - - - - - - - 13 13 13 13 System Interconnect 201 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 7-3 Configuration Space Interconnect - Section 2 (Part 2 of 2) USB_PHY_CFG USB_MMR_CFG UART(0-1)_CFG TIMER(0-19)_CFG TETB7_CFG TETB6_CFG TETB5_CFG TETB4_CFG TETB3_CFG TETB2_CFG TETB1_CFG TETB0_CFG TBR_SYS_ARM SRIO_SERDES_CFG SRIO_CFG QM_CFG2 QM_CFG1 PSC_CFG PLL_CTL_CFG PCIE_SERDES_CFG NETCP_SERDES_CFG NETCP_CFG MPU(0-14)_CFG 2 I C(0-2)_CFG HYPERLINK1_SERDES_CFG HYPERLINK0_SERDES_CFG GPIO_CFG GIC_CFG Masters EDMA4_TC(0-1)_CFG Slaves EDMA3_TC1_RD 14 - - - - - - - - - - - - - - - - 14 14 14 14 14 14 14 14 - - - - EDMA3_TC1_WR 14 - - - - - - - - - - - - - - - - - - - - - - - - - - - - EDMA4_CC_TR - - - - - - - - - - - - - - - - - - - - - - - - - - - - - EDMA4_TC0_RD 12 - - - - - - - - - - - - - - - 12 - - - - 12 12 - - - - - - EDMA4_TC0_WR 12 - - - - - - - - - - - - - - - 12 - - - - - - - - - - - EDMA4_TC1_RD 12 - - - - - - - - - - - - - - - 12 - - - - 12 12 - - - - - - EDMA4_TC1_WR 12 - - - - - - - - - - - - - - - 12 - - - - - - - - - - - - 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 - - - - - - - - 12 12 12 12 HyperLink0_Master 12 - - HyperLink1_Master 12 - 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 - - - - - - - - 12 12 12 12 MSMC_SYS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y NETCP - - - - - - - - - - - - - - - - - - - - - - - - - - - - - PCIE 12 - 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 QM_Master1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - QM_Master2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - QM_SEC - - - - - - - 12 - - - - - - - - 12 - - - - - - - - - - 12 - SRIO 14 - 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 SRIO Packet DMA - - - - - - - - - - - - - - - - - - - - - USB - - - - - - - - - - - - - - - - 12 12 12 12 12 12 12 12 12 - - - - - - - - - - - - End of Table 7-3 7.4 Bus Priorities The priority level of all master peripheral traffic is defined at the TeraNet boundary. User-programmable priority registers allow software configuration of the data traffic through the TeraNet. Note that a lower number means higher priority — PRI = 000b = urgent, PRI = 111b = low. All other masters provide their priority directly and do not need a default priority setting. Examples include the C66x CorePacs, whose priorities are set through software in the UMC control registers. All the Packet DMA-based peripherals also have internal registers to define the priority level of their initiated transactions. The Packet DMA secondary port is one master port that does not have priority allocation register inside the Multicore Navigator. The priority level for transaction from this master port is described by the QM_PRIORITY bit field in the CHIP_MISC_CTL0 register shown in Figure 8-34 and Table 8-52. For all other modules, see the respective User Guides in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19 for programmable priority registers. 202 System Interconnect Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8 Device Boot and Configuration 8.1 Device Boot 8.1.1 Boot Sequence The boot sequence is a process by which the internal memory is loaded with program and data sections. The boot sequence is started automatically after each power-on reset or warm reset. The 66AK2H14/12/06 supports several boot processes that begins execution at the ROM base address, which contains the bootloader code necessary to support various device boot modes. The boot processes are software-driven and use the BOOTMODE[15:0] device configuration inputs to determine the software configuration that must be completed. For more details on boot sequence see the Bootloader User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. For 66AK2H14/12/06 nonsecure devices, there are two types of booting: the C66x CorePac as the boot master and the ARM CorePac as the boot master. For secure devices, the C66x CorePac is always the secure master and the C66x CorePac0 or ARM CorePac Core0 can be the boot master. The ARM CorePac does not support no-boot mode. Both the C66x CorePacs and the ARM CorePac need to read the bootmode register to determine how to proceed with the boot. Table 8-1 shows memory space reserved for boot by the C66x CorePac. Table 8-1 C66x DSP Boot RAM Memory Map Start Address Size 0x80_0000 0x1_0000 Description Reserved 0x8e_7f80 0x80 0x8e_8000 0x7f00 C66x CorePac ROM version string 0x8e_767c 4 Boot Master Table Valid Length Field 0x8e_fff0 4 Host Data Address (boot magic address for secure boot through master peripherals) Boot Master Table overlayed with scratch 0x8f_7800 0x410 Secure host Data structure 0x8f_a290 0x4000 Boot Stack 0x8f_e290 0x90 Boot Log Data 0x8f_e320 0x20 Boot Status Stack 0x8f_e410 0xf0 Boot Stats 0x8f_e520 0x13fc Boot Data 0x8f_f91c 0x404 Boot Trace Info 0x8f_fd20 0x180 DDR Config 0x8f_fea0 0x60 Boot RAM call table 0x8f_ff00 0x80 Boot Parameter table 0x8f_fff8 0x4 Secure Signal Magic address 0x8f_fffc 0x4 Boot Magic address End of Table 8-1 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 203 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 8-2 shows addresses reserved for boot by the ARM CorePac. Table 8-2 ARM Boot RAM Memory Map (Part 1 of 2) Start Address Size Description 0xc57_e000 0xc00 Context RAM not scrubbed on secure boot 0xc58_6f80 0x80 Global level 0 non-secure translation table 0xc58_7000 0x5000 Global non-secure page table for memory covering ROM 0xc58_c000 0x1000 Core 0 non-secure level 1 translation table 0xc58_d000 0x1000 Core 1 non-secure level 1 translation table 0xc58_e000 0x1000 Core 2 non-secure level 1 translation table 0xc58_f000 0x1000 Core 3 non-secure level 1 translation table 0xc59_0000 0x7f00 Packet memory buffer 0xc59_7f00 4 Host Data Address (boot magic address for secure boot through master peripherals) 0xc5a_6e00 0x200 DDR3a configuration structure 0xc5a_7000 0x3000 Boot Data 0xc5a_a000 0x3000 Supervisor stack, each core gets 0xc00 bytes 0xc5a_d000 4 Arm boot magic address, core 0 0xc5a_d004 4 Arm boot magic address, core 1 0xc5a_d008 4 Arm boot magic address, core 2 0xc5a_d00c 4 Arm boot magic address, core 3 0xc5a_e000 0x400 Abort stack, core 0 0xc5a_e400 0x400 Abort stack, core 1 0xc5a_e800 0x400 Abort stack, core 2 0xc5a_ec00 0x400 Abort stack, core 3 0xc5a_f000 0x400 Unknown mode stack, core 0 0xc5a_f400 0x400 Unknown mode stack, core 1 0xc5a_f800 0x400 Unknown mode stack, core 2 0xc5a_fc00 0x400 Unknown mode stack, core 3 0xc5b_0000 0x180 Boot Version string, core 0 0xc5b_0180 0x80 Boot status stack, core 0 0xc5b_0200 0x100 Boot stats, core 0 0xc5b_0300 0x100 Boot log, core 0 0x5b_0400 0x100 Boot RAM call table, core 0 0xc5b_0500 0x100 Boot parameter tables, core 0 0xc5b_0600 0x19e0 Boot Data, core 0 0xc5b_1fe0 0x1010 Boot Trace, core 0 0xc5b_4000 0x180 Boot Version string, core 1 0xc5b_4180 0x80 Boot status stack, core 1 0xc5b_4200 0x100 Boot stats, core 1 0xc5b_4300 0x100 Boot log, core 1 0x5b_4400 0x100 Boot RAM call table, core 1 0xc5b_4500 0x100 Boot parameter tables, core 1 0xc5b_4600 0x19e0 Boot Data, core 1 0xc5b_5fe0 0x1010 Boot Trace, core 1 0xc5b_8000 0x180 Boot Version string, core 2 0xc5b_8180 0x80 Boot status stack, core 2 204 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 8-2 ARM Boot RAM Memory Map (Part 2 of 2) Start Address 0xc5b_8200 Size 0x100 Description Boot stats, core 2 0xc5b_8300 0x100 Boot log, core 2 0x5b_8400 0x100 Boot RAM call table, core 2 0xc5b_8500 0x100 Boot parameter tables, core 2 0xc5b_8600 0x19e0 Boot Data, core 2 0xc5b_9fe0 0x1010 Boot Trace, core 2 0xc5b_c000 0x180 Boot Version string, core 3 0xc5b_c180 0x80 Boot status stack, core 3 0xc5b_c200 0x100 Boot stats, core 3 0xc5b_c300 0x100 Boot log, core 3 0x5b_c400 0x100 Boot RAM call table, core 3 0xc5b_c500 0x100 Boot parameter tables, core 3 0xc5b_c600 0x19e0 Boot Data, core 3 0xc5b_dfe0 0x1010 Boot Trace, core 3 0xc5c_0000 0x4_0000 Secure MSMC End of Table 8-2 8.1.2 Boot Modes Supported The device supports several boot processes, which leverage the internal boot ROM. Most boot processes are software-driven, using the BOOTMODE[15:0] device configuration inputs to determine the software configuration that must be completed. From a hardware perspective, there are four possible boot modes: • Public ROM Boot when the C6xx CorePac0 is the boot master — The C66x CorePac is released from reset and begins executing from the L3 ROM base address. The ARM CorePac is also released from reset at the same time as the C66xCorePac. Both the C66x CorePac and the ARM CorePac read the bootmode register inside the bootCFG module to determine which is the boot master. After the Boot ROM for the Cortex-A15 processor reads the bootmode to determine that the C66x CorePac is the boot master, all Cortex-A15 processors stay idle by executing WFI instruction and waiting for the C66x CorePac’s interrupt. The chip Boot ROM reads the bootmode register to determine that the C66x CorePac0 is the boot master, then the C66x CorePac0 performs the boot process and the other C66x CorePacs execute an IDLE instruction. After the boot process is completed, the C66x CorePac0 begins to execute the code downloaded during the boot process. If the downloaded code included code for the other C66x cores and/or the Cortex-A15 processor cores, the downloaded code may contain logic to write the code execution addresses to the boot address register for the core that is to execute it. The C66x CorePac0 can then generate an interrupt to the core causing it to execute the code. When they receive the IPC interrupt, the rest of the C66x CorePacs and the ARM CorePac complete boot management operations and begin executing from the predefined location in memory. • Public ROM Boot when the ARM CorePac Core0 is the boot master — The only difference between this boot mode and and when the C66x CorePac is the boot master, is that the ARM CorePac performs the boot process while the C66x CorePacs execute idle instructions. When the ARM CorePac Core0 finishes the boot process, it may send interrupts to the C66x CorePacs and Cortex-A15 processor cores through IPC registers. The C66x CorePacs complete the boot management operations and begin executing from the predefined locations. • Secure ROM Boot when the C66x CorePac0 is the boot master —The C66x CorePac0 and the ARM CorePac Core0 are released from reset simultaneously and the C66x CorePac0 begins executing from secure ROM. The C66x CorePac0 performs the boot process including any authentication and decryption required on the bootloaded image for the C66x CorePacs and for the ARM CorePac prior to beginning execution. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 205 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 • Secure ROM Boot when the ARM CorePac0 is the boot master — The C66x CorePac0 and the ARM CorePac Core0 are released from reset simultaneously and begin executing from secure ROM. The ARM CorePac Core0 initiates the boot process. The C66x CorePac0 performs any authentication and decryption required on the bootloaded image for the C66x CorePacs and ARM CorePac prior to beginning execution. The boot process performed by the C66x CorePac0 and the ARM CorePac Core0 in public ROM boot and secure ROM boot are determined by the BOOTMODE[15:0] value in the DEVSTAT register. The C66x CorePac0 and the ARM CorePac Core0 read this value, and then execute the associated boot process in software. Bit 8 determines whether the boot is C66x CorePac boot or ARM CorePac boot. The figure below shows the bits associated with BOOTMODE[15:0] (DEVSTAT[16:1]) when the C66x CorePac or ARM CorePac is the boot master. Note that Figure 8-1 does not include bit 0 of the DEVSTAT contents. Bit 0 is used to select overall system endianess that is independent of the boot mode. The boot ROM will continue attempting to boot in this mode until successful or an unrecoverable error occurs. The PLL settings are shown at the end of this section, and the PLL set-up details can be found in Section 10.5 ‘‘Main PLL, ARM PLL, DDR3A PLL, DDR3B PLL, PASS PLL and the PLL Controllers’’ on page 298. Note—It is important to keep in mind that BOOTMODE[15:0] pins map to DEVSTAT[16:1] bits of the DEVSTAT register. Figure 8-1 DEVSTAT Boot Mode Pins ROM Mapping DEVSTAT Boot Mode Pins ROM Mapping 16 15 14 13 12 X X 0 ARMEN SYSEN SlaveAddr X X Width 0 1 Port X Bus Addr Csel Ref Clock X PA clk 206 Width Clear Data Rate Ref clk Ref clk Port Wait First Block Lane 10 Ext Con X X X X X X X X Port Device Boot and Configuration 7 6 5 Npin Min Port ARM PLL CONFIG X 4 SYS PLL CONFIG Param ldx 1 0 0 Lane Setup ARM PLL CONFIG Rsvd Lane Setup ARM PLL CONFIG SerDes Cfg ARM PLL CONFIG X X Mode SLEEP 2 0 0 0 I C SLAVE 0 0 1 I C MASTER 0 1 0 2 SPI EMIF (ARM Master) 1 1 Chip Sel ARM PLL CONFIG X 2 0 0 ARM PLL CONFIG X 3 0 Chip Sel SerDes Cfg Data Rate 8 X ARM PLL CONFIG Bar Config Ref clk 9 ARM PLL CONFIG Mode Base Addr 1 11 EMIF (DSP Master) NAND (ARM Master) NAND (DSP Master) Boot Master Min SYS PLL CONFIG 0 1 0 0 1 0 1 1 1 0 1 1 1 0 Min 1 1 1 SRIO (ARM Master) SRIO (DSP Master) Ethernet (ARM Master) Ethernet (DSP Master) PCIe (ARM Master) PCIe (DSP Master) HyperLink (ARM Master) HyperLink (DSP Master) UART (ARM Master) UART (DSP Master) Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.1.2.1 Boot Device Field The Boot Device field BOOTMODE[16-14-4-3-2-1] and the Boot Device field BOOTMODE[8] define the boot device and the boot master that is chosen. The following table shows the supported boot modes. Table 8-3 Boot Mode Pins: Boot Device Values Bit Field Description 16, 14, 4, 3, 2, 1 Boot Device Device boot mode – ARM is a boot master when BOOTMODE[8]=0 » Sleep = X0[Min]000b » I2C Slave = [Slave Addr1]1[Min]000b 2 » I C Master = X1[Min]001b » SPI = [Width][Csel0][Min]010b » EMIF = 0[BaseAddr0][Min]011b » NAND = 1[BaseAddr0][Min]011b » Serial Rapid I/O = [Lane][Ref Clock0][Min]100b » Ethernet (SGMII) = [Pa clk][Ref Clk0][Min]101b » PCI = [Ref clk][Bar Config2]0110b » HyperLink = [Port][Ref Clk0]1110b » UART = XX[Min]111b – C66x is a boot master when BOOTMODE[8]=1 » Sleep = X0[Min]000b » I2C Slave = [Slave Addr1]1[Min]000b 2 » I C Master = X1[Min]001b » SPI = [Width][Csel0][Min]010b » EMIF = 0[BaseAddr0][Min]011b » NAND = 1[BaseAddr0][Min]011b » Serial Rapid I/O = [Lane][Ref Clock0][Min]100b » Ethernet (SGMII) = [Pa clk][Ref Clk0][Min]101b » PCI = [Ref clk][Bar Config2]0110b » HyperLink = [Port][Ref Clk0]1110b » UART = XX[Min]111b End of Table 8-3 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 207 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.1.2.2 Device Configuration Field The device configuration fieldsDEVSTAT[16:1] are used to configure the boot peripheral and, therefore, the bit definitions depend on the boot mode. 8.1.2.2.1 Sleep Boot Mode Configuration Sleep Boot Mode Configuration Fields Figure 8-2 DEVSTAT Boot Mode Pins ROM Mapping 16 X 15 14 X Table 8-4 Bit 0 13 12 11 ARMen SYSEN 10 9 ARM PLL Cfg 8 Boot Master 7 6 Sys PLL Config 5 4 3 Min 2 000 1 0 Lendian Sleep Boot Configuration Field Descriptions Field Description 16-15 Reserved Reserved 14 Boot Devices Boot Device- used in conjunction with Boot Devices [Used in conjunction with bits 3-1] 0 = Sleep (default) Others = Other boot modes 13 ARMen Enable the ARM PLL 0 = PLL disabled 1 = PLL enabled 12 SYSEN Enable the System PLL 0 = PLL disabled (default) 1 = PLL enabled 11-9 ARM PLL Setting The PLL default settings are determined by the [11:9] bits. This will set the PLL to the maximum clock setting for the device. Table 8-27 shows settings for various input clock frequencies. 8 Boot Master Boot Master select 0 = ARM is boot master 1 = C66x is boot master 7-5 SYS PLL Setting The PLL default settings are determined by the [7:5] bits. This will set the PLL to the maximum clock setting for the device. Table 8-27 shows settings for various input clock frequencies. 4 Min Minimum boot configuration select bit. 0 = Minimum boot pin select disabled 1 = Minimum boot pin select enabled. When Min = 1, a predetermined set of values is configured (see the Device Configuration Field Descriptions table for configuration bits with a "(default)" tag added in the description column). When Min = 0, all fields must be independently configured. 3-1 Boot Devices Boot Devices[3:1] used in conjunction with Boot Device [14] 000 = Sleep Others = Other boot modes 0 Lendian Endianess (device) 0 = Big endian 1 = Little endian End of Table 8-4 208 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.1.2.2.2 I2C Boot Device Configuration I2C Passive Mode In passive mode, the device does not drive the clock, but simply acks data received on the specified address. I2C Passive Mode Device Configuration Fields Figure 8-3 DEVSTAT Boot Mode Pins ROM Mapping 16 15 14 Slave Addr Table 8-5 1 13 12 11 Port 10 9 ARM PLL Cfg 8 Boot Master 7 6 Sys PLL Config 5 4 3 Min 2 000 1 0 Lendian I2C Passive Mode Device Configuration Field Descriptions Bit Field Description 16-15 Slave Addr I C Slave boot bus address 2 0 = I C slave boot bus address is 0x00 2 1 = I C slave boot bus address is 0x10 (default) 2 = I2C slave boot bus address is 0x20 2 3 = I C slave boot bus address is 0x30 14 Boot Devices Boot Device[14] used in conjunction with Boot Devices [Use din conjunction with bits 3-1] 0 = Other boot modes 2 1= I C Slave boot mode 13-12 Port I2C port number 2 0 = I C0 1 = I2C1 2 2 = I C2 3 = Reserved 11-9 ARM PLL Setting The PLL default settings are determined by the [11:9] bits. This will set the PLL to the maximum clock setting for the device. Table 8-27 shows settings for various input clock frequencies. 8 Boot Master Boot Master select 0 = ARM is boot master 1 = C66x is boot master 7-5 SYS PLL Setting The PLL default settings are determined by the [7:5] bits. This will set the PLL to the maximum clock setting for the device. Table 8-27 shows settings for various input clock frequencies. 4 Min Minimum boot configuration select bit. 0 = Minimum boot pin select disabled 1 = Minimum boot pin select enabled. 2 When Min = 1, a predetermined set of values is configured (see the Device Configuration Field Descriptions table for configuration bits with a "(default)" tag added in the description column). When Min = 0, all fields must be independently configured. 3-1 Boot Devices Boot Devices[3:1] used in conjunction with Boot Device [14] 2 000 = I C Slave Others = Other boot modes 0 Lendian Endianess 0 = Big endian 1 = Little endian End of Table 8-5 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 209 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 I2C Master Mode In master mode, the I2C device configuration uses ten bits of device configuration instead of seven as used in other 2 boot modes. In this mode, the device makes the initial read of the I C EEPROM while the PLL is in bypass mode. The initial read contains the desired clock multiplier, which must be set up prior to any subsequent reads. 2 I C Master Mode Device Configuration Fields Figure 8-4 DEVSTAT Boot Mode Pins ROM Mapping 16 15 14 13 Reserved 12 11 Bus Addr 10 9 Param ldx/Offset 8 7 6 Boot Master Reserved 5 Port 4 3 Min 2 1 001 0 Lendian I2C Master Mode Device Configuration Field Descriptions Table 8-6 Bit Field Description 16-14 Reserved Reserved 13-12 Bus Addr I C bus address slave device 0 = I2C slave boot bus address is 0x50 (default) 2 1 = I C slave boot bus address is 0x51 2 2 = I C slave boot bus address is 0x52 3 = I2C slave boot bus address is 0x53 11-9 Param Idx/Offset Parameter Table Index: 0-7 2 This value specifies the parameter table index when the C66x is the boot master This value specifies the start read address at 8K times this value when the ARM is the boot master 8 Boot Master Boot Master select 0 = ARM is boot master 1 = C66x is boot master 7 Reserved 6-5 Port I C port number 2 0 = I C0 (default) 2 1 = I C1 2 = I2C2 3 = Reserved 4 Min Minimum boot configuration select bit. 0 = Minimum boot pin select disabled 1 = Minimum boot pin select enabled. Reserved 2 When Min = 1, a predetermined set of values is configured (see the Device Configuration Field Descriptions table for configuration bits with a "(default)" tag added in the description column). When Min = 0, all fields must be independently configured. 3-1 Boot Devices Boot Devices[3:1] 001 = I2C Master Others = Other boot modes 0 Lendian Endianess 0 = Big endian 1 = Little endian End of Table 8-6 8.1.2.2.3 SPI Boot Device Configuration Figure 8-5 SPI Device Configuration Fields DEVSTAT Boot Mode Pins ROM Mapping 16 15 Width 210 14 Csel 13 12 Mode Device Boot and Configuration 11 10 Param ldx/Offset 9 8 7 Boot Master Npin 6 5 Port 4 Min 3 2 010 1 0 Lendian Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 8-7 SPI Device Configuration Field Descriptions Bit Field Description 16 Width SPI address width configuration 0 = 16-bit address values are used 1 = 24-bit address values are used (default) 15-14 Csel The chip select field value 0-3(default = 0) 13-12 Mode Clk Polarity/ Phase 0 = Data is output on the rising edge of SPICLK. Input data is latched on the falling edge. 1 = Data is output one half-cycle before the first rising edge of SPICLK and on subsequent falling edges. Input data is latched on the rising edge of SPICLK. 2 = Data is output on the falling edge of SPICLK. Input data is latched on the rising edge (default). 3 = Data is output one half-cycle before the first falling edge of SPICLK and on subsequent rising edges. Input data is latched on the falling edge of SPICLK. 11-9 Param Idx/Offset Parameter Table Index: 0-7 This value specifies the parameter table index when the C66x is the boot master This value specifies the start read address at 8K times this value when the ARM is the boot master 8 Boot Master Boot Master select 0 = ARM is boot master (default) 1 = C66x is boot master 7 Npin Selected Chip Select driven 0 = CS0 to the selected chip select is driven 1 = CS0-CS4 to the selected chip select are driven (default) 6-5 Port Specify SPI port 0 = SPI0 used (default) 1 = SPI1 used 2 = SPI2 used 3 = Reserved 4 Min Minimum boot configuration select bit. 0 = Minimum boot pin select disabled 1 = Minimum boot pin select enabled. When Min = 1, a predetermined set of values is configured (see the Device Configuration Field Descriptions table for configuration bits with a "(default)" tag added in the description column). When Min = 0, all fields must be independently configured. 3-1 Boot Devices Boot Devices[3:1] 010 = SPI boot mode Others = Other boot modes 0 Lendian Endianess 0 = Big endian 1 = Little endian End of Table 8-7 8.1.2.2.4 EMIF Boot Device Configuration Figure 8-6 EMIF Boot Device Configuration Fields DEVSTAT Boot Mode Pins ROM Mapping 16 13 12 11 10 0 15 Base Addr 14 Wait Width X Chip Sel 0 Base Addr Wait Width Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback ARM PLL Cfg 9 8 7 6 5 4 3 2 1 0 Boot Master=1 Sys PLL Cfg 0 011 Lendian Boot Master=0 Sys PLL Cfg 0 011 Lendian Device Boot and Configuration 211 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 EMIF Boot Device Configuration Field Descriptions Table 8-8 Bit Field Description 16 Boot Devices Boot Devices[16] used conjunction with Boot Devices[4] and Boot Devices [Used in conjunction with bits 3-1] 0 = EMIF boot mode 1 = Other boot modes 15-14 Base Addr Base address (0-3) used to calculate the branch address. Branch address is the chip select plus Base Address *16MB 13 Wait Extended Wait 0 = Extended Wait disabled 1 = Extended Wait enabled 12 Width EMIF Width 0 = 8-bit EMIF Width 1 = 16-bit EMIF Width 11-9 Chip Sel/ARM PLL Setting When Boot Master = 0 (ARM is Boot Master), Pin[11:9] used as ARM PLL Setting and the chip select region CS0 is used. The PLL default settings are determined by the [11:9] bits. This will set the PLL to the maximum clock setting for the device. Table 8-27 shows settings for various input clock frequencies. When Boot Master =1 (C66x is Boot Master), Pin[10:9] used as Chip Sel that specifies the chip select region, CS0-CS3. 00 = CS0 (EMIFCE0) 01 = CS1 (EMIFCE1) 10 = CS2 (EMIFCE2) 11 = CS3 (EMIFCE3) 8 Boot Master Boot Master select 0 = ARM is boot master 1 = C66x is boot master 7-5 SYS PLL Setting The PLL default settings are determined by the [7:5] bits. This will set the PLL to the maximum clock setting for the device. Table 8-27 shows settings for various input clock frequencies. 4 Boot Devices Boot Devices[4] used conjunction with Boot Devices[16] and Boot Devices [Use din conjunction with bits 3-1] 0 = EMIF boot mode 1 = Other boot modes 3-1 Boot Devices Boot Devices[3:1] used in conjunction with Boot Device [4] 011 = EMIF boot mode Others = Other boot modes 0 Lendian Endianess 0 = Big endian 1 = Little endian End of Table 8-8 8.1.2.2.5 NAND Boot Device Configuration Figure 8-7 NAND Boot Device Configuration Fields DEVSTAT Boot Mode Pins ROM Mapping 16 12 11 1 First Block Clear X 1 First Block Clear 212 15 14 13 Device Boot and Configuration 10 Chip Sel ARM PLL Cfg 9 8 7 6 5 4 3 2 1 0 Boot Master=1 Sys PLL Cfg Min 011 Lendian Boot Master=0 Sys PLL Cfg Min 011 Lendian Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 NAND Boot Device Configuration Field Descriptions Table 8-9 Bit Field Description 16 Boot Devices Boot Devices[16] used conjunction with Boot Devices [3-1] 0 = Other boot modes 1 = NAND boot mode 15-13 First Block First Block. This value is used to calculate the first block read. The first block read is the first block value *16. 12 Clear ClearNAND 0 = Device is not a ClearNAND (default) 1 = Device is a ClearNAND 11-9 Chip Sel/ARM PLL Setting When Boot Master = 0 (ARM is Boot Master), Pin[11:9] used as ARM PLL Setting and the chip select region CS2 is used. The PLL default settings are determined by the [11:9] bits. This will set the PLL to the maximum clock setting for the device. Table 8-27 shows settings for various input clock frequencies. When Boot Master =1 (C66x is Boot Master), Pin[10:9] used as Chip Sel that specifies the chip select region, CS2-CS5. 00 = CS2 01 = CS3 10 = CS4 11 = CS5 8 Boot Master Boot Master select 0 = ARM is boot master (default) 1 = C66x is boot master 7-5 SYS PLL Setting The PLL default settings are determined by the [7:5] bits. This will set the PLL to the maximum clock setting for the device. Table 8-27 shows settings for various input clock frequencies. 4 Min Minimum boot pin select. When Min is 1, it means that the BOOTMODE [15:3] pins are don't cares. Only BOOTMODE [2:0] pins (DEVSTAT[3:1]) will determine boot. Default values are assigned to values that would normally be set by the other BOOTMODE pins when Min is 0. 0 = Minimum boot pin select disabled 1 = Minimum boot pin select enabled. 3-1 Boot Devices Boot Devices 011 = NAND boot mode Others = Other boot modes 0 Lendian Endianess 0 = Big endian 1 = Little endian End of Table 8-9 8.1.2.2.6 Serial Rapid I/O Boot Device Configuration The device ID is always set to 0xff (8-bit node IDs) or 0xffff (16 bit node IDs) at power-on reset. Serial Rapid I/O Boot Device Configuration Fields Figure 8-8 DEVSTAT Boot Mode Pins ROM Mapping 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 X Ref Clock Data Rate Lane Setup Boot Master=1 Sys PLL Cfg Min 100 Lendian Lane Ref Clock Data Rate ARM PLL Cfg Boot Master=0 Sys PLL Cfg Min 100 Lendian Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 213 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 8-10 Serial Rapid I/O Boot Device Configuration Field Descriptions Bit Field Description 16 Lane When Boot Master =0 (ARM is Boot Master), Pin[16] is used as Lane. 0 = 4 ports, each 1 lane wide (default) 1 = 2 ports, each 2lanes wide 15-14 Ref Clock SRIO Reference clock frequency 0 = 125MHz 1 = 156.25MHz (default) 2 = Reserved 3 = Reserved 13-12 Data Rate SRIO Data Rate 0 = 1.25 GBs 1 = 2.5 GBs 2 = 3.125 GBs 3 = 5 GBs (default) 11-9 Lane Setup/ARM PLL Setting When Boot Master =0 (ARM is Boot Master), pin[11:9] used as ARM PLL Setting with all lanes enabled. The PLL default settings are determined by the [11:9] bits. This will set the PLL to the maximum clock setting for the device. The default value is 156.26 Mhz. Table 8-27 shows settings for various input clock frequencies. When Boot Master =1 (C66x is Boot Master), Pin[16] is reserved. When Boot Master =1 (C66x is Boot Master), pin [11:9] are used as Lane Set up. 0 = 4 ports, each 1 lane wide (default) 1 = 3 ports, lanes 0, 1 form a 2 lane port, lane 2,3 are single ports 2 = 3 ports, lanes 0, 1 are single lane ports, lanes 2,3 form a 2 lane port 3 = 2 ports, lane 0, 1 are one port, lane 2, 3 are a second port 4 = 1 port, 4 lanes wide 5 - 7 = 4 ports, each 1 lane wide 8 Boot Master Boot Master select 0 = ARM is boot master (default) 1 = C66x is boot master 7-5 SYS PLL Setting The PLL default settings are determined by the [7:5] bits. This will set the PLL to the maximum clock setting for the device. Default system reference clock is 156.25 MHz. Table 8-27 shows settings for various input clock frequencies. (default = 4) 4 Min Minimum boot configuration select bit. 0 = Minimum boot pin select disabled 1 = Minimum boot pin select enabled. When Min = 1, a predetermined set of values is configured (see the Device Configuration Field Descriptions table for configuration bits with a "(default)" tag added in the description column). When Min = 0, all fields must be independently configured. 3-1 Boot Devices Boot Devices 100 = SRIO boot mode Others = Other boot modes 0 Lendian Endianess 0 = Big endian 1 = Little endian End of Table 8-10 In SRIO boot mode, both the message mode and DirectIO mode will be enabled by default. If use of the memory reserved for received messages is required and reception of messages cannot be prevented, the master can disable the message mode by writing to the boot table and generating a boot restart. 214 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.1.2.3 Ethernet (SGMII) Boot Device Configuration Ethernet (SGMII) Boot Device Configuration Fields Figure 8-9 DEVSTAT Boot Mode Pins ROM Mapping 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Pa clk Ref Clock Ext Con Lane Setup Boot Master=1 Sys PLL Cfg Min 101 Lendian Pa clk Ref Clock Ext Con ARM PLL Cfg Boot Master=0 Sys PLL Cfg Min 101 Lendian Table 8-11 Ethernet (SGMII) Boot Device Configuration Field Descriptions Bit Field Description 16 Pa clk PA clock reference 0 = PA clocked at the same reference as the core reference 1 = PA clocked at the same reference as the SerDes reference (default) 15-14 Ref Clock SRIO Reference clock frequency 0 = 125MHz 1 = 156.25MHz (default) 2 = Reserved 3 = Reserved 13-12 Ext Con External connection mode 0 = MAC to MAC connection, master with auto negotiation 1 = MAC to MAC connection, slave with auto negotiation (default) 2 = MAC to MAC, forced link, maximum speed 3 = MAC to fiber connection 11-9 Lane Setup/ARM PLL Setting When Boot Master =0 (ARM is Boot Master), pin[11:9] used as ARM PLL Setting. The PLL default settings are determined by the [11:9] bits. This will set the PLL to the maximum clock setting for the device. Table 8-27 shows settings for various input clock frequencies. When Boot Master =1 (C66x is Boot Master), pin [10:9] are used as Lane Set up. 0 = All SGMII ports enabled (default) 1 = Only SGMII port 0 enabled 2 = SGMII port 0 and 1 enabled 3 = SGMII port 0, 1 and 2 enabled 4-7 = Reserved 8 Boot Master Boot Master select 0 = ARM is boot master (default) 1 = C66x is boot master 7-5 SYS PLL Setting The PLL default settings are determined by the [7:5] bits. This will set the PLL to the maximum clock setting for the device. Default system reference clock is 156.25 MHz. Table 8-27 shows settings for various input clock frequencies. (default = 4) 4 Min Minimum boot configuration select bit. 0 = Minimum boot pin select disabled 1 = Minimum boot pin select enabled. When Min = 1, a predetermined set of values is configured (see the Device Configuration Field Descriptions table for configuration bits with a "(default)" tag added in the description column). When Min = 0, all fields must be independently configured. 3-1 Boot Devices Boot Devices 101 = Ethernet boot mode Others = Other boot modes 0 Lendian Endianess 0 = Big endian 1 = Little endian End of Table 8-11 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 215 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.1.2.3.1 PCIe Boot Device Configuration PCIe Boot Device Configuration Fields Figure 8-10 DEVSTAT Boot Mode Pins ROM Mapping 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Ref clk Bar Config Reserved Boot Master=1 Sys PLL Cfg 0110 Lendian Ref clk Bar Config ARM PLL Cfg Boot Master=0 Sys PLL Cfg 0110 Lendian Table 8-12 PCIe Boot Device Configuration Field Descriptions Bit Field Description 16 Ref clk PCIe Reference clock frequency 0 = 100MHz 1 = Reserved 15-12 Bar Config PCIe BAR registers configuration This value can range from 0 to 0xf. See Table 8-13. 11-9 Reserved/ARM PLL Setting When Boot Master =0 (ARM is Boot Master), pin[11:9] used as ARM PLL Setting. The PLL default settings are determined by the [11:9] bits. This will set the PLL to the maximum clock setting for the device. Table 8-27 shows settings for various input clock frequencies. When Boot Master =1 (C66x is Boot Master), pin [10:9] are reserved. 8 Boot Master Boot Master select 0 = ARM is boot master (default) 1 = C66x is boot master 7-5 SYS PLL Setting The PLL default settings are determined by the [7:5] bits.This will set the PLL to the maximum clock setting for the device. Default system reference clock is 156.25 MHz. Table 8-27 shows settings for various input clock frequencies. 4-1 Boot Devices Boot Devices[4:1] 0110 = PCIe boot mode Others = Other boot modes 0 Lendian Endianess 0 = Big endian 1 = Little endian End of Table 8-12 216 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 8-13 BAR Config / PCIe Window Sizes 32-Bit Address Translation 64-Bit Address Translation BAR cfg BAR0 BAR1 BAR2 BAR3 BAR4 BAR5 0b0000 PCIe MMRs Clone of BAR4 32 32 32 32 0b0001 16 16 32 64 0b0010 16 32 32 64 0b0011 32 32 32 64 0b0100 16 16 64 64 0b0101 16 32 64 64 0b0110 32 32 64 64 0b0111 32 32 64 128 0b1000 64 64 128 256 0b1001 4 128 128 128 0b1010 4 128 128 256 0b1011 4 128 256 256 BAR2/3 BAR4/5 0b1100 256 256 0b1101 512 512 0b1110 1024 1024 0b1111 2048 2048 8.1.2.3.2 HyperLink Boot Device Configuration HyperLink Boot Device Configuration Fields Figure 8-11 DEVSTAT Boot Mode Pins ROM Mapping 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Port RefClk Data Rate Reserved Boot Master=1 Sys PLL Cfg 1110 Lendian Port RefClk Data Rate ARM PLL Cfg Boot Master=0 Sys PLL Cfg 1110 Lendian Table 8-14 HyperLink Boot Device Configuration Field Descriptions (Part 1 of 2) Bit Field Description 16 Port HyperLink port 0 = HyperLink0 1 = HyperLink1 15-14 Ref Clocks HyperLink reference clock configuration 0 = 125 MHz 1 = 156.25 MHz 2-3 = Reserved 13-12 Data Rate HyperLink data rate configuration 0 = 1.25 GBs 1 = 3.125 GBs 2 = 6.25 GBs 3 = 12.5GBs 11-9 Reserved/ARM When Boot Master =0 (ARM is Boot Master), pin[11:9] used as ARM PLL Setting. The PLL default settings are determined by the PLL Setting [11:9] bits. This will set the PLL to the maximum clock setting for the device. Table 8-27 shows settings for various input clock frequencies. When Boot Master =1 (C66x is Boot Master), pin [10:9] are reserved. 8 Boot Master Boot Master select 0 = ARM is boot master (default) 1 = C66x is boot master Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 217 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 8-14 HyperLink Boot Device Configuration Field Descriptions (Part 2 of 2) Bit Field Description 7-5 SYS PLL Setting The PLL default settings are determined by the [7:5] bits. This will set the PLL to the maximum clock setting for the device. Default system reference clock is 156.25 MHz. Table 8-27 shows settings for various input clock frequencies. 4-1 Boot Devices Boot Devices[4:1] 1110 = HyperLink boot mode Others = Other boot modes 0 Lendian Endianess 0 = Big endian 1 = Little endian End of Table 8-14 8.1.2.3.3 UART Boot Device Configuration UART Boot Mode Configuration Field Description Figure 8-12 DEVSTAT Boot Mode Pins ROM Mapping 16 15 14 13 12 11 10 9 8 X X X X Port X X X Boot Master=1 Sys PLL Config Min 111 Lendian X X X X Port Boot Master=0 Sys PLL Config Min 111 Lendian Table 8-15 Bit ARM PLL Cfg 7 6 5 4 3 2 1 0 UART Boot Configuration Field Descriptions Field Description 16-13 Reserved Not Used 12 Port UART Port number 0 = UART0 1 = UART1 11-9 ARM PLL Setting The PLL default settings are determined by the [11:9] bits. This will set the PLL to the maximum clock setting for the device. Table 8-27 shows settings for various input clock frequencies. 8 Boot Master Boot Master select 0 = ARM is boot master 1 = C66x is boot master 7-5 SYS PLL Setting The PLL default settings are determined by the [7:5] bits. This will set the PLL to the maximum clock setting for the device. Table 8-27 shows settings for various input clock frequencies. (default = 4) 4 Min Minimum boot configuration select bit. 0 = Minimum boot pin select disabled 1 = Minimum boot pin select enabled. When Min = 1, a predetermined set of values is configured (see the Device Configuration Field Descriptions table for configuration bits with a "(default)" tag added in the description column). When Min = 0, all fields must be independently configured. 3-1 Boot Devices Boot Devices[3:1] 111 = UART boot mode Others = Other boot modes 0 Lendian Endianess 0 = Big endian 1 = Little endian End of Table 8-15 218 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.1.2.4 Boot Parameter Table The ROM Bootloader (RBL) uses a set of tables to carry out the boot process. The boot parameter table is the most common format the RBL employs to determine the boot flow. These boot parameter tables have certain parameters common across all the boot modes, while the rest of the parameters are unique to the boot modes. The common entries in the boot parameter table are shown in table Table 8-16. Table 8-16 Boot Parameter Table Common Parameters Byte Offset Name Description 0 Length The length of the table, including the length field, in bytes. 2 Checksum The 16 bits ones complement of the ones complement of the entire table. A value of 0 will disable checksum verification of the table by the boot ROM. 4 Boot Mode Internal values used by RBL for different boot modes. 6 Port Num Identifies the device port number to boot from, if applicable 8 SW PLL, MSW PLL configuration, MSW 10 SW PLL, LSW PLL configuration, LSW 12 Sec PLL Config, MSW ARM PLL configuration, MSW 14 Sec PLL Config, LSW ARM PLL configuration, LSW 16 System Freq The Frequency of the system clock in MHz 18 Core Freq The frequency of the core clock in MHz 20 Boot Master Set to TRUE if C66x is the master core. End of Table 8-16 8.1.2.4.1 EMIF16 Boot Parameter Table Table 8-17 EMIF16 Boot Parameter Table Byte Offset Name Description Configured Through Boot Configuration Pins 22 Options Async Config Parameters are used. 0 = Value in the async config paramters are not used to program async config registers. 1 = Value in the async config paramters are used to program async config registers. NO 24 Type Set to 0 for EMIF16 (NOR) boot NO 26 Branch Address MSW Most significant bit for Branch address (depends on chip select) YES 28 Branch Address LSW Least significant bit for Branch address (depends on chip select) YES 30 Chip Select Chip Select for the NOR flash YES 32 Memory Width Memory width of the Emif16 bus (16 bits) YES 34 Wait Enable Extended wait mode enabled 0 = Wait enable is disabled 1 = Wait enable is enabled YES 36 Async Config MSW Async Config Register MSW NO 38 Async Config LSW Async Config Register LSW NO End of Table 8-17 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 219 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.1.2.4.2 SRIO Boot Parameter Table Table 8-18 SRIO Boot Parameter Table Byte Offset Name Description 22 Bit 0 Tx enable 0 = SRIO Transmit disable 1 = SRIO Transmit Enable Options Configured Through Boot Configuration Pins NO Bit 1 Mailbox Enable 0 = Mailbox mode disabled. (SRIO boot is in DirectIO mode). 1 = Mailbox mode enabled. (SRIO boot is in Messaging mode). Bit 2 Bypass Configuration 0 = Configure the SRIO 1 = Bypass SRIO configuration Bit 3 Bypass QM Configuration 0 = Configure the QM and CPDMA 1 = Bypass the QM and CPDMA configuration Bit 4 PLL setup 0 = SERDES Configuration registers are taken without modification. 1 = SERDES Configuration are modified based on the reference clock and link rate. Bit 5-15 = Reserved 24 Lane Setup 0b0000 = SRIO configured as four 1x ports 0b0001 = SRIO configured as 3 ports (2x, 1x, 1x) 0b0010 = SRIO configured as 3 ports (1x, 1x, 2x) 0b0011 =SRIO configured as 2 ports (2x, 2x) 0b0100 = SRIO configured as 1 4x port 0b 0101 - 0bffff = Reserved YES (but not all lane setup are possible through the boot configuration pins) 26 Reserved Reserved NA 28 Node ID The node ID value to set for this device NO 30 SerDes ref clk The SerDes reference clock frequency, in 1/100 MHZ YES 32 Link Rate Link rate, MHz YES 34 PF Low Packet forward address range, low value NO 36 PF High Packet Forward address range, high value NO 38 Promiscuous Mask The bit is set for each lane/port that is configured as promiscuous NO 40 Timeout Sec Number of seconds before timeout. The value 0 disables the timeout NO 44 SERDES Aux, MSW SERDES Auxillary Register Configuration, MSW NO 48 SERDES Aux, LSW SERDES Auxillary Register Configuration, LSW NO 52 SERDES Rx Lane0 MSW SERDES Rx Configuration, Lane0, MSW NO 56 SERDES Rx Lane0 LSW NO 60 SERDES Rx Lane1 MSW SERDES Rx Configuration, Lane1, MSW NO 64 SERDES Rx Lane1 LSW NO 68 SERDES Rx Lane2 MSW SERDES Rx Configuration, Lane2, MSW NO 72 SERDES Rx Lane2 LSW NO 76 SERDES Rx Lane3 MSW SERDES Rx Configuration, Lane3, MSW NO 80 SERDES Rx Lane3 LSW NO SERDES Rx Configuration, Lane0, LSW SERDES Rx Configuration, Lane1, LSW SERDES Rx Configuration, Lane2, LSW SERDES Rx Configuration, Lane3, LSW End of Table 8-18 220 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.1.2.4.3 Ethernet Boot Parameter Table Table 8-19 Ethernet Boot Parameter Table (Part 1 of 2) Byte Offset Name Description 22 Options Bits 02 - 00 Interface 000 - 100 = Reserved 101 = SGMII 110 = Reserved 111 = Reserved Configured Through Boot Configuration Pins NO Bits 03 HD 0 = Half Duplex 1 = Full Duplex Bit 4 Skip TX 0 = Send Ethernet Ready Frame every 3 seconds 1 = Don't send Ethernet Ready Frame Bits 06 - 05 Initialize Config 00 = Switch, SerDes, SGMII and PASS are configured 01 = Initialization is not done for the peripherals that are already enabled and running. 10 = Reserved 11 = None of the Ethernet system is configured. Bits 15 - 07 Reserved 24 MAC High The 16 MSBs of the MAC address to receive during boot NO 26 MAC Med The 16 middle bits of the MAC address to receive during boot NO 28 MAC Low The 16 LSBs of the MAC address to receive during boot NO 30 Multi MAC High The 16 MSBs of the multi-cast MAC address to receive during boot NO 32 Multi MAC Med The 16 middle bits of the multi-cast MAC address to receive during boot NO 34 Multi MAC Low The 16 LSBs of the multi-cast MAC address to receive during boot NO 36 Source Port The source UDP port to accept boot packets from. A value of 0 will accept packets from any UDP port NO 38 Dest Port The destination port to accept boot packets on. NO 40 Device ID 12 The first two bytes of the device ID. This is typically a string value, and is sent in the Ethernet ready frame NO 42 Device ID 34 The 2nd two bytes of the device ID. NO 44 Dest MAC High The 16 MSBs of the MAC destination address used for the Ethernet ready frame. Default is broadcast. NO 46 Dest MAC Med The 16 middle bits of the MAC destination address NO 48 Dest MAC Low The 16 LSBs of the MAC destination address NO 50 Lane Enable One bit per lane. 0 - Lane disabled 1 - Lane enabled 52 SGMII Config Bits 0-3 are the config index, bit 4 set if direct config used, bit 5 set if no configuration done 54 SGMII Control The SGMII control register value NO 56 SGMII Adv Ability The SGMII ADV Ability register value NO 58 SGMII TX Cfg High The 16 MSBs of the SGMII Tx config register NO 60 SGMII TX Cfg Low The 16 LSBs of the SGMII Tx config register NO 62 SGMII RX Cfg High The 16 MSBs of the SGMII Rx config register NO 64 SGMII RX Cfg Low The 16 LSBs of the SGMII Rx config register NO NO 66 SGMII Aux Cfg High The 16 MSBs of the SGMII Aux config register NO 68 SGMII Aux Cfg Low The 16 LSBs of the SGMII Aux config register NO Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 221 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 8-19 Ethernet Boot Parameter Table (Part 2 of 2) Configured Through Boot Configuration Pins Byte Offset Name Description 70 PKT PLL Cfg MSW The packet subsystem PLL configuration, MSW NO 72 PKT PLL CFG LSW The packet subsystem PLL configuration, LSW NO End of Table 8-19 8.1.2.4.4 PCIe Boot Parameter Table Table 8-20 PCIe Boot Parameter Table Byte Offset Name Description 22 Options Bits 00 Mode 0 = Host Mode (Direct boot mode) 1 = Boot Table Boot Mode Configured Through Boot Configuration Pins NO Bits 01 Configuration of PCIe 0 = PCIe is configured by RBL 1 = PCIe is not configured by RBL Bit 03-02 Reserved Bits 04 Multiplier 0 = SERDES PLL configuration is done based on SERDES register values 1 = SERDES PLL configuration based on the reference clock values Bits 05 - 15 = Reserved 24 Address Width PCI address width, can be 32 or 64 YES with in conjunction with BAR sizes 26 Link Rate SerDes frequency, in Mbps. Can be 2500 or 5000 NO 28 Reference clock NO Reference clock frequency, in units of 10 kHz. Value values are 10000 (100 MHz), 12500 (125 MHz), 15625 (156.25 MHz), 25000 (250 MHz) and 31250 (312.5 MHz). A value of 0 means that value is already in the SerDes cfg parameters and will not be computed by the boot ROM. 30 Window 1 Size Window 1size. YES 32 Window 2 Size Window 2 size. YES 34 Window 3 Size Window 3 size. Valid only if address width is 32. YES 36 Window 4 Size Window 4 Size. Valid only if the address width is 32. YES 38 Vendor ID Vendor ID NO 40 Device ID Device ID NO 42 Class code Rev ID MSW Class code revision ID MSW NO 44 Class code Rev ID LSW Class code revision ID LSW NO 46 SerDes cfg msw PCIe SerDes config word, MSW NO 48 SerDes cfg lsw PCIe SerDes config word, LSW NO 50 SerDes lane 0 cfg msw SerDes lane config word, msw lane 0 NO 52 SerDes lane 0 cfg lsw SerDes lane config word, lsw, lane 0 NO 54 SerDes lane 1 cfg msw SerDes lane config word, msw, lane 1 NO 56 SerDes lane 1 cfg lsw SerDes lane config word, lsw, lane 1 NO 58 Timeout period (Secs) The timeout period. Values 0 disables the time out End of Table 8-20 222 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.1.2.4.5 I2C Boot Parameter Table I I2C Boot Parameter Table Table 8-21 Configured Through Boot Configuration Pins Offset Field Value 22 Bits 02 - 00 Mode 000 = Boot Parameter Table Mode 001 = Boot Table Mode 010 = Boot Config Mode 011 = Load GP header format data 100 = Slave Receive Boot Config Option NO Bits 15 - 03= Reserved 24 Boot Dev Addr The I2C device address to boot from 26 Boot Dev Addr Ext Extended boot device address 2 YES YES 2 28 Broadcast Addr I C address used to send data in the I C master broadcast mode. NO 30 Local Address The I2C address of this device NO 2 34 Bus Frequency The desired I C data rate (kHz) NO 36 Next Dev Addr The next device address to boot (Used only if boot config option is selected) NO 38 Next Dev Addr Ext The extended next device address to boot (Used only if boot config option is selected) NO 40 Address Delay The number of CPU cycles to delay between writing the address to an I C EEPROM and reading data. 2 NO End of Table 8-21 8.1.2.4.6 SPI Boot Parameter Table Table 8-22 SPI Boot Parameter Table Configured Through Boot Configuration Pins Byte Offset Name Description 22 Options Bits 01 & 00 Modes 00 = Load a boot parameter table from the SPI (Default mode) 01 = Load boot records from the SPI (boot tables) 10 = Load boot config records from the SPI (boot config tables) 11 = Load GP header blob 24 Address Width The number of bytes in the SPI device address. Can be 16 or 24 bit YES 26 NPin The operational mode, 4 or 5 pin YES 28 Chipsel The chip select used (valid in 4 pin mode only). Can be 0-3. YES 30 Mode Standard SPI mode (0-3) YES 32 C2Delay Setup time between chip assert and transaction NO 34 Bus Freq, 100kHz The SPI bus frequency in kHz. NO 36 Read Addr MSW The first address to read from, MSW (valid for 24 bit address width only) YES 38 Read Addr LSW The first address to read from, LSW YES 40 Next Chip Select Next Chip Select to be used (Used only in boot Config mode) NO NO Bits 15- 02= Reserved 42 Next Read Addr MSW The Next read address (used in boot config mode only) NO 44 Next Read Addr LSW The Next read address (used in boot config mode only) NO End of Table 8-22 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 223 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.1.2.4.7 HyperLink Boot Parameter Table Table 8-23 HyperLink Boot Parameter Table Byte Offset Name Description Configured Through Boot Configuration Pins 12 Options Bits 00 Reserved NO Bits 01 Configuration of Hyperlink 0 = HyperLink is configured by RBL 1 = HyperLink is not configured by RBL Bits 15- 02 = Reserved 14 Number of Lanes Number of Lanes to be configured NO 16 SerDes cfg msw PCIe SerDes config word, MSW NO 18 SerDes cfg lsw PCIe SerDes config word, LSW NO 20 SerDes CFG RX lane 0 cfg msw SerDes RX lane config word, msw lane 0 NO 22 SerDes CFG RXlane 0 cfg lsw SerDes RX lane config word, lsw, lane 0 NO 24 SerDes CFG TX lane 0 cfg msw SerDes TX lane config word, msw lane 0 NO 26 SerDes CFG TXlane 0 cfg lsw SerDes TX lane config word, lsw, lane 0 NO 28 SerDes CFG RX lane 1 cfg msw SerDes RX lane config word, msw lane 1 NO 30 SerDes CFG RXlane 1 cfg lsw SerDes RX lane config word, lsw, lane 1 NO 32 SerDes CFG TX lane 1 cfg msw SerDes TX lane config word, msw lane 1 NO 34 SerDes CFG TXlane 1 cfg lsw SerDes TX lane config word, lsw, lane 1 NO 36 SerDes CFG RX lane 2 cfg msw SerDes RX lane config word, msw lane 2 NO 38 SerDes CFG RXlane 2 cfg lsw SerDes RX lane config word, lsw, lane 2 NO 40 SerDes CFG TX lane 2 cfg msw SerDes TX lane config word, msw lane 2 NO 42 SerDes CFG TXlane 2 cfg lsw SerDes TX lane config word, lsw, lane 2 NO 44 SerDes CFG RX lane 3 cfg msw SerDes RX lane config word, msw lane 3 NO 46 SerDes CFG RXlane 3 cfg lsw SerDes RX lane config word, lsw, lane 3 NO SerDes CFG TX lane 3 cfg msw SerDes TX lane config word, msw lane 3 NO SerDes CFG TXlane 3 cfg lsw SerDes TX lane config word, lsw, lane 3 NO End of Table 8-23 8.1.2.4.8 UART Boot Parameter Table Table 8-24 UART Boot Parameter Table (Part 1 of 2) Byte Offset Name Description Configured Through Boot Configuration Pins 22 Reserved None NA 24 Data Format Bits 00 Data Format 0 = Data Format is BLOB 1 = Data Format is Boot Table NO Bits 15 - 01 Reserved 26 Protocol Bits 00 Protocol 0 = Xmodem Protocol 1 = Reserved NO Bits 15 - 01 Reserved 28 Initial NACK Count Number of NACK pings to be sent before giving up NO 30 Max Err Count Maximum number of consecutive receive errors acceptable. NO 32 NACK Timeout Time (msecs) waiting for NACK/ACK. NO 34 Character Timeout Time Period between characters NO 224 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 8-24 UART Boot Parameter Table (Part 2 of 2) Description Configured Through Boot Configuration Pins nDatabits Number of bits supported for data. Only 8 bits is supported. NO Parity Bits 01 - 00 Parity 00 = No Parity 01 = Odd parity 10 = Even Parity NO Byte Offset Name 36 38 Bits 15 - 02 Reserved 40 nStopBitsx2 Number of stop bits times two. Valid values are 2 (stop bits = 1), 3 (Stop Bits = 1.5), 4 (Stop Bits = 2) NO 42 Over sample factor The over sample factor. Only 13 and 16 are valid. NO 44 Flow Control Bits 00 Flow Control 0 = No Flow Control 1 = RTS_CTS flow control NO 46 Data Rate MSW Baud Rate, MSW NO 48 Data Rate LSW Baud Rate, LSW NO Bits 15 - 01 Reserved End of Table 8-24 8.1.2.4.9 NAND Boot Parameter Table Table 8-25 NAND Boot Parameter Table Byte Offset Name Description 22 Options Bits 00 Geometry 0 = Geometry is taken from this table 1 = Geometry is queried from NAND device. Configured Through Boot Configuration Pins NO Bits 01 Clear NAND 0 = NAND Device is a non clear NAND and requires ECC 1 = NAND is a clear NAND and doesn.t need ECC. Bits 15 - 02 Reserved 24 numColumnAddrBytes Number of bytes used to specify column address NO 26 numRowAddrBytes Number of bytes used to specify row address. NO 28 numofDataBytesperPage_msw Number of data bytes in each page, MSW NO 30 numofDataBytesperPage_lsw Number of data bytes in each page, LSW NO 32 numPagesperBlock Number of Pages per Block NO 34 busWidth EMIF bus width. Only 8 or 16 bits is supported. NO 36 numSpareBytesperPage Number of spare bytes allocated per page. NO 38 csel Chip Select number (valid chip selects are 2-5) YES (If ARM is the boot master only chip select 2 is supported) 40 First Block First block for RBL to try to read. YES End of Table 8-25 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 225 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.1.2.4.10 DDR3 Configuration Table The RBL also provides an option to configure the DDR table before loading the image into the external memory. More information on how to configure the DDR3, refer to the Bootloader User Guide. The configuration table for DDR3 is shown in Table 8-26 Table 8-26 DDR3 Boot Parameter Table Configured Through Boot Configuration Pins Byte Offset Name Description 0 configselect msw Selecting the configuration register below that to be set. Each filed below is represented by one bit each. NO 4 configselect slsw Selecting the configuration register below that to be set. Each filed below is represented by one bit each. NO 8 configselect lsw Selecting the configuration register below that to be set. Each filed below is represented by one bit each. NO 12 pllprediv PLL pre divider value (Should be the exact value not value -1) NO 16 pllMult PLL Multiplier value (Should be the exact value not value -1) NO 20 pllPostDiv PLL post divider value (Should be the exact value not value -1) NO 24 sdRamConfig SDRAM config register NO 28 sdRamConfig2 SDRAM Config register NO 32 sdRamRefreshctl SDRAM Refresh Control Register NO 36 sdRamTiming1 SDRAM Timing 1 Register NO 40 sdRamTiming2 SDRAM Timing 2 Register NO 44 sdRamTiming3 SDRAM Timing 3 Register NO 48 IpDfrNvmTiming LP DDR2 NVM Timing Register NO 52 powerMngCtl Power management Control Register NO 56 iODFTTestLogic IODFT Test Logic Global Control Register NO 60 performcountCfg Performance Counter Config Register NO 64 performCountMstRegSel Performance Counter Master Region Select Register NO 68 readIdleCtl Read IDLE counter Register NO 72 sysVbusmIntEnSet System Interrupt Enable Set Register NO 76 sdRamOutImpdedCalcfg SDRAM Output Impedence Calibration Config Register NO 80 tempAlertCfg Temperature Alert Configuration Register NO 84 ddrPhyCtl1 DDR PHY Control Register 1 NO 88 ddrPhyCtl2 DDR PHY Control Register 1 NO 92 proClassSvceMap Priority to Class of Service mapping Register NO 96 mstId2ClsSvce1Map Master ID to Class of Service Mapping 1 Register NO 100 mstId2ClsSvce2Map Master ID to Class of Service Mapping 2Register NO 104 eccCtl ECC Control Register NO 108 eccRange1 ECC Address Range1 Register NO 112 eccRange2 ECC Address Range2 Register NO 116 rdWrtExcThresh Read Write Execution Threshold Register NO 120 - 376 Chip Config Chip Specific PHY configuration NO End of Table 8-26 226 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.1.2.5 Second-Level Bootloaders Any of the boot modes can be used to download a second-level bootloader. A second-level bootloader allows for: • Any level of customization to current boot methods • Definition of a completely customized boot 8.1.3 SoC Security The TI SoC contains security architecture that allows the C66x CorePacs and ARM CorePac to perform secure accesses within the device. For more information, contact a TI sales office for additional information available with the purchase of a secure device. 8.1.4 System PLL Settings The PLL default settings are determined by the BOOTMODE[7:5] bits. Table 8-27 shows the settings for various input clock frequencies. This will set the PLL to the maximum clock setting for the device. CLK = CLKIN × ((PLLM+1) ÷ ((OUTPUT_DIVIDE+1) × (PLLD+1))) Where OUTPUT_DIVIDE is the value of the field of SECCTL[22:19] The configuration for the PASS PLL is also shown. The PASS PLL is configured with these values only if the Ethernet boot mode is selected with the input clock set to match the main PLL clock (not the SGMII SerDes clock). See Table 8-11 for details on configuring Ethernet boot mode. The output from the PASS PLL goes through an on-chip divider to reduce the frequency before reaching the NETCP. The PASS PLL generates 1050 MHz, and after the chip divider (/3), applies 350 MHz to the NETCP. The Main PLL is controlled using a PLL controller and a chip-level MMR. The ARM CorePac PLL, DDR3A PLL, DDR3B PLL and PASS PLL are controlled by chip level MMRs. For details on how to set up the PLL see Section 10.5 ‘‘Main PLL, ARM PLL, DDR3A PLL, DDR3B PLL, PASS PLL and the PLL Controllers’’ on page 298.For details on the operation of the PLL controller module, see the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. Table 8-27 System PLL Configuration 800 MHz Device 1000 MHz Device PA = 350 MHz (1) 1200 MHz Device BOOTMODE [7:5] Input Clock Freq (MHz) PLLD PLLM DSP ƒ PLLD PLLM DSP ƒ PLLD PLLM DSP ƒ PLLD PLLM DSP ƒ 0b000 50.00 0 31 800 0 39 1000 0 47 1200 0 41 1050 0b001 66.67 0 23 800.04 0 29 1000.05 0 35 1200.06 1 62 1050.053 0b010 80.00 0 19 800 0 24 1000 0 29 1200 3 104 1050 0b011 100.00 0 15 800 0 19 1000 0 23 1200 0 20 1050 0b100 156.25 3 40 800.78 4 63 1000 2 45 1197.92 24 335 1050 (2) 0b101 250.00 4 31 800 0 7 1000 4 47 1200 4 41 1050 0b110 312.50 7 40 800.78 4 31 1000 2 22 1197.92 24 167 1050 0b111 122.88 0 12 798.72 3 64 999.989 0 19 1228.80 11 204 1049.6 End of Table 8-27 1 The PASS PLL generates 1050 MHz and is internally divided by 3 to feed 350 MHz to the packet accelerator. 2 ƒ represents frequency in MHz. 8.1.4.1 ARM CorePac System PLL Settings The PLL default settings are determined by the BOOTMODE[11:9] bits. Table 8-28 shows settings for various input clock frequencies. This will set the PLL to the maximum clock setting for the device. CLK = CLKIN × ((PLLM+1) ÷ ((OUTPUT_DIVIDE+1) × (PLLD+1))) Where OUTPUT_DIVIDE is the value of the field of SECCTL[22:19] Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 227 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 The ARM CorePac PLL is controlled using a PLL controller and a chip-level MMR. For details on how to set up the PLL see Section 10.5 ‘‘Main PLL, ARM PLL, DDR3A PLL, DDR3B PLL, PASS PLL and the PLL Controllers’’ on page 298. For details on the operation of the PLL controller module, see the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. Table 8-28 ARM PLL Configuration 800 MHz Device 1000 MHz Device 1200 MHz Device 1400 MHz Device BOOTMODE [11:9] Input Clock Freq (MHz) PLLD PLLM DSP ƒ PLLD PLLM DSP ƒ PLLD PLLM DSP ƒ PLLD PLLM DSP ƒ 0b000 50.00 0 31 800 0 39 1000 0 47 1200 0 55 1400 0b001 66.67 0 23 800.04 0 29 1000.05 0 35 1200.06 0 41 1400.07 0b010 80.00 0 19 800 0 24 1000 0 29 1200 0 34 1400 0b011 100.00 0 15 800 0 19 1000 0 23 1200 0 27 1400 0b100 156.25 0 40 800.78 4 63 1000 24 45 1197.92 0 17 1406.25 0b101 250.00 4 31 800 0 7 1000 4 47 1200 4 55 1400 0b110 312.50 7 40 800.78 4 31 1000 2 22 1197.92 0 8 1406.25 0b111 122.88 0 12 798.72 3 64 999.40 0 19 1200.80 0 22 1413.12 End of Table 8-28 228 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.2 Device Configuration Certain device configurations like boot mode and endianess are selected at device power-on reset. The status of the peripherals (enabled/disabled) is determined after device power-on reset. By default, the peripherals on the device are disabled and need to be enabled by software before being used. 8.2.1 Device Configuration at Device Reset The logic level present on each device configuration pin is latched at power-on reset to determine the device configuration. The logic level on the device configuration pins can be set by using external pullup/pulldown resistors or by using some control device (e.g., FPGA/CPLD) to intelligently drive these pins. When using a control device, care should be taken to ensure there is no contention on the lines when the device is out of reset. The device configuration pins are sampled during power-on reset and are driven after the reset is removed. To avoid contention, the control device must stop driving the device configuration pins of the DSP. Table 8-29 describes the device configuration pins. Note—If a configuration pin must be routed out from the device and it is not driven (Hi-Z state), the internal pullup/pulldown (IPU/IPD) resistor should not be relied upon. TI recommends the use of an external pullup/pulldown resistor. For more detailed information on pullup/pulldown resistors and situations in which external pullup/pulldown resistors are required, see the Pullup/PullDown Resistors section of the Terminals chapter. Table 8-29 Device Configuration Pins Configuration Pin LENDIAN (1) (2) F29 IPU (1) Description Device endian mode (LENDIAN) 0 = Device operates in big endian mode 1 = Device operates in little endian mode Method of boot See ‘‘Boot Modes Supported’’ on page 205 for more details. See the Bootloader for the C66x DSP User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19for detailed information on boot configuration. M1, M2 IPD AVS interface selection 00 = AVS 4-pin 6-bit Dual-Phase VCNTL[5:2] (Default) 01 = AVS 4-pin 4-bit Single-Phase VCNTL[5:2] 10 = AVS 6-pin 6-bit Single-Phase VCNTL[5:0] 11 = I2C (1) (2) E32 IPD Main PLL Output divider select 0 = Main PLL output divider needs to be set to 2 by BOOTROM 1 = Reserved (1) G24 IPD ARM AVS Shared with the rest of SOC AVS 0 = Reserved 1 = ARM Core voltage and rest of SoC core voltage shared B31 IPD Boot mode reserved. Pulldown resistor required on pin. A36 IPD Control ARM remapping of DDR3A address space in the lower 4GB (32b space) Mode select 0 = DDR3A memory is accessible from ARM at 0x08 0000 0000 - 0x09 FFFF FFFF. 1 = DDR3A memory is accessible from ARM at 0x00 8000 0000 - 0x00 FFFF FFFF with 0x00 8000 0000 - 0x00 FFFF FFFF aliased at 0x08 0000 0000 - 0x08 7FFF FFFF. (1) (2) MAINPLLODSEL IPD/IPU IPD B31, E32, A31, F30, E30, F31, G30, A30, C30, D30, E29, B29, A35, D29, B30, F29 BOOTMODE[15:0] AVSIFSEL[1:0] (1) (2) Pin No. ARMAVSSHARED BOOTMODE_RSVD(1) DDR3A_MAP_EN (1) End of Table 8-29 1 Internal 100-μA pulldown or pullup is provided for this terminal. In most systems, a 1-kΩ resistor can be used to oppose the IPD/IPU. For more detailed information on pulldown/pullup resistors and situations in which external pulldown/pullup resistors are required, see the Pullup/Pulldown Resistors section of the Terminals chapter. 2 These signal names are the secondary functions of these pins. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 229 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.2.2 Peripheral Selection After Device Reset Several of the peripherals on the 66AK2H14/12/06 are controlled by the Power Sleep Controller (PSC). By default, the PCIe, SRIO, and HyperLink are held in reset and clock-gated. The memories in these modules are also in a low-leakage sleep mode. Software is required to turn these memories on. Then, the software enables the modules (turns on clocks and de-asserts reset) before these modules can be used. If one of the above modules is used in the selected ROM boot mode, the ROM code automatically enables the module. All other modules come up enabled by default and there is no special software sequence to enable. For more detailed information on the PSC usage, see the Power Sleep Controller (PSC) for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. 8.2.3 Device State Control Registers The 66AK2H14/12/06 device has a set of registers that are used to control the status of its peripherals. These registers are shown in Table 8-30. Table 8-30 Address Start Device State Control Registers (Part 1 of 4) Address End Size Acronym 0x02620000 0x02620007 8B Reserved 0x02620008 0x02620017 16B Reserved 0x02620018 0x0262001B 4B JTAGID 0x0262001C 0x0262001F 4B Reserved Description See section 8.2.3.3 0x02620020 0x02620023 4B DEVSTAT 0x02620024 0x02620037 20B Reserved See section 8.2.3.1 0x02620038 0x0262003B 4B KICK0 0x0262003C 0x0262003F 4B KICK1 0x02620040 0x02620043 4B DSP_BOOT_ADDR0 The boot address for C66x CorePac0 0x02620044 0x02620047 4B DSP_BOOT_ADDR1 The boot address for C66x CorePac1 0x02620048 0x0262004B 4B DSP_BOOT_ADDR2 The boot address for C66x CorePac2 0x0262004C 0x0262004F 4B DSP_BOOT_ADDR3 The boot address for C66x CorePac3 0x02620050 0x02620053 4B DSP_BOOT_ADDR4 The boot address for C66x CorePac4 (66AK2H14/12 only) 0x02620054 0x02620057 4B DSP_BOOT_ADDR5 The boot address for C66x CorePac5 (66AK2H14/12 only) 0x02620058 0x0262005B 4B DSP_BOOT_ADDR6 The boot address for C66x CorePac6 (66AK2H14/12 only) 0x0262005C 0x0262005F 4B DSP_BOOT_ADDR7 The boot address for C66x CorePac7 (66AK2H14/12 only) See section 8.2.3.4 0x02620060 0x026200DF 128B Reserved 0x026200E0 0x0262010F 48B Reserved 0x02620110 0x02620117 8B MACID 0x02620118 0x0262012F 24B Reserved 0x02620130 0x02620133 4B LRSTNMIPINSTAT_CLR See section 8.2.3.6 0x02620134 0x02620137 4B RESET_STAT_CLR See section 8.2.3.8 0x02620138 0x0262013B 4B Reserved 0x0262013C 0x0262013F 4B BOOTCOMPLETE 0x02620140 0x02620143 4B Reserved 0x02620144 0x02620147 4B RESET_STAT 0x02620148 0x0262014B 4B LRSTNMIPINSTAT See section 8.2.3.5 0x0262014C 0x0262014F 4B DEVCFG See section 8.2.3.2 230 Device Boot and Configuration See section 10.17 ‘‘Network Coprocessor Gigabit Ethernet (GbE) Switch Subsystem’’ on page 337 See section 8.2.3.9 See section 8.2.3.7 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 8-30 Device State Control Registers (Part 2 of 4) Address Start Address End Size Acronym Description 0x02620150 0x02620153 4B PWRSTATECTL See section 8.2.3.10 0x02620154 0x02620157 4B Reserved 0x02620158 0x0262015B 4B Reserved 0x0262015C 0x0262015F 4B Reserved 0x02620160 0x02620160 4B Reserved 0x02620164 0x02620167 4B Reserved 0x02620168 0x0262016B 4B Reserved 0x0262016C 0x0262017F 20B Reserved 0x02620180 0x02620183 4B SmartReflex Class0 0x02620184 0x0262018F 12B Reserved 0x02620190 0x02620193 4B Reserved 0x02620194 0x02620197 4B Reserved 0x02620198 0x0262019B 4B Reserved 0x0262019C 0x0262019F 4B Reserved 0x026201A0 0x026201A3 4B Reserved 0x026201A4 0x026201A7 4B Reserved 0x026201A8 0x026201AB 4B Reserved 0x026201AC 0x026201AF 4B Reserved 0x026201B0 0x026201B3 4B Reserved 0x026201B4 0x026201B7 4B Reserved 0x026201B8 0x026201BB 4B Reserved 0x026201BC 0x026201BF 4B Reserved 0x026201C0 0x026201C3 4B Reserved 0x026201C4 0x026201C7 4B Reserved 0x026201C8 0x026201CB 4B Reserved 0x026201CC 0x026201CF 4B Reserved 0x026201D0 0x026201FF 48B Reserved 0x02620200 0x02620203 4B NMIGR0 0x02620204 0x02620207 4B NMIGR1 0x02620208 0x0262020B 4B NMIGR2 0x0262020C 0x0262020F 4B NMIGR3 0x02620210 0x02620213 4B NMIGR4 (66AK2H14/12 only) 0x02620214 0x02620217 4B NMIGR5 (66AK2H14/12 only) 0x02620218 0x0262021B 4B NMIGR6 (66AK2H14/12 only) 0x0262021C 0x0262021F 4B NMIGR7 (66AK2H14/12 only) 0x02620220 0x0262023F 32B Reserved Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback See section 10.2.4 See section 8.2.3.11 Device Boot and Configuration 231 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 8-30 Device State Control Registers (Part 3 of 4) Address Start Address End Size Acronym Description 0x02620240 0x02620243 4B IPCGR0 See section 8.2.3.12 0x02620244 0x02620247 4B IPCGR1 0x02620248 0x0262024B 4B IPCGR2 0x0262024C 0x0262024F 4B IPCGR3 0x02620250 0x02620253 4B IPCGR4 0x02620254 0x02620257 4B IPCGR5 0x02620258 0x0262025B 4B IPCGR6 0x0262025C 0x0262025F 4B IPCGR7 0x02620260 0x02620263 4B IPCGR8 0x02620264 0x02620267 4B IPCGR9 0x02620268 0x0262026B 4B IPCGR10 0x0262026C 0x0262026F 4B IPCGR11 0x02620270 0x0262027B 12B Reserved 0x0262027C 0x0262027F 4B IPCGRH See section 8.2.3.14 0x02620280 0x02620283 4B IPCAR0 See section 8.2.3.13 0x02620284 0x02620287 4B IPCAR1 0x02620288 0x0262028B 4B IPCAR2 0x0262028C 0x0262028F 4B IPCAR3 0x02620290 0x02620293 4B IPCAR4 0x02620294 0x02620297 4B IPCAR5 0x02620298 0x0262029B 4B IPCAR6 0x0262029C 0x0262029F 4B IPCAR7 0x026202A0 0x026202A3 4B IPCAR8 0x026202A4 0x026202A7 4B IPCAR9 0x026202A8 0x026202AB 4B IPCAR10 0x026202AC 0x026202AF 4B IPCAR11 0x026202B0 0x026202BB 12B Reserved 0x026202BC 0x026202BF 4B IPCARH 0x026202C0 0x026202FF 64B Reserved See section 8.2.3.15 0x02620300 0x02620303 4B TINPSEL See section 8.2.3.16 0x02620304 0x02620307 4B TOUTPSEL See section 8.2.3.17 See section 8.2.3.18 0x02620308 0x0262030B 4B RSTMUX0 0x0262030C 0x0262030F 4B RSTMUX1 0x02620310 0x02620313 4B RSTMUX2 0x02620314 0x02620317 4B RSTMUX3 0x02620318 0x0262031B 4B RSTMUX4 0x0262031C 0x0262031F 4B RSTMUX5 0x02620320 0x02620323 4B RSTMUX6 0x02620324 0x02620327 4B RSTMUX7 0x02620328 0x0262032B 4B RSTMUX8 0x0262032C 0x0262032F 4B RSTMUX9 0x02620330 0x02620333 4B RSTMUX10 0x02620334 0x02620337 4B RSTMUX11 232 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 8-30 Device State Control Registers (Part 4 of 4) Address Start Address End Size Acronym 0x02620338 0x0262034F 4B Reserved 0x02620350 0x02620353 4B MAINPLLCTL0 0x02620354 0x02620357 4B MAINPLLCTL1 0x02620358 0x0262035B 4B PASSPLLCTL0 0x0262035C 0x0262035F 4B PASSPLLCTL1 0x02620360 0x02620363 4B DDR3APLLCTL0 0x02620364 0x02620367 4B DDR3APLLCTL1 0x02620368 0x0262036B 4B DDR3BPLLCTL0 0x0262036C 0x0262036F 4B DDR3BPLLCTL1 0x02620370 0x02620373 4B ARMPLLCTL0 0x02620374 0x02620377 4B ARMPLLCTL1 0x02620378 0x0262039B 132B Reserved 0x0262039C 0x0262039F 4B Reserved 0x02620400 0x02620403 4B ARMENDIAN_CFG0_0 0x02620404 0x02620407 4B ARMENDIAN_CFG0_1 0x02620408 0x0262040B 4B ARMENDIAN_CFG0_2 0x0262040C 0x026205FF 62B Reserved 0x02620600 0x026206FF 256B Reserved 0x02620700 0x02620703 4B CHIP_MISC_CTL0 0x02620704 0x0262070F 12B Reserved 0x02620710 0x02620713 4B SYSENDSTAT 0x02620714 0x02620717 4B Reserved 0x02620718 0x0262071B 4B Reserved 0x0262071C 0x0262071F 4B Reserved 0x02620720 0x0262072F 16B Reserved 0x02620730 0x02620733 4B SYNCECLK_PINCTL 0x02620734 0x02620737 4B Reserved 0x02620738 0x0262074F 24B USB_PHY_CTL Reserved 0x02620750 0x026207FF 176B 0x02620800 0x02620C7B 1148B Reserved 0x02620C7C 0x02620C7F 4B CHIP_MISC_CTL1 0x02620C80 0x02620C97 24B Reserved 0x02620C98 0x02620C9B 4B DEVSPEED 0x02620C9C 0x02620FFF 868B Reserved Description See section 10.5 ‘‘Main PLL, ARM PLL, DDR3A PLL, DDR3B PLL, PASS PLL and the PLL Controllers’’ on page 298 See section 10.7 ‘‘PASS PLL’’ on page 321 See section 10.6 ‘‘DDR3A PLL and DDR3B PLL’’ on page 318 See section 10.6 ‘‘DDR3A PLL and DDR3B PLL’’ on page 318 See section ‘‘ARM CorePac System PLL Settings’’ on page 227 See section ‘‘ARM Endian Configuration Register 0 (ARMENDIAN_CFGr_0), r=0..7’’ on page 251 See section ‘‘Chip Miscellaneous Control (CHIP_MISC_CTL0) Register’’ on page 252 See section ‘‘System Endian Status Register (SYSENDSTAT)’’ on page 253 See section ‘‘SYNECLK_PINCTL Register’’ on page 254 See section ‘‘USB PHY Control (USB_PHY_CTLx) Registers’’ on page 254 See section ‘‘Chip Miscellaneous Control (CHIP_MISC_CTL1) Register’’ on page 253 See section ‘‘Device Speed (DEVSPEED) Register’’ on page 250 End of Table 8-30 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 233 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.2.3.1 Device Status (DEVSTAT) Register The Device Status Register depicts device configuration selected upon a power-on reset by the POR or RESETFULL pin. Once set, these bits remain set until a power-on reset. The Device Status Register is shown in the figure below. Figure 8-13 Device Status Register 31 26 25 24 22 21 Reserved DDR3A_MAP_EN Reserved ARMAVSSHARED R-0000 0000 0000 00 R-x R-x R/W-x spacer 20 19 18 17 16 1 0 Reserved MAINPLLODSEL AVSIFSEL BOOTMODE LENDIAN R-x R/W-x R/W-xx R/W-x xxxx xxxx xxxx xxx R-x (1) Legend: R = Read only; RW = Read/Write; -n = value after reset 1 x indicates the bootstrap value latched via the external pin Table 8-31 Bit Device Status Register Field Descriptions Field Description 31-26 Reserved Reserved. Read only, writes have no effect. 25 DDR3A_MAP_EN DDR3A mapping enable 0 = DDR3A memory is accessible from ARM at 0x8:0000_0000 - 0x9:FFFF_FFFF. 1 = DDR3A memory is accessible in 32b space from ARM, i.e., at 0x0:8000_0000 - 0x0:FFFF_FFFF. DDR3A is also accessible at 0x8:0000_0000 - 0x9:FFFF_FFFF, with the space 0x0:8000_0000 - 0x0:FFFF_FFFF address aliased at 0x8:0000_0000 - 0x8:7FFF_FFFF. 24-22 Reserved Reserved 20 Reserved Reserved 19 MAINPLLODSEL Main PLL Output divider select 0 = Main PLL output divider needs to be set to 2 by BOOTROM 1 = Reserved 18-17 AVSIFSEL AVS interface selection 00 - AVS 4pin 6bit Dual-Phase VCNTL[5:2] (Default) 01 - AVS 4pin 4bit Single-Phase VCNTL[5:2] 10 - AVS 6pin 6bit Single-Phase VCNTL[5:0] 11 - I2C 16-1 BOOTMODE Determines the bootmode configured for the device. For more information on bootmode, see Section 8.1.2 ‘‘Boot Modes Supported’’ on page 205 and see the Bootloader for the C66x DSP User Guide in2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. 0 LENDIAN Device endian mode (LENDIAN) — shows the status of whether the system is operating in big endian mode or little endian mode (default). 0 = System is operating in big endian mode 1 = System is operating in little endian mode (default) End of Table 8-31 234 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.2.3.2 Device Configuration Register The Device Configuration Register is one-time writeable through software. The register is reset on all hard resets and is locked after the first write. The Device Configuration Register is shown in Figure 8-14 and described in Table 8-32. Figure 8-14 Device Configuration Register (DEVCFG) 31 3 2 1 0 Reserved PCIESSMODE SYSCLKOUTEN R-0 R/W-00 R/W-1 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 8-32 Bit Device Configuration Register Field Descriptions Field Description 31-3 Reserved Reserved. Read only, writes have no effect. 2-1 PCIESSMODE Device Type Input of PCIeSS 00 = Endpoint 01 = Legacy Endpoint 10 = Rootcomplex 11 = Reserved) 0 SYSCLKOUTEN SYSCLKOUT enable 0 = No clock output 1 = Clock output enabled (default) End of Table 8-32 8.2.3.3 JTAG ID (JTAGID) Register Description The JTAG ID register is a read-only register that identifies to the customer the JTAG/Device ID. For the device, the JTAG ID register resides at address location 0x02620018. The JTAG ID Register is shown below. Figure 8-15 JTAG ID (JTAGID) Register 31 28 27 12 11 1 0 VARIANT PART NUMBER MANUFACTURER LSB R-xxxx R-1011 1001 1000 0001 R-0000 0010 111 R-1 Legend: RW = Read/Write; R = Read only; -n = value after reset Table 8-33 Bit JTAG ID Register Field Descriptions Field Value Description 31-28 VARIANT xxxx Variant value 27-12 PART NUMBER 1011 1001 1000 0001 Part Number for boundary scan 11-1 MANUFACTURER 0000 0010 111 Manufacturer 0 LSB 1 This bit is read as a 1 for 66AK2H14/12/06 End of Table 8-33 Note—The value of the VARIANT and PART NUMBER fields depends on the silicon revision being used. See the Silicon Errata for details. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 235 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.2.3.4 Kicker Mechanism (KICK0 and KICK1) Register The Bootcfg module contains a kicker mechanism to prevent spurious writes from changing any of the Bootcfg MMR (memory mapped registers) values. When the kicker is locked (which it is initially after power on reset), none of the Bootcfg MMRs are writable (they are only readable). This mechanism requires an MMR write to each of the KICK0 and KICK1 registers with exact data values before the kicker lock mechanism is unlocked. See Table 8-30 ‘‘Device State Control Registers’’ on page 230 for the address location. Once released, all the Bootcfg MMRs having write permissions are writable (the read only MMRs are still read only). The KICK0 data is 0x83e70b13. The KICK1 data is 0x95a4f1e0. Writing any other data value to either of these kick MMRs locks the kicker mechanism and blocks writes to Bootcfg MMRs. To ensure protection to all Bootcfg MMRs, software must always re-lock the kicker mechanism after completing the MMR writes. 8.2.3.5 LRESETNMI PIN Status (LRSTNMIPINSTAT) Register The LRSTNMIPINSTAT Register latches the status of LRESET and NMI based on the setting of CORESEL[2:0]. The LRESETNMI PIN Status Register is shown in the figure and table below. Figure 8-16 LRESETNMI PIN Status Register (LRSTNMIPINSTAT) 31 16 15 14 13 12 11 Reserved NMI7 NMI6 NMI5 NMI4 NMI3 R-0 R-0 R-0 R-0 R-0 R-0 10 9 8 NMI2 NMI1 NMI0 R-0 R-0 R-0 7 6 5 4 3 2 1 0 LR7 LR6 LR5 LR4 LR3 LR2 LR1 LR0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 Legend: R = Read only; -n = value after reset Table 8-34 Bit LRESETNMI PIN Status Register Field Descriptions Field Description 31-16 Reserved Reserved 15 NMI7 C66x CorePac7 in NMI (66AK2H14/12 only) 14 NMI6 C66x CorePac6 in NMI (66AK2H14/12 only) 13 NMI5 C66x CorePac5 in NMI (66AK2H14/12 only) 12 NM4 C66x CorePac4 in NMI (66AK2H14/12 only) 11 NMI3 C66x CorePac3 in NMI 10 NMI2 C66x CorePac2 in NMI 9 NMI1 C66x CorePac1 in NMI 8 NMI0 C66x CorePac0 in NMI 7 LR7 C66x CorePac7 in Local Reset (66AK2H14/12 only) 6 LR6 C66x CorePac6 in Local Reset (66AK2H14/12 only) 5 LR5 C66x CorePac5 in Local Reset (66AK2H14/12 only) 4 LR4 C66x CorePac4 in Local Reset (66AK2H14/12 only) 3 LR3 C66x CorePac3 in Local Reset 2 LR2 C66x CorePac2 in Local Reset 1 LR1 C66x CorePac1 in Local Reset 0 LR0 C66x CorePac0 in Local Reset End of Table 8-34 236 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.2.3.6 LRESETNMI PIN Status Clear (LRSTNMIPINSTAT_CLR) Register The LRSTNMIPINSTAT_CLR Register clears the status of LRESET and NMI based on CORESEL[2:0]. The LRESETNMI PIN Status Clear Register is shown in the figure and table below. Figure 8-17 LRESETNMI PIN Status Clear Register (LRSTNMIPINSTAT_CLR) 31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved NMI7 NMI6 NMI5 NMI4 NMI3 NMI2 NMI1 NMI0 LR7 LR6 LR5 LR4 LR3 LR2 LR1 LR0 R-0 WC-0 WC-0 WC-0 WC-0 WC-0 WC-0 WC-0 WC-0 WC-0 WC-0 WC-0 WC-0 WC-0 WC-0 WC-0 WC-0 Legend: R = Read only; -n = value after reset; WC = Write 1 to Clear Table 8-35 Bit LRESETNMI PIN Status Clear Register Field Descriptions Field Description 31-16 Reserved Reserved 15 NMI7 C66x CorePac7 in NMI Clear (66AK2H14/12 only) 14 NM6 C66x CorePac6 in NMI Clear (66AK2H14/12 only) 13 NMI5 C66x CorePac5 in NMI Clear (66AK2H14/12 only) 12 NMI4 C66x CorePac4 in NMI Clear (66AK2H14/12 only) 11 NMI3 C66x CorePac3 in NMI Clear 10 NMI2 C66x CorePac2 in NMI Clear 9 NMI1 C66x CorePac1 in NMI Clear 8 NMI0 C66x CorePac0 in NMI Clear 7 LR7 C66x CorePac7 in Local Reset Clear (66AK2H14/12 only) 6 LR6 C66x CorePac6 in Local Reset Clear (66AK2H14/12 only) 5 LR5 C66x CorePac5 in Local Reset Clear (66AK2H14/12 only) 4 LR4 C66x CorePac4 in Local Reset Clear (66AK2H14/12 only) 3 LR3 C66x CorePac3 in Local Reset Clear 2 LR2 C66x CorePac2 in Local Reset Clear 1 LR1 C66x CorePac1 in Local Reset Clear 0 LR0 C66x CorePac0 in Local Reset Clear End of Table 8-35 8.2.3.7 Reset Status (RESET_STAT) Register The Reset Status Register (RESET_STAT) captures the status of local reset (LRx) for each of the cores and also the global device reset (GR). Software can use this information to take different device initialization steps. • In case of local reset: The LRx bits are written as 1 and the GR bit is written as 0 only when the C66x CorePac receives a local reset without receiving a global reset. • In case of global reset: The LRx bits are written as 0 and the GR bit is written as 1 only when a global reset is asserted. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 237 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 The Reset Status Register is shown in the figure and table below. Figure 8-18 31 Reset Status Register (RESET_STAT) 30 8 7 6 5 4 3 2 1 0 GR Reserved LR7 LR6 LR5 LR4 LR3 LR2 LR1 LR0 R-1 R- 000 0000 0000 0000 0000 0000 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 Legend: R = Read only; -n = value after reset Table 8-36 Bit 31 30-8 Reset Status Register Field Descriptions Field Description GR Global reset status 0 = Device has not received a global reset. 1 = Device received a global reset. Reserved Reserved. 7 LR7 C66x CorePac7 reset status (66AK2H14/12 only) 0 = C66x CorePac7 has not received a local reset. 1 = C66x CorePac7 received a local reset. 6 LR6 C66x CorePac6 reset status (66AK2H14/12 only) 0 = C66x CorePac6 has not received a local reset. 1 = C66x CorePac6 received a local reset. 5 LR5 C66x CorePac5 reset status (66AK2H14/12 only) 0 = C66x CorePac5 has not received a local reset. 1 = C66x CorePac5 received a local reset. 4 LR4 C66x CorePac4 reset status (66AK2H14/12 only) 0 = C66x CorePac4 has not received a local reset. 1 = C66x CorePac4received a local reset. 3 LR3 C66x CorePac3 reset status 0 = C66x CorePac3 has not received a local reset. 1 = C66x CorePac3 received a local reset. 2 LR2 C66x CorePac2 reset status 0 = C66x CorePac2 has not received a local reset. 1 = C66x CorePac2 received a local reset. 1 LR1 C66x CorePac1 reset status 0 = C66x CorePac1 has not received a local reset. 1 = C66x CorePac1 received a local reset. 0 LR0 C66x CorePac0 reset status 0 = C66x CorePac0 has not received a local reset. 1 = C66x CorePac0 received a local reset. End of Table 8-36 8.2.3.8 Reset Status Clear (RESET_STAT_CLR) Register The RESET_STAT bits can be cleared by writing 1 to the corresponding bit in the RESET_STAT_CLR register. The Reset Status Clear Register is shown in the figure and table below. 238 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 8-19 31 Reset Status Clear Register (RESET_STAT_CLR) 30 8 7 6 5 4 3 2 1 0 GR Reserved LR7 LR6 LR5 LR4 LR3 LR2 LR1 LR0 RW-0 R- 000 0000 0000 0000 0000 0000 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 8-37 Reset Status Clear Register Field Descriptions Bit Field Description 31 GR Global reset clear bit 0 = Writing a 0 has no effect. 1 = Writing a 1 to the GR bit clears the corresponding bit in the RESET_STAT register. 30-8 Reserved Reserved. 7 LR7 C66x CorePac7 reset clear bit (66AK2H14/12 only) 0 = Writing a 0 has no effect. 1 = Writing a 1 to the LR7 bit clears the corresponding bit in the RESET_STAT register. 6 LR6 C66x CorePac6 reset clear bit (66AK2H14/12 only) 0 = Writing a 0 has no effect. 1 = Writing a 1 to the LR6 bit clears the corresponding bit in the RESET_STAT register. 5 LR5 C66x CorePac5 reset clear bit (66AK2H14/12 only) 0 = Writing a 0 has no effect. 1 = Writing a 1 to the LR5 bit clears the corresponding bit in the RESET_STAT register. 4 LR4 C66x CorePac4 reset clear bit (66AK2H14/12 only) 0 = Writing a 0 has no effect. 1 = Writing a 1 to the LR4 bit clears the corresponding bit in the RESET_STAT register. 3 LR3 C66x CorePac3 reset clear bit 0 = Writing a 0 has no effect. 1 = Writing a 1 to the LR3 bit clears the corresponding bit in the RESET_STAT register. 2 LR2 C66x CorePac2 reset clear bit 0 = Writing a 0 has no effect. 1 = Writing a 1 to the LR2 bit clears the corresponding bit in the RESET_STAT register. 1 LR1 C66x CorePac1 reset clear bit 0 = Writing a 0 has no effect. 1 = Writing a 1 to the LR1 bit clears the corresponding bit in the RESET_STAT register. 0 LR0 C66x CorePac0 reset clear bit 0 = Writing a 0 has no effect. 1 = Writing a 1 to the LR0 bit clears the corresponding bit in the RESET_STAT register. End of Table 8-37 8.2.3.9 Boot Complete (BOOTCOMPLETE) Register The BOOTCOMPLETE register controls the BOOTCOMPLETE pin status to indicate the completion of the ROM booting process. The Boot Complete Register is shown in the figure and table below. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 239 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 8-38 Boot Complete Register Field Descriptions Bit Field Description 31-12 Reserved Reserved. 11 BC11 ARM CorePac 3 boot status (66AK2H14/12 only) 0 = ARM CorePac 3 boot NOT complete 1 = ARM CorePac 3 boot complete 10 BC10 ARM CorePac 2 boot status (66AK2H14/12 only) 0 = ARM CorePac 2 boot NOT complete 1 = ARM CorePac 2 boot complete 9 BC9 ARM CorePac 1 boot status 0 = ARM CorePac 1 boot NOT complete 1 = ARM CorePac 1 boot complete 8 BC8 ARM CorePac 0 boot status 0 = ARM CorePac 0 boot NOT complete 1 = ARM CorePac 0 boot complete 7 BC7 C66x CorePac 7 boot status (66AK2H14/12 only) 0 = C66x CorePac 7 boot NOT complete 1 = C66x CorePac 7 boot complete 6 BC6 C66x CorePac 6 boot status (66AK2H14/12 only) 0 = C66x CorePac 6 boot NOT complete 1 = C66x CorePac 6 boot complete 5 BC5 C66x CorePac 5 boot status (66AK2H14/12 only) 0 = C66x CorePac 5 boot NOT complete 1 = C66x CorePac 5 boot complete 4 BC4 C66x CorePac 4 boot status (66AK2H14/12 only) 0 = C66x CorePac 4 boot NOT complete 1 = C66x CorePac 4 boot complete 3 BC3 C66x CorePac 3 boot status 0 = C66x CorePac 3 boot NOT complete 1 = C66x CorePac 3 boot complete 2 BC2 C66x CorePac2 boot status 0 = C66x CorePac 2 boot NOT complete 1 = C66x CorePac 2 boot complete 1 BC1 C66x CorePac1 boot status 0 = C66x CorePac 1 boot NOT complete 1 = C66x CorePac 1 boot complete 0 BC0 C66x CorePac 0 boot status 0 = C66x CorePac 0 boot NOT complete 1 = C66x CorePac 0 boot complete End of Table 8-38 The BCx bit indicates the boot complete status of the corresponding C66x CorePac. All BCx bits are sticky bits — that is, they can be set only once by the software after device reset and they will be cleared to 0 on all device resets (warm reset and power-on reset). Boot ROM code is implemented such that each C66x CorePac sets its corresponding BCx bit immediately before branching to the predefined location in memory. 240 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.2.3.10 Power State Control (PWRSTATECTL) Register The Power State Control Register (PWRSTATECTL) is controlled by the software to indicate the power-saving mode. Under ROM code, the C66x CorePac reads this register to differentiate between the various power saving modes. This register is cleared only by POR and is not changed by any other device reset. See the Hardware Design Guide for KeyStone II Devices (in development) for more information. The PWRSTATECTL Register is shown in Figure 8-21 and described in Table 8-39. Figure 8-21 Power State Control Register (PWRSTATECTL) 31 10 9 8 Hibernation Recovery Branch Address Width Wait RW+0000 0000 0000 0000 00 RW+0 RW+0 7 6 5 4 Recovery Master Local Reset Action RW+0 3 2 Stored Hibernation Mode SR Index RW+0 RW+0 RW+0 1 0 Hibernation Reserved RW+0 R+0 Legend: R = Read Only, RW = Read/Write; -n = value after reset Table 8-39 Power State Control Register Field Descriptions Bit Field Description 31-10 Hibernation Recovery Branch Address Used to provide a start address for execution out of the hibernation modes. See the Bootloader for the C66x DSP User Guide in2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. 9 Width EMIF 16 Width (if the recovery address is in EMIF16 space). 0 = 8-bit 1 = 16-bit 8 Wait Extended Wait (if the recovery address is in EMIF16 space) 0 = Extended Wait disabled 1 = Extended Wait enabled 7 Recovery Master Master performs hibernation recovery 0 = C66x CorePacs perform hibernation recovery 1 = ARM CorePac performs hibernation recovery 6-5 Local Reset Action Action of Local Reset 00 = Idle on Local Reset 01 = Branch to the base of MSMC on Local Reset 10 = Branch to the base of DDR3 on Local Reset 11 = Branch to the base of L2 on Local Reset (C66x CorePac) 4-3 Stored Index 0-3 value latched in the SR bits of the DEVSTAT register 2 Hibernation Mode Indicates whether the device is in hibernation mode 1 or mode 2. 0 = Hibernation mode 1 1 = Hibernation mode 2 1 Hibernation Indicates whether the device is in hibernation mode or not. 0 = Not in hibernation mode 1 = Hibernation mode 0 Reserved Reserved End of Table 8-39 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 241 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.2.3.11 NMI Event Generation to C66x CorePac (NMIGRx) Register NMIGRx registers generate NMI events to the corresponding C66x CorePac. The 66AK2H14/12/06 has eight (66AK2H12) or four (66AK2H06)NMIGRx registers (NMIGR0 through NMIGR7). The NMIGR0 register generates an NMI event to C66x CorePac0, the NMIGR1 register generates an NMI event to C66x CorePac1, and so on. Writing a 1 to the NMIG field generates an NMI pulse. Writing a 0 has no effect and Reads return 0 and have no other effect. The NMI event generation to the C66x CorePac is shown in Figure 8-22 and described in Table 8-40. Figure 8-22 NMI Generation Register (NMIGRx) 31 1 0 Reserved NMIG R-0000 0000 0000 0000 0000 0000 0000 000 RW-0 Legend: RW = Read/Write; -n = value after reset Table 8-40 NMI Generation Register Field Descriptions Bit Field Description 31-1 Reserved Reserved 0 NMIG Reads return 0 Writes: 0 = No effect 1 = Creates NMI pulse to the corresponding C66x CorePac — C66x CorePac0 for NMIGR0, etc. End of Table 8-40 8.2.3.12 IPC Generation (IPCGRx) Registers The IPCGRx Registers facilitate inter-C66x CorePac interrupts. The 66AK2H12 device has twelve IPCGRx registers (IPCGR0 through IPCGR11) and the 66AK2H06 has six IPCGRx registers (IPCGR0 through IPCGR3 and IPCGR8 and IPCGR9). These registers can be used by external hosts or CorePacs to generate interrupts to other CorePacs. A write of 1 to the IPCG field of the IPCGRx register generates an interrupt pulse to the: • C66x CorePacx (0 <= x <= 7) (66AK2H12) (0 <= x <= 3) (66AK2H06) • ARM CorePac core (x-8) (8<=x<=11) (66AK2H12) or (8<=x<=9) (66AK2H06). These registers also provide a Source ID facility identifying up to 28 different sources of interrupts. Allocation of source bits to source processor and meaning is entirely based on software convention. The register field descriptions are given in the following tables. There can be numerous sources for these registers as this is completely controlled by software. Any master that has access to BOOTCFG module space can write to these registers. The IPC Generation Register is shown in Figure 8-23 and described in Table 8-41. Figure 8-23 IPC Generation Registers (IPCGRx) 31 30 29 28 SRCS27 SRCS26 SRCS25 SRCS24 RW +0 RW +0 RW +0 RW +0 27 8 7 6 5 4 3 1 0 SRCS23 – SRCS4 SRCS3 SRCS2 SRCS1 SRCS0 Reserved IPCG RW +0 (per bit field) RW +0 RW +0 RW +0 RW +0 R-000 RW +0 Legend: R = Read only; RW = Read/Write; -n = value after reset 242 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 8-41 IPC Generation Registers Field Descriptions Bit Field Description 31-4 SRCSx Reads return current value of internal register bit. Writes: 0 = No effect 1 = Sets both SRCSx and the corresponding SRCCx. 3-1 Reserved 0 IPCG Reserved Reads return 0. Writes: 0 = No effect 1 = Creates an inter-DSP/ARM interrupt. End of Table 8-41 8.2.3.13 IPC Acknowledgement (IPCARx) Registers The IPCARx registers facilitate inter-CorePac interrupt acknowledgement. The 66AK2H12 device has twelve IPCARx registers and the 66AK2H06 has six IPCARx registers. These registers also provide a Source ID facility by which up to 28 different sources of interrupts can be identified. Allocation of source bits to source processor and meaning is entirely based on software convention. The register field descriptions are given in the following tables. Virtually anything can be a source for these registers as this is completely controlled by software. Any master that has access to BOOTCFG module space can write to these registers. The IPC Acknowledgement Register is shown in the following figure and table. Figure 8-24 IPC Acknowledgement Registers (IPCARx) 31 30 29 28 SRCC27 SRCC26 SRCC25 SRCC24 RW +0 RW +0 RW +0 RW +0 27 8 7 6 5 4 3 0 SRCC23 – SRCC4 SRCC3 SRCC2 SRCC1 SRCC0 Reserved RW +0 (per bit field) RW +0 RW +0 RW +0 RW +0 R-0000 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 8-42 IPC Acknowledgement Registers Field Descriptions Bit Field Description 31-4 SRCCx Reads return current value of internal register bit. Writes: 0 = No effect 1 = Clears both SRCCx and the corresponding SRCSx 3-0 Reserved Reserved End of Table 8-42 8.2.3.14 IPC Generation Host (IPCGRH) Register The IPCGRH register facilitates interrupts to external hosts. Operation and use of the IPCGRH register is the same as for other IPCGR registers. The interrupt output pulse created by the IPCGRH register appears on device pin HOUT. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 243 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 The host interrupt output pulse is stretched so that it is asserted for four bootcfg clock cycles (SYSCLK1/6) followed by a deassertion of four bootcfg clock cycles. Generating the pulse results in a pulse-blocking window that is eight SYSCLK1/6-cycles long. Back-to-back writes to the IPCRGH register with the IPCG bit (bit 0) set, generates only one pulse if the back-to-back writes to IPCGRH are less than the eight SYSCLK1/6 cycle window — the pulse blocking window. To generate back-to-back pulses, the back-to-back writes to the IPCGRH register must be written after the eight SYSCLK1/6 cycle pulse-blocking window has elapsed. The IPC Generation Host Register is shown in Figure 8-25 and described in Table 8-43. Figure 8-25 IPC Generation Registers (IPCGRH) 31 30 29 28 SRCS27 SRCS26 SRCS25 SRCS24 RW +0 RW +0 RW +0 RW +0 27 8 7 6 5 4 3 1 0 SRCS23 – SRCS4 SRCS3 SRCS2 SRCS1 SRCS0 Reserved IPCG RW +0 (per bit field) RW +0 RW +0 RW +0 RW +0 R-000 RW +0 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 8-43 IPC Generation Registers Field Descriptions Bit Field Description 31-4 SRCSx Reads return current value of internal register bit. Writes: 0 = No effect 1 = Sets both SRCSx and the corresponding SRCCx. 3-1 Reserved 0 IPCG Reserved Reads return 0. Writes: 0 = No effect 1 = Creates an interrupt pulse on device pin (host interrupt/event output in HOUT pin) End of Table 8-43 8.2.3.15 IPC Acknowledgement Host (IPCARH) Register The IPCARH register facilitates external host interrupts. Operation and use of the IPCARH register is the same as for other IPCAR registers. The IPC Acknowledgement Host Register is shown in Figure 8-26 and described in Table 8-44. Figure 8-26 IPC Acknowledgement Register (IPCARH) 31 30 29 28 SRCC27 SRCC26 SRCC25 SRCC24 RW +0 RW +0 RW +0 RW +0 27 8 7 6 5 4 3 0 SRCC23 – SRCC4 SRCC3 SRCC2 SRCC1 SRCC0 Reserved RW +0 (per bit field) RW +0 RW +0 RW +0 RW +0 R-0000 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 8-44 IPC Acknowledgement Register Field Descriptions Bit Field Description 31-4 SRCCx Reads the return current value of the internal register bit. Writes: 0 = No effect 1 = Clears both SRCCx and the corresponding SRCSx 3-0 Reserved Reserved End of Table 8-44 244 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.2.3.16 Timer Input Selection Register (TINPSEL) The Timer Input Selection Register selects timer inputs and is shown in Figure 8-27 and described in Table 8-45. Figure 8-27 Timer Input Selection Register (TINPSEL) 31 30 29 28 27 26 25 24 TINPHSEL15 TINPLSEL15 TINPHSEL14 TINPLSEL14 TINPHSEL13 TINPLSEL13 TINPHSEL12 TINPLSEL12 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 23 22 21 20 19 18 17 16 TINPHSEL11 TINPLSEL11 TINPHSEL10 TINPLSEL10 TINPHSEL9 TINPLSEL9 TINPHSEL8 TINPLSEL8 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 15 14 13 12 11 10 9 8 TINPHSEL7 TINPLSEL7 TINPHSEL6 TINPLSEL6 TINPHSEL5 TINPLSEL5 TINPHSEL4 TINPLSEL4 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 7 6 5 4 3 2 1 0 TINPHSEL3 TINPLSEL3 TINPHSEL2 TINPLSEL2 TINPHSEL1 TINPLSEL1 TINPHSEL0 TINPLSEL0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 8-45 Timer Input Selection Field Description (Part 1 of 3) Bit Field Description 31 TINPHSEL15 Input select for TIMER15 high. 0 = TIMI0 1 = TIMI1 30 TINPLSEL15 Input select for TIMER15 low. 0 = TIMI0 1 = TIMI1 29 TINPHSEL14 Input select for TIMER14 high. 0 = TIMI0 1 = TIMI1 28 TINPLSE14 Input select for TIMER14 low. 0 = TIMI0 1 = TIMI1 27 TINPHSEL13 Input select for TIMER13 high. 0 = TIMI0 1 = TIMI1 26 TINPLSEL13 Input select for TIMER13 low. 0 = TIMI0 1 = TIMI1 25 TINPHSEL12 Input select for TIMER12 high. 0 = TIMI0 1 = TIMI1 24 TINPLSEL12 Input select for TIMER12low. 0 = TIMI0 1 = TIMI1 23 TINPHSEL11 Input select for TIMER11 high. 0 = TIMI0 1 = TIMI1 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 245 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 8-45 Timer Input Selection Field Description (Part 2 of 3) Bit Field Description 22 TINPLSEL11 Input select for TIMER11 low. 0 = TIMI0 1 = TIMI1 21 TINPHSEL10 Input select for TIMER10 high. 0 = TIMI0 1 = TIMI1 20 TINPLSEL10 Input select for TIMER10 low. 0 = TIMI0 1 = TIMI1 19 TINPHSEL9 Input select for TIMER9 high. 0 = TIMI0 1 = TIMI1 18 TINPLSEL9 Input select for TIMER9 low. 0 = TIMI0 1 = TIMI1 17 TINPHSEL8 Input select for TIMER8 high. 0 = TIMI0 1 = TIMI1 16 TINPLSEL8 Input select for TIMER8 low. 0 = TIMI0 1 = TIMI1 15 TINPHSEL7 Input select for TIMER7 high. (66AK2H14/12 only) 0 = TIMI0 1 = TIMI1 14 TINPLSEL7 Input select for TIMER7 low. (66AK2H14/12 only) 0 = TIMI0 1 = TIMI1 13 TINPHSEL6 Input select for TIMER6 high. (66AK2H14/12 only) 0 = TIMI0 1 = TIMI1 12 TINPLSEL6 Input select for TIMER6 low. (66AK2H14/12 only) 0 = TIMI0 1 = TIMI1 11 TINPHSEL5 Input select for TIMER5 high. (66AK2H14/12 only) 0 = TIMI0 1 = TIMI1 10 TINPLSEL5 Input select for TIMER5 low. (66AK2H14/12 only) 0 = TIMI0 1 = TIMI1 9 TINPHSEL4 Input select for TIMER4 high. (66AK2H14/12 only) 0 = TIMI0 1 = TIMI1 8 TINPLSEL4 Input select for TIMER4 low. (66AK2H14/12 only) 0 = TIMI0 1 = TIMI1 7 TINPHSEL3 Input select for TIMER3 high. 0 = TIMI0 1 = TIMI1 6 TINPLSEL3 Input select for TIMER3 low. 0 = TIMI0 1 = TIMI1 246 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 8-45 Bit Timer Input Selection Field Description (Part 3 of 3) Field Description 5 TINPHSEL2 Input select for TIMER2 high. 0 = TIMI0 1 = TIMI1 4 TINPLSEL2 Input select for TIMER2 low. 0 = TIMI0 1 = TIMI1 3 TINPHSEL1 Input select for TIMER1 high. 0 = TIMI0 1 = TIMI1 2 TINPLSEL1 Input select for TIMER1 low. 0 = TIMI0 1 = TIMI1 1 TINPHSEL0 Input select for TIMER0 high. 0 = TIMI0 1 = TIMI1 0 TINPLSEL0 Input select for TIMER0 low. 0 = TIMI0 1 = TIMI1 End of Table 8-45 8.2.3.17 Timer Output Selection Register (TOUTPSEL) The control register TOUTSEL handles the timer output selection and is shown in Figure 8-28 and described in Table 8-46. Figure 8-28 Timer Output Selection Register (TOUTPSEL) 31 10 9 5 4 0 Reserved TOUTPSEL1 TOUTPSEL0 R-0000000000000000000000 RW-00001 RW-00000 Legend: R = Read only; RW = Read/Write; -n = value after reset Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 247 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 8-46 Timer Output Selection Field Description Bit Field Description 31-10 Reserved Reserved 9-5 TOUTPSEL1 Output select for TIMO1 00000: TOUTL0 00001: TOUTH0 00010: TOUTL1 00011: TOUTH1 00100: TOUTL2 00101: TOUTH2 00110: TOUTL3 00111: TOUTH3 01000: TOUTL4 (66AK2H14/12 only) 01001: TOUTH4 (66AK2H14/12 only) 01010: TOUTL5 (66AK2H14/12 only) 01011: TOUTH5 (66AK2H14/12 only) 01100: TOUTL6 (66AK2H14/12 only) 01101: TOUTH6 (66AK2H14/12 only) 01110: TOUTL7 (66AK2H14/12 only) 01111: TOUTH7 (66AK2H14/12 only) 10000: TOUTL8 10001: TOUTH8 10010: TOUTL9 10011: TOUTH9 10100: TOUTL10 10101: TOUTH10 10110: TOUTL11 10111: TOUTH11 11000: TOUTL12 11001: TOUTH12 11010: TOUTL13 11011: TOUTH13 11100: TOUTL14 11101: TOUTH14 11110: TOUTL15 11111: TOUTH15 Output select for TIMO0 00000: TOUTL0 00001: TOUTH0 00010: TOUTL1 00011: TOUTH1 00100: TOUTL2 00101: TOUTH2 00110: TOUTL3 00111: TOUTH3 01000: TOUTL4 (66AK2H14/12 only) 01001: TOUTH4 (66AK2H14/12 only) 01010: TOUTL5 (66AK2H14/12 only) 01011: TOUTH5 (66AK2H14/12 only) 01100: TOUTL6 (66AK2H14/12 only) 01101: TOUTH6 (66AK2H14/12 only) 01110: TOUTL7 (66AK2H14/12 only) 01111: TOUTH7 (66AK2H14/12 only) 10000: TOUTL8 10001: TOUTH8 10010: TOUTL9 10011: TOUTH9 10100: TOUTL10 10101: TOUTH10 10110: TOUTL11 10111: TOUTH11 11000: TOUTL12 11001: TOUTH12 11010: TOUTL13 11011: TOUTH13 11100: TOUTL14 11101: TOUTH14 11110: TOUTL15 11111: TOUTH15 4-0 TOUTPSEL0 End of Table 8-46 248 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.2.3.18 Reset Mux (RSTMUXx) Register Software controls the Reset Mux block through the reset multiplex registers using RSTMUX0 through RSTMUX11 (66AK2H12) or RSTMUX0 through RSTMUX3 (66AK2H06) for each of the C66x CorePacs and RSTMUX8 and RSTMUX9 (66AK2H06) for the ARM CorePac on the device. These registers are located in Bootcfg memory space. The Reset Mux Register is shown in the figure and table below. Figure 8-29 Reset Mux Register 31 10 9 8 7 5 4 3 1 0 Reserved EVTSTATCLR Reserved DELAY EVTSTAT OMODE LOCK R-0000 0000 0000 0000 0000 00 RC-0 R-0 RW-100 R-0 RW-000 RW-0 Legend: R = Read only; RW = Read/Write; -n = value after reset; RC = Read only and write 1 to clear Table 8-47 Bit Reset Mux Register Field Descriptions Field Description 31-10 Reserved Reserved 9 EVTSTATCLR Clear event status 0 = Writing 0 has no effect 1 = Writing 1 to this bit clears the EVTSTAT bit 8 Reserved Reserved 7-5 DELAY Delay cycles between NMI & local reset 000b = 256 SYSCLK1/6 cycles delay between NMI & local reset, when OMODE = 100b 001b = 512 SYSCLK1/6 cycles delay between NMI & local reset, when OMODE = 100b 010b = 1024 SYSCLK1/6 cycles delay between NMI & local reset, when OMODE = 100b 011b = 2048 SYSCLK1/6 cycles delay between NMI & local reset, when OMODE = 100b 100b = 4096 SYSCLK1/6 cycles delay between NMI & local reset, when OMODE = 100b (default) 101b = 8192 SYSCLK1/6 cycles delay between NMI & local reset, when OMODE = 100b 110b = 16384 SYSCLK1/6 cycles delay between NMI & local reset, when OMODE = 100b 111b = 32768 SYSCLK1/6 cycles delay between NMI & local reset, when OMODE = 100b 4 EVTSTAT Event status 0 = No event received (Default) 1 = WD timer event received by Reset Mux block 3-1 OMODE Timer event operation mode 000b = WD timer event input to the Reset Mux block does not cause any output event (default) 001b = Reserved 010b = WD Timer Event input to the Reset Mux block causes local reset input to C66x CorePac. Note that for Cortex-A15 processor watchdog timers, the Local Reset output event of the RSTMUX logic is connected to the Device Reset generation to generate reset to PLL Controller.011b = WD Timer Event input to the Reset Mux block causes NMI input to C66x CorePac. Note that for Cortex-A15 processor watchdog timers, the Local Reset output event of the RSTMUX logic is connected to the Device Reset generation to generate reset to PLL Controller. 100b = WD Timer Event input to the Reset Mux block causes NMI input followed by local reset input to C66x CorePac. Delay between NMI and local reset is set in DELAY bit field. Note that for Cortex-A15 processor watchdog timers, the Local Reset output event of the RSTMUX logic is connected to the Device Reset generation to generate reset to PLL Controller. 101b = WD timer event input to the Reset Mux block causes device reset to 66AK2H14/12/06. Note that for Cortex-A15 processor watchdog timers, the Local Reset output event of the RSTMUX logic is connected to the Device Reset generation to generate reset to PLL Controller. 110b = Reserved 111b = Reserved 0 LOCK Lock register fields 0 = Register fields are not locked (default) 1 = Register fields are locked until the next timer reset End of Table 8-47 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 249 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.2.3.19 Device Speed (DEVSPEED) Register The Device Speed Register shows the device speed grade and is shown below. Figure 8-30 Device Speed Register (DEVSPEED) 31 28 27 Reserved 16 15 DEVSPEED R-n 12 11 Reserved 0 ARMSPEED R-n Legend: R = Read only; -n = value after reset Table 8-48 Device Speed Register Field Descriptions Bit Field Description 31-28 Reserved Reserved. Read only 27-16 DEVSPEED Indicates the speed of the device (read only) 0b0000 0000 0000 = 800 MHz 0b0000 0000 0001 = 1000 MHz 0b0000 0000 001x = 1200 MHz 0b0000 0000 01xx = Reserved 0b0000 0000 1xxx = Reserved 0b0000 0001 xxxx = Reserved 0b0000 001x xxxx = Reserved 0b0000 01xx xxxx = Reserved 0b0000 1xxx xxxx = 1200 MHz 0b0001 xxxx xxxx= 1000 MHz 0b001x xxxx xxxx = 800 MHz 15-12 Reserved Reserved. Read only 11-0 ARMSPEED Indicates the speed of the ARM (read only) 0b0000 0000 0000 = 800 MHz 0b0000 0000 0001 = 1000 MHz 0b0000 0000 001x = 1200 MHz (1) 0b0000 0000 01xx = 1350 MHz (1) 0b0000 0000 1xxx = 1400 MHz 0b0000 0001 xxxx = Reserved (1) 0b0000 001x xxxx = 1400 MHz 0b0000 01xx xxxx = 1350.8 MHz (1) 0b0000 1xxx xxxx = 1200 MHz 0b0001 xxxx xxxx= 1000 MHz 0b001x xxxx xxxx = 800 MHz End of Table 8-48 1 Possible future support 250 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.2.3.20 ARM Endian Configuration Register 0 (ARMENDIAN_CFGr_0), r=0..7 The registers defined in ARM Configuration Register 0 (ARMENDIAN_CFGr_0) and ARM Configuration Register 1 (ARMENDIAN_CFGr_1) control the way Cortex-A15 processor core access to peripheral MMRs shows up in the Cortex-A15 processor registers. The purpose is to provide an endian-invariant view of the peripheral MMRs when performing a 32-bit access. (Only one of the eight register sets is shown.) Figure 8-31 ARM Endian Configuration Register 0 (ARMENDIAN_CFGr_0), r=0..7 31 8 7 0 BASEADDR Reserved RW-0000 0000 0000 0000 0000 0000 R-0000 0000 Legend: RW = Read/Write; -n = value after reset Table 8-49 ARM Endian Configuration Register 0 Field Descriptions Bit Field Description 31-8 BASEADDR 24-bit Base Address of Configuration Region R This base address defines the start of a contiguous block of Memory Mapped Register space for which a word swap is done by the ARM CorePac bridge. 7-0 Reserved Reserved End of Table 8-49 8.2.3.21 ARM Endian Configuration Register 1 (ARMENDIAN_CFGr_1), r=0..7 Figure 8-32 ARM Endian Configuration Register 1 (ARMENDIAN_CFGr_1), r=0..7 31 4 3 0 Reserved SIZE R-0000 0000 0000 0000 0000 0000 0000 RW-0000 Legend: RW = Read/Write; -n = value after reset Table 8-50 ARM Endian Configuration Register 1 Field Descriptions Bit Field Description 31-4 Reserved Reserved 3-0 SIZE 4-bit encoded size of Configuration Region R The value in the SIZE field defines the size of the contiguous block of Memory Mapped Register space for which a word swap is done by the ARM CorePac bridge (starting from ARMENDIAN_CFGr_0.BASEADDR). 0000 : 64KB 0001 : 128KB 0010 : 256KB 0011 : 512KB 0100 : 1MB 0101 : 2MB 0110 : 4MB 0111 : 8MB 1000 : 16MB 1001 : 32MB 1010 : 64MB 1011 : 128MB Others : Reserved End of Table 8-50 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 251 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.2.3.22 ARM Endian Configuration Register 2 (ARMENDIAN_CFGr_2), r=0..7 The registers defined in ARM Configuration Register 2 (ARMENDIAN_CFGr_2) enable the word swapping of a region. Figure 8-33 ARM Endian Configuration Register 2 (ARMENDIAN_CFGr_2), r=0..7 31 1 0 Reserved DIS R-0000 0000 0000 0000 0000 0000 0000 000 RW-0 Legend: RW = Read/Write; -n = value after reset Table 8-51 ARM Endian Configuration Register 2 Field Descriptions Bit Field Description 31-1 Reserved Reserved 0 DIS Disabling the word swap of a region 0 : Enable word swap for region 1 : Disable word swap for region End of Table 8-51 8.2.3.23 Chip Miscellaneous Control (CHIP_MISC_CTL0) Register Figure 8-34 Chip Miscellaneous Control Register (CHIP_MISC_CTL0) 31 19 Reserved R-0 18 17 USB_PME_EN AETMUXSEL1 RW-0 RW-0 spacer 16 15 14 13 12 11 3 2 0 AETMUXSEL0 Reserved Reserved MSMC_BLOCK_PARITY_RST Reserved QM_PRIORITY RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 Legend: R = Read only; W = Write only; -n = value after reset Table 8-52 Bit Chip Miscellaneous Control Register (CHIP_MISC_CTL0) Field Descriptions (Part 1 of 2) Field Description 31-19 Reserved Reserved. 18 USB_PME_EN Enables wakeup event generation from USB 0 = Disable PME event generation 1 = Enable PME event generation 17 AETMUXSEL1 Controls the mux that selects whether an AET event from EDMA CC2 or EDMA CC3 is connected to the C66x Interrupt Controller 0 = EDMA CC2 (default) 1 = EDMA CC3 16 AETMUXSEL0 Controls the mux that selects whether an AET event from EDMA CC2 or EDMA CC4 is connected to the C66x Interrupt Controller 0 = EDMA CC2 (default) 1 = EDMA CC4 15-14 Reserved 13 Reserved 12 MSMC_BLOCK_PARITY_RST 252 Device Boot and Configuration Controls MSMC parity RAM reset. When set to ‘1’ means the MSMC parity RAM will not be reset. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 8-52 Chip Miscellaneous Control Register (CHIP_MISC_CTL0) Field Descriptions (Part 2 of 2) Bit Field Description 11-3 Reserved Reserved 2-0 QM_PRIORITY Control the priority level for the transactions from QM_Master port, which access the external linking RAM. End of Table 8-52 8.2.3.24 Chip Miscellaneous Control (CHIP_MISC_CTL1) Register Figure 8-35 Chip Miscellaneous Control Register (CHIP_MISC_CTL1) 31 15 14 13 Reserved IO_TRACE_SEL ARM_PLL_EN R- 0000 0000 00000000 RW-0 RW-0 12 0 Reserved RW-0000000000000 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 8-53 Bit Chip Miscellaneous Control Register (CHIP_MISC_CTL1) Field Descriptions Field Description 31-15 Reserved Reserved. 14 IO_TRACE_SEL This bit controls the pin muxing of GPIO[31:17] and EMU[33:19] pin 0 = GPIO[31:17] is selected 1 = EMU[33:19] pins is selected 13 ARM_PLL_EN This bit controls the glitchfree clock mux between bypass clock and ARM PLL output clock 0 = Bypass clock (default) 1 = PLL output clock 12-0 Reserved End of Table 8-53 8.2.3.25 System Endian Status Register (SYSENDSTAT) This register provides a way for reading the system endianness in an endian-neutral way. A zero value indicates big endian and a non-zero value indicates little endian. The SYSENDSTAT register captures the LENDIAN bootmode pin and is used by the BOOTROM to guide the bootflow. The value is latched on the rising edge of POR or RESETFULL. Figure 8-36 System Endian Status Register 31 1 0 Reserved SYSENDSTAT R-0000 0000 0000 0000 0000 0000 0000 000 R-0 Legend: RW = Read/Write; -n = value after reset Table 8-54 System Endian Status Register Descriptions Bit Field Description 31-1 Reserved Reserved 0 SYSENDSTAT Reflects the same value as the LENDIAN bit in the DEVSTAT register. 0 - C66x/System is in Big Endian 1 - C66x/System is in Little Endian End of Table 8-54 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 253 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 8.2.3.26 SYNECLK_PINCTL Register This register controls the routing of recovered clock signals from any Ethernet port (SGMII of the multiport switches) to the two clock outputs TSRXCLKOUT0/TSRXCLKOUT1. SYNECLK_PINCTL Register Figure 8-37 31 7 6 4 Reserved TSRXCLKOUT1SEL R-0000 0000 0000 0000 0000 0000 0 RW-0 3 Reserved 2 0 TSRXCLKOUT0SEL RW-0 Legend: RW = Read/Write; -n = value after reset SYNECLK_PINCTL Register Descriptions Table 8-55 Bit Field 31-7 Reserved Description 6-4 TSRXCLKOUT1SEL 3 Reserved 2-0 TSRXCLKOUT0SEL 000 = SGMII Lane 0 rxbclk 001 = SGMII Lane 1 rxbclk 010 = SGMII Lane 2 rxbclk 011 = SGMII Lane 3 rxbclk 100 = Reserved. Do not write. 101 = Reserved. Do not write. 110 = Reserved. Do not write. 111 = Reserved. Do not write. 000 = SGMII Lane 0 rxbclk 001 = SGMII Lane 1 rxbclk 010 = SGMII Lane 2 rxbclk 011 = SGMII Lane 3 rxbclk 100 = Reserved. Do not write. 101 = Reserved. Do not write. 110 = Reserved. Do not write. 111 = Reserved. Do not write. End of Table 8-55 8.2.3.27 USB PHY Control (USB_PHY_CTLx) Registers These registers control the USB PHY. Figure 8-38 USB_PHY_CTL0 Register 31 12 11 Reserved PHY_RTUNE_ACK R-0 R-0 10 9 8 7 PHY_RTUNE_REQ Reserved PHY_TC_VATESTENB R/W-0 R-0 R/W-00 6 5 PHY_TC_TEST_POWERDOWN_SSP PHY_TC_TEST_POWERDOWN_HSP R/W-0 R/W-0 spacer 254 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 8-38 USB_PHY_CTL0 Register 4 3 2 1 0 PHY_TC_LOOPBACKENB Reserved UTMI_VBAUSVLDEXT UTMI_TXBITSTUFFENH UTMI_TXBITSTUFFEN R/W-0 R-0 R/W-0 R/W-0 R/W-0 Legend: R = Read only; W = Write only; -n = value after reset Table 8-56 USB_PHY_CTL0 Register Field Descriptions Bit Field Description 31-12 Reserved Reserved 11 PHY_RTUNE_ACK The PHY uses an external resistor to calibrate the termination impedances of the PHY's high-speed inputs and outputs. The resistor is shared between the USB2.0 high-speed outputs and the Super-speed I/O. Each time the PHY is taken out of a reset, a termination calibration is performed. For SS link, the calibration can also be requested externally by asserting the PHY_RTUNE_REQ. When the calibration is complete, the PHY_RTUNE_ACK transitions low. A resistor calibration on the SS link cannot be performed while the link is operational 10 PHY_RTUNE_REQ See PHY_RTUNE_ACK. 9 Reserved Reserved 8-7 PHY_TC_VATESTENB Analog Test Pin Select. Enables analog test voltages to be placed on the ID pin. 11 = Invalid setting. 10 = Invalid setting. 01 = Analog test voltages can be viewed or applied on ID. 00 = Analog test voltages cannot be viewed or applied on ID. 6 PHY_TC_TEST_POWERDOWN_SSP SS Function Circuits Power-Down Control. 5 PHY_TC_TEST_POWERDOWN_HSP HS Function Circuits Power-Down Control Powers down all SS function circuitry in the PHY for IDDQ testing. Powers down all HS function circuitry in the PHY for IDDQ testing. 4 PHY_TC_LOOPBACKENB Loop-back Test Enable Places the USB3.0 PHY in HS Loop-back mode, which concurrently enables the HS receive and transmit logic. 1 = During HS data transmission, the HS receive logic is enabled. 0 = During HS data transmission, the HS receive logic is disabled. 3 Reserved 2 UTMI_VBAUSVLDEXT Reserved External VBUS Valid Indicator Function: Valid in Device mode and only when the VBUSVLDEXTSEL signal is set to 1'b1. VBUSVLDEXT indicates whether the VBUS signal on the USB cable is valid. In addition, VBUSVLDEXT enables the pull-up resistor on the D+ line. 1 = VBUS signal is valid, and the pull-up resistor on D+ is enabled. 0 = VBUS signal is not valid, and the pull-up resistor on D+ is disabled. 1 UTMI_TXBITSTUFFENH High-byte Transmit Bit-Stuffing Enable Function: controls bit stuffing on DATAINH[7:0] when OPMODE[1:0]=11b. 1 = Bit stuffing is enabled. 0 = Bit stuffing is disabled. 0 UTMI_TXBITSTUFFEN Low-byte Transmit Bit-Stuffing Enable Function: controls bit stuffing on DATAIN[7:0] when OPMODE[1:0]=11b. 1 = Bit stuffing is enabled. 0 = Bit stuffing is disabled. End of Table 8-56 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 255 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 8-39 USB_PHY_CTL1 Register 31 6 Reserved 5 PIPE_REF_CLKREQ_N R-0 R-0 spacer 4 3 2 1 0 PIPE_TX2RX_LOOPBK PIPE_EXT_PCLK_REQ PIPE_ALT_CLK_SEL PIPE_ALT_CLK_REQ PIPE_ALT_CLK_EN R/W-0 R/W-0 R/W-0 R-0 R/W-0 Legend: R = Read only; R/W = Read/Write, -n = value after reset Table 8-57 Bit USB_PHY_CTL1 Register Field Descriptions Field Description 31-6 Reserved Reserved 5 Reference Clock Removal Acknowledge. PIPE_REF_CLKREQ_N When the pipeP_power-down control into the PHY turns off the MPLL in the P3 state, PIPE_REF_CLKREQ_N is asserted after the PLL is stable and the reference clock can be removed. 4 PIPE_TX2RX_LOOPBK Loop-back. When this signal is asserted, data from the transmit predriver is looped back to the receiver slicers. LOS is bypassed and based on the tx_en input so that rx_los=!tx_data_en. 3 PIPE_EXT_PCLK_REQ External PIPE Clock Enable Request. When asserted, this signal enables the pipeP_pclk output regardless of power state (along with the associated increase in power consumption). 2 PIPE_ALT_CLK_SEL Alternate Clock Source Select. Selects the alternate clock sources instead of the internal MPLL outputs for the PCS clocks. 1 = Uses alternate clocks. 0 = Users internal MPLL clocks. Change only during a reset. 1 PIPE_ALT_CLK_REQ Alternate Clock Source Request. Indicates that the alternate clocks are needed by the slave PCS (that is, to boot the master MPLL). Connect to the alt_clk_en on the master. 0 PIPE_ALT_CLK_EN Alternate Clock Enable. Enables the ref_pcs_clk and ref_pipe_pclk output clocks (if necessary, powers up the MPLL). End of Table 8-57 256 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 8-40 USB_PHY_CTL2 Register 31 30 29 27 26 23 22 21 Reserved PHY_PC_LOS_BIAS PHY_PC_TXVREFTUNE PHY_PC_TXRISETUNE R-0 R/W-101 R/W-1000 R/W-01 20 19 18 17 16 15 14 PHY_PC_TXRESTUNE PHY_PC_TXPREEMPPULSETUNE PHY_PC_TXPREEMPAMPTUNE PHY_PC_TXHSXVTUNE R/W-01 R/W-0 R/W-00 R/W-11 13 10 9 7 6 4 3 2 0 PHY_PC_TXFSLSTUNE PHY_PC_SQRXTUNE PHY_PC_OTGTUNE Reserved PHY_PC_COMPDISTUNE R/W-0011 R/W-011 R/W-100 R-0 R/W-100 Legend: R = Read only; R/W = Read/Write, -n = value after reset Table 8-58 Bit USB_PHY_CTL2 Register Field Descriptions (Part 1 of 2) Field Description 31-30 Reserved Reserved 29-27 PHY_PC_LOS_BIAS Loss-of-Signal Detector Threshold Level Control. Sets the LOS detection threshold level. +1 = results in a +15 mVp incremental change in the LOS threshold. -1 = results in a -15 mVp incremental change in the LOS threshold. Note: the 000b setting is reserved and must not be used. 26-23 PHY_PC_TXVREFTUNE HS DC Voltage Level Adjustment. Adjusts the high-speed DC level voltage. +1 = results in a +1.25% incremental change in high-speed DC voltage level. -1 = results in a -1.25% incremental change in high-speed DC voltage level. 22-21 PHY_PC_TXRISETUNE HS Transmitter Rise/Fall TIme Adjustment. Adjusts the rise/fall times of the high-speed waveform. +1 = results in a -4% incremental change in the HS rise/fall time. -1 = results in a +4% incremental change in the HS rise/fall time. 20-19 PHY_PC_TXRESTUNE USB Source Impedance Adjustment. Some applications require additional devices to be added on the USB, such as a series switch, which can add significant series resistance. This bus adjusts the driver source impedance to compensate for added series resistance on the USB. 18 PHY_PC_TXPREEMPPULSETUNE HS Transmitter Pre-Emphasis Duration Control. Controls the duration for which the HS pre-emphasis current is sourced onto DP or DM. It is defined in terms of unit amounts. One unit of pre-emphasis duration is approximately 580 ps and is defined as 1x pre-emphasis duration. This signal valid only if either txpreempamptune[1] or txpreempamptune[0] is set to 1. 1 = 1x, short pre-emphasis current duration. 0 = 2x, long pre-emphasis current duration. 17-16 PHY_PC_TXPREEMPAMPTUNE HS Transmitter Pre-Emphasis Current Control. Controls the amount of current sourced to DP and DM after a J-to-K or K-to-J transition. The HS Transmitter pre-emphasis current is defined in terms of unit amounts. One unit amount is approximately 600 μA and is defined as 1x pre-emphasis current. 11 = 3x pre-emphasis current. 10 = 2x pre-emphasis current. 01 = 1x pre-emphasis current. 00 = HS Transmitter pre-emphasis is disabled. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 257 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 8-58 USB_PHY_CTL2 Register Field Descriptions (Part 2 of 2) Bit Field 15-14 PHY_PC_TXHSXVTUNE Description Transmitter High-Speed Crossover Adjustment. Adjusts the voltage at which the DP and DM signals cross while transmitting in HS mode. 11 = Default setting. 10 = +15 mV 01 = -15 mV 00 = Reserved 13-10 PHY_PC_TXFSLSTUNE FS/LS Source Impedance Adjustment. Adjusts the low- and full-speed single-ended source impedance while driving high. This parameter control is encoded in thermometer code. +1 = results in a -2.5% incremental change in threshold voltage level. -1 = results in a +2.5% incremental change in threshold voltage level. Any non-thermometer code setting (that is 1001) is not supported and reserved. 9-7 PHY_PC_SQRXTUNE Squelch Threshold Adjustment. Adjusts the voltage level for the threshold used to detect valid high-speed data. +1 = results in a -5% incremental change in threshold voltage level. -1 = results in a +5% incremental change in threshold voltage level. 6-4 PHY_PC_OTGTUNE VBUS Valid Threshold Adjustment. Adjusts the voltage level for the VBUS valid threshold. +1 = results in a +1.5% incremental change in threshold voltage level. -1 = results in a -1.5% incremental change in threshold voltage level. 3 Reserved Reserved 2-0 PHY_PC_COMPDISTUNE Disconnect Threshold Adjustment. Adjusts the voltage level for the threshold used to detect a disconnect event at the host. +1 = results in a +1.5% incremental change in the threshold voltage level. -1 = results in a -1.5% incremental change in the threshold voltage level. End of Table 8-58 Figure 8-41 USB_PHY_CTL3 Register 31 30 22 17 29 23 Reserved PHY_PC_PCS_TX_SWING_FULL R-0 R/W-1111000 16 11 10 5 4 0 PHY_PC_PCS_TX_DEEMPH_6DB Reserved PHY_PC_PCS_TX_DEEMPH_3P5DB PHY_PC_LOS_LEVEL R/W-100000 R-0 R/W-010101 R/W-01001 Legend: R = Read only; R/W = Read/Write, -n = value after reset Table 8-59 Bit USB_PHY_CTL3 Register Field Descriptions (Part 1 of 2) Field Description 31-30 Reserved Reserved 29-23 PHY_PC_PCS_TX_SWING_FULL Tx Amplitude (Full Swing Mode). Sets the launch amplitude of the transmitter. It can be used to tune Rx eye for compliance. 22-17 PHY_PC_PCS_TX_DEEMPH_6DB Tx De-Emphasis at 6 dB. Sets the Tx driver de-emphasis value when pipeP_tx_deemph[1:0] is set to 10b (according to the PIPE3 specification). This bus is provided for completeness and as a second potential launch amplitude. 258 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 8-59 USB_PHY_CTL3 Register Field Descriptions (Part 2 of 2) Bit Field Description 16-11 Reserved Reserved 10-5 PHY_PC_PCS_TX_DEEMPH_3P5DB Tx De-Emphasis at 3.5 dB. Sets the Tx driver de-emphasis value when pipeP_tx_deemph[1:0] is set to 10b (according to the PIPE3 specification). Can be used for Rx eye compliance. 4-0 PHY_PC_LOS_LEVEL Loss-of-Signal Detector Sensitivity Level Control. Sets the LOS detection threshold level. This signal must be set to 0x9. End of Table 8-59 Figure 8-42 USB_PHY_CTL4 Register 31 30 29 28 PHY_SSC_EN PHY_REF_USE_PAD PHY_REF_SSP_EN PHY_MPLL_REFSSC_CLK_EN R/W-1 R/W-0 R/W-0 R/W-0 27 22 21 20 19 18 17 PHY_FSEL PHY_RETENABLEN PHY_REFCLKSEL PHY_COMMONONN Reserved R/W-100111 R/W-1 R/W-10 R/W-0 R-0 16 15 PHY_OTG_VBUSVLDEXTSEL PHY_OTG_OTGDISABLE PHY_PC_TX_VBOOST_LVL PHY_PC_LANE0_TX_TERM_OFFSET Reserved R/W-0 R/W-1 R/W-100 R/W-00000 R-0 14 12 11 7 6 0 Legend: R = Read only; R/W = Read/Write, -n = value after reset Table 8-60 USB_PHY_CTL4 Register Field Descriptions (Part 1 of 2) Bit Field Description 31 PHY_SSC_EN Spread Spectrum Enable. Enables spread spectrum clock production (0.5% down-spread at ~31.5 KHz) in the USB3.0 PHY. If the reference clock already has spread spectrum applied, ssc_en must be de-asserted. 30 PHY_REF_USE_PAD Select Reference Clock Connected to ref_pad_clk_{p,m}. When asserted, selects the external ref_pad_clk_{p,m} inputs as the reference clock source. When de-asserted, ref_alt_clk_{p,m} are selected for an on-chip reference clock source. 29 PHY_REF_SSP_EN Reference Clock Enables for SS function. Enables the reference clock to the prescaler. The ref_ssp_en signal must remain de asserted until the reference clock is running at the appropriate frequency, at which point ref_ssp_en can be asserted. For lower power states, ref_ssp_en can also be de asserted. 28 PHY_MPLL_REFSSC_CLK_EN Double-Word Clock Enable. Enables/disables the mpll_refssc_clk signal. To prevent clock glitch, it must be changed when the PHY is inactive. 27-22 PHY_FSEL Frequency Selection. Selects the reference clock frequency used for both SS and HS operations. The value for fsel combined with the other clock and enable signals will determine the clock frequency used for SS and HS operations and if a shared or separate reference clock will be used. 21 PHY_RETENABLEN Lowered Digital Supply Indicator. Indicates that the vp digital power supply has been lowered in Suspend mode. This signal must be de-asserted before the digital power supply is lowered. 1 = Normal operating mode. 0 = The analog blocks are powered down. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 259 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 8-60 USB_PHY_CTL4 Register Field Descriptions (Part 2 of 2) Bit Field 20-19 PHY_REFCLKSEL Description Reference Clock Select for PLL Block. Selects reference clock source for the HS PLL block. 11 = HS PLL uses EXTREFCLK as reference. 10 = HS PLL uses either ref_pad_clk_{p,m} or ref_alt_clk_{p,m} as reference. x0 = Reserved. 18 PHY_COMMONONN Common Block Power-Down Control. Controls the power-down signals in the HS Bias and PLL blocks when the USB3.0 PHY is in Suspend or Sleep mode. 1 = In Suspend or Sleep mode, the HS Bias and PLL blocks are powered down. 0 = In Suspend or Sleep mode, the HS Bias and PLL blocks remain powered and continue to draw current. 17 Reserved Reserved 16 PHY_OTG_VBUSVLDEXTSEL External VBUS Valid Select. Selects the VBUSVLDEXT input or the internal Session Valid comparator to indicate when the VBUS signal on the USB cable is valid. 1 = VBUSVLDEXT input is used. 0 = Internal Session Valid comparator is used. 15 PHY_OTG_OTGDISABLE OTG Block Disable. Powers down the OTG block, which disables the VBUS Valid and Session End comparators. The Session Valid comparator (the output of which is used to enable the pull-up resistor on DP in Device mode) is always on irrespective of the state of otgdisable. If the application does not use the OTG function, setting this signal to high to save power. 1 = OTG block is powered down. 0 = OTG block is powered up. 14-12 PHY_PC_TX_VBOOST_LVL Tx Voltage Boost Level. Sets the boosted transmit launch amplitude (mVppd). The default setting is intended to set the launch amplitude to approximately 1,008mVppd. +1 = results in a +156 mVppd change in the Tx launch amplitude. -1 = results in a -156 mVppd change in the Tx launch amplitude. 11-7 PHY_PC_LANE0_TX_TERM_OFFSET Transmitter Termination Offset. Enables adjusting the transmitter termination value from the default value of 60 Ω. 6-0 Reserved Reserved End of Table 8-60 Figure 8-43 USB_PHY_CTL5 Register 31 21 20 19 13 Reserved PHY_REF_CLKDIV2 PHY_MPLL_MULTIPLIER[6:0] R-0 R/W-0 R/W +0011001 12 4 3 2 0 PHY_SSC_REF_CLK_SEL Reserved PHY_SSC_RANGE R/W-000000000 R-0 R/W-000 Legend: R = Read only; R/W = Read/Write, -n = value after reset 260 Device Boot and Configuration Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 8-61 USB_PHY_CTL5 Register Field Descriptions Bit Field Description 31-21 Reserved Reserved 20 PHY_REF_CLKDIV2 Input Reference Clock Divider Control. If the input reference clock frequency is greater than 100 MHz, this signal must be asserted. The reference clock frequency is then divided by 2 to keep it in the range required by the MPLL. When this input is asserted, the ref_ana_usb2_clk (if used) frequency will be the reference clock frequency divided by 4. 19-13 PHY_MPLL_MULTIPLIER[6:0] 12-4 PHY_SSC_REF_CLK_SEL MPLL Frequency Multiplier Control. Multiplies the reference clock to a frequency suitable for intended operating speed. Spread Spectrum Reference Clock Shifting. Enables non-standard oscillator frequencies to generate targeted MPLL output rates. Input corresponds to frequency-synthesis coefficient. . ssc_ref_clk_sel[8:6] = modulous - 1 . ssc_ref_clk_sel[5:0] = 2's complement push amount. 3 Reserved Reserved 2-0 PHY_SSC_RANGE Spread Spectrum Clock Range. Selects the range of spread spectrum modulation when ssc_en is asserted and the PHY is spreading the high-speed transmit clocks. Applies a fixed offset to the phase accumulator. End of Table 8-61 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Boot and Configuration 261 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 9 Device Operating Conditions 9.1 Absolute Maximum Ratings Table 9-1 Absolute Maximum Ratings (1) Over Operating Case Temperature Range (Unless Otherwise Noted) CVDD -0.3 V to 1.3 V CVDD1 -0.3 V to 1.3 V CVDDT1 -0.3 V to 1.3 V DVDD15 -0.3 V to 1.98 V DVDD18 -0.3 V to 2.45 V DVDD33 -0.3V to 3.63 V DDR3VREFSSTL Supply voltage range (2): 0.49 × DVDD15 to 0.51 × DVDD15 VDDAHV -0.3 V to 1.98 V VDDALV -0.3 V to 0.935 V VDDUSB -0.3V to 0.935 V AVDDA1, AVDDA2, AVDDA3,AVDDA4, AVDDA5 -0.3 V to 1.98 V AVDDA6, AVDDA7 -0.3 V to 1.98 V AVDDA8, AVDDA9, AVDDA10 AVDDA11, AVDDA12, AVDDA13 AVDDA14, AVDDA15 VSS Ground 0V LVCMOS (1.8 V) -0.3 V to DVDD18+0.3 V DDR3A, DDR3B -0.3 V to 1.98 V 2 Input voltage (VI) range: IC (3) -0.3 V to 2.45 V LVDS -0.3 V to DVDD18+0.3 V LJCB -0.3 V to 1.3 V SerDes Output voltage (VO) range: (3) -0.3 V to VDDAHV1+0.3 V LVCMOS (1.8 V) -0.3 V to DVDD18+0.3 V DDR3A, DDR3B -0.3 V to 1.98 V 2 IC -0.3 V to 2.45 V SerDes Operating case temperature range, TC: ESD stress voltage, VESD (4) -0.3 V to VDDAHV+0.3 V Commercial 0°C to 85°C Extended HBM (human body model) -40°C to 100°C (5) CDM (charged device model) ±1000 V (6) ±250 V LVCMOS (1.8 V) Overshoot/undershoot (7) DDR3A, DDR3B I2C Storage temperature range, Tstg: 20% overshoot/undershoot for 20% of signal duty cycle -65°C to 150°C End of Table 9-1 1 Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 2 All voltage values are with respect to VSS. 3 For USB High-Speed, Full-Speed, and Low -Speed modes, USB I/Os adhere to Universal Serial Bus, revision 2.0 standard. For USB Super-Speed mode, USB I/Os adhere to Universal Serial Bus, revision 3.1 specification, revision 1.0 standard. 4 Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device. 5 Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001-2010. JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process, and manufacturing with less than 500 V HBM is possible if necessary precautions are taken. Pins listed as 1000 V may actually have higher performance. 262 Device Operating Conditions Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 6 Level listed above is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process. Pins listed as 250 V may actually have higher performance. 7 Overshoot/Undershoot percentage relative to I/O operating values - for example the maximum overshoot value for 1.8 V LVCMOS signals is DVDD18 + 0.20 × DVDD18 and maximum undershoot value would be VSS - 0.20 × DVDD18 9.2 Recommended Operating Conditions Table 9-2 Recommended Operating Conditions (1) (2) Min Initial CVDD (3) 1000MHz Device SR DSP core supply 1200MHz Device Nom Max Unit 0.95 1.0 1.05 SRVnom*0.95 (4) SRVnom SRVnom*1.05 SRVnom*0.95 (4) SRVnom SRVnom*1.05 V V V CVDD1 DSP Core supply 0.902 0.95 0.997 V CVDDT1 Cortex-A15 processor Core supply 0.902 0.95 0.997 V DVDD18 1.8-V supply I/O voltage 1.71 1.8 1.89 V DVDD15 1.5-V supply I/O voltage DDR3VREFSSTL DDR3A, DDR3B reference voltage 1.425 1.5 1.575 V 0.49 × DVDD15 0.5 × DVDD15 0.51 × DVDD15 V VDDAHV SerDes regulator supply 1.71 1.8 1.89 V AVDDx (5) PLL analog, DDR DLL supply 1.71 1.8 1.89 V VDDALH SerDes termination supply 0.807 0.85 0.892 V DVDD33 USB 3.135 3.3 3.465 V VDDUSB USB 0.807 0.85 0.892 V VSS Ground 0 0 0 V VIH (6) High-level input voltage LVCMOS (1.8 V) I2C DDR3A, DDR3B EMIF 0.65 × DVDD18 V 0.7 × DVDD18 V VREFSSTL + 0.1 LVCMOS (1.8 V) VIL (6) Low-level input voltage DDR3A, DDR3B EMIF -0.3 Operating case temperature Commercial Extended V VREFSSTL - 0.1 V 0.3 × DVDD18 V 0 85 °C -40 100 °C 2 IC TC V 0.35 × DVDD18 End of Table 9-2 1 All differential clock inputs comply with the LVDS Electrical Specification, IEEE 1596.3-1996 and all SerDes I/Os comply with the XAUI Electrical Specification, IEEE 802.3ae-2002. 2 All SerDes I/Os comply with the XAUI Electrical Specification, IEEE 802.3ae-2002. 3 Users are required to program their board CVDD supply initial value to 1.0 V on the device. The initial CVDD voltage at power-on will be 1.0V nominal and it must transition to VID set value, immediately after being presented on the VCNTL pins. This is required to maintain full power functionality and reliability targets guaranteed by TI. 4 SRVnom refers to the unique SmartReflex core supply voltage that has a potential range of 0.8 V and 1.1 V which preset from the factory for each individual device. Your device may never be programmed to operate at the upper range but has been designed accordingly should it be determined to be acceptable or necessary. Power supplies intended to support the variable SRV function shall be capable of providing a 0.8V-1.1V dynamic range using a 4- or 6-bit binary input value which as provided by the DSP SmartReflex output. 5 Where x=1,2,3,4... to indicate all supplies of the same kind. 6 For USB High-Speed, Full-Speed, and Low -Speed modes, USB I/Os adhere to Universal Serial Bus, revision 2.0 standard. For USB Super-Speed mode, USB I/Os adhere to Universal Serial Bus, revision 3.1 specification, revision 1.0 standard. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Operating Conditions 263 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 9.3 Electrical Characteristics Table 9-3 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case Temperature (Unless Otherwise Noted) Parameter LVCMOS (1.8 V) VOH (2) High-level output voltage Test Conditions (1) IO = IOH Min DVDD15 - 0.4 2 (3) Low-level output voltage LVCMOS (1.8 V) (4) IO = IOL 0.45 DDR3A, DDR3B I2C II V (3) IC (2) V OL Input current [DC] 0.4 IO = 3 mA, pulled up to 1.8 V -10 Internal pullup 50 100 170 -170 -100 -50 IC 0.1 × DVDD18 V < VI < 0.9 × DVDD18 V 10 -10 10 LVCMOS (1.8 V) IOH -8 I2C (5) Low-level output current [DC] LVCMOS (1.8 V) 6 DDR3A, DDR3B 8 IC (6) Off-state output current [DC] μA mA (5) 2 IOZ μA -6 High-level output current [DC] DDR3A, DDR3B IOL V 0.4 No IPD/IPU Internal pulldown 2 Max Unit DVDD18 - 0.45 DDR3A, DDR3B LVCMOS (1.8 V) Typ mA 3 LVCMOS (1.8 V) -10 10 DDR3A, DDR3B -10 10 I2C -10 10 μA End of Table 9-3 1 For test conditions shown as MIN, MAX, or TYP, use the appropriate value specified in the recommended operating conditions table. 2 For USB High-Speed, Full-Speed, and Low -Speed modes, USB I/Os adhere to Universal Serial Bus, revision 2.0 standard. For USB Super-Speed mode, USB I/Os adhere to Universal Serial Bus, revision 3.1 specification, revision 1.0 standard. 2 3 I C uses open collector IOs and does not have a VOH Minimum. 4 II applies to input-only pins and bidirectional pins. For input-only pins, II indicates the input leakage current. For bidirectional pins, II includes input leakage current and off-state (Hi-Z) output leakage current. 2 5 I C uses open collector IOs and does not have a IOH Maximum. 6 IOZ applies to output-only pins, indicating off-state (Hi-Z) output leakage current. 264 Device Operating Conditions Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 9.4 Power Supply to Peripheral I/O Mapping Table 9-4 Power Supply to Peripheral I/O Mapping (1) (2) Over Recommended Ranges of Supply Voltage and Operating Case Temperature (Unless Otherwise Noted) Power Supply I/O Buffer Type Associated Peripheral SYSCLK(P|N) PLL input buffer ALTCORECLK(P|N) PLL input buffer SRIOSGMIICLK(P|N) SerDes PLL input buffer CVDD Supply core AVS voltage LJCB DDR3ACLK(P|N) PLL input buffer DDR3BCLK(P|N) PLL input buffer PASSCLK(P|N) PLL input buffer ARMCLK(P|N) PLL input buffer VDDALV LJCB SERDES low voltage PCIECLK(P|N) SerDes Clock Reference VDDAHV SerDes IO voltage DVDD15 1.5-V supply I/O voltage SerDes/CML HYP0CLK(P|N) SerDes Clock Reference HYP1CLK(P|N) SerDes Clock Reference USBCLK(P|M) SerDes Clock Reference DDR3A, DDR3B (1.5 V) All DDR3A, DDR3B memory controller peripheral I/O buffer All GPIO peripheral I/O buffer All JTAG and EMU peripheral I/O buffer All TIMER peripheral I/O buffer All SPI peripheral I/O buffer DVDD18 1.8-V supply I/O voltage LVCMOS (1.8 V) All RESETs, NMI, control peripheral I/O buffer All SmartReflex peripheral I/O buffer All Hyperlink sideband peripheral I/O buffer All MDIO peripheral I/O buffer All UART peripheral I/O buffer Open-drain (1.8 V) 2 All I C peripheral I/O buffer End of Table 9-4 1 Please note that this table does not attempt to describe all functions of all power supply terminals but only those whose purpose it is to power peripheral I/O buffers and clock input buffers. 2 Please see the Hardware Design Guide for KeyStone II Devices (in development) for more information about individual peripheral I/O. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Device Operating Conditions 265 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10 66AK2H14/12/06 Peripheral Information and Electrical Specifications This chapter covers the various peripherals on the 66AK2H14/12/06 device. Peripheral-specific information, timing diagrams, electrical specifications, and register memory maps are described in this chapter. 10.1 Recommended Clock and Control Signal Transition Behavior All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic manner. 10.2 Power Supplies The following sections describe the proper power-supply sequencing and timing needed to properly power on the 66AK2H14/12/06. The various power supply rails and their primary functions are listed in Table 10-1. Table 10-1 Power Supply Rails on the 66AK2H14/12/06 Name Primary Function Voltage Notes AVDDAx Core PLL, DDR3 DLL supply voltage 1.8 V Core PLL, DDR3 DLL supply CVDD SmartReflex DSP core supply voltage 0.8 - 1.1 V DSP variable core supply CVDD1 DSP core fixed supply voltage 0.95 V DSP Core fixed supply CVDDT1 ARM core fixed supply voltage 0.95 V ARM core fixed supply DVDD15 DDR3A, DDR3B I/O power supply voltage 1.5 V DDR3A, DDR3B I/O power supply DVDD18 1.8-V I/O power supply voltage 1.8 V 1.8-V I/O power supply DVDD33 USB 3.3-V IO supply 3.3 V USB high voltage supply VDDAHV SerDes I/O power supply voltage 1.8 V SerDes I/O power supply VDDALV SerDes analog power supply voltage 0.85 V SerDes analog supply VDDUSB USB LV PHY power supply voltage 0.85 V USB LV PHY supply VP, VPTX Filtered 0.85-V supply voltage 0.85 V Filtered 0.85-V USB supply VSS Ground GND Ground End of Table 10-1 266 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.2.1 Power-Up Sequencing This section defines the requirements for a power-up sequencing from a power-on reset condition. There are two acceptable power sequences for the device. The first sequence stipulates the core voltages starting before the IO voltages as shown below. 1. CVDD 2. CVDD1, CVDDT1, VDDAHV, AVDDAx, DVDD18 3. DVDD15 4. VDDALV, VDDUSB, VP, VPTX 5. DVDD33 The second sequence provides compatibility with other TI processors with the IO voltage starting before the core voltages as shown below. 1. VDDAHV, AVDDAx, DVDD18 2. CVDD 3. CVDD1, CVDDT1 4. DVDD15 5. VDDALV, VDDUSB, VP, VPTX 6. DVDD33 The clock input buffers for SYSCLK, ARMCLK, ALTCORECLK, DDR3ACLK, DDR3BCLK, PASSCLK, and SRIOSGMIICLK use CVDD as a supply voltage. These clock inputs are not failsafe and must be held in a high-impedance state until CVDDis at a valid voltage level. Driving these clock inputs high before CVDDis valid could cause damage to the device. Once CVDDis valid, it is acceptable that the P and N legs of these clocks may be held in a static state (either high and low or low and high) until a valid clock frequency is needed at that input. To avoid internal oscillation, the clock inputs should be removed from the high impedance state shortly after CVDDis present. If a clock input is not used, it must be held in a static state. To accomplish this, the N leg should be pulled to ground through a 1-kΩ resistor. The P leg should be tied to CVDD to ensure it will not have any voltage present until CVDDis active. Connections to the IO cells powered by DVDD18 and DVDD15 are not failsafe and should not be driven high before these voltages are active. Driving these IO cells high before DVDD18 or DVDD15 are valid could cause damage to the device. The device initialization is divided into two phases. The first phase consists of the time period from the activation of the first power supply until the point at which all supplies are active and at a valid voltage level. Either of the sequencing scenarios described above can be implemented during this phase. The figures below show both the core-before-IO voltage sequence and the IO-before-core voltage sequence. POR must be held low for the entire power stabilization phase. This is followed by the device initialization phase. The rising edge of POR followed by the rising edge of RESETFULL triggers the end of the initialization phase, but both must be inactive for the initialization to complete. POR must always go inactive before RESETFULL goes inactive as described below. SYSCLK1 in the following section refers to the clock that is used by the C66x CorePacs. See Figure 10-7 for more details. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 267 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.2.1.1 Core-Before-IO Power Sequencing The details of the Core-before-IO power sequencing are defined in Table 10-2. Figure 10-1 shows power sequencing and reset control of the 66AK2H14/12/06. POR may be removed after the power has been stable for the required 100 μsec. RESETFULL must be held low for a period (see item 9 in Figure 10-1) after the rising edge of POR, but may be held low for longer periods if necessary. The configuration bits shared with the GPIO pins will be latched on the rising edge of RESETFULL and must meet the setup and hold times specified. SYSCLK1 must always be active before POR can be removed. Note—TI recommends a maximum of 80 ms between one power rail being valid and the next power rail in the sequence starting to ramp. Table 10-2 Core Before IO Power Sequencing (Part 1 of 2) Item System State 1 Begin Power Stabilization Phase • CVDD(core AVS) ramp up. • POR must be held low through the power stabilization phase. Because POR is low, all the core logic that has asynchronous reset (created from POR) is put into the reset state. • Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. 2a • CVDD1 and CVDDT1 (core constant) ramp at the same time or within 80 ms of CVDD. Although ramping CVDD1 and CVDDT1 simultaneously with CVDD is permitted, the voltage for CVDD1 and CVDDT1 must never exceed CVDD until after CVDD has reached a valid voltage. • The purpose of ramping up the core supplies close to each other is to reduce crowbar current. CVDD1 and CVDDT1 should trail CVDD as this will ensure that the Word Lines (WLs) in the memories are turned off and there is no current through the memory bit cells. If, however, CVDD1 and CVDDT1 (core constant) ramp up before CVDD (core AVS), then the worst-case current could be on the order of twice the specified draw of CVDD1 and CVDDT1. • Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. • The timing for CVDD1 and CVDDT1 is based on CVDD valid. CVDD1 and CVDDT1 and DVDD18/ADDAVH/AVDDAx may be enabled at the same time but do not need to ramp simultaneously. CVDD1 and CVDDT1 may be valid before or after DVDD18/ADDAVH/AVDDAx are valid, as long as the timing above is met. 2b • VDDAHV, AVDDAx and DVDD18 ramp at the same time or shortly following CVDD. DVDD18 must be enabled within 80 ms of CVDD valid and must ramp monotonically and reach a stable level in 20ms or less. This results in no more than 100 ms from the time when CVDD is valid to the time when DVDD18 is valid. • Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. • The timing for DVDD18/ADDAVH/AVDDAx is based on CVDD valid. DVDD18/ADDAVH/AVDDAx and CVDD1 and CVDDT1 may be enabled at the same time but do not need to ramp simultaneously. DVDD18/ADDAVH/AVDDAx may be valid before or after CVDD1 and CVDDT1 are valid, as long as the timing above is met. 2c • Once CVDD is valid, the clock drivers can be enabled. Although the clock inputs are not necessary at this time, they should either be driven with a valid clock or be held in a static state with one leg high and one leg low. 2d • The DDR3ACLK, DDR3BCLK and SYSCLK1 may begin to toggle anytime between when CVDD is at a valid level and the setup time before POR goes high specified by item 7. 3 • DVDD15 can ramp up within 80ms of when DVDD18 is valid. • RESETSTAT is driven low once the DVDD18 supply is available. • All LVCMOS input and bidirectional pins must not be driven or pulled high until DVDD18 is present. Driving an input or bidirectional pin before DVDD18 is valid could cause damage to the device. • Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. 3a • RESET may be driven high any time after DVDD18 is at a valid level. RESET must be high before POR is driven high. 4 • VDDALV, VDDUSB, VP and VPTX ramp up within 80ms of when DVDD15 is valid. • Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. 5 • DVDD33 supply is ramped up within 80 ms of when VDDALV, VDDUSB, VP and VPTX are valid. • Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. 6 • POR must continue to remain low for at least 100 μs after all power rails have stabilized. End power stabilization phase 268 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-2 Core Before IO Power Sequencing (Part 2 of 2) Item System State 7 • Device initialization requires 500 SYSCLK1 periods after the Power Stabilization Phase. The maximum clock period is 33.33 nsec, so a delay of an additional 16 μs is required before a rising edge of POR. The clock must be active during the entire 16 μs. 8 • RESETFULL must be held low for at least 24 transitions of the SYSCLK1 after POR has stabilized at a high level. 9 • The rising edge of the RESETFULL will remove the reset to the eFuse farm allowing the scan to begin. • Once device initialization and the eFuse farm scan are complete, the RESETSTAT signal is driven high. This delay will be 10000 to 50000 clock cycles. End device initialization phase 10 • GPIO configuration bits must be valid for at least 12 transitions of the SYSCLK1 before the rising edge of RESETFULL. 11 • GPIO configuration bits must be held valid for at least 12 transitions of the SYSCLK1 after the rising edge of RESETFULL. End of Table 10-2 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 269 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 10-1 Core Before IO Power Sequencing Power Stabilization Phase Device Initialization Phase POR 8 RESETFULL 9 Configuration Inputs 10 11 RESET 2d 1 1 CVDD 2a CVDD1 CVDDT1 2 VDDAHV AVDDAx DVDD18 2b 3a 3 3 DVDD15 4 VDDALV VDDUSB VP, VPTX 5 DVDD33 4 6 5 7 SYSCLK1 2c DDRCLKOUT RESETSTAT 270 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.2.1.2 IO-Before-Core Power Sequencing The timing diagram for IO-before-core power sequencing is shown in Figure 10-2 and defined in Table 10-3. Note—TI recommends a maximum of 100 ms between one power rail being valid, and the next power rail in the sequence starting to ramp. Table 10-3 IO-Before-Core Power Sequencing Item System State 1 Begin Power Stabilization Phase • VDDAHV, AVDDAx and DVDD18 ramp up. • POR must be held low through the power stabilization phase. Because POR is low, all the core logic that has asynchronous reset (created from POR ) is put into the reset state. • Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. 2 • CVDD (core AVS) ramps within 80 ms from the time ADDAHV, AVDDAx and DVDD18 are valid. • Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. 2a • RESET may be driven high any time after DVDD18 is at a valid level. must be high before POR is driven high. 3 • CVDD1 and CVDDT1 (core constant) ramp at the same time or within 80 ms following CVDD. Although ramping CVDD1 and CVDDT1 simultaneously with CVDD is permitted, the voltage for CVDD1 and CVDDT1 must never exceed CVDD until after CVDD has reached a valid voltage. • The purpose of ramping up the core supplies close to each other is to reduce crowbar current. CVDD1 and CVDDT1 should trail CVDD as this will ensure that the Word Lines (WLs) in the memories are turned off and there is no current through the memory bit cells. If, however, CVDD1 and CVDDT1 (core constant) ramp up before CVDD (core AVS), then the worst-case current could be on the order of twice the specified draw of CVDD1 and CVDDT1. • Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. 3a • Once CVDD is valid, the clock drivers can be enabled. Although the clock inputs are not necessary at this time, they should either be driven with a valid clock or held in a static state. 3b • The DDR3ACLK, DDR3BCLK and SYSCLK1 may begin to toggle anytime between when CVDD is at a valid level and the setup time before POR goes high specified by item 8. 4 • DVDD15 can ramp up within 80 ms of when CVDD1 is valid. • RESETSTAT is driven low once the DVDD18 supply is available. • All LVCMOS input and bidirectional pins must not be driven or pulled high until DVDD18 is present. Driving an input or bidirectional pin before DVDD18 is valid could cause damage to the device. • Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. 5 • VDDALV, VDDUSB, VP and VPTX should ramp up within 80 ms of when DVDD15 is valid. • Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. 6 • DVDD33 supply is ramped up within 80 ms of when VDDALV, VDDUSB, VP, and VPTX are valid. • Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. 7 • POR must continue to remain low for at least 100 μs after all power rails have stabilized. 8 • Device initialization requires 500 SYSCLK1 periods after the Power Stabilization Phase. The maximum clock period is 33.33 nsec, so a delay of an additional 16 μs is required before a rising edge of POR . The clock must be active during the entire 16 μs. 9 • RESETFULL must be held low for at least 24 transitions of the SYSCLK1 after POR has stabilized at a high level. 10 • The rising edge of the RESETFULL will remove the reset to the efuse farm allowing the scan to begin. • Once device initialization and the efuse farm scan are complete, the RESETSTAT signal is driven high. This delay will be 10000 to 50000 clock cycles. End power stabilization phase End device initialization phase 11 • GPIO configuration bits must be valid for at least 12 transitions of the SYSCLK1 before the rising edge of RESETFULL. 12 • GPIO configuration bits must be held valid for at least 12 transitions of the SYSCLK1 after the rising edge of RESETFULL. End of Table 10-3 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 271 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 10-2 IO-Before-Core Power Sequencing Power Stabilization Phase Device Initialization Phase POR 9 RESETFULL 10 Configuration Inputs 2a 11 12 RESET 1 VDDAHV AVDDAx DVDD18 1 3b 2 2 CVDD 3 CVDD1 CVDDT1 3 4 4 DVDD15 5 VDDALV VDDUSB VP, VPTX 5 7 6 6 DVDD33 8 3a SYSCLK1 DDRCLKOUT RESETSTAT 272 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.2.1.3 Prolonged Resets Holding the device in POR, RESETFULL, or RESET for long periods of time may affect the long-term reliability of the part (due to an elevated voltage condition that can stress the part). The device should not be held in a reset for times exceeding one hour at a time and no more than 5% of the total lifetime for which the device is powered-up. Exceeding these limits will cause a gradual reduction in the reliability of the part. This can be avoided by allowing the device to boot and then configuring it to enter a hibernation state soon after power is applied. This will satisfy the reset requirement while limiting the power consumption of the device. 10.2.1.4 Clocking During Power Sequencing Some of the clock inputs are required to be present for the device to initialize correctly, but behavior of many of the clocks is contingent on the state of the boot configuration pins. Table 10-4 describes the clock sequencing and the conditions that affect clock operation. Note that all clock drivers should be in a high-impedance state until CVDD is at a valid level and that all clock inputs be either active or in a static state with one leg pulled to ground and the other connected to CVDD. Table 10-4 Clock Sequencing Clock Condition Sequencing DDR3ACLK None Must be present 16 μsec before POR transitions high. DDR3BCLK None Must be present 16 μsec before POR transitions high. CORECLKSEL = 0 SYSCLK is used to clock the core PLL. It must be present 16 μsec before POR transitions high. CORECLKSEL = 1 Reserved. CORECLKSEL = 0 ALTCORECLK is not used and should be tied to a static state. SYSCLK ALTCORECLK PASSCLK CORECLKSEL = 1 ALTCORECLK is used to clock the core PLL. It must be present 16 μsec before POR transitions high. PASSCLKSEL = 0 PASSCLK is not used and should be tied to a static state. PASSCLKSEL = 1 PASSCLK is used as a source for the PASS PLL. It must be present before the PASS PLL is removed from reset and programmed. An SGMII port will be used. SRIOSGMIICLK must be present 16 μsec before POR transitions high. SGMII will not be used. SRIO SRIOSGMIICLK must be present 16 μsec before POR transitions high. will be used as a boot device. SRIOSGMIICLK SGMII will not be used. SRIO will be used after boot. PCIECLK HYPCLK SRIOSGMIICLK is used as a source to the SRIO SerDes PLL. It must be present before the SRIO is removed from reset and programmed. SGMII will not be used. SRIO will not be used. SRIOSGMIICLK is not used and should be tied to a static state. PCIE will be used as a boot device. PCIECLK must be present 16 μsec before POR transitions high. PCIE will be used after boot. PCIECLK is used as a source to the PCIE SerDes PLL. It must be present before the PCIe is removed from reset and programmed. PCIE will not be used. PCIECLK is not used and should be tied to a static state. HyperLink will be used as a boot device. HYPCLK must be present 16 μsec before POR transitions high. HyperLink will be used after boot. HYPCLK is used as a source to the HyperLink SerDes PLL. It must be present before the HyperLink is removed from reset and programmed. HyperLink will not be used. HYPCLK is not used and should be tied to a static state. End of Table 10-4 10.2.2 Power-Down Sequence The power down sequence is the exact reverse of the power-up sequence described above. The goal is to prevent an excessive amount of static current and to prevent overstress of the device. A power-good circuit that monitors all the supplies for the device should be used in all designs. If a catastrophic power supply failure occurs on any voltage rail, POR should transition to low to prevent over-current conditions that could possibly impact device reliability. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 273 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 A system power monitoring solution is needed to shut down power to the board if a power supply fails. Long-term exposure to an environment in which one of the power supply voltages is no longer present will affect the reliability of the device. Holding the device in reset is not an acceptable solution because prolonged periods of time with an active reset can affect long term reliability. 10.2.3 Power Supply Decoupling and Bulk Capacitors To properly decouple the supply planes on the PCB from system noise, decoupling and bulk capacitors are required. Bulk capacitors are used to minimize the effects of low-frequency current transients and decoupling or bypass capacitors are used to minimize higher frequency noise. For recommendations on selection of power supply decoupling and bulk capacitors see the Hardware Design Guide for KeyStone II Devices (in development). 10.2.4 SmartReflex Increasing the device complexity increases its power consumption. With higher clock rates and increased performance comes an inevitable penalty: increasing leakage currents. Leakage currents are present in any powered circuit, independent of clock rates and usage scenarios. This static power consumption is mainly determined by transistor type and process technology. Higher clock rates also increase dynamic power, which is the power used when transistors switch. The dynamic power depends mainly on a specific usage scenario, clock rates, and I/O activity. Texas Instruments SmartReflex technology is used to decrease both static and dynamic power consumption while maintaining the device performance. SmartReflex in the 66AK2H14/12/06 device is a feature that allows the core voltage to be optimized based on the process corner of the device. This requires a voltage regulator for each 66AK2H14/12/06 device. To help maximize performance and minimize power consumption of the device, SmartReflex is required to be implemented. The voltage selection can be accomplished using 4 VCNTL pins or 6 VCNTL pins (depending on power supply device being used), which are used to select the output voltage of the core voltage regulator. For information on implementation of SmartReflex see the DSP Power Consumption Summary for KeyStone Devices Application Report and the Hardware Design Guide for KeyStone II Devices (in development). Table 10-5 SmartReflex 4-Pin 6-bit VID Interface Switching Characteristics (see Figure 10-3) No. 1 Parameter td(VCNTL[2:0]-VCNTL[3]) Min Delay time - VCNTL[2:0] valid after VCNTL[3] low 2 toh(VCNTL[3]-VCNTL[2:0]) Output hold time - VCNTL[2:0] valid after VCNTL[3] 3 td(VCNTL[2:0]-VCNTL[3]) Delay time - VCNTL[2:0] valid after VCNTL[3] high 4 toh(VCNTL[3]-VCNTL[2:0) Output hold time - VCNTL[2:0] valid after VCNTL[3] high 0.07 0.07 Max Unit 300.00 ns (1) ms 300.00 ns 172020C ms 172020C End of Table 10-5 1 C = 1/SYSCLK1 frequency (See Figure 10-9)in ms 274 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 10-3 SmartReflex 4-Pin 6-bit VID Interface Timing 4 VCNTL[3] 1 3 VCNTL[2:0] LSB VID[2:0] MSB VID[5:3] 2 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 275 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.3 Power Sleep Controller (PSC) The Power Sleep Controller (PSC) includes a Global Power Sleep Controller (GPSC) and a number of Local Power Sleep Controllers (LPSC) that control overall device power by turning off unused power domains and gating off clocks to individual peripherals and modules. The PSC provides the user with an interface to control several important power and clock operations. For information on the Power Sleep Controller, see the Power Sleep Controller (PSC) for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. 10.3.1 Power Domains The device has several power domains that can be turned on for operation or off to minimize power dissipation. The Global Power Sleep Controller (GPSC) is used to control the power gating of various power domains. The following table shows the 66AK2H14/12/06 power domains. Table 10-6 66AK2H x Power Domains (Part 1 of 2) Domain Block(s) 0 Most peripheral logic (BOOTCFG, EMIF16, I C, Cannot be disabled INTC, GPIO, USB) Note Always on 1 Per-core TETB and system TETB Software control 2 Network Coprocessor Logic can be powered down Software control 3 PCIe Logic can be powered down Software control 4 SRIO Logic can be powered down Software control 5 HyperLink0 Logic can be powered down Software control 6 Reserved Reserved Reserved 7 MSMC RAM MSMC RAM can be powered down Software control 8 C66x Core 0, L1/L2 RAMs L2 RAMs can sleep 9 C66x Core 1, L1/L2 RAMs L2 RAMs can sleep 10 C66x Core 2, L1/L2 RAMs L2 RAMs can sleep 11 C66x Core 3, L1/L2 RAMs L2 RAMs can sleep 12 C66x Core 4, L1/L2 RAMs (66AK2H12/14 only) L2 RAMs can sleep 13 C66x Core 5, L1/L2 RAMs (66AK2H12/14 only) L2 RAMs can sleep 14 C66x Core 6, L1/L2 RAMs (66AK2H12/14 only) L2 RAMs can sleep 15 C66x Core 7, L1/L2 RAMs (66AK2H12/14 only) L2 RAMs can sleep 16 EMIF(DDR3A, DDR3B) Logic can be powered down Software control 17 Reserved Reserved Reserved 18 Reserved Reserved Reserved 19 Reserved Reserved Reserved 20 Reserved Reserved Reserved 21 Reserved Reserved Reserved 22 Reserved Reserved Reserved 23 Reserved Reserved Reserved 24 Reserved Reserved Reserved 25 Reserved Reserved Reserved 2 RAMs can be powered down Power Connection Software control via C66x CorePac. For details, see the C66x CorePac Reference Guide. 26 Reserved Reserved Reserved 27 Reserved Reserved Reserved 28 HyperLink1 Logic can be powered down Software control 276 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-6 Domain 66AK2H x Power Domains (Part 2 of 2) Block(s) Note Power Connection 29 10GbE (66AK2H14 only) Logic can be powered down Software control 30 ARM Smart Reflex Logic can be powered down Software control 31 ARM CorePac Logic can be powered down Software control End of Table 10-6 10.3.2 Clock Domains Clock gating to each logic block is managed by the Local Power Sleep Controllers (LPSCs) of each module. For modules with a dedicated clock or multiple clocks, the LPSC communicates with the PLL controller to enable and disable that module's clock(s) at the source. For modules that share a clock with other modules, the LPSC controls the clock gating logic for each module. The following table shows the 66AK2H14/12/06 clock domains. Table 10-7 Clock Domains (Part 1 of 2) LPSC Number Module(s) Notes 0 Shared LPSC for all peripherals other than those listed in this table Always on 1 Reserved Reserved 2 USB Software control 3 EMIF16 and SPI Software control 4 Reserved Reserved 5 Debug subsystem and tracers Software control 6 Reserved Always on 7 Packet Accelerator Software control 8 Ethernet SGMIIs Software control 9 Security Accelerator Software control 10 PCIe Software control 11 SRIO Software control 12 HyperLink0 Software control 13 SmartReflex Always on 14 MSMC RAM Software control 15 C66x CorePac0 Always on 16 C66x CorePac1 Software control 17 C66x CorePac2 Software control 18 C66x CorePac3 Software control 19 C66x CorePac4 (66AK2H12/14 only) Software control 20 C66x CorePac5 (66AK2H12/14 only) Software control 21 C66x CorePac6 (66AK2H12/14 only) Software control 22 C66x CorePac7 (66AK2H12/14 only) Software control 23 DDR3A EMIF Software control 24 DDR3B EMIF Software control 25 Reserved Reserved 26 Reserved Reserved 27 Reserved Reserved 28 Reserved Reserved Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 277 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-7 Clock Domains (Part 2 of 2) LPSC Number Module(s) Notes 29 Reserved Reserved 30 Reserved Reserved 31 Reserved Reserved 32 Reserved Reserved 33 Reserved Reserved 34 Reserved Reserved 35 Reserved Reserved 36 Reserved Reserved 37 Reserved Reserved 38 Reserved Reserved 39 Reserved Reserved 40 Reserved Reserved 41 Reserved Reserved 42 Reserved Reserved 43 Reserved Reserved 44 Reserved Reserved 45 Reserved Reserved 46 Reserved Reserved 47 Reserved Reserved 48 Reserved Reserved 49 Hyperlink1 Software control 50 10GbE (66AK2H14 only) Software control 51 ARM Smart Reflex Software control 52 ARM CorePac Software control No LPSC Bootcfg, PSC, and PLL Controller These modules do not use LPSC End of Table 10-7 10.3.3 PSC Register Memory Map Table 10-8 shows the PSC Register memory map. Table 10-8 PSC Register Memory Map (Part 1 of 5) Offset Register Description 0x000 PID Peripheral Identification Register 0x004 - 0x010 Reserved Reserved 0x014 VCNTLID Voltage Control Identification Register 0x018 - 0x11C Reserved Reserved 0x120 PTCMD Power Domain Transition Command Register 0x124 Reserved Reserved 0x128 PTSTAT Power Domain Transition Status Register 0x12C - 0x1FC Reserved Reserved 0x200 PDSTAT0 Power Domain Status Register 0 0x204 PDSTAT1 Power Domain Status Register 1 0x208 PDSTAT2 Power Domain Status Register 2 0x20C PDSTAT3 Power Domain Status Register 3 278 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-8 PSC Register Memory Map (Part 2 of 5) Offset Register Description 0x210 PDSTAT4 Power Domain Status Register 4 0x214 PDSTAT5 Power Domain Status Register 5 0x218 PDSTAT6 Power Domain Status Register 6 0x21C PDSTAT7 Power Domain Status Register 7 0x220 PDSTAT8 Power Domain Status Register 8 0x224 PDSTAT9 Power Domain Status Register 9 0x228 PDSTAT10 Power Domain Status Register 10 0x22C PDSTAT11 Power Domain Status Register 11 0x230 PDSTAT12 Power Domain Status Register 12 0x234 PDSTAT13 Power Domain Status Register 13 0x238 PDSTAT14 Power Domain Status Register 14 0x23C PDSTAT15 Power Domain Status Register 15 0x240 PDSTAT16 Power Domain Status Register 16 0x244 PDSTAT17 Power Domain Status Register 17 0x248 PDSTAT18 Power Domain Status Register 18 0x24C PDSTAT19 Power Domain Status Register 19 0x250 PDSTAT20 Power Domain Status Register 20 0x254 PDSTAT21 Power Domain Status Register 21 0x258 PDSTAT22 Power Domain Status Register 22 0x25C PDSTAT23 Power Domain Status Register 23 0x260 PDSTAT24 Power Domain Status Register 24 0x264 PDSTAT25 Power Domain Status Register 25 0x268 PDSTAT26 Power Domain Status Register 26 0x26C PDSTAT27 Power Domain Status Register 27 0x270 PDSTAT28 Power Domain Status Register 28 0x274 PDSTAT29 Power Domain Status Register 29 0x278 PDSTAT30 Power Domain Status Register 30 0x27C PDSTAT31 Power Domain Status Register 31 0x27C - 0x2FC Reserved Reserved 0x300 PDCTL0 Power Domain Control Register 0 0x304 PDCTL1 Power Domain Control Register 1 0x308 PDCTL2 Power Domain Control Register 2 0x30C PDCTL3 Power Domain Control Register 3 0x310 PDCTL4 Power Domain Control Register 4 0x314 PDCTL5 Power Domain Control Register 5 0x318 PDCTL6 Power Domain Control Register 6 0x31C PDCTL7 Power Domain Control Register 7 0x320 PDCTL8 Power Domain Control Register 8 0x324 PDCTL9 Power Domain Control Register 9 0x328 PDCTL10 Power Domain Control Register 10 0x32C PDCTL11 Power Domain Control Register 11 0x330 PDCTL12 Power Domain Control Register 12 0x334 PDCTL13 Power Domain Control Register 13 0x338 PDCTL14 Power Domain Control Register 14 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 279 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-8 PSC Register Memory Map (Part 3 of 5) Offset Register Description 0x33C PDCTL15 Power Domain Control Register 15 0x340 PDCTL16 Power Domain Control Register 16 0x344 PDCTL17 Power Domain Control Register 17 0x348 PDCTL18 Power Domain Control Register 18 0x34C PDCTL19 Power Domain Control Register 19 0x350 PDCTL20 Power Domain Control Register 20 0x354 PDCTL21 Power Domain Control Register 21 0x358 PDCTL22 Power Domain Control Register 22 0x35c PDCTL23 Power Domain Control Register 23 0x360 PDCTL24 Power Domain Control Register 24 0x364 PDCTL25 Power Domain Control Register 25 0x368 PDCTL26 Power Domain Control Register 26 0x36C PDCTL27 Power Domain Control Register 27 0x370 PDCTL28 Power Domain Control Register 28 0x374 PDCTL29 Power Domain Control Register 29 0x378 PDCTL30 Power Domain Control Register 30 0x37C PDCTL31 Power Domain Control Register 31 0x380 - 0x7FC Reserved Reserved 0x800 MDSTAT0 Module Status Register 0 (never gated) 0x804 MDSTAT1 Module Status Register 1 0x808 MDSTAT2 Module Status Register 2 0x80C MDSTAT3 Module Status Register 3 0x810 MDSTAT4 Module Status Register 4 0x814 MDSTAT5 Module Status Register 5 0x818 MDSTAT6 Module Status Register 6 0x81C MDSTAT7 Module Status Register 7 0x820 MDSTAT8 Module Status Register 8 0x824 MDSTAT9 Module Status Register 9 0x828 MDSTAT10 Module Status Register 10 0x82C MDSTAT11 Module Status Register 11 0x830 MDSTAT12 Module Status Register 12 0x834 MDSTAT13 Module Status Register 13 0x838 MDSTAT14 Module Status Register 14 0x83C MDSTAT15 Module Status Register 15 0x840 MDSTAT16 Module Status Register 16 0x844 MDSTAT17 Module Status Register 17 0x848 MDSTAT18 Module Status Register 18 0x84C MDSTAT19 Module Status Register 19 0x850 MDSTAT20 Module Status Register 20 0x854 MDSTAT21 Module Status Register 21 0x858 MDSTAT22 Module Status Register 22 0x85C MDSTAT23 Module Status Register 23 0x860 MDSTAT24 Module Status Register 24 0x864 MDSTAT25 Module Status Register 25 280 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-8 PSC Register Memory Map (Part 4 of 5) Offset Register Description 0x868 MDSTAT26 Module Status Register 26 0x86C MDSTAT27 Module Status Register 27 0x870 MDSTAT28 Module Status Register 28 0x874 MDSTAT29 Module Status Register 29 0x878 MDSTAT30 Module Status Register 30 0x87C MDSTAT31 Module Status Register31 0x880 MDSTAT32 Module Status Register 32 0x884 MDSTAT33 Module Status Register 33 0x888 MDSTAT34 Module Status Register 34 0x88C MDSTAT35 Module Status Register 35 0x890 MDSTAT36 Module Status Register 36 0x894 MDSTAT37 Module Status Register 37 0x898 MDSTAT38 Module Status Register 38 0x89C MDSTAT39 Module Status Register 39 0x8A0 MDSTAT40 Module Status Register 40 0x8A4 MDSTAT41 Module Status Register 41 0x8A8 MDSTAT42 Module Status Register 42 0x8AC MDSTAT43 Module Status Register 43 0x8B0 MDSTAT44 Module Status Register 44 0x8B4 MDSTAT45 Module Status Register 45 0x8B8 MDSTAT46 Module Status Register 46 0x8BC MDSTAT47 Module Status Register 47 0x8C0 MDSTAT48 Module Status Register 48 0x8C4 MDSTAT49 Module Status Register 49 0x8C8 MDSTAT50 Module Status Register 50 0x8CC MDSTAT51 Module Status Register 51 0x8D0 MDSTAT52 Module Status Register 52 0x8D4 - 0x9FC Reserved Reserved 0xA00 MDCTL0 Module Control Register 0 (never gated) 0xA04 MDCTL1 Module Control Register 1 0xA08 MDCTL2 Module Control Register 2 0xA0C MDCTL3 Module Control Register 3 0xA10 MDCTL4 Module Control Register 4 0xA14 MDCTL5 Module Control Register 5 0xA18 MDCTL6 Module Control Register 6 0xA1C MDCTL7 Module Control Register 7 0xA20 MDCTL8 Module Control Register 8 0xA24 MDCTL9 Module Control Register 9 0xA28 MDCTL10 Module Control Register 10 0xA2C MDCTL11 Module Control Register 11 0xA30 MDCTL12 Module Control Register 12 0xA34 MDCTL13 Module Control Register 13 0xA38 MDCTL14 Module Control Register 14 0xA3C MDCTL15 Module Control Register 15 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 281 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-8 PSC Register Memory Map (Part 5 of 5) Offset Register Description 0xA40 MDCTL16 Module Control Register 16 0xA44 MDCTL17 Module Control Register 17 0xA48 MDCTL18 Module Control Register 18 0xA4C MDCTL19 Module Control Register 19 0xA50 MDCTL20 Module Control Register 20 0xA54 MDCTL21 Module Control Register 21 0xA58 MDCTL22 Module Control Register 22 0xA5C MDCTL23 Module Control Register 23 0xA60 MDCTL24 Module Control Register 24 0xA64 MDCTL25 Module Control Register 25 0xA68 MDCTL26 Module Control Register 26 0xA6C MDCTL27 Module Control Register 27 0xA70 MDCTL28 Module Control Register 28 0xA74 MDCTL29 Module Control Register 29 0xA78 MDCTL30 Module Control Register 30 0xA7C MDCTL31 Module Control Register31 0xA80 MDCTL32 Module Control Register 32 0xA84 MDCTL33 Module Control Register 33 0xA88 MDCTL34 Module Control Register 34 0xA8C MDCTL35 Module Control Register 35 0xA90 MDCTL36 Module Control Register 36 0xA94 MDCTL37 Module Control Register 37 0xA98 MDCTL38 Module Control Register 38 0xA9C MDCTL39 Module Control Register 39 0xAA0 MDCTL40 Module Control Register 40 0xAA4 MDCTL41 Module Control Register 41 0xAA8 MDCTL42 Module Control Register 42 0xAAC MDCTL43 Module Control Register 43 0xAB0 MDCTL44 Module Control Register 44 0xAB4 MDCTL45 Module Control Register 45 0xAB8 MDCTL46 Module Control Register 46 0xABC MDCTL47 Module Control Register 47 0xAC0 MDCTL48 Module Control Register 48 0xAC4 MDCTL49 Module Control Register 49 0xAC8 MDCTL50 Module Control Register 50 0xACC MDCTL51 Module Control Register 51 0xAD0 MDCTL52 Module Control Register 52 0xAD4 - 0xFFC Reserved Reserved End of Table 10-8 282 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.4 Reset Controller The reset controller detects the different type of resets supported on the 66AK2H14/12/06 device and manages the distribution of those resets throughout the device. The device has the following types of resets: • Power-on reset • Hard reset • Soft reset • Local reset Table 10-9 explains further the types of reset, the reset initiator, and the effects of each reset on the device. For more information on the effects of each reset on the PLL controllers and their clocks, see Section 10.4.8 ‘‘Reset Electrical Data/Timing’’ on page 286. Table 10-9 Reset Types Type Power-on reset Initiator Effect(s) POR pin Resets the entire chip including the test and emulation logic. The device configuration pins are latched only during power-on reset. RESETFULL pin RESET pin Hard reset Soft reset PLLCTL (1) Register (RSCTRL) Watchdog timers Emulation-initiated reset is always a hard reset. Emulation By default, these initiators are configured as hard reset, but can be configured (except emulation) as a soft reset in the RSCFG Register of the PLL Controller. Contents of the DDR3 SDRAM memory can be retained during a hard reset if the SDRAM is placed in self-refresh mode. RESET pin Soft reset behaves like hard reset except that PCIe MMRs (memory-mapped registers) and DDR3 EMIF MMRs contents are retained. PLLCTL Register (RSCTRL) Watchdog timers Local reset Hard reset resets everything except for test, emulation logic, and reset isolation modules. This reset is different from power-on reset in that the PLL Controller assumes power and clocks are stable when a hard reset is asserted. The device configurations pins are not relatched. LRESET pin Watchdog timer timeout By default, these initiators are configured as hard reset, but can be configured as soft reset in the RSCFG Register of the PLL Controller. Contents of the DDR3 SDRAM memory can be retained during a soft reset if the SDRAM is placed in self-refresh mode. Resets the C66x CorePac, without disturbing clock alignment or memory contents. The device configuration pins are not relatched. LPSC MMRs End of Table 10-9 1 All masters in the device have access to the PLL Control Registers. 10.4.1 Power-on Reset Power-on reset is used to reset the entire device, including the test and emulation logic. Power-on reset is initiated by the following: 1. POR pin 2. RESETFULL pin During power-up, the POR pin must be asserted (driven low) until the power supplies have reached their normal operating conditions. Also a RESETFULL pin is provided to allow reset of the entire device, including the reset-isolated logic, when the device is already powered up. For this reason, the RESETFULL pin, unlike POR, should be driven by the on-board host control other than the power good circuitry. For power-on reset, the Main PLL Controller comes up in bypass mode and the PLL is not enabled. Other resets do not affect the state of the PLL or the dividers in the PLL Controller. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 283 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 The following sequence must be followed during a power-on reset: 1. Wait for all power supplies to reach normal operating conditions while keeping the POR pin asserted (driven low). While POR is asserted, all pins except RESETSTAT will be set to high-impedance. After the POR pin is deasserted (driven high), all Z group pins, low group pins, and high group pins are set to their reset state and remain in their reset state until otherwise configured by their respective peripheral. All peripherals that are power-managed are disabled after a power-on reset and must be enabled through the Device State Control Registers (for more details, see 8.2.3 ‘‘Device State Control Registers’’ on page 230). 2. Clocks are reset, and they are propagated throughout the chip to reset any logic that was using reset synchronously. All logic is now reset and RESETSTAT is driven low, indicating that the device is in reset. 3. POR must be held active until all supplies on the board are stable, and then for at least an additional period of time (as specified in Section 10.2.1 ‘‘Power-Up Sequencing’’ on page 267) for the chip-level PLLs to lock. 4. The POR pin can now be de-asserted. Reset-sampled pin values are latched at this point. Then, all chip-level PLLs are taken out of reset, locking sequences begin, and all power-on device initialization processes begin. 5. After device initialization is complete, the RESETSTAT pin is de-asserted (driven high). By this time, the DDR3A PLL and DDR3B PLL have already completed their locking sequences and are supplying a valid clock. The system clocks of the PLL controllers are allowed to finish their current cycles and then are paused for 10 cycles of their respective system reference clocks. After the pause, the system clocks are restarted at their default divide-by settings. 6. The device is now out of reset and code execution begins as dictated by the selected boot mode. Note—To most of the device, reset is de-asserted only when the POR and RESET pins are both de-asserted (driven high). Therefore, in the sequence described above, if the RESET pin is held low past the low period of the POR pin, most of the device will remain in reset. The RESET pin should not be tied to the POR pin. 10.4.2 Hard Reset A hard reset will reset everything on the device except the PLLs, test logic, emulation logic, and reset-isolated modules. POR should also remain de-asserted during this time. Hard reset is initiated by the following: • RESET pin • RSCTRL Register in the PLL Controller • Watchdog timer • Emulation By default, all the initiators listed above are configured to generate a hard reset. Except for emulation, all of the other three initiators can be configured in the RSCFG Register in the PLL Controller to generate soft resets. The following sequence must be followed during a hard reset: 1. The RESET pin is asserted (driven low) for a minimum of 24 CLKIN1 cycles. During this time the RESET signal propagates to all modules (except those specifically mentioned above). To prevent off-chip contention during the warm reset, all I/O must be Hi-Z for modules affected by RESET. 2. Once all logic is reset, RESETSTAT is asserted (driven low) to denote that the device is in reset. 3. The RESET pin can now be released. A minimal device initialization begins to occur. Note that configuration pins are not re-latched and clocking is unaffected within the device. 284 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 4. After device initialization is complete, the RESETSTAT pin is de-asserted (driven high). Note—The POR pin should be held inactive (high) throughout the warm reset sequence. Otherwise, if POR is activated (brought low), the minimum POR pulse width must be met. The RESET pin should not be tied to the POR pin. 10.4.3 Soft Reset A soft reset behaves like a hard reset except that the EMIF16 MMRs, DDR3A EMIF MMRs, DDR3B EMIF MMRs, PCIe MMRs sticky bits, and external memory content are retained. POR should also remain de-asserted during this time. Soft reset is initiated by the following: • RESET pin • RSCTRL Register in the PLL Controller • Watchdog timer In the case of a soft reset, the clock logic and the power control logic of the peripherals are not affected, and, therefore, the enabled/disabled state of the peripherals is not affected. On a soft reset, the DDR3A and DDR3B memory controller registers are not reset. If the user places the DDR3A and DDR3B SDRAM in self-refresh mode before invoking the soft reset, the DDR3A and DDR3B SDRAM memory content is retained. During a soft reset, the following occurs: 1. The RESETSTAT pin goes low to indicate an internal reset is being generated. The reset propagates through the system. Internal system clocks are not affected. PLLs remain locked. 2. After device initialization is complete, the RESETSTAT pin is deasserted (driven high). In addition, the PLL Controller pauses system clocks for approximately 8 cycles. At this point: › The peripherals remain in the state they were in before the soft reset. › The states of the Boot Mode configuration pins are preserved as controlled by the DEVSTAT Register. › The DDR3A and DDR3B MMRs and PCIe MMRs retain their previous values. Only the DDR3A and DDR3B memory controller and PCIe state machines are reset by the soft reset. › The PLL Controller remains in the mode it was in prior to the soft reset. › System clocks are unaffected. The boot sequence is started after the system clocks are restarted. Because the Boot Mode configuration pins are not latched with a soft reset, the previous values (as shown in the DEVSTAT Register), are used to select the boot mode. 10.4.4 Local Reset The local reset can be used to reset a particular C66x CorePac without resetting any other device components. Local reset is initiated by the following: • LRESET pin Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 285 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 • • Watchdog timer should cause one of the below based on the setting of the CORESEL[2:0] and RSTCFG registers in the PLL Controller. (See ‘‘Reset Configuration Register (RSTCFG)’’ on page 297 and 6.3.2 ‘‘CIC Registers’’ on page 159.) – Local reset – NMI – NMI followed by a time delay and then a local reset for the C66x CorePac selected – Hard reset by requesting reset via the PLL Controller LPSC MMRs (memory-mapped registers) For more details see the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19) 10.4.5 ARM CorePac Reset The ARM CorePac uses a combination of power-on-reset and module-reset to reset its components, such as the Cortex-A15 processor, memory subsystem, debug logic, etc. The ARM CorePac incorporates the PSC to generate resets for its internal modules. Details of reset generation and distribution inside the ARM CorePac can be found in the KeyStone II ARM CorePac Users Guide listed in ‘‘Related Documentation from Texas Instruments’’ on page 19. 10.4.6 Reset Priority If any of the above reset sources occur simultaneously, the PLL Controller processes only the highest priority reset request. The reset request priorities are as follows (high to low): • Power-on reset • Hard/soft reset 10.4.7 Reset Controller Register The reset controller registers are part of the PLL Controller MMRs. All 66AK2H14/12/06 device-specific MMRs are covered in Section 10.5.2 ‘‘PLL Controller Memory Map’’ on page 292. For more details on these registers and how to program them, see the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. 10.4.8 Reset Electrical Data/Timing Table 10-10 Reset Timing Requirements (1) (see Figure 10-4 and Figure 10-5) No. Min Max Unit RESETFULL Pin Reset 1 tw(RESETFULL) Pulse width - pulse width RESETFULL low 500C ns 500C ns Soft/Hard-Reset 2 tw(RESET) Pulse width - pulse width RESET low End of Table 10-10 1 C = 1/SYSCLK1 clock frequency in ns 286 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-11 Reset Switching Characteristics (1) (see Figure 10-4 and Figure 10-5) No. Parameter Min Max Unit RESETFULL Pin Reset 3 td(RESETFULLH-RESETSTATH) Delay time - RESETSTAT high after RESETFULL high 4 td(RESETH-RESETSTATH) Delay time - RESETSTAT high after RESET high 50000C ns Soft/Hard Reset 50000C ns End of Table 10-11 1 C = 1/SYSCLK1 clock frequency in ns RESETFULL Reset Timing Figure 10-4 POR 1 RESETFULL RESET 3 RESETSTAT Figure 10-5 Soft/Hard Reset Timing POR RESETFULL 2 RESET 4 RESETSTAT Table 10-12 Boot Configuration Timing Requirements (1) See Figure 10-6) No. Min Max Unit 1 tsu(GPIOn-RESETFULL) Setup time - GPIO valid before RESETFULL asserted 12C ns 2 th(RESETFULL-GPIOn) Hold time - GPIO valid after RESETFULL asserted 12C ns End of Table 10-12 1 C = 1/SYSCLK1 clock frequency in ns. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 287 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 10-6 Boot Configuration Timing POR 1 RESETFULL GPIO[15:0] 2 10.5 Main PLL, ARM PLL, DDR3A PLL, DDR3B PLL, PASS PLL and the PLL Controllers This section provides a description of the Main PLL, ARM PLL, DDR3A PLL, DDR3B PLL, PASS PLL, and the PLL Controller. For details on the operation of the PLL Controller module, see the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. The Main PLL is controlled by the standard PLL Controller. The PLL Controller manages the clock ratios, alignment, and gating for the system clocks to the device. By default, the device powers up with the main PLL bypassed. Figure 10-7 shows a block diagram of the Main PLL and the PLL Controller. The ARM PLL, DDR3A PLL, DDR3B PLL, and PASS PLL are used to provide dedicated clock to the ARM CorePac, DDR3A, DDR3B, and PASS respectively. These chip level PLLs support a wide range of multiplier and divider values, which can be programmed through the chip level registers located in the Device Control Register block. The Boot ROM will program the multiplier values for main PLL, ARM PLL and PASS PLL based on boot mode. (See ‘‘Device Boot and Configuration’’ on page 203 for more details.) The DDR3A PLL and DDR3B PLL are used to supply clocks to DDR3A and DDR3B EMIF logic. These PLLs can also be used without programming the PLL Controller. Instead, they can be controlled using the chip-level registers (DDR3APLLCTL0, DDR3APLLCTL1,DDR3BPLLCTL0, DDR3BPLLCTL1) located in the Device Control Register block. To write to these registers, software must go through an unlocking sequence using the KICK0/KICK1 registers. The multiplier values for all chip-level PLLs can be reprogrammed later based on the input parameter table. This feature provides flexibility in that these PLLs may be able to reuse other clock sources instead of having its own clock source. 288 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 10-7 Main PLL and PLL Controller PLLM SYSCLK(N|P) ALTCORECLK(N|P) PLL VCO 0 PLLOUT CLKOD PLLD CORECLKSEL 1 BYPASS PLL Controller SYSCLK1 POSTDIV C66x CorePacs /1 PLLDIV1 SYSCLK1 To Peripherals, HyperLink, etc. /1 PLLDIV2 SYSCLK2 /x PLLDIV3 SYSCLK3 /z PLLDIV4 To Switch Fabric, SmartReflex, SRIO, etc. SYSCLK4 Note that the Main PLL Controller registers can be accessed by any master in the device. The PLLM[5:0] bits of the multiplier are controlled by the PLLM Register inside the PLL Controller and the PLLM[12:6] bits are controlled by the chip-level MAINPLLCTL0 Register. The output divide and bypass logic of the PLL are controlled by fields in the SECCTL Register in the PLL Controller. Only PLLDIV3, and PLLDIV4 are programmable on the device. See the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in section 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19for more details on how to program the PLL controller. The multiplication and division ratios within the PLL and the post-division for each of the chip-level clocks are determined by a combination of this PLL and the Main PLL Controller. The Main PLL Controller also controls reset propagation through the chip, clock alignment, and test points. The Main PLL Controller monitors the PLL status and provides an output signal indicating when the PLL is locked. Main PLL power is supplied externally via the Main PLL power-supply pin (AVDDA1). An external EMI filter circuit must be added to all PLL supplies. See the Hardware Design Guide for KeyStone II Devices (in development) for detailed recommendations. For the best performance, TI recommends that all the PLL external components be on a single side of the board without jumpers, switches, or components other than those shown. For reduced PLL jitter, maximize the spacing between switching signal traces and the PLL external components (C1, C2, and the EMI Filter). The minimum SYSCLK rise and fall times should also be observed. For the input clock timing requirements, see Section 10.5.5 ‘‘Main PLL Controller/ARM/SRIO/HyperLink/PCIe/USB Clock Input Electrical Data/Timing’’. It should be assumed that any registers not included in these sections are not supported by the device. Furthermore, only the bits within the registers described here are supported. Avoid writing to any reserved memory location or changing the value of reserved bits. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 289 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 The PLL Controller module as described in the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19 includes a superset of features, some of which are not supported on the 66AK2H14/12/06 device. The following sections describe the registers that are supported. 10.5.1 Main PLL Controller Device-Specific Information 10.5.1.1 Internal Clocks and Maximum Operating Frequencies The Main PLL, used to drive theC66x CorePacs, the switch fabric, and a majority of the peripheral clocks (all but the ARM CorePacs, DDR3, and the PASS modules) requires a PLL Controller to manage the various clock divisions, gating, and synchronization. Unlike other PLL, CLKOD functionality of Main PLL is replaced by PLL controller Post-Divider register (POSTDIV). The POSTDIV.RATIO[3:0] and POSTDIV.POSTDEN bits control the post divider ratio and divider enable respectively. PLLM[5:0] input of the Main PLL is controlled by the PLL controller PLLM register. The Main PLL Controller has four SYSCLK outputs that are listed below, along with the clock descriptions. Each SYSCLK has a corresponding divider that divides down the output clock of the PLL. Note that dividers are not programmable unless explicitly mentioned in the description below. • • • • SYSCLK1: Full-rate clock for all C66x CorePacs. Using local dividers, SYSCLK1 is used to derive clocks required for the majority of peripherals that do not need reset isolation. The system peripherals and modules driven by SYSCLK1 are as follows; however, not all peripherals are supported in every part. See the Features chapter for the complete list of peripherals supported in your part. 2 EMIF16, USB 3.0, HyperLink, PCIe, SGMII, SRIO, GPIO, Timer64, I C, SPI, TeraNet, UART, ROM, CIC, Security Manager, BootCFG, PSC, Queue Manager, Semaphore, MPUs, EDMA, MSMC, DDR3, EMIF. SYSCLK2: Full-rate, reset-isolated clock used to generate various other clocks required by peripherals that need reset isolation: e.g., SmartReflex and SRIO. SYSCLK3: 1/x-rate clock used to clock the C66x CorePac emulation. The default rate for this clock is 1/3. This clock is programmable from /1 to /32, where this clock does not violate the maximum of 350 MHz. SYSCLK3 can be turned off by software. SYSCLK4: 1/z-rate clock for the system trace module only. The default rate for this clock is 1/5. This clock is configurable: the maximum configurable clock is 210 MHz and the minimum configuration clock is 32 MHz. SYSCLK4 can be turned off by software. Only SYSCLK3 and SYSCLK4 are programmable. 10.5.1.2 Local Clock Dividers The clock signals from the Main PLL Controller are routed to various modules and peripherals on the device. Some modules and peripherals have one or more internal clock dividers. Other modules and peripherals have no internal clock dividers, but are grouped together and receive clock signals from a shared local clock divider. Internal and shared local clock dividers have fixed division ratios. See table Table 10-13. Table 10-13 Clock Main PLL Controller Module Clock Domains Internal and Shared Local Clock Dividers (Part 1 of 2) Module Internal Clock Divider(s) Shared Local Clock Divider SYSCLK1 Internal Clock Dividers 290 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-13 Clock SYSCLK1 Main PLL Controller Module Clock Domains Internal and Shared Local Clock Dividers (Part 2 of 2) Module Internal Clock Divider(s) Shared Local Clock Divider ARM CorePac /1, /3, /3, /6, /6 -- C66x DSP CorePacs /1, /2, /3, /4 -- Chip Interrupt Controllers (CICx) /6 -- DDR3 Memory Controller A (also receives clocks from the DDR3A_PLL) /2 -- DDR3 Memory Controller B (also receives clocks from the DDR3B_PLL) /3 -- EMIF16 /6 -- HyperLink /2, /3, /6 -- MultiCore Shared Memory Controller (MSMC) /1 -- PCI express (PCIe) /2, /3, /4, /6 -- ROM /6 -- Serial Gigabit Media Independent Interface (SGMII) /2, /3, /6, /8 -- Universal Asynchronous Receiver/Transmitter (UART) /6 -- Universal Serial Bus 3.0 (USB 3.0) /3, /6 -- SYSCLK1 Shared Local Clock Dividers Power/Sleep Controller (PSC) -- /12, /24 -- /3 -- /6 EDMA SYSCLK1 Memory Protection Units (MPUx) Semaphore TeraNet (SYSCLK1/3 domain) Boot Config General-Purpose Input/Output (GPIO) I2C SYSCLK1 Security Manager Serial Peripheral Interconnect (SPI) TeraNet (CPU /6 domain) Timers SYSCLK2 Internal Clock Dividers SYSCLK2 Serial RapidIO (SRIO) /3, /4, /6 -- SmartReflex C66x CorePacs /12, /128 -- SmartReflex ARM CorePac /12, /128, /128 -- End of Table 10-13 10.5.1.3 Module Clock Input Table 10-7 lists various clock domains in the device and their distribution in each peripheral. The table also shows the distributed clock division in modules and their mapping with source clocks of the device PLLs. 10.5.1.4 Main PLL Controller Operating Modes The Main PLL Controller has two modes of operation: bypass mode and PLL mode. The mode of operation is determined by the BYPASS bit of the PLL Secondary Control Register (SECCTL). • In bypass mode, PLL input is fed directly out as SYSCLK1. • In PLL mode, SYSCLK1 is generated from the PLL output using the values set in the PLLM and PLLD fields in the MAINPLLCTL0 Register. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 291 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 External hosts must avoid access attempts to the DSP while the frequency of its internal clocks is changing. User software must implement a mechanism that causes the DSP to notify the host when the PLL configuration has completed. 10.5.1.5 Main PLL Stabilization, Lock, and Reset Times The PLL stabilization time is the amount of time that must be allotted for the internal PLL regulators to become stable after device power-up. The device should not be taken out of reset until this stabilization time has elapsed. The PLL reset time is the amount of wait time needed when resetting the PLL (writing PLLRST = 1), in order for the PLL to properly reset, before bringing the PLL out of reset (writing PLLRST = 0). For the Main PLL reset time value, see Table 10-14. The PLL lock time is the amount of time needed from when the PLL is taken out of reset to when the PLL Controller can be switched to PLL mode. The Main PLL lock time is given in Table 10-14. Table 10-14 Main PLL Stabilization, Lock, and Reset Times Parameter Min PLL stabilization time Typ Max 100 PLL lock time μs 2000 × C PLL reset time Unit (1) 1000 ns End of Table 10-14 1 C = SYSCLK1(N|P) cycle time in ns. 10.5.2 PLL Controller Memory Map The memory map of the Main PLL Controller is shown in Table 10-15. 66AK2H14/12/06-specific Main PLL Controller Register definitions can be found in the sections following Table 10-15. For other registers in the table, see the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. It is recommended to use read-modify-write sequence to make any changes to the valid bits in the Main PLL Controller registers. Note that only registers documented here are accessible on the 66AK2H14/12/06. Other addresses in the Main PLL Controller memory map including the Reserved registers must not be modified. Furthermore, only the bits within the registers described here are supported. Table 10-15 PLL Controller Registers (Including Reset Controller) (Part 1 of 2) Hex Address Range Acronym Register Name 00 0231 0000 - 00 0231 00E3 - Reserved 00 0231 00E4 RSTYPE Reset Type Status Register (Reset Main PLL Controller) 00 0231 00E8 RSTCTRL Software Reset Control Register (Reset Main PLL Controller) 00 0231 00EC RSTCFG Reset Configuration Register (Reset Main PLL Controller) 00 0231 00F0 RSISO Reset Isolation Register (Reset Main PLL Controller) 00 0231 00F0 - 00 0231 00FF - Reserved 00 0231 0100 PLLCTL PLL Control Register 00 0231 0104 - Reserved 00 0231 0108 SECCTL PLL Secondary Control Register 00 0231 010C - Reserved 00 0231 0110 PLLM PLL Multiplier Control Register 292 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-15 PLL Controller Registers (Including Reset Controller) (Part 2 of 2) Hex Address Range Acronym Register Name 00 0231 0114 - Reserved 00 0231 0118 PLLDIV1 PLL Controller Divider 1Register 00 0231 011C PLLDIV2 PLL Controller Divider 2 Register 00 0231 0120 PLLDIV3 PLL Controller Divider 3Register 00 0231 0124 - Reserved 00 0231 0128 POSTDIV PLL Controller Post-Divide Register 00 0231 012C - 00 0231 0134 - Reserved 00 0231 0138 PLLCMD PLL Controller Command Register 00 0231 013C PLLSTAT PLL Controller Status Register 00 0231 0140 ALNCTL PLL Controller Clock Align Control Register 00 0231 0144 DCHANGE PLLDIV Ratio Change Status Register 00 0231 0148 CKEN Reserved 00 0231 014C CKSTAT Reserved 00 0231 0150 SYSTAT SYSCLK Status Register 00 0231 0154 - 00 0231 015C - Reserved 00 0231 0160 PLLDIV4 PLL Controller Divider 4Register 00 0231 0164 PLLDIV5 Reserved 00 0231 0168 PLLDIV6 Reserved 00 0231 016C PLLDIV7 Reserved 00 0231 0170 PLLDIV8 Reserved 00 0231 0174 - 00 0231 0193 PLLDIV9 - PLLDIV16 Reserved 00 0231 0194 - 00 0231 01FF - Reserved End of Table 10-15 10.5.2.1 PLL Secondary Control Register (SECCTL) The PLL Secondary Control Register contains extra fields to control the Main PLL and is shown in Figure 10-8 and described in Table 10-16. Figure 10-8 PLL Secondary Control Register (SECCTL) 31 24 23 22 19 18 0 Reserved BYPASS OUTPUT DIVIDE Reserved R-0000 0000 RW-1 RW-0001 RW-001 0000 0000 0000 0000 Legend: R/W = Read/Write; R = Read only; -n = value after reset Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 293 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-16 PLL Secondary Control Register Field Descriptions Bit Field Description 31-24 Reserved Reserved 23 BYPASS PLL bypass mode: 0 = PLL is not in BYPASS mode 1 = PLL is in BYPASS mode 22-19 OUTPUT DIVIDE Output divider ratio bits 0h = ÷1. Divide frequency by 1 1h = ÷2. Divide frequency by 2 2h = ÷3. Divide frequency by 3 3h = ÷4. Divide frequency by 4 4h - Fh = ÷5 to ÷16. Divide frequency range: divide frequency by 5 to divide frequency by 80. 18-0 Reserved Reserved End of Table 10-16 10.5.2.2 PLL Controller Divider Register (PLLDIV3, and PLLDIV4) The PLL Controller Divider Registers (PLLDIV3 and PLLDIV4) are shown in Figure 10-9 and described in Table 10-17. The default values of the RATIO field on a reset for PLLDIV3, and PLLDIV4 are different as mentioned in the footnote of Figure 10-9. Figure 10-9 PLL Controller Divider Register (PLLDIVn) 31 16 Reserved 15 Dn R-0 (1) 14 EN 8 7 Reserved R/W-1 0 RATIO R-0 R/W-n (2) Legend: R/W = Read/Write; R = Read only; -n = value after reset 1 D3EN for PLLDIV3; D4EN for PLLDIV4 2 n=02h for PLLDIV3; n=03h for PLLDIV4 Table 10-17 PLL Controller Divider Register Field Descriptions Bit Field Description 31-16 Reserved Reserved 15 DnEN Divider Dn enable bit (See footnote of Figure 10-9) 0 = Divider n is disabled 1 = No clock output. Divider n is enabled. 14-8 Reserved Reserved. The reserved bit location is always read as 0. A value written to this field has no effect. 7-0 RATIO Divider ratio bits (See footnote of Figure 10-9) 0h = ÷1. Divide frequency by 1 1h = ÷2. Divide frequency by 2 2h = ÷3. Divide frequency by 3 3h = ÷4. Divide frequency by 4 4h - 4Fh = ÷5 to ÷80. Divide frequency range: divide frequency by 5 to divide frequency by 80. End of Table 10-17 294 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.5.2.3 PLL Controller Clock Align Control Register (ALNCTL) The PLL Controller Clock Align Control Register (ALNCTL) is shown in Figure 10-10 and described in Table 10-18. Figure 10-10 PLL Controller Clock Align Control Register (ALNCTL) 31 5 4 3 2 0 Reserved ALN4 ALN3 Reserved R-0 R/W-1 R/W-1 R-0 Legend: R/W = Read/Write; R = Read only; -n = value after reset, for reset value Table 10-18 Bit PLL Controller Clock Align Control Register Field Descriptions Field Description Reserved Reserved. This location is always read as 0. A value written to this field has no effect. 4 ALN4 3 ALN3 SYSCLKn alignment. Do not change the default values of these fields. 0 = Do not align SYSCLKn to other SYSCLKs during GO operation. If SYSn in DCHANGE is set, SYSCLKn switches to the new ratio immediately after the GOSET bit in PLLCMD is set. 1 = Align SYSCLKn to other SYSCLKs selected in ALNCTL when the GOSET bit in PLLCMD is set and SYSn in DCHANGE is 1. The SYSCLKn rate is set to the ratio programmed in the RATIO bit in PLLDIVn. 31-5 2-0 End of Table 10-18 10.5.2.4 PLLDIV Divider Ratio Change Status Register (DCHANGE) Whenever a different ratio is written to the PLLDIVn registers, the PLL CTL flags the change in the DCHANGE Status Register. During the GO operation, the PLL controller changes only the divide ratio of the SYSCLKs with the bit set in DCHANGE. Note that the ALNCTL Register determines if that clock also needs to be aligned to other clocks. The PLLDIV Divider Ratio Change Status Register is shown in Figure 10-11 and described in Table 10-19. Figure 10-11 PLLDIV Divider Ratio Change Status Register (DCHANGE) 31 5 4 3 2 0 Reserved SYS4 SYS3 Reserved R-0 R/W-1 R/W-1 R-0 Legend: R/W = Read/Write; R = Read only; -n = value after reset, for reset value Table 10-19 Bit PLLDIV Divider Ratio Change Status Register Field Descriptions Field Description Reserved Reserved. This bit location is always read as 0. A value written to this field has no effect. 4 SYS4 3 SYS3 Identifies when the SYSCLKn divide ratio has been modified. 0 = SYSCLKn ratio has not been modified. When GOSET is set, SYSCLKn will not be affected. 1 = SYSCLKn ratio has been modified. When GOSET is set, SYSCLKn will change to the new ratio. 31-5 2-0 End of Table 10-19 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 295 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.5.2.5 SYSCLK Status Register (SYSTAT) The SYSCLK Status Register (SYSTAT) shows the status of SYSCLK[4:1]. SYSTAT is shown in Figure 10-12 and described in Table 10-20. Figure 10-12 SYSCLK Status Register (SYSTAT) 31 4 3 2 1 0 Reserved SYS4ON SYS3ON SYS2ON SYS1ON R-n R-1 R-1 R-1 R-1 Legend: R/W = Read/Write; R = Read only; -n = value after reset Table 10-20 SYSCLK Status Register Field Descriptions Bit Field Description 31-4 Reserved Reserved. This location is always read as 0. A value written to this field has no effect. 3-0 SYS[N (1)]ON SYSCLK[N] on status 0 = SYSCLK[N] is gated 1 = SYSCLK[N] is on End of Table 10-20 1 Where N = 1, 2, 3, or 4 10.5.2.6 Reset Type Status Register (RSTYPE) The Reset Type Status (RSTYPE) Register latches the cause of the last reset. If multiple reset sources occur simultaneously, this register latches the highest priority reset source. The Reset Type Status Register is shown in Figure 10-13 and described in Table 10-21. Figure 10-13 31 Reset Type Status Register (RSTYPE) 29 28 27 12 11 8 7 3 2 1 0 Reserved EMU-RST Reserved WDRST[N] Reserved PLLCTRLRST RESET POR R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 Legend: R = Read only; -n = value after reset Table 10-21 Reset Type Status Register Field Descriptions (Part 1 of 2) Bit Field Description 31-29 Reserved Reserved. Always reads as 0. Writes have no effect. 28 EMU-RST Reset initiated by emulation 0 = Not the last reset to occur 1 = The last reset to occur 27-12 Reserved Reserved. Always reads as 0. Writes have no effect. 11 WDRST3 10 WDRST2 9 WDRST1 Reset initiated by Watchdog Timer[N] 0 = Not the last reset to occur 1 = The last reset to occur 8 WDRST0 7-3 Reserved Reserved. Always reads as 0. Writes have no effect. 2 PLLCTLRST Reset initiated by PLLCTL 0 = Not the last reset to occur 1 = The last reset to occur 296 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-21 Reset Type Status Register Field Descriptions (Part 2 of 2) Bit Field Description 1 RESET RESET reset 0 = RESET was not the last reset to occur 1 = RESET was the last reset to occur 0 POR Power-on reset 0 = Power-on reset was not the last reset to occur 1 = Power-on reset was the last reset to occur End of Table 10-21 10.5.2.7 Reset Control Register (RSTCTRL) This register contains a key that enables writes to the MSB of this register and the RSTCFG register. The key value is 0x5A69. A valid key will be stored as 0x000C. Any other key value is invalid. When the RSTCTRL or the RSTCFG is written, the key is invalidated. Every write must be set up with a valid key. The Software Reset Control Register (RSTCTRL) is shown in Figure 10-14 and described in Table 10-22. Figure 10-14 Reset Control Register (RSTCTRL) 31 17 16 Reserved 15 0 SWRST R-0x0000 R/W-0x KEY (1) R/W-0x0003 Legend: R = Read only; -n = value after reset; 1 Writes are conditional based on valid key. Table 10-22 Reset Control Register Field Descriptions Bit Field Description 31-17 Reserved Reserved 16 SWRST Software reset 0 = Reset 1 = Not reset 15-0 KEY Key used to enable writes to RSTCTRL and RSTCFG. End of Table 10-22 10.5.2.8 Reset Configuration Register (RSTCFG) This register is used to configure the type of reset (a hard reset or a soft reset) initiated by RESET, the watchdog timer, and the Main PLL Controller’s RSTCTRL Register. By default, these resets are hard resets. The Reset Configuration Register (RSTCFG) is shown in Figure 10-15 and described in Table 10-23. Figure 10-15 Reset Configuration Register (RSTCFG) 31 14 Reserved R-0x000000 13 12 PLLCTLRSTTYPE R/W-0 (2) 11 RESETTYPE R/W-0 2 4 Reserved R-0x0 3 0 (1) WDTYPE[N ] 2 R/W-0x00 Legend: R = Read only; R/W = Read/Write; -n = value after reset 1 Where N = 1, 2, 3,....N (Not all these outputs may be used on a specific device.) 2 Writes are conditional based on valid key. For details, see Section 10.5.2.7 ‘‘Reset Control Register (RSTCTRL)’’. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 297 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-23 Reset Configuration Register Field Descriptions Bit Field Description 31-14 Reserved Reserved 13 PLLCTLRSTTYPE PLL controller initiates a software-driven reset of type: 0 = Hard reset (default) 1 = Soft reset 12 RESETTYPE RESET initiates a reset of type: 0 = Hard reset (default) 1 = Soft reset 11-4 Reserved Reserved 3 WDTYPE3 2 WDTYPE2 1 WDTYPE1 Watchdog timer [N] initiates a reset of type: 0 = Hard reset (default) 1 = Soft reset 0 WDTYPE0 End of Table 10-23 10.5.2.9 Reset Isolation Register (RSISO) This register is used to select the module clocks that must maintain their clocking without pausing through non-power-on reset. Setting any of these bits effectively blocks reset to all Main PLL Control Registers in order to maintain current values of PLL multiplier, divide ratios, and other settings. Along with setting the module-specific bit in RSISO, the corresponding MDCTLx[12] bit also needs to be set in the PSC to reset-isolate a particular module. For more information on the MDCTLx Register, see the Power Sleep Controller (PSC) for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. The Reset Isolation Register (RSISO) is shown in Figure 10-16 and described in Table 10-24. Figure 10-16 Reset Isolation Register (RSISO) 31 16 15 10 9 8 7 4 3 2 0 Reserved Reserved SRIOISO SRISO Reserved Reserved Reserved R-0x0000 R-0x00 R/W-0 R/W-0 R-0x0 R/W-0 R-000 Legend: R = Read only; R/W = Read/Write; -n = value after reset Table 10-24 Reset Isolation Register Field Descriptions Bit Field Description 31-10 Reserved Reserved. 9 SRIOISO Isolate SRIO module control 0 = Not reset isolated 1 = Reset isolated 8 SRISO Isolate SmartReflex control 0 = Not reset isolated 1 = Reset isolated 7-4 Reserved Reserved 3 Reserved Reserved 2-0 Reserved Reserved End of Table 10-24 298 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.5.3 Main PLL Control Registers The Main PLL uses two chip-level registers (MAINPLLCTL0 and MAINPLLCTL1) along with the Main PLL Controller for its configuration. These MMRs (memory-mapped registers) exist inside the Bootcfg space. To write to these registers, software should go through an unlocking sequence using the KICK0 and KICK1 registers. These registers reset only on a POR reset. For valid configurable values of the MAINPLLCTL registers, see Section 8.1.4 ‘‘System PLL Settings’’ on page 227. See Section 8.2.3.4 ‘‘Kicker Mechanism (KICK0 and KICK1) Register’’ on page 236 for the address location of the KICK registers and their locking and unlocking sequences. See Figure 10-17 and Table 10-25 for MAINPLLCTL0 details and Figure 10-18 and Table 10-26 for MAINPLLCTL1 details. Figure 10-17 Main PLL Control Register 0 (MAINPLLCTL0) 31 24 23 19 18 12 11 6 5 0 BWADJ[7:0] Reserved PLLM[12:6] Reserved PLLD RW-0000 0101 RW - 0000 0 RW-0000000 RW-000000 RW-000000 Legend: RW = Read/Write; -n = value after reset Table 10-25 Main PLL Control Register 0 (MAINPLLCTL0) Field Descriptions Bit Field Description 31-24 BWADJ[7:0] BWADJ[11:8] and BWADJ[7:0] are located in MAINPLLCTL0 and MAINPLLCTL1 registers. BWADJ[11:0] should be programmed to a value equal to half of PLLM[12:0] value (round down if PLLM has an odd value) Example: If PLLM = 15, then BWADJ = 7. 23-19 Reserved Reserved 18-12 PLLM[12:6] 7-bits of a 13-bit field PLLM that selects the values for the multiplication factor. PLLM field is loaded with the multiply factor minus 1. The PLLM[5:0] bits of the multiplier are controlled by the PLLM register inside the PLL Controller and the PLLM[12:6] bits are controlled by the above chip-level register. MAINPLLCTL0 register PLLM[12:6] bits should be written just before writing to PLLM register PLLM[5:0] bits in the controller to have the complete 13 bit value latched when the GO operation is initiated in the PLL controller. See the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19for the recommended programming sequence. Output Divide ratio and Bypass enable/disable of the Main PLL is also controlled by the SECCTL register in the PLL Controller. See the “PLL Secondary Control Register (SECCTL)” on page 293 for more details. 11-6 Reserved Reserved 5-0 PLLD A 6-bit field that selects the values for the reference divider. PLLD field is loaded with reference divide value minus 1. End of Table 10-25 Figure 10-18 Main PLL Control Register 1 (MAINPLLCTL1) 31 7 6 5 4 3 0 Reserved ENSAT Reserved BWADJ[11:8] RW - 0000000000000000000000000 RW-0 R-00 RW- 0000 Legend: RW = Read/Write; -n = value after reset Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 299 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-26 Main PLL Control Register 1 (MAINPLLCTL1) Field Descriptions Bit Field Description 31-7 Reserved Reserved 6 ENSAT Needs to be set to 1 for proper PLL operation 5-4 Reserved Reserved 3-0 BWADJ[11:8] BWADJ[11:8] and BWADJ[7:0] are located in MAINPLLCTL0 and MAINPLLCTL1 registers. BWADJ[11:0] should be programmed to a value equal to half of PLLM[12:0] value (round down if PLLM has an odd value) Example: If PLLM = 15, then BWADJ = 7 End of Table 10-26 10.5.4 ARM PLL Control Registers The ARM PLL uses two chip-level registers (ARMPLLCTL0 and ARMPLLCTL1) without using the Main PLL Controller like other PLLs for its configuration. These MMRs (memory-mapped registers) exist inside the Bootcfg space. To write to these registers, software must go through an un-locking sequence using the KICK0 and KICK1 registers. These registers reset only on a POR reset. For valid configurable values of the ARMPLLCTL registers, see Section 8.1.4.1 ‘‘ARM CorePac System PLL Settings’’ on page 227. See Section 8.2.3.4 ‘‘Kicker Mechanism (KICK0 and KICK1) Register’’ on page 236 for the address location of the KICK registers and their locking and unlocking sequences. See Figure 10-19 and Table 10-27 for ARMPLLCTL0 details and Figure 10-20 and Table 10-28 for ARMPLLCTL1 details. ARM PLL Control Register 0 (ARMPLLCTL0) (1) . Figure 10-19 31 24 23 22 19 18 6 5 0 BWADJ[7:0] BYPASS CLKOD PLLM PLLD RW-0000 1001 RW-1 RW-0001 RW-0000000010011 RW-000000 Legend: RW = Read/Write; -n = value after reset 1 This register is Reset on POR only. See the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. Table 10-27 ARM PLL Control Register 0 Field Descriptions Bit Field Description 31-24 BWADJ[7:0] BWADJ[11:8] and BWADJ[7:0] are located inARMPLLCTL0 and ARMPLLCTL1 registers. BWADJ[11:0] should be programmed to a value equal to half of PLLM[12:0] value (round down if PLLM has an odd value) Example: If PLLM = 15, then BWADJ = 7 23 BYPASS PLL bypass mode: 0 = PLL is not in BYPASS mode 1 = PLL is in BYPASS mode 22-19 CLKOD A 4-bit field that selects the values for the PLL post divider. Valid post divider values are 1 and even values from 2 to 16. CLKOD field is loaded with output divide value minus 1 18-6 PLLM A 13-bit field that selects the values for the multiplication factor 5-0 PLLD A 6-bit field that selects the values for the reference divider End of Table 10-27 300 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 10-20 ARM PLL Control Register 1 (ARMPLLCTL1) 31 15 14 13 7 6 5 4 3 0 Reserved PLLRST Reserved ENSAT Reserved BWADJ[11:8] RW - 00000000000000000 RW-0 RW-0000000 RW-0 R-00 RW- 0000 Legend: RW = Read/Write; -n = value after reset Table 10-28 ARM PLL Control Register 1Field Descriptions Bit Field Description 31-15 Reserved Reserved 14 PLLRST PLL Reset bit 0 = PLL Reset is released 1 = PLL Reset is asserted 13-7 Reserved Reserved 6 ENSAT Needs to be set to 1 for proper PLL operation 5-4 Reserved Reserved 3-0 BWADJ[11:8] BWADJ[11:8] and BWADJ[7:0] are located in ARMPLLCTL0 and ARMPLLCTL1 registers. BWADJ[11:0] should be programmed to a value equal to half of PLLM[12:0] value (round down if PLLM has an odd value) Example: If PLLM = 15, then BWADJ = 7 End of Table 10-28 See the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19 for the recommended programming sequence. Output Divide ratio and Bypass enable/disable of the ARM PLL is also controlled by the SECCTL register in the PLL Controller. See the “PLL Secondary Control Register (SECCTL)” on page 293 for more details. 10.5.5 Main PLL Controller/ARM/SRIO/HyperLink/PCIe/USB Clock Input Electrical Data/Timing Table 10-29 Main PLL Controller/ARM/SRIO/HyperLink/PCIe/USB Clock Input Timing Requirements (1) (Part 1 of 3) (see Figure 10-21 through Figure 10-24) No. Min Max 3.25 25 Unit SYSCLK[P:N] 1 tc(SYSCLKN) Cycle time SYSCLKN cycle time ns 1 tc(SYSCLKP) Cycle time SYSCLKP cycle time 3.25 25 ns 3 tw(SYSCLKN) Pulse width SYSCLKN high 0.45*tc 0.55*tc ns 2 tw(SYSCLKN) Pulse width SYSCLKN low 0.45*tc 0.55*tc ns 2 tw(SYSCLKP) Pulse width SYSCLKP high 0.45*tc 0.55*tc ns 3 tw(SYSCLKP) Pulse width SYSCLKP low 0.45*tc 0.55*tc ns 4 tr(SYSCLK_200 mV) Transition time SYSCLK differential rise time (200 mV) 50 350 ps 4 tf(SYSCLK_200 mV) Transition time SYSCLK differential fall time (200 mV) 50 350 ps 5 tj(SYSCLKN) Jitter, peak_to_peak _ periodic SYSCLKN 0.2*tc(SYSCLKN) ps 5 tj(SYSCLKP) Jitter, peak_to_peak _ periodic SYSCLKP 0.2*tc(SYSCLKP) ps 1 tc(ARMCLKN) Cycle time ARMCLKN cycle time 25 ns ARMCLK[P:N] 1 tc(ARMCLKP) Cycle time ARMCLKP cycle time 3 tw(ARMCLKN) Pulse width ARMCLKN high Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 3.2 3.2 25 ns 0.45*tc(ARMCLKN) 0.55*tc(ARMCLKN) ns 66AK2H14/12/06 Peripheral Information and Electrical Specifications 301 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-29 Main PLL Controller/ARM/SRIO/HyperLink/PCIe/USB Clock Input Timing Requirements (1) (Part 2 of 3) (see Figure 10-21 through Figure 10-24) No. Min Max tw(ARMCLKN) Pulse width ARMCLKN low 0.45*tc(ARMCLKN) 0.55*tc(ARMCLKN) ns 2 tw(ARMCLKP) Pulse width ARMCLKP high 0.45*tc(ARMCLKP) 0.55*tc(ARMCLKP) ns 3 tw(ARMCLKP) Pulse width ARMCLKP low 0.45*tc(ARMCLKP) 0.55*tc(ARMCLKP) ns 4 tr(ARMCLK_200 mV) Transition time ARMCLK differential rise time (200 mV) 50 350 ps 4 tf(ARMCLK_200 mV) Transition time ARMCLK differential fall time (200 mV) 50 350 ps 5 tj(ARMCLKN) Jitter, peak_to_peak _ periodic ARMCLKN 100 ps 5 tj(ARMCLKP) Jitter, peak_to_peak _ periodic ARMCLKP 100 ps 2 Unit ALTCORECLK[P:N] 1 tc(ALTCORCLKN) Cycle time ALTCORECLKN cycle time 3.2 25 ns 1 tc(ALTCORECLKP) Cycle time ALTCORECLKP cycle time 3.2 25 ns 3 tw(ALTCORECLKN) Pulse width ALTCORECLKN high 0.45*tc(ALTCORECLKN) 0.55*tc(ALTCORECLKN) ns 2 tw(ALTCORECLKN) Pulse width ALTCORECLKN low 0.45*tc(ALTCORECLKN) 0.55*tc(ALTCORECLKN) ns 2 tw(ALTCORECLKP) Pulse width ALTCORECLKP high 0.45*tc(ALTCORECLKP) 0.55*tc(ALTCORECLKP) ns 3 tw(ALTCORECLKP) Pulse width ALTCORECLKP low 0.45*tc(ALTCORECLKP) 0.55*tc(ALTCORECLKP) ns 4 tr(ALTCORECLK_200 mV) Transition time ALTCORECLK differential rise time (200 mV) 50 350 ps 4 tf(ALTCORECLK_200 mV) Transition time ALTCORECLK differential fall time (200 mV) 50 350 ps 5 tj(ALTCORECLKN) Jitter, peak_to_peak _ periodic ALTCORECLKN 100 ps 5 tj(ALTCORECLKP) Jitter, peak_to_peak _ periodic ALTCORECLKP 100 ps SRIOSGMIICLK[P:N] 1 tc(SRIOSGMIICLKN) Cycle time SRIOSGMIICLKN cycle time 3.2 or 6.4 or 8 ns 1 tc(SRIOSGMIICLKP) Cycle time SRIOSGMIICLKP cycle time 3.2 or 6.4 or 8 ns 3 tw(SRIOSGMIICLKN) Pulse width SRIOSGMIICLKN high 0.45*tc(SRIOSGMIICLKN) 0.55*tc(SRIOSGMIICLKN) ns 2 tw(SRIOSGMIICLKN) Pulse width SRIOSGMIICLKN low 0.45*tc(SRIOSGMIICLKN) 0.55*tc(SRIOSGMIICLKN) ns 2 tw(SRIOSGMIICLKP) Pulse width SRIOSGMIICLKP high 0.45*tc(SRIOSGMIICLKP) 0.55*tc(SRIOSGMIICLKP) ns 3 tw(SRIOSGMIICLKP) Pulse width SRIOSGMIICLKP low 0.45*tc(SRIOSGMIICLKP) 0.55*tc(SRIOSGMIICLKP) ns 4 tr(SRIOSGMIICLK_200mV) Transition time SRIOSGMIICLK differential rise time (200 mV) 50 350 ps 4 tf(SRIOSGMIICLK_200mV) Transition time SRIOSGMIICLK differential fall time (200 mV) 50 350 ps 5 tj(SRIOSGMIICLKN) Jitter, RMS SRIOSGMIICLKN 2 ps, RMS 5 tj(SRIOSGMIICLKP) Jitter, RMS SRIOSGMIICLKP 2 ps, RMS 5 tj(SRIOSGMIICLKN) Jitter, RMS SRIOSGMIICLKN (SRIO not used) 4 ps, RMS 5 tj(SRIOSGMIICLKP) Jitter, RMS SRIOSGMIICLKP (SRIO not used) 4 ps, RMS HYPxCLK[P:N] 1 tc(HYPCLKN) Cycle time HYPCLKN cycle time 3.2 or 4 or 6.4 ns 1 tc(HYPCLKP) Cycle time HYPCLKP cycle time 3.2 or 4 or 6.4 ns 3 tw(HYPCLKN) Pulse width HYPCLKN high 0.45*tc(HYPCLKN) 0.55*tc(HYPCLKN) ns 2 tw(HYPCLKN) Pulse width HYPCLKN low 0.45*tc(HYPCLKN) 0.55*tc(HYPCLKN) ns 2 tw(HYPCLKP) Pulse width HYPCLKP high 0.45*tc(HYPCLKP) 0.55*tc(HYPCLKP) ns 3 tw(HYPCLKP) Pulse width HYPCLKP low 0.45*tc(HYPCLKP) 0.55*tc(HYPCLKP) ns 302 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Main PLL Controller/ARM/SRIO/HyperLink/PCIe/USB Clock Input Timing Requirements (1) (Part 3 of 3) Table 10-29 (see Figure 10-21 through Figure 10-24) No. Min Max Unit 4 tr(HYPCLK) Rise time HYPCLK differential rise time (10% to 90%) 0.2*tc(HYPCLKP) ps 4 tf(HYPCLK) Fall time HYPCLK differential fall time (10% to 90%) 0.2*tc(HYPCLKP) ps 5 tj(HYPCLKN) Jitter, RMS HYPCLKN 4 ps, RMS 5 tj(HYPCLKP) Jitter, RMS HYPCLKP 4 ps, RMS 1 tc(PCIECLKN) Cycle time PCIECLKN cycle time 1 tc(PCIECLKP) Cycle time PCIECLKP cycle time 3 tw(PCIECLKN) Pulse width PCIECLKN high 0.45*tc(PCIECLKN) 0.55*tc(PCIECLKN) 2 tw(PCIECLKN) Pulse width PCIECLKN low 0.45*tc(PCIECLKN) 0.55*tc(PCIECLKN) ns 2 tw(PCIECLKP) Pulse width PCIECLKP high 0.45*tc(PCIECLKP) 0.55*tc(PCIECLKP) ns 3 tw(PCIECLKP) Pulse width PCIECLKP low 0.45*tc(PCIECLKP) 0.55*tc(PCIECLKP) ns 4 tr(PCIECLK) Rise time PCIECLK differential rise time (10% to 90%) 0.2*tc(PCIECLKP) ps 4 tf(PCIECLK) Fall time PCIECLK differential fall time (10% to 90%) 0.2*tc(PCIECLKP) ps 5 tj(PCIECLKN) Jitter, RMS PCIECLKN 4 ps, RMS 5 tj(PCIECLKP) Jitter, RMS PCIECLKP 4 ps, RMS 1 tc(USBCLKN) Cycle time USBCLKM cycle time 1 tc(USBCLKP) Cycle time USBCLKP cycle time 5 50 ns 3 tw(USBCLKN) Pulse width USBCLKM high 0.45*tc(USBCLKN) 0.55*tc(USBCLKN) ns 2 tw(USBCLKN) Pulse width USBCLKM low 0.45*tc(USBCLKN) 0.55*tc(USBCLKN) ns 2 tw(USBCLKP) Pulse width USBCLKP high 0.45*tc(USBCLKP) 0.55*tc(USBCLKP) ns 0.45*tc(USBCLKP) PCIECLK[P:N] 3.2 or 4 or 6.4 or 10 ns 3.2 or 4 or 6.4 or 10 ns ns USBCLK[P:M] 5 50 ns 3 tw(USBCLKP) Pulse width USBCLKP low 0.55*tc(USBCLKP) ns 4 tr(USBCLK) Rise time USBCLK differential rise time (10% to 90%) TBD ps 4 tf(USBCLK) Fall time USBCLK differential fall time (10% to 90%) TBD ps 5 tj(USBCLKN) Jitter, RMS USBCLKM 3 ps, RMS 5 tj(USBCLKP) Jitter, RMS USBCLKP 3 ps, RMS End of Table 10-29 1 See the Hardware Design Guide for KeyStone II Devices (in development) for detailed recommendations. Figure 10-21 Main PLL Controller/SRIO/HyperLink/PCIe/USB Clock Input Timing 1 2 3 <CLK_NAME>CLKN <CLK_NAME>CLKP 4 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 5 66AK2H14/12/06 Peripheral Information and Electrical Specifications 303 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 10-22 Main PLL Transition Time peak-to-peak Differential Input Voltage (250 mV to 2 V) 200 mV Transition Voltage Range 0 TR = 50 ps Min to 350 ps Max for the 200-mV Transition Voltage Range Figure 10-23 HYP0CLK, HYP1CLK, and PCIECLK Rise and Fall Times TC Reference Clock Period peak-to-peak Differential Input Voltage (400 mV to 1100 mV) 10% to 90% of peak-to-peak Voltage 0 Max TR = 0.2 × TC from 10% to 90% of the peak-to-peak Differential Voltage Figure 10-24 Max TF = 0.2 × TC from 90% to 10% of the peak-to-peak Differential Voltage USBCLK Rise and Fall Times TC Reference Clock Period peak-to-peak Differential Input Voltage (600 mV to 1700 mV) 10% to 90% of peak-to-peak Voltage 0 Max TR = TBD × TC from 10% to 90% of the peak-to-peak Differential Voltage Max TF = TBD × TC from 90% to 10% of the peak-to-peak Differential Voltage 10.6 DDR3A PLL and DDR3B PLL The DDR3A PLL and DDR3B PLL generate interface clocks for the DDR3A and DDR3B memory controllers. When coming out of power-on reset, DDR3A PLL and DDR3B PLL are programmed to a valid frequency during the boot configuration process before being enabled and used. 304 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 DDR3A PLL and DDR3B PLL power is supplied via the DDR3 PLL power-supply pin (AVDDA2). An external EMI filter circuit must be added to all PLL supplies. See the Hardware Design Guide for KeyStone II Devices (in development) for detailed recommendations. Figure 10-25 DDR3A PLL and DDR3B PLL Block Diagram PLLM DDR3 PLL VCO DDRCLK(N|P) 0 PLLOUT CLKOD PLLD ´2 1 DDR3 PHY DDR BYPASS 10.6.1 DDR3A PLL and DDR3B PLL Control Registers The DDR3A PLL and DDR3B PLL, which are used to drive the DDR3A PHY and DDR3B PHY for the EMIF, do not use a PLL controller. DDR3A PLL and DDR3B PLL can be controlled using the DDR3APLLCTL0/DDR3BPLLCTL0 and DDR3APLLCTL1/DDR3BPLLCTL1 registers located in the Bootcfg module. These MMRs (memory-mapped registers) exist inside the Bootcfg space. To write to these registers, software must go through an unlocking sequence using the KICK0 and KICK1 registers. For suggested configurable values, see 8.1.4 ‘‘System PLL Settings’’ on page 227. See 8.2.3.4 ‘‘Kicker Mechanism (KICK0 and KICK1) Register’’ on page 236 for the address location of the registers and locking and unlocking sequences for accessing the registers. These registers are reset on POR only. . Figure 10-26 DDR3A PLL and DDR3B PLL Control Register 0 (DDR3APLLCTL0/DDR3BPLLCTL0) 31 24 23 22 19 18 6 5 0 BWADJ[7:0] BYPASS CLKOD PLLM PLLD RW-0000 1001 RW-1 RW-0001 RW-0000000010011 RW-000000 Legend: RW = Read/Write; -n = value after reset Table 10-30 DDR3A PLL and DDR3B PLL Control Register 0 Field Descriptions Bit Field Description 31-24 BWADJ[7:0] BWADJ[11:8] and BWADJ[7:0] are located in DDR3PLLCTL0 and DDR3PLLCTL1 registers. BWADJ[11:0] should be programmed to a value equal to half of PLLM[12:0] value (round down if PLLM has an odd value) Example: If PLLM = 15, then BWADJ = 7 23 BYPASS PLL bypass mode: 0 = PLL is not in BYPASS mode 1 = PLL is in BYPASS mode 22-19 CLKOD A 4-bit field that selects the values for the PLL post divider. Valid post divider values are 1 and even values from 2 to 16. CLKOD field is loaded with output divide value minus 1 18-6 PLLM A 13-bit field that selects the values for the PLL multiplication factor. PLLM field is loaded with the multiply factor minus 1 5-0 PLLD A 6-bit field that selects the values for the reference (input) divider. PLLD field is loaded with reference divide value minus 1 End of Table 10-30 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 305 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 10-27 DDR3A PLL and DDR3B PLL Control Register 1 (DDR3APLLCTL0/DDR3BPLLCTL1) 31 15 14 13 7 6 5 4 3 0 Reserved PLLRST Reserved ENSAT Reserved BWADJ[11:8] RW - 00000000000000000 RW-0 RW-0000000 RW-0 R-00 RW- 0000 Legend: RW = Read/Write; -n = value after reset Table 10-31 DDR3A PLL and DDR3B PLL Control Register 1 Field Descriptions Bit Field Description 31-15 Reserved Reserved 14 PLLRST PLL Reset bit 0 = PLL Reset is released 1 = PLL Reset is asserted 13-7 Reserved Reserved 6 ENSAT Needs to be set to 1 for proper PLL operation 5-4 Reserved Reserved 3-0 BWADJ[11:8] BWADJ[11:8] and BWADJ[7:0] are located in DDRPLLCTL0 and DDRPLLCTL1 registers. BWADJ[11:0] should be programmed to a value equal to half of PLLM[12:0] value (round down if PLLM has an odd value) Example: If PLLM = 15, then BWADJ = 7 End of Table 10-31 10.6.2 DDR3A PLL and DDR3B PLL Device-Specific Information As shown in Figure 10-25, the output of DDR3A PLL and DDR3B PLL (PLLOUT) is divided by 2 and directly fed to the DDR3A and DDR3B memory controller. During power-on resets, the internal clocks of the DDR3 PLL are affected as described in Section 10.4 ‘‘Reset Controller’’ on page 283. The DDR3 PLL is unlocked only during the power-up sequence and is locked by the time the RESETSTAT pin goes high. It does not lose lock during any of the other resets. 10.6.3 DDR3 PLL Input Clock Electrical Data/Timing Table 10-32 applies to both DDR3A and DDR3B memory interfaces. Table 10-32 DDR3 PLL DDRCLK(N|P) Timing Requirements (see Figure 10-28 and Figure 10-22) No. Min Max 3.2 25 Unit DDRCLK[P:N] 1 tc(DDRCLKN) Cycle time _ DDRCLKN cycle time ns 1 tc(DDRCLKP) Cycle time _ DDRCLKP cycle time 3.2 25 ns 3 tw(DDRCLKN) Pulse width _ DDRCLKN high 0.45*tc(DDRCLKN) 0.55*tc(DDRCLKN) ns 2 tw(DDRCLKN) Pulse width _ DDRCLKN low 0.45*tc(DDRCLKN) 0.55*tc(DDRCLKN) ns 2 tw(DDRCLKP) Pulse width _ DDRCLKP high 0.45*tc(DDRCLKP) 0.55*tc(DDRCLKP) ns 3 tw(DDRCLKP) Pulse width _ DDRCLKP low 0.45*tc(DDRCLKP) 0.55*tc(DDRCLKP) ns 4 tr(DDRCLK_200 mV) Transition time _ DDRCLK differential rise time (200 mV) 50 350 ps 4 tf(DDRCLK_200 mV) Transition time _ DDRCLK differential fall time (200 mV) 50 350 ps 5 tj(DDRCLKN) Jitter, peak_to_peak _ periodic DDRCLKN 0.02*tc(DDRCLKN) ps 5 tj(DDRCLKP) Jitter, peak_to_peak _ periodic DDRCLKP 0.02*tc(DDRCLKP) ps End of Table 10-32 306 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 10-28 DDR3 PLL DDRCLK Timing 1 2 3 DDRCLKN DDRCLKP 5 4 10.7 PASS PLL The PASS PLL generates interface clocks for the Network Coprocessor. Using the PACLKSEL pin the user can select the input source of the PASS PLL as either the output of the Main PLL mux or the PASSCLK clock reference source. When coming out of power-on reset, PASS PLL comes out in a bypass mode and needs to be programmed to a valid frequency before being enabled and used. PASS PLL power is supplied via the PASS PLL power-supply pin (AVDDA3). An external EMI filter circuit must be added to all PLL supplies. See the Hardware Design Guide for KeyStone II Devices (in development) for detailed recommendations. Figure 10-29 PASS PLL Block Diagram SYSCLK(P|N) PLLOUT PLL ALTCORECLK(P|N) PLL Controller SYSCLKn C66x CorePac CORECLKSEL PLLM PASS PLL VCO PASSCLK(P|N) PLLD 0 CLKOD 1 PACLKSEL /3 PLLOUT Network Coprocessor BYPASS 10.7.1 PASS PLL Local Clock Dividers The clock signal from the PASS PLL Controller is routed to the Network Coprocessor. The Net CP module has two internal dividers with fixed division ratios. See table Table 10-33. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 307 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.7.2 PASS PLL Control Registers The PASS PLL, which is used to drive the Network Coprocessor, does not use a PLL controller. PASS PLL can be controlled using the PAPLLCTL0 and PAPLLCTL1 registers located in the Bootcfg module. These MMRs (memory-mapped registers) exist inside the Bootcfg space. To write to these registers, software must go through an unlocking sequence using the KICK0 and KICK1 registers. For suggested configuration values, see 8.1.4 ‘‘System PLL Settings’’ on page 227. See 8.2.3.4 ‘‘Kicker Mechanism (KICK0 and KICK1) Register’’ on page 236 for the address location of the registers and locking and unlocking sequences for accessing these registers. These registers are reset on POR only. . Figure 10-30 PASS PLL Control Register 0 (PASSPLLCTL0) 31 24 23 22 19 18 6 5 0 BWADJ[7:0] BYPASS CLKOD PLLM PLLD RW-0000 1001 RW-1 RW-0001 RW-0000000010011 RW-000000 Legend: RW = Read/Write; -n = value after reset Table 10-33 PASS PLL Control Register 0 Field Descriptions (PASSPLLCTL0) Bit Field Description 31-24 BWADJ[7:0] BWADJ[11:8] and BWADJ[7:0] are located in PASSPLLCTL0 and PASSPLLCTL1 registers. BWADJ[11:0] should be programmed to a value equal to half of PLLM[12:0] value (round down if PLLM has an odd value) Example: If PLLM = 15, then BWADJ = 7 23 BYPASS PLL bypass mode: 0 = PLL is not in BYPASS mode 1 = PLL is in BYPASS mode 22-19 CLKOD A 4-bit field that selects the values for the PLL post divider. Valid post divider values are 1 and even values from 2 to 16. CLKOD field is loaded with output divide value minus 1 18-6 PLLM A 13-bit field that selects the values for the multiplication factor (see note below). PLLM field is loaded with the multiply factor minus 1. 5-0 PLLD A 6-bit field that selects the values for the reference divider. PLLD field is loaded with reference divide value minus 1. End of Table 10-33 Figure 10-31 PASS PLL Control Register 1 (PASSPLLCTL1) 31 15 14 13 12 7 6 5 4 3 0 Reserved PLLRST PAPLL Reserved ENSAT Reserved BWADJ[11:8] RW - 00000000000000000 RW-0 RW-0 RW-000000 RW-0 R-00 RW- 0000 Legend: RW = Read/Write; -n = value after reset Table 10-34 Bit PASS PLL Control Register 1 Field Descriptions (PASSPLLCTL1) (Part 1 of 2) Field Description 31-15 Reserved Reserved 14 PLLRST PLL Reset bit 0 = PLL Reset is released 1 = PLL Reset is asserted 13 PAPLL 12-7 Reserved Reserved 6 ENSAT Needs to be set to 1 for proper PLL operation 308 0 = Not supported 1 = PAPLL 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-34 PASS PLL Control Register 1 Field Descriptions (PASSPLLCTL1) (Part 2 of 2) Bit Field Description 5-4 Reserved Reserved 3-0 BWADJ[11:8] BWADJ[11:8] and BWADJ[7:0] are located in PASSPLLCTL0 and PASSPLLCTL1 registers. BWADJ[11:0] should be programmed to a value equal to half of PLLM[12:0] value (round down if PLLM has an odd value) Example: If PLLM = 15, then BWADJ = 7 End of Table 10-34 10.7.3 PASS PLL Device-Specific Information As shown in Figure 10-29, the output of PASS PLL (PLLOUT) is divided by 3 and directly fed to the Network Coprocessor. During power-on resets, the internal clocks of the PASS PLL are affected as described in Section 10.4 ‘‘Reset Controller’’ on page 283. The PASS PLL is unlocked only during the power-up sequence and is locked by the time the RESETSTAT pin goes high. It does not lose lock during any other resets. 10.7.4 PASS PLL Input Clock Electrical Data/Timing Table 10-35 PASS PLL Timing Requirements (See Figure 10-32 and Figure 10-22) No. Min Max Unit PASSCLK[P:N] 1 tc(PASSCLKN) Cycle time _ PASSCLKN cycle time 3.2 6.4 ns 1 tc(PASSCLKP) Cycle time _ PASSCLKP cycle time 3.2 6.4 ns 3 tw(PASSCLKN) Pulse width _ PASSCLKN high 0.45*tc(PASSCLKN) 0.55*tc(PASSCLKN) ns 2 tw(PASSCLKN) Pulse width _ PASSCLKN low 0.45*tc(PASSCLKN) 0.55*tc(PASSCLKN) ns 2 tw(PASSCLKP) Pulse width _ PASSCLKP high 0.45*tc(PASSCLKP) 0.55*tc(PASSCLKP) ns 3 tw(PASSCLKP) Pulse width _ PASSCLKP low 0.45*tc(PASSCLKP) 0.55*tc(PASSCLKP) ns 4 tr(PASSCLK_200mV) Transition time _ PASSCLK differential rise time (200 mV) 50 350 ps 4 tf(PASSCLK_200mV) Transition time _ PASSCLK differential fall time (200 mV) 50 350 ps 5 tj(PASSCLKN) Jitter, peak_to_peak _ periodic PASSCLKN 100 ps, pk-pk 5 tj(PASSCLKP) Jitter, peak_to_peak _ periodic PASSCLKP 100 ps, pk-pk End of Table 10-35 Figure 10-32 PASS PLL Timing 1 2 3 PASSCLKN PASSCLKP 4 Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 5 66AK2H14/12/06 Peripheral Information and Electrical Specifications 309 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.8 External Interrupts 10.8.1 External Interrupts Electrical Data/Timing Table 10-36 NMI and LRESET Timing Requirements (1) (see Figure 10-33) No. Min Max Unit 1 tsu(LRESET-LRESETNMIENL) Setup time - LRESET valid before LRESETNMIEN low 12*P ns 1 tsu(NMI-LRESETNMIENL) Setup time - NMI valid before LRESETNMIEN low 12*P ns 1 tsu(CORESELn-LRESETNMIENL) Setup time - CORESEL[3:0] valid before LRESETNMIEN low 12*P ns 2 th(LRESETNMIENL-LRESET) Hold time - LRESET valid after LRESETNMIEN high 12*P ns 2 th(LRESETNMIENL-NMI) Hold time - NMI valid after LRESETNMIEN high 12*P ns 2 th(LRESETNMIENL-CORESELn) Hold time - CORESEL[3:0] valid after LRESETNMIEN high 12*P ns 3 tw(LRESETNMIEN) Pulsewidth - LRESETNMIEN low width 12*P ns End of Table 10-36 1 P = 1/SYSCLK1 clock frequency in ns. Figure 10-33 NMI and LRESET Timing 1 2 CORESEL[3:0]/ LRESET/ NMI 3 LRESETNMIEN 310 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.9 DDR3A and DDR3B Memory Controllers The 72-bit DDR3 Memory Controller bus of the 66AK2H14/12/06 is used to interface to JEDEC standard-compliant DDR3 SDRAM devices. The DDR3 external bus interfaces only to DDR3 SDRAM devices and does not share the bus with any other type of peripheral. 10.9.1 DDR3 Memory Controller Device-Specific Information The 66AK2H14/12/06 includes one 64-bit wide, 1.5-V DDR3 SDRAM EMIF interface. The DDR3 interface can operate at 800 mega transfers per second (MTS), 1033 MTS, 1333 MTS, and 1600 MTS. Due to the complicated nature of the interface, a limited number of topologies are supported to provide a 16-bit, 32-bit, or 64-bit interface. The DDR3 electrical requirements are fully specified in the DDR Jedec Specification JESD79-3C. Standard DDR3 SDRAMs are available in 8-bit and 16-bit versions allowing for the following bank topologies to be supported by the interface: • 72-bit: Five 16-bit SDRAMs (including 8 bits of ECC) • 72-bit: Nine 8-bit SDRAMs (including 8 bits of ECC) • 36-bit: Three 16-bit SDRAMs (including 4 bits of ECC) • 36-bit: Five 8-bit SDRAMs (including 4 bits of ECC) • 64-bit: Four 16-bit SDRAMs • 64-bit: Eight 8-bit SDRAMs • 32-bit: Two 16-bit SDRAMs • 32-bit: Four 8-bit SDRAMs • 16-bit: One 16-bit SDRAM • 16-bit: Two 8-bit SDRAMs The approach to specifying interface timing for the DDR3 memory bus is different than on other interfaces such as 2 I C or SPI. For these other interfaces, the device timing was specified in terms of data manual specifications and I/O buffer information specification (IBIS) models. For the DDR3 memory bus, the approach is to specify compatible DDR3 devices and provide the printed circuit board (PCB) solution and guidelines directly to the user. A race condition may exist when certain masters write data to the DDR3 memory controller. For example, if master A passes a software message via a buffer in external memory and does not wait for an indication that the write completes before signaling to master B that the message is ready, when master B attempts to read the software message, the master B read may bypass the master A write. Thus, master B may read stale data and receive an incorrect message. Some master peripherals (e.g., EDMA3 transfer controllers with TCCMOD=0) always wait for the write to complete before signaling an interrupt to the system, thus avoiding this race condition. For masters that do not have a hardware specification of write-read ordering, it may be necessary to specify data ordering in the software. If master A does not wait for an indication that a write is complete, it must perform the following workaround: 1. Perform the required write to DDR3 memory space. 2. Perform a dummy write to the DDR3 memory controller module ID and revision register. 3. Perform a dummy read to the DDR3 memory controller module ID and revision register. 4. Indicate to master B that the data is ready to be read after completion of the read in step 3. The completion of the read in step 3 ensures that the previous write was done. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 311 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.9.2 DDR3 Slew Rate Control The DDR3 slew rate is controlled by use of the PHY registers. See the KeyStone II DDR3 UserGuide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19 for details. 10.9.3 DDR3 Memory Controller Electrical Data/Timing The DDR3 Implementation Guidelines Application Report in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19 specifies a complete DDR3 interface solution as well as a list of compatible DDR3 devices. The DDR3 electrical requirements are fully specified in the DDR3 Jedec Specification JESD79-3C. TI has performed the simulation and system characterization to ensure all DDR3 interface timings in this solution are met. Therefore, no electrical data/timing information is supplied here for this interface. Note—TI supports only designs that follow the board design guidelines outlined in the application report. 10.10 I2C Peripheral 2 The Inter-Integrated Circuit (I C) module provides an interface between DSP and other devices compliant with Philips Semiconductors (now NXP Semiconductors) Inter-Integrated Circuit bus specification version 2.1. External components attached to this 2-wire serial bus can transmit/receive up to 8-bit data to/from the device through the 2 I C module. 10.10.1 I2C Device-Specific Information The device includes multiple I2C peripheral modules. 2 Note—When using the I C module, ensure there are external pullup resistors on the SDA and SCL pins. 2 The I C modules on the 66AK2H14/12/06 may be used by the DSP to control local peripheral ICs (DACs, ADCs, etc.), communicate with other controllers in a system, or to implement a user interface. 2 The I C port supports: • Compatibility with Philips I2C specification revision 2.1 (January 2000) • Fast mode up to 400 kbps (no fail-safe I/O buffers) • Noise filter to remove noise of 50 ns or less • 7-bit and 10-bit device addressing modes • Multi-master (transmit/receive) and slave (transmit/receive) functionality • Events: DMA, interrupt, or polling • Slew-rate limited open-drain output buffers 312 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 2 Figure 10-34 shows a block diagram of the I C module. Figure 10-34 I2C Module Block Diagram 2 I C Module Clock Prescale Peripheral Clock (CPU/6) 2 I CPSC Control Bit Clock Generator SCL Noise Filter 2 I C Clock I COAR Own Address I2CSAR Slave Address I2CMDR Mode 2 2 I CCLKH I2CCLKL 2 I CCNT Transmit I2CXSR 2 I CDXR Transmit Shift I2CEMDR Extended Mode Transmit Buffer SDA Interrupt/DMA Noise Filter I2C Data Data Count I2CDRR 2 I CRSR 2 Interrupt Mask/Status 2 Interrupt Status I CIMR Receive Receive Buffer I CSTR Receive Shift I CIVR 2 Interrupt Vector Shading denotes control/status registers. 2 10.10.2 I C Peripheral Register Description Table 10-37 I2C Registers (Part 1 of 2) Hex Address Offsets Acronym Register Name 0x0000 ICOAR I C Own Address Register 0x0004 ICIMR I2C Interrupt Mask/status Register 0x0008 ICSTR I C Interrupt Status Register 0x000C ICCLKL I C Clock Low-time Divider Register 0x0010 ICCLKH I2C Clock High-time Divider Register 0x0014 ICCNT I C Data Count Register 0x0018 ICDRR I C Data Receive Register 0x001C ICSAR I C Slave Address Register 0x0020 ICDXR I C Data Transmit Register 0x0024 ICMDR I2C Mode Register 0x0028 ICIVR I C Interrupt Vector Register 0x002C ICEMDR I C Extended Mode Register 0x0030 ICPSC I2C Prescaler Register Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 2 2 2 2 2 2 2 2 2 66AK2H14/12/06 Peripheral Information and Electrical Specifications 313 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-37 I2C Registers (Part 2 of 2) Hex Address Offsets Acronym Register Name 0x0034 ICPID1 I2C Peripheral Identification Register 1 [value: 0x0000 0105] 0x0038 ICPID2 I C Peripheral Identification Register 2 [value: 0x0000 0005] 0x003C -0x007F - Reserved 2 End of Table 10-37 2 10.10.3 I C Electrical Data/Timing 2 10.10.3.1 Inter-Integrated Circuits (I C) Timing Table 10-38 I2C Timing Requirements (1) (see Figure 10-35) Standard Mode No. Min Max Fast Mode Min Max Units tc(SCL) Cycle time, SCL 10 2.5 μs tsu(SCLH-SDAL) Setup time, SCL high before SDA low (for a repeated START condition) 4.7 0.6 μs th(SDAL-SCLL) Hold time, SCL low after SDA low (for a START and a repeated START condition) 4 0.6 μs 4 tw(SCLL) Pulse duration, SCL low 4.7 1.3 μs 5 tw(SCLH) Pulse duration, SCL high 0.6 μs 6 tsu(SDAV-SCLH) Setup time, SDA valid before SCL high 1 2 3 4 250 2 (3) 7 th(SCLL-SDAV) Hold time, SDA valid after SCL low (for I C bus devices) 0 8 tw(SDAH) Pulse duration, SDA high between STOP and START conditions 4.7 3.45 100 (2) 0 (3) ns 0.9 (4) 1.3 μs μs 9 tr(SDA) Rise time, SDA 1000 20 + 0.1Cb (5) 300 ns 10 tr(SCL) Rise time, SCL 1000 20 + 0.1Cb (5) 300 ns 300 ns 300 ns 11 tf(SDA) Fall time, SDA 300 20 + 0.1Cb (5) 12 tf(SCL) Fall time, SCL 300 20 + 0.1Cb (5) 13 tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for STOP condition) 14 tw(SP) Pulse duration, spike (must be suppressed) Cb (5) Capacitive load for each bus line 4 0.6 0 400 μs 50 ns 400 pF End of Table 10-38 1 The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered down. 2 2 2 A Fast-mode I C-bus device can be used in a Standard-mode I C-bus system, but the requirement tsu(SDA-SCLH) ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-Bus Specification) before the SCL line is released. 3 A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL. 4 The maximum th(SDA-SCLL) has to be met only if the device does not stretch the low period [tw(SCLL)] of the SCL signal. 5 Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed. 314 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 10-35 I2C Receive Timings 11 9 SDA 8 6 4 14 13 5 10 SCL 1 3 12 7 2 3 Stop Table 10-39 Start Repeated Start Stop I2C Switching Characteristics (1) (see Figure 10-36) Standard Mode No. Parameter Min Max Fast Mode Min Max Unit 16 tc(SCL) Cycle time, SCL 10 2.5 μs 17 tsu(SCLH-SDAL) Setup time, SCL high to SDA low (for a repeated START condition) 4.7 0.6 μs th(SDAL-SCLL) Hold time, SDA low after SCL low (for a START and a repeated START condition) 4 0.6 μs 19 tw(SCLL) Pulse duration, SCL low 4.7 1.3 μs 20 tw(SCLH) Pulse duration, SCL high 21 td(SDAV-SDLH) Delay time, SDA valid to SCL high 22 tv(SDLL-SDAV) Valid time, SDA valid after SCL low (for I2C bus devices) 23 tw(SDAH) Pulse duration, SDA high between STOP and START conditions 18 4 0.6 μs 250 100 ns 0 0 4.7 1.3 (1) 0.9 μs μs 24 tr(SDA) Rise time, SDA 1000 20 + 0.1Cb 300 ns 25 tr(SCL) Rise time, SCL 1000 20 + 0.1Cb (1) 300 ns 300 ns 300 ns 10 pF 26 tf(SDA) Fall time, SDA 300 20 + 0.1Cb (1) 27 tf(SCL) Fall time, SCL 300 20 + 0.1Cb (1) 28 td(SCLH-SDAH) Delay time, SCL high to SDA high (for STOP condition) Cp Capacitance for each I C pin 2 4 0.6 10 μs End of Table 10-39 1 Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 315 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 I2C Transmit Timings Figure 10-36 26 24 SDA 23 21 19 28 20 25 SCL 16 18 27 22 17 18 Stop Start Repeated Start Stop 10.11 SPI Peripheral The Serial Peripheral Interconnect (SPI) module provides an interface between the DSP and other SPI-compliant devices. The primary intent of this interface is to allow for connection to an SPI ROM for boot. The SPI module on 66AK2H14/12/06 is supported only in master mode. Additional chip-level components can also be included, such as temperature sensors or an I/O expander. 10.11.1 SPI Electrical Data/Timing Table 10-40 SPI Timing Requirements See Figure 10-37) No. Min Max Unit Master Mode Timing Diagrams — Base Timings for 3 Pin Mode 7 tsu(SPIDIN-SPC) Input setup time, SPIDIN valid before receive edge of SPICLK. Polarity = 0 Phase = 0 2 ns 7 tsu(SPIDIN-SPC) Input setup time, SPIDIN valid before receive edge of SPICLK. Polarity = 0 Phase = 1 2 ns 7 tsu(SPIDIN-SPC) Input setup time, SPIDIN valid before receive edge of SPICLK. Polarity = 1 Phase = 0 2 ns 7 tsu(SPIDIN-SPC) Input setup time, SPIDIN valid before receive edge of SPICLK. Polarity = 1 Phase = 1 2 ns 8 th(SPC-SPIDIN) Input hold time, SPIDIN valid after receive edge of SPICLK. Polarity = 0 Phase = 0 5 ns 8 th(SPC-SPIDIN) Input hold time, SPIDIN valid after receive edge of SPICLK. Polarity = 0 Phase = 1 5 ns 8 th(SPC-SPIDIN) Input hold time, SPIDIN valid after receive edge of SPICLK. Polarity = 1 Phase = 0 5 ns 8 th(SPC-SPIDIN) Input hold time, SPIDIN valid after receive edge of SPICLK. Polarity = 1 Phase = 1 5 ns End of Table 10-40 Table 10-41 SPI Switching Characteristics (Part 1 of 2) (See Figure 10-37 and Figure 10-38) No. Parameter Min Max Unit Master Mode Timing Diagrams — Base Timings for 3 Pin Mode ns tc(SPC) 2 tw(SPCH) Pulse width high, SPICLK, all master modes 0.5*(3*P2) - 1 ns 3 tw(SPCL) Pulse width low, SPICLK, all master modes 0.5*(3*P2) - 1 ns 4 td(SPIDOUT-SPC) Setup (Delay), initial data bit valid on SPIDOUT to initial edge on SPICLK. Polarity = 0, Phase = 0. 5 4 td(SPIDOUT-SPC) Setup (Delay), initial data bit valid on SPIDOUT to initial edge on SPICLK. Polarity = 0, Phase = 1. 5 4 td(SPIDOUT-SPC) Setup (Delay), initial data bit valid on SPIDOUT to initial edge on SPICLK Polarity = 1, Phase = 0 5 316 Cycle time, SPICLK, all master modes 3*P2 (1) 1 66AK2H14/12/06 Peripheral Information and Electrical Specifications ns ns ns Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-41 SPI Switching Characteristics (Part 2 of 2) (See Figure 10-37 and Figure 10-38) No. Parameter Min Max 4 td(SPIDOUT-SPC) Setup (Delay), initial data bit valid on SPIDOUT to initial edge on SPICLK Polarity = 1, Phase = 1 5 5 td(SPC-SPIDOUT) Setup (Delay), subsequent data bits valid on SPIDOUT to initial edge on SPICLK. Polarity = 0 Phase = 0 2 5 td(SPC-SPIDOUT) Setup (Delay), subsequent data bits valid on SPIDOUT to initial edge on SPICLK Polarity = 0 Phase = 1 2 5 td(SPC-SPIDOUT) Setup (Delay), subsequent data bits valid on SPIDOUT to initial edge on SPICLK Polarity = 1 Phase = 0 2 5 td(SPC-SPIDOUT) Setup (Delay), subsequent data bits valid on SPIDOUT to initial edge on SPICLK Polarity = 1 Phase = 1 2 6 toh(SPC-SPIDOUT) Output hold time, SPIDOUT valid after receive edge of SPICLK except for final bit. Polarity = 0 Phase = 0 0.5*tc - 2 6 toh(SPC-SPIDOUT) Output hold time, SPIDOUT valid after receive edge of SPICLK except for final bit. Polarity = 0 Phase = 1 0.5*tc - 2 6 toh(SPC-SPIDOUT) Output hold time, SPIDOUT valid after receive edge of SPICLK except for final bit. Polarity = 1 Phase = 0 0.5*tc - 2 6 toh(SPC-SPIDOUT) Output hold time, SPIDOUT valid after receive edge of SPICLK except for final bit. Polarity = 1 Phase = 1 0.5*tc - 2 Unit ns ns ns ns ns ns ns ns ns Additional SPI Master Timings — 4 Pin Mode with Chip Select Option 19 td(SCS-SPC) Delay from SPISCSx\ active to first SPICLK. Polarity = 0 Phase = 0 19 td(SCS-SPC) Delay from SPISCSx\ active to first SPICLK. Polarity = 0 Phase = 1 19 td(SCS-SPC) Delay from SPISCSx\ active to first SPICLK. Polarity = 1 Phase = 0 19 td(SCS-SPC) Delay from SPISCSx\ active to first SPICLK. Polarity = 1 Phase = 1 20 td(SPC-SCS) Delay from final SPICLK edge to master deasserting SPISCSx\. Polarity = 0 Phase = 0 20 td(SPC-SCS) Delay from final SPICLK edge to master deasserting SPISCSx\. Polarity = 0 Phase = 1 20 td(SPC-SCS) Delay from final SPICLK edge to master deasserting SPISCSx\. Polarity = 1 Phase = 0 20 td(SPC-SCS) Delay from final SPICLK edge to master deasserting SPISCSx\. Polarity = 1 Phase = 1 tw(SCSH) Minimum inactive time on SPISCSx\ pin between two transfers when SPISCSx\ is not held using the CSHOLD feature. 2*P2 - 5 2*P2 + 5 ns 0.5*tc + (2*P2) - 5 0.5*tc + (2*P2) + 5 ns 2*P2 - 5 2*P2 + 5 ns 0.5*tc + (2*P2) - 5 0.5*tc + (2*P2) + 5 ns 1*P2 - 5 1*P2 + 5 0.5*tc + (1*P2) - 5 0.5*tc + (1*P2) + 5 1*P2 - 5 1*P2 + 5 0.5*tc + (1*P2) - 5 0.5*tc + (1*P2) + 5 2*P2 - 5 ns ns ns ns ns End of Table 10-41 1 P2=1/(SYSCLK1/6) Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 317 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 10-37 SPI Master Mode Timing Diagrams — Base Timings for 3-Pin Mode 1 2 MASTER MODE POLARITY = 0 PHASE = 0 3 SPICLK 5 4 SPIDOUT MO(0) 7 SPIDIN 6 MO(1) MO(n-1) MO(n) 8 MI(0) MI(1) MI(n-1) MI(n) MASTER MODE POLARITY = 0 PHASE = 1 4 SPICLK 6 5 MO(0) SPIDOUT 7 MO(n-1) MI(1) MI(n-1) MO(n) 8 MI(0) SPIDIN MO(1) 4 MI(n) MASTER MODE POLARITY = 1 PHASE = 0 SPICLK 5 SPIDOUT 6 MO(0) 7 MO(1) MO(n) 8 MI(0) SPIDIN MO(n-1) MI(1) MI(n-1) MI(n) MASTER MODE POLARITY = 1 PHASE = 1 SPICLK 5 4 SPIDOUT MO(0) 7 SPIDIN Figure 10-38 6 MO(1) MO(n-1) MI(1) MI(n-1) MO(n) 8 MI(0) MI(n) SPI Additional Timings for 4-Pin Master Mode with Chip Select Option MASTER MODE 4 PIN WITH CHIP SELECT 19 20 SPICLK SPIDOUT SPIDIN MO(0) MI(0) MO(1) MO(n-1) MO(n) MI(1) MI(n-1) MI(n) SPISCSx 318 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.12 HyperLink Peripheral The 66AK2H14/12/06 includes HyperLinks for companion device interfaces. This is a four-lane SerDes interface designed to operate at up to 10 Gbps per lane from pin-to-pin. The interface is used to connect with external accelerators that are manufactured using TI libraries. The HyperLink lines must be connected with DC coupling. The interface includes the serial station management interfaces used to send power management and flow messages between devices. Each HyperLink interface consists of four LVCMOS inputs and four LVCMOS outputs configured as two 2-wire input buses and two 2-wire output buses. Each 2-wire bus includes a data signal and a clock signal. Table 10-42 HyperLink Peripheral Timing Requirements (see Figure 10-39, Figure 10-40 and Figure 10-41) No. Min Max Unit FL Interface 1 tc(HYPTXFLCLK) Clock period - HYPTXFLCLK (C1) 5.75 ns 2 tw(HYPTXFLCLKH) High pulse width - HYPTXFLCLK 0.4*C1 0.6*C1 ns 3 tw(HYPTXFLCLKL) Low pulse width - HYPTXFLCLK 0.4*C1 0.6*C1 ns 6 tsu(HYPTXFLDAT-HYPTXFLCLKH) Setup time - HYPTXFLDAT valid before HYPTXFLCLK high 1 ns 7 th(HYPTXFLCLKH-HYPTXFLDAT) Hold time - HYPTXFLDAT valid after HYPTXFLCLK high 1 ns 6 tsu(HYPTXFLDAT-HYPTXFLCLKL) Setup time - HYPTXFLDAT valid before HYPTXFLCLK low 1 ns 7 th(HYPTXFLCLKL-HYPTXFLDAT) Hold time - HYPTXFLDAT valid after HYPTXFLCLK low 1 ns 1 tc(HYPRXPMCLK) Clock period - HYPRXPMCLK (C3) 5.75 ns 2 tw(HYPRXPMCLK) High pulse width - HYPRXPMCLK 0.4*C3 0.6*C3 ns 3 tw(HYPRXPMCLK) Low pulse width - HYPRXPMCLK 0.4*C3 0.6*C3 ns 6 tsu(HYPRXPMDAT-HYPRXPMCLKH) Setup time - HYPRXPMDAT valid before HYPRXPMCLK high 1 ns 7 th(HYPRXPMCLKH-HYPRXPMDAT) Hold time - HYPRXPMDAT valid after HYPRXPMCLK high 1 ns 6 tsu(HYPRXPMDAT-HYPRXPMCLKL) Setup time - HYPRXPMDAT valid before HYPRXPMCLK low 1 ns 7 th(HYPRXPMCLKL-HYPRXPMDAT) Hold time - HYPRXPMDAT valid after HYPRXPMCLK low 1 ns Max Unit PM Interface End of Table 10-42 Table 10-43 HyperLink Peripheral Switching Characteristics (Part 1 of 2) (see Figure 10-39, Figure 10-40 and Figure 10-41) No. Parameter Min FL Interface 1 tc(HYPRXFLCLK) Clock period - HYPRXFLCLK (C2) 6.4 2 tw(HYPRXFLCLKH) High pulse width - HYPRXFLCLK 0.4*C2 0.6*C2 ns 3 tw(HYPRXFLCLKL) Low pulse width - HYPRXFLCLK 0.4*C2 0.6*C2 4 tosu(HYPRXFLDAT-HYPRXFLCLKH) Setup time - HYPRXFLDAT valid before HYPRXFLCLK high 5 toh(HYPRXFLCLKH-HYPRXFLDAT) Hold time - HYPRXFLDAT valid after HYPRXFLCLK high 0.25*C2-0.4 ns 4 tosu(HYPRXFLDAT-HYPRXFLCLKL) Setup time - HYPRXFLDAT valid before HYPRXFLCLK low 0.25*C2-0.4 ns 5 toh(HYPRXFLCLKL-HYPRXFLDAT) Hold time - HYPRXFLDAT valid after HYPRXFLCLK low 0.25*C2-0.4 ns 0.25*C2-0.4 ns ns ns PM Interface 1 tc(HYPTXPMCLK) Clock period - HYPTXPMCLK (C4) 6.4 2 tw(HYPTXPMCLK) High pulse width - HYPTXPMCLK 0.4*C4 0.6*C4 3 tw(HYPTXPMCLK) Low pulse width - HYPTXPMCLK 0.4*C4 0.6*C4 4 tosu(HYPTXPMDAT-HYPTXPMCLKH) Setup time - HYPTXPMDAT valid before HYPTXPMCLK high Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback ns 0.25*C2-0.4 66AK2H14/12/06 Peripheral Information and Electrical Specifications ns ns ns 319 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-43 HyperLink Peripheral Switching Characteristics (Part 2 of 2) (see Figure 10-39, Figure 10-40 and Figure 10-41) No. Parameter 5 toh(HYPTXPMCLKH-HYPTXPMDAT) 4 5 Min Max Unit Hold time - HYPTXPMDAT valid after HYPTXPMCLK high 0.25*C2-0.4 ns tosu(HYPTXPMDAT-HYPTXPMCLKL) Setup time - HYPTXPMDAT valid before HYPTXPMCLK low 0.25*C2-0.4 ns toh(HYPTXPMCLKL-HYPTXPMDAT) Hold time - HYPTXPMDAT valid after HYPTXPMCLK low 0.25*C2-0.4 ns End of Table 10-43 Figure 10-39 HyperLink Station Management Clock Timing 1 2 Figure 10-40 3 HyperLink Station Management Transmit Timing 4 5 4 5 7 6 7 HYPTX<xx>CLK HYPTX<xx>DAT <xx> represents the interface that is being used: PM or FL Figure 10-41 HyperLink Station Management Receive Timing 6 HYPRX<xx>CLK HYPRX<xx>DAT <xx> represents the interface that is being used: PM or FL 320 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.13 UART Peripheral The universal asynchronous receiver/transmitter (UART) module provides an interface between the device and a UART terminal interface or other UART-based peripheral. The UART is based on the industry standard TL16C550 asynchronous communications element which, in turn, is a functional upgrade of the TL16C450. Functionally similar to the TL16C450 on power up (single character or TL16C450 mode), the UART can be placed in an alternate FIFO (TL16C550) mode. This relieves the C66x of excessive software overhead by buffering received and transmitted characters. The receiver and transmitter FIFOs store up to 16 bytes including three additional bits of error status per byte for the receiver FIFO. The UART performs serial-to-parallel conversions on data received from a peripheral device and parallel-to-serial conversion on data received from the C66x CorePac to be sent to the peripheral device. The C66x CorePac can read the UART status at any time. The UART includes control capability and a processor interrupt system that can be tailored to minimize software management of the communications link. For more information on UART, see the Universal Asynchronous Receiver/Transmitter (UART) for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. Table 10-44 UART Timing Requirements (see Figure 10-42 and Figure 10-43) No. Min Max Unit Receive Timing 0.96U (1) Pulse width, receive start bit 1.05U ns 4 tw(RXSTART) 5 tw(RXH) Pulse width, receive data/parity bit high 0.96U 1.05U ns 5 tw(RXL) Pulse width, receive data/parity bit low 0.96U 1.05U ns 6 tw(RXSTOP1) Pulse width, receive stop bit 1 0.96U 1.05U ns 6 tw(RXSTOP15) Pulse width, receive stop bit 1.5 0.96U 1.05U ns 6 tw(RXSTOP2) Pulse width, receive stop bit 2 0.96U 1.05U ns (2) 5P ns Autoflow Timing Requirements 8 td(CTSL-TX) Delay time, CTS asserted to START bit transmit P End of Table 10-44 1 U = UART baud time = 1/programmed baud rate 2 P = 1/(SYSCLK1/6) Figure 10-42 UART Receive Timing Waveform 5 4 RXD Stop/Idle Figure 10-43 Start 5 Bit 0 Bit 1 Bit N-1 Bit N 6 Parity Stop Idle Start UART CTS (Clear-to-Send Input) — Autoflow Timing Waveform 8 TXD Bit N-1 Bit N Stop Start Bit 0 CTS Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 321 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-45 UART Switching Characteristics (See Figure 10-44 and Figure 10-45) No. Parameter Min Max Unit Transmit Timing (1) -2 U+2 ns Pulse width, transmit data/parity bit high U-2 U+2 ns Pulse width, transmit data/parity bit low U-2 U+2 ns 1 tw(TXSTART) Pulse width, transmit start bit 2 tw(TXH) 2 tw(TXL) 3 tw(TXSTOP1) Pulse width, transmit stop bit 1 3 tw(TXSTOP15) Pulse width, transmit stop bit 1.5 3 tw(TXSTOP2) Pulse width, transmit stop bit 2 7 td(RX-RTSH) Delay time, STOP bit received to RTS deasserted U U-2 U+2 ns 1.5 * (U - 2) 1.5 * ('U + 2) ns 2 * (U - 2) 2 * ('U + 2) ns (2) 5P ns Autoflow Timing Requirements P End of Table 10-45 1 U = UART baud time = 1/programmed baud rate 2 P = 1/(SYSCLK1/6) Figure 10-44 UART Transmit Timing Waveform 1 TXD Start Stop/Idle Figure 10-45 2 Bit 0 2 Bit 1 Bit N-1 Bit N Parity 3 Stop Idle Start UART RTS (Request-to-Send Output) – Autoflow Timing Waveform 7 RXD Bit N-1 Bit N Stop Start CTS 10.14 PCIe Peripheral The two-lane PCI express (PCIe) module on 66AK2H14/12/06 provides an interface between the device and other PCIe-compliant devices. The PCIe module provides low pin-count, high-reliability, and high-speed data transfer at rates up to 5.0 Gbps per lane on the serial links. For more information, see the Peripheral Component Interconnect Express (PCIe) for KeyStone Devices User Guide in . 10.15 Packet Accelerator The Packet Accelerator (PA) provides L2 to L4 classification functionalities and supports classification for Ethernet, VLAN, MPLS over Ethernet, IPv4/6, GRE over IP, and other session identification over IP such as UDP ports. It maintains 8k multiple-in, multiple-out hardware queues and also provides checksum capability as well as some QoS capabilities. The PA enables a single IP address to be used for a multicore device and can process up to 1.5 Mpps. The Packet Accelerator is coupled with the Network Coprocessor. For more information, see the Packet Accelerator (PA) for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. 322 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.16 Security Accelerator The Security Accelerator (SA) provides wire-speed processing on 1 Gbps Ethernet traffic on IPSec, SRTP, and 3GPP Air interface security protocols. It functions on the packet level with the packet and the associated security context being one of the above three types. The Security Accelerator is coupled with the Network Coprocessor, and receives the packet descriptor containing the security context in the buffer descriptor and the data to be encrypted/decrypted in the linked buffer descriptor. For more information, see the Security Accelerator (SA) for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. 10.17 Network Coprocessor Gigabit Ethernet (GbE) Switch Subsystem The gigabit Ethernet (GbE) switch subsystem provides an efficient interface between the device and the networked community. The Ethernet Media Access Controller (EMAC) supports 10Base-T (10 Mbits/second), and 100BaseTX (100 Mbps), in half- or full-duplex mode, and 1000BaseT (1000 Mbps) in full-duplex mode, with hardware flow control and quality-of-service (QOS) support. The GbE switch subsystem is coupled with the Network Coprocessor. For more information, see the Gigabit Ethernet (GbE) Switch Subsystem for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. An address range is assigned to the 66AK2H14/12/06. Each individual device has a 48-bit MAC address and consumes only one unique MAC address out of the range. There are two registers to hold these values, MACID1[31:0] (32 bits) and MACID2[15:0] (16 bits) . The bits of these registers are defined as follows: Figure 10-46 MACID1 Register (MMR Address 0x02620110) 31 0 MACID R-xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx Legend: R = Read only; -x, value is indeterminate Table 10-46 MACID1 Register Field Descriptions Bit Field Description 31-0 MAC ID MAC ID. Lower 32 bits. Figure 10-47 MACID2 Register (MMR Address 0x02620114) 31 24 23 18 17 16 15 0 CRC Reserved FLOW BCAST MACID R-cccc cccc R-rr rrrr R-z R-y R-xxxx xxxx xxxx xxxx Legend: R = Read only; -x, value is indeterminate Table 10-47 Bit MACID2 Register Field Descriptions (Part 1 of 2) Field Description 31-24 Reserved Variable 23-18 Reserved 000000 17 FLOW MAC Flow Control 0 = Off 1 = On Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 323 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-47 MACID2 Register Field Descriptions (Part 2 of 2) Bit Field Description 16 BCAST Default m/b-cast reception 0 = Broadcast 1 = Disabled 15-0 MAC ID MAC ID. Upper 16 bits. End of Table 10-47 There is a central processor time synchronization (CPTS) submodule in the Ethernet switch module that can be used for time synchronization. Programming this register selects the clock source for the CPTS_RCLK. See the Gigabit Ethernet (GbE) Switch Subsystem for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19for the register address and other details about the time synchronization submodule. The register CPTS_RFTCLK_SEL for reference clock selection of the time synchronization submodule is shown in Figure 10-48. Figure 10-48 RFTCLK Select Register (CPTS_RFTCLK_SEL) 31 4 3 0 Reserved CPTS_RFTCLK_SEL R-0 RW - 0 Legend: R = Read only; -x, value is indeterminate Table 10-48 RFTCLK Select Register Field Descriptions Bit Field Description 31-4 Reserved Reserved. Read as 0. 3-0 CPTS_RFTCLK_SEL Reference clock select. This signal is used to control an external multiplexer that selects one of 8 clocks for time sync reference (RFTCLK). This CPTS_RFTCLK_SEL value can be written only when the CPTS_EN bit is cleared to 0 in the TS_CTL register. 0000 = SYSCLK2 0001 = SYSCLK3 0010 = TIMI0 0011 = TIMI1 1000 = TSREFCLK Others = Reserved End of Table 10-48 324 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.18 SGMII/XFI Management Data Input/Output (MDIO) The management data input/output (MDIO) module implements the 802.3 serial management interface to interrogate and control up to 32 Ethernet PHY(s) connected to the device, using a shared two-wire bus. Application software uses the MDIO module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the negotiation results, and configure required parameters in the gigabit Ethernet (GbE) and 10-gigabit Ethernet (10GbE) switch subsystems for correct operation. The module allows almost transparent operation of the MDIO interface, with very little attention from the C66x CorePac. For more information, see the Gigabit Ethernet (GbE) Switch Subsystem for KeyStone Devices User Guide and the 10-Gigabit Ethernet (10GbE) Switch Subsystem for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. Table 10-49 MDIO Timing Requirements (see Figure 10-49) No. Min Max Unit 1 tc(MDCLK) Cycle time, MDCLK 400 ns 2 tw(MDCLKH) Pulse duration, MDCLK high 180 ns 3 tw(MDCLKL) Pulse duration, MDCLK low 180 ns 4 tsu(MDIO-MDCLKH) Setup time, MDIO data input valid before MDCLK high 10 ns 5 th(MDCLKH-MDIO) Hold time, MDIO data input valid after MDCLK high 10 tt(MDCLK) Transition time, MDCLK ns 5 ns End of Table 10-49 Figure 10-49 MDIO Input Timing 1 MDCLK 2 3 4 5 MDIO (Input) Table 10-50 MDIO Switching Characteristics (see Figure 10-50) No. Parameter Min Max 6 td(MDCLKH-MDIO) Delay time, MDCLK high to MDIO data output valid 10 7 th(MDCLKH-MDIO) Hold time, MDIO data output valid after MDCLK high 10 8 td(MDCLKH-MDIO) Delay time, MDCLK high to MDIO Hi-Z 10 Unit 300 ns ns 300 ns End of Table 10-50 Figure 10-50 MDIO Output Timing 1 MDCLK 7 7 6 8 MDIO (Ouput) Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 325 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.19 Ten-Gigabit Ethernet (10GbE) Switch Subsystem The 3-port Ten Gigabit Ethernet Switch Subsystem (different from the Network Coprocessor integrated switch) includes a standalone EMAC switch subsystem and a 2-lane SerDes macro. The 2-lane macro enables only 2 external ports. It does not include any packet acceleration or security acceleration engine. 10.19.1 10GbE Supported Features The key features of the 10GbE module are listed below: • 10 Gbps EMAC switch subsystem – MDIO: Media-dependent input/output module – SGMII Interface for 10/100/1000 and 10GBASE-KR for 10G – Ethernet switch with wire-rate switching (only two external ports are supported by the SerDes) – CPTS module that supports time-stamping for IEEE1588v2 with support for eight hardware push events and generation of compare output pulses – Supports XFI electrical interface • CPDMA The CPDMA component provides CPPI 4.2 compatible functionality, and provides a 128-bit wide data path to the TeraNet, enabling: • Support for 8 transmit channel and 16 receive channels • Support for reset isolation option 10.20 Timers The timers can be used to time events, count events, generate pulses, interrupt the CorePacs, and send synchronization events to the EDMA3 channel controller. 10.20.1 Timers Device-Specific Information The 66AK2H14/12/06 device has up to twenty 64-bit timers in total (66AK2H12 has 20 timers and the 66AK2H06 has 14), of which Timer0 through Timer3 (66AK2H06) or Timer7 (66AK2H12) are dedicated to each of the up to eight C66x CorePacs as watchdog timers and can also be used as general-purpose timers. Timer16 and Timer17 (66AK2H06) or Timer16 through Timer19 (66AK2H12) are dedicated to each of the Cortex-A15 processor cores as a watchdog timer and can also be used as general-purpose timers. The remaining timers can be configured as general-purpose timers only, with each timer programmed as a 64-bit timer or as two separate 32-bit timers. When operating in 64-bit mode, the timer counts either module clock cycles or input (TINPLx) pulses (rising edge) and generates an output pulse/waveform (TOUTLx) plus an internal event (TINTLx) on a software-programmable period. When operating in 32-bit mode, the timer is split into two independent 32-bit timers. Each timer is made up of two 32-bit counters: a high counter and a low counter. The timer pins, TINPLx and TOUTLx are connected to the low counter. The timer pins, TINPHx and TOUTHx are connected to the high counter. When operating in watchdog mode, the timer counts down to 0 and generates an event. It is a requirement that software writes to the timer before the count expires, after which the count begins again. If the count ever reaches 0, the timer event output is asserted. Reset initiated by a watchdog timer can be set by programming ‘‘Reset Type Status Register (RSTYPE)’’ on page 296 and the type of reset initiated can set by programming ‘‘Reset Configuration Register (RSTCFG)’’ on page 297. For more information, see the 64-bit Timer (Timer 64) for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. 326 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.20.2 Timers Electrical Timing The tables and figures below describe the timing requirements and switching characteristics of the timers. Table 10-51 Timer Input Timing Requirements (1) (see Figure 10-51) No. Min Max Unit 1 tw(TINPH) Pulse duration, high 12C ns 2 tw(TINPL) Pulse duration, low 12C ns End of Table 10-51 1 C = 1/SYSCLK1 clock frequency in ns Table 10-52 Timer Output Switching Characteristics (1) (see Figure 10-51) No. Parameter Min Max Unit 3 tw(TOUTH) Pulse duration, high 12C - 3 ns 4 tw(TOUTL) Pulse duration, low 12C - 3 ns End of Table 10-52 1 C = 1/SYSCLK1 clock frequency in ns. Figure 10-51 Timer Timing 1 2 TIMIx 3 4 TIMOx 10.21 Serial RapidIO (SRIO) Port The SRIO port on the device is a high-performance, low pin-count SerDes interconnect. SRIO interconnects in a baseband board design provide connectivity and control among the components. The device supports four 1× Serial RapidIO links or one 4× Serial RapidIO link. The SRIO interface is designed to operate at a data rate of up to 5 Gbps per differential pair. This equals 20 raw GBaud/s for the 4× SRIO port, or approximately 15 Gbps data throughput rate. The PHY part of the SRIO consists of the physical layer and includes the input and output buffers (each serial link consists of a differential pair), the 8-bit/10-bit encoder/decoder, the PLL clock recovery, and the parallel-to-serial/serial-to-parallel converters. For more information, see the Serial RapidIO (SRIO) for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. 10.21.1 Serial RapidIO Device-Specific Information The approach to specifying interface timing for the SRIO Port is different from other interfaces. For these other interfaces, the device timing was specified in terms of data manual specifications and I/O buffer information specification (IBIS) models. The Serial RapidIO peripheral is a master peripheral in the device. It conforms to the RapidIO™ Interconnect Specification, Part VI: Physical Layer 1×/4× LP-Serial Specification, Revision 1.3. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 327 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 For the SRIO port, Texas Instruments provides a PCB solution showing two TI SRIO-enabled DSPs connected together via a 4× SRIO link. TI has performed the simulation and system characterization to ensure all SRIO interface timings in this solution are met. Note—TI supports only designs that follow the board design guidelines outlined in the application report. 10.22 General-Purpose Input/Output (GPIO) 10.22.1 GPIO Device-Specific Information The GPIO peripheral pins are used for general purpose input/output for the device. These pins are also used to configure the device at boot time. For more detailed information on device/peripheral configuration and the 66AK2H14/12/06 device pin muxing, see ‘‘Device Configuration’’ on page 229. These GPIO pins can also used to generate individual core interrupts (no support of bank interrupt) and EDMA events. 10.22.2 GPIO Peripheral Register Description Table 10-53 GPIO Registers Hex Address Offsets Acronym Register Name 0x0008 BINTEN GPIO interrupt per bank enable register 0x000C - Reserved 0x0010 DIR GPIO Direction Register 0x0014 OUT_DATA GPIO Output Data Register 0x0018 SET_DATA GPIO Set Data Register 0x001C CLR_DATA GPIO Clear Data Register 0x0020 IN_DATA GPIO Input Data Register 0x0024 SET_RIS_TRIG GPIO Set Rising Edge Interrupt Register 0x0028 CLR_RIS_TRIG GPIO Clear Rising Edge Interrupt Register 0x002C SET_FAL_TRIG GPIO Set Falling Edge Interrupt Register 0x0030 CLR_FAL_TRIG GPIO Clear Falling Edge Interrupt Register 0x008C - Reserved 0x0090 - 0x03FF - Reserved End of Table 10-53 10.22.3 GPIO Electrical Data/Timing Table 10-54 GPIO Input Timing Requirements (1) (see Figure 10-52) No. Min Max Unit 1 tw(GPOH) Pulse duration, GPOx high 12C ns 2 tw(GPOL) Pulse duration, GPOx low 12C ns End of Table 10-54 1 C = 1/SYSCLK1 clock frequency in ns 328 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-55 GPIO Output Switching Characteristics (1) (see Figure 10-52) No. Parameter Min Max Unit 3 tw(GPOH) Pulse duration, GPOx high 36C - 8 ns 4 tw(GPOL) Pulse duration, GPOx low 36C - 8 ns End of Table 10-55 1 C = 1/SYSCLK1 clock frequency in ns Figure 10-52 GPIO Timing 1 2 GPIx 3 4 GPOx 10.23 Semaphore2 The device contains an enhanced Semaphore module for the management of shared resources of the C66x CorePacs. The Semaphore enforces atomic accesses to shared chip-level resources so that the read-modify-write sequence is not broken. The Semaphore module has unique interrupts to each of the C66x CorePacs to identify when that CorePac has acquired the resource. Semaphore resources within the module are not tied to specific hardware resources. It is a software requirement to allocate semaphore resources to the hardware resource(s) to be arbitrated. The Semaphore module supports three masters and contains 32 semaphores that can be shared within the system. There are two methods of accessing a semaphore resource: • Direct Access: A C66x CorePac directly accesses a semaphore resource. If free, the semaphore is granted. If not free, the semaphore is not granted. • Indirect Access: A C66x CorePac indirectly accesses a semaphore resource by writing to it. Once the resource is free, an interrupt notifies the C66x CorePac that the resource is available. 10.24 Universal Serial Bus 3.0 (USB 3.0) The device includes a USB 3.0 controller providing the following capabilities: • Support of USB 3.0 peripheral (or device) mode at the following speeds: – Super Speed (SS) (5 Gbps) – High Speed (HS) (480 Mbps) – Full Speed (FS) (12 Mbps) • Support of USB 3.0 host mode at the following speeds: – Super Speed (SS) (5 Gbps) – High Speed (HS) (480 Mbps) – Full Speed (FS) (12 Mbps) – Low Speed (LS) (1.5 Mbps) Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 329 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 • • Integrated DMA controller with extensible Host Controller Interface (xHCI) support Support for 14 transmit and 14 receive endpoints plus control EP0 For more information, see the Universal Serial Bus (USB) for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. 10.25 EMIF16 Peripheral The EMIF16 module provides an interface between the device and external memories such as NAND and NOR flash. For more information, see the External Memory Interface (EMIF16) for KeyStone Devices User Guide in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. 10.25.1 EMIF16 Electrical Data/Timing Table 10-56 EMIF16 Asynchronous Memory Timing Requirements (1) (Part 1 of 2) (see Figure 10-53 through Figure 10-56) No. Min Max Unit General Timing 2 tw(WAIT) Pulse duration, WAIT assertion and deassertion minimum time 2E ns 28 td(WAIT-WEH) Setup time, WAIT asserted before WE high 4E + 3 ns 14 td(WAIT-OEH) Setup time, WAIT asserted before OE high 4E + 3 ns Read Timing 3 3 4 tC(CEL) tC(CEL) tosu(CEL-OEL) EMIF read cycle time when ew = 0, meaning not in extended wait mode (RS+RST+RH+3) *E-3 (RS+RST+RH+3) *E+3 ns EMIF read cycle time when ew =1, meaning extended wait mode enabled (RS+RST+RH+3) *E-3 (RS+RST+RH+3) *E+3 ns Output setup time from CE low to OE low. SS = 0, not in select strobe mode (RS+1) * E - 3 (RS+1) * E + 3 ns 5 toh(OEH-CEH) Output hold time from OE high to CE high. SS = 0, not in select strobe mode (RH+1) * E - 3 (RH+1) * E + 3 ns 4 tosu(CEL-OEL) Output setup time from CE low to OE low in select strobe mode, SS = 1 (RS+1) * E - 3 (RS+1) * E + 3 ns 5 toh(OEH-CEH) Output hold time from OE high to CE high in select strobe mode, SS = 1 (RH+1) * E - 3 (RH+1) * E + 3 ns 6 tosu(BAV-OEL) Output setup time from BA valid to OE low (RS+1) * E - 3 (RS+1) * E + 3 ns 7 toh(OEH-BAIV) Output hold time from OE high to BA invalid (RH+1) * E - 3 (RH+1) * E + 3 ns 8 tosu(AV-OEL) Output setup time from A valid to OE low (RS+1) * E - 3 (RS+1) * E + 3 ns 9 toh(OEH-AIV) Output hold time from OE high to A invalid (RH+1) * E - 3 (RH+1) * E + 3 ns 10 tw(OEL) OE active time low, when ew = 0. Extended wait mode is disabled. (RST+1) * E - 3 (RST+1) * E + 3 ns 10 tw(OEL) OE active time low, when ew = 1. Extended wait mode is enabled. (RST+1) * E - 3 (RST+1) * E + 3 ns 11 td(WAITH-OEH) Delay time from WAIT deasserted to OE# high 4E + 3 ns 12 tsu(D-OEH) Input setup time from D valid to OE high 13 th(OEH-D) Input hold time from OE high to D invalid 3 ns 0.5 ns Write Timing 15 15 16 (WS+WST+WH+ (WS+WST+WH+ TA+4)*E-3 TA+4)*E+3 ns tc(CEL) EMIF write cycle time when ew =1., meaning extended wait mode is enabled (WS+WST+WH+ (WS+WST+WH+ TA+4)*E-3 TA+4)*E+3 ns tosuCEL-WEL) Output setup time from CE low to WE low. SS = 0, not in select strobe mode (WS+1) * E - 3 ns tc(CEL) EMIF write cycle time when ew = 0, meaning not in extended wait mode 17 toh(WEH-CEH) Output hold time from WE high to CE high. SS = 0, not in select strobe mode (WH+1) * E - 3 ns 16 tosuCEL-WEL) Output setup time from CE low to WE low in select strobe mode, SS = 1 (WS+1) * E - 3 ns 17 toh(WEH-CEH) Output hold time from WE high to CE high in select strobe mode, SS = 1 (WH+1) * E - 3 ns 18 tosu(RNW-WEL) Output setup time from RNW valid to WE low (WS+1) * E - 3 ns 330 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 EMIF16 Asynchronous Memory Timing Requirements (1) (Part 2 of 2) Table 10-56 (see Figure 10-53 through Figure 10-56) No. Min Max Unit 19 toh(WEH-RNW) Output hold time from WE high to RNW invalid (WH+1) * E - 3 ns 20 tosu(BAV-WEL) Output setup time from BA valid to WE low (WS+1) * E - 3 ns 21 toh(WEH-BAIV) Output hold time from WE high to BA invalid (WH+1) * E - 3 ns 22 tosu(AV-WEL) Output setup time from A valid to WE low (WS+1) * E - 3 ns 23 toh(WEH-AIV) Output hold time from WE high to A invalid (WH+1) * E - 3 ns 24 tw(WEL) WE active time low, when ew = 0. Extended wait mode is disabled. (WST+1) * E - 3 ns 24 tw(WEL) WE active time low, when ew = 1. Extended wait mode is enabled. (WST+1) * E - 3 ns 26 tosu(DV-WEL) Output setup time from D valid to WE low (WS+1) * E - 3 ns 27 toh(WEH-DIV) Output hold time from WE high to D invalid (WH+1) * E - 3 25 td(WAITH-WEH) Delay time from WAIT deasserted to WE# high ns 4E + 3 ns End of Table 10-56 1 E = 1/(SYSCLK1/6) Figure 10-53 EMIF16 Asynchronous Memory Read Timing Diagram 3 EM_CE[3:0] EM_R/W EM_BA[1:0] EM_A[21:0] 5 7 9 4 6 8 10 EM_OE 12 13 EM_D[15:0] EM_WE Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 331 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Figure 10-54 EMIF16 Asynchronous Memory Write Timing Diagram 15 EM_CE[3:0] EM_R/W EM_BA[1:0] EM_A[21:0] 17 19 21 23 16 18 20 22 24 EM_WE 26 27 EM_D[15:0] EM_OE Figure 10-55 EMIF16 EM_WAIT Read Timing Diagram Setup Extended Due to EM_WAIT Strobe Strobe Hold Strobe Hold EM_CE[3:0] EM_BA[1:0] EM_A[21:0] EM_D[15:0] EM_OE 14 11 EM_WAIT Figure 10-56 2 2 Asserted Deasserted EMIF16 EM_WAIT Write Timing Diagram Setup Extended Due to EM_WAIT Strobe EM_CE[3:0] EM_BA[1:0] EM_A[21:0] EM_D[15:0] EM_WE 28 25 EM_WAIT 332 2 2 Asserted Deasserted 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.26 Emulation Features and Capability The debug capabilities of KeyStoneII devices include the Debug subsystem module (DEBUGSS). The DEBUGSS module contains the ICEPick module which handles the external JTAG Test Access Port (TAP) and multiple secondary TAPs for the various processing cores of the device. It also provides Debug Access Port (DAP) for system wide memory access from debugger, Cross triggering, System trace, Peripheral suspend generation, Debug port (EMUx) pin management etc. The DEBUGSS module works in conjunction with the debug capability integrated in the processing cores (ARM and DSP subsystems) to provide a comprehensive hardware platform for a rich debug and development experience. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 333 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.26.1 Chip Level Features – – – – – – – – – – – 334 Support for 1149.1(JTAG and Boundary scan) and 1149.6 (Boundary scan extensions). Trace sources to DEBUG SubSystem System Trace Module (DEBUGSS STM) › Provides a way for hardware instrumentation and software messaging to supplement the processor core trace mechanisms. › Hardware instrumentation support of CPTracers to support logging of bus transactions for critical endpoints › Software messaging/instrumentation support for DSP and QMSS PDSP cores through DEBUGSS STM. Trace Sinks › Support for trace export (from all processor cores and DEBUGSS STM) through emulation pins. Concurrent trace of DSP and STM traces or ARM and STM traces via EMU pins is possible. Concurrent trace export of DSP and ARM is not possible via EMU pins. Support for 32KB DEBUGSS TBR (Trace Buffer and Router) to hold system trace. The data can be drained using EDMA to on-chip or DDR memory buffers. These intermediate buffers can subsequently be drained through the device high speed interfaces. The DEBUGSS TBR is dedicated to the DEBUGSS STM module.The trace draining interface used in KeyStone II for DEBUGSS and ARMSS are based on the new CT-TBR. Cross triggering: Provides a way to propagate debug (trigger) events from one processor/subsystem/module to another › Cross triggering between multiple devices via EMU0/EMU1 pins › Cross triggering between multiple processing cores within the device like ARM/DSP Cores and non-processor entities like ARM STM (input only), CPTracers, CT-TBRs and DEBUGSS STM (input only) Synchronized starting and stopping of processing cores › Global start of all ARM cores › Global start of all DSP cores › Global stopping of all ARM and DSP cores Emulation mode aware peripherals (suspend features and debug access features) Support system memory access via the DAP port (natively support 32-bit address, and it can support 36-bit address through configuration of MPAX inside MSMC). Debug access to any invalid memory location (reserved/clock-gated/power-down) shall not cause system hang. Scan access to secondary TAPs of DEBUGSS shall be disabled in Secure devices by default. Security override sequence shall be supported (requires software override sequence) to enable debug in secure devices. In addition, Debug features of the ARM cores are blockable through the ARM debug authentication interface in secure devices. Support WIR (wait-in-reset) debug boot mode for Non-secure devices. Debug functionality shall survive all pin resets except power-on resets (POR/RESETFULL) and test reset (TRST). PDSP Debug features like access/control through DAP, Halt mode debug and software instrumentation. 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.26.1.1 ARM Subsystem Features – – – – – – – – – – – Support for invasive debug like halt mode debugging (breakpoint, watchpoints) and monitor mode debugging Support for non-invasive debugging (program trace, performance monitoring) Support for A15 Performance Monitoring Unit (cycle counters) Support for per core CoreSight Program Trace Module (CS-PTM) with timing Support for an integrated CoreSight System Trace Module (CS-STM) for hardware event and software instrumentation A shared timestamp counter for all ARM cores and STM is integrated in ARMSS for trace data correlation Support for a 16KB Trace Buffer and Router (TBR) to hold PTM/STM trace. The trace data is copied by EDMA to external memory for draining by device high speed serial interfaces. Support for simultaneous draining of trace stream through EMUn pins and TBR (to achieve higher aggregate trace throughput) Support for debug authentication interface to disable debug accesses in secure devices Support for cross triggering between MPU cores, CS-STM and CT-TBR Support for debug through warm reset 10.26.1.2 DSP Features – – – – – – – – – Support for Halt-mode debug Support for Real-time debug Support for Monitor mode debug Advanced Event Triggering (AET) for data/PC watch-points, event monitoring and visibility into external events Support for PC/Timing/Data/Event trace. TETB (TI Embedded Trace Buffer) of 4KB to store PC/Timing/Data/Event trace. The trace data is copied by EDMA to external memory for draining by device high speed serial interfaces or it can be drained through EMUx pins Support for Cross triggering source/sink to other C66x CorePacs and device subsystems. Using Advanced Event Triggering to Find and Fix Intermittent Real-Time Bugs application report Using Advanced Event Triggering to Debug Real-Time Problems in High Speed Embedded Microprocessor Systems application report For more information on the AET, see the following documents in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19: 10.26.2 ICEPick Module The debugger is connected to the device through its external JTAG interface. The first level of debug interface seen by the debugger is connected to the ICEPick module embedded in the DEBUGSS. ICEPick is the chip-level TAP, responsible for providing access to the IEEE 1149.1 and IEEE1149.6 boundary scan capabilities of the device. The device has multiple processors, some with secondary JTAG TAPs (C66x CorePacs) and others with an APB memory mapped interface (ARM CorePac and Coresight components). ICEPick manages the TAPs as well as the power/reset/clock controls for the logic associated with the TAPs as well as the logic associated with the APB ports. ICEPick provides the following debug capabilities: • Debug connect logic for enabling or disabling most ICEPick instructions Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 335 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 • • Dynamic TAP insertion – Serially linking up to 32 TAP controllers – Individually selecting one or more of the TAPS for scan without disrupting the instruction register (IR) state of other TAPs Power, reset and clock management – Provides the power and clock status of the domain to the debugger – Provides debugger control of the power domain of a processor. › Force the domain power and clocks on › Prohibit the domain from being clock-gated or powered down – Applies system reset – Provides wait-in-reset (WIR) boot mode – Provides global and local WIR release – Provides global and local reset block The ICEPick module implements a connect register, which must be configured with a predefined key to enable the full set of JTAG instructions. Once the debug connect key has been properly programmed, ICEPick signals and subsystems emulation logic should be turned on. 10.26.2.1 ICEPick Dynamic Tap Insertion To include more or fewer secondary TAPS in the scan chain, the debugger must use the ICEPick TAP router to program the TAPs. At its root, ICEPick is a scan-path linker that lets the debugger selectively choose which subsystem TAPs are accessible through the device-level debug interface. Each secondary TAP can be dynamically included in or excluded from the scan path. From external JTAG interface point of view, secondary TAPS that are not selected appear not to exist. There are two types of components connected through ICEPick to external debug interface: • Legacy JTAG Components — C66x implements a JTAG-compatible port and are directly interfaced with ICEPick and individually attached to an ICEPick secondary TAP. • CoreSight Components — The CoreSight components are interfaced with ICEPick through the CS_DAP module. The CS_DAP is attached to the ICEPick secondary TAP and translates JTAG transactions into APBv3 transactions. Table 10-57 shows the ICEPick secondary taps in the system. For more details on the test related P1500 TAPs, please refer to the DFTSS specification. Table 10-57 ICEPick Debug Secondary TAPs (Part 1 of 2) Tap # Type Name IR Scan Length Access in Secure Device Description 0 n/a n/a n/a No RESERVED (This is an internal TAP and not exposed at the DEBUGSS boundary) 1 JTAG C66x CorePac0 38 No C66x CorePac0 2 JTAG C66x CorePac1 38 No C66x CorePac1 3 JTAG C66x CorePac2 38 No C66x CorePac2 4 JTAG C66x CorePac3 38 No C66x CorePac3 5 JTAG C66x CorePac4 38 No C66x CorePac4 (66AK2H12/14 only) 6 JTAG C66x CorePac5 38 No C66x CorePac5 (66AK2H12/14 only) 7 JTAG C66x CorePac6 38 No C66x CorePac6 (66AK2H12/14 only) 8 JTAG C66x CorePac7 38 No C66x CorePac7 (66AK2H12/14 only) 9..13 JTAG Reserved NA No Spare ports for future expansion 336 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-57 ICEPick Debug Secondary TAPs (Part 2 of 2) IR Scan Length Tap # Type Name 14 CS CS_DAP (APB-AP) 4 Access in Secure Device Description No ARM A15 Cores (This is an internal TAP and not exposed at the DEBUGSS boundary) CS_DAP (AHB-AP) PDSP Cores (This is an internal TAP and not exposed at the DEBUGSS boundary) End of Table 10-57 For more information on ICEPick, see the Debug and Trace for KeyStoneII Devices in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. 10.27 Debug Port (EMUx) The device also supports 34 emulation pins— EMU[33:0], which includes 19 dedicated EMU pins and 15 pins multiplexed with GPIO. These pins are shared by A15/DSP/STM trace, cross triggering, and debug bootmodes as shown in Table 10-61. The 34-pin dedicated emulation interface is also defined in the following table. Note—Note that if EMU[1:0] signals are shared for cross-triggering purposes in the board level, they SHOULD NOT be used for trace purposes. Table 10-58 Emulation Interface with Different Debug Port Configurations (Part 1 of 2) Cross EMU Pins Triggering ARM Trace DSP Trace STM EMU33 TRCDTa[29] TRCDTb[31] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU32 TRCDTa[28] TRCDTb[30] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU31 TRCDTa[27] TRCDTb[29] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU30 TRCDTa[26] TRCDTb[28] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU29 TRCDTa[25] TRCDTb[27] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU28 TRCDTa[24] TRCDTb[26] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU27 TRCDTa[23] TRCDTb[25] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU26 TRCDTa[22] TRCDTb[24] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU25 TRCDTa[21] TRCDTb[23] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU24 TRCDTa[20] TRCDTb[22] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU23 TRCDTa[19] TRCDTb[21] TRCDTa[19] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU22 TRCDTa[18] TRCDTb[20] TRCDTa[18] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU21 TRCDTa[17] TRCDTb[19] TRCDTa[17] TRCDTb[19] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU20 TRCDTa[16] TRCDTb[18] TRCDTa[16] TRCDTb[18] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU19 TRCDTa[15] TRCDTb[17] TRCDTa[15] TRCDTb[17] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Debug Boot Mode 66AK2H14/12/06 Peripheral Information and Electrical Specifications 337 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-58 Emulation Interface with Different Debug Port Configurations (Part 2 of 2) Cross EMU Pins Triggering ARM Trace DSP Trace Debug Boot Mode STM EMU18 TRCDTa[14] TRCDTb[16] TRCDTa[14] TRCDTb[16] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU17 TRCDTa[13] TRCDTb[15] TRCDTa[13] TRCDTb[15] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU16 TRCDTa[12] TRCDTb[14] TRCDTa[12] TRCDTb[14] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU15 TRCDTa[11] TRCDTb[13] TRCDTa[11] TRCDTb[13] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU14 TRCDTa[10] TRCDTb[12] TRCDTa[10] TRCDTb[12] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU13 TRCDTa[9] TRCDTb[11] TRCDTa[9] TRCDTb[11] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU12 TRCDTa[8] TRCDTb[10] TRCDTa[8] TRCDTb[10] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU11 TRCDTa[7] TRCDTb[9] TRCDTa[7] TRCDTb[9] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU10 TRCDTa[6] TRCDTb[8] TRCDTa[6] TRCDTb[8] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU9 TRCDTa[5] TRCDTb[7] TRCDTa[5] TRCDTb[7] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU8 TRCDTa[4] TRCDTb[6] TRCDTa[4] TRCDTb[6] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU7 TRCDTa[3] TRCDTb[5] TRCDTa[3] TRCDTb[5] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU6 TRCDTa[2] TRCDTb[4] TRCDTa[2] TRCDTb[4] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU5 TRCDTa[1] TRCDTb[3] TRCDTa[1] TRCDTb[3] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU4 TRCDTa[0] TRCDTb[2] TRCDTa[0] TRCDTb[2] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU3 TRCCTRL TRCCTRL TRCCLKB TRCCLKB TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU2 TRCCLK TRCCLK TRCCLKA TRCCLKA TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state EMU1 Trigger1 TRCDTb[1] TRCDTb[1] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state dbgbootmode[1] EMU0 Trigger0 TRCDTb[0] TRCDTb[0] TRCDT3, or TRCDT2, or TRCDT1, or TRCDT0, or TRCCLK, or Tri-state dbgbootmode[0] End of Table 10-58 10.27.1 Concurrent Use of Debug Port Following combinations are possible concurrently: • Trigger 0/1 • Trigger 0/1 and STM Trace (upto 4 datapins) • Trigger 0/1 and STM Trace (upto 4 datapins) and C66x Trace (upto 20 datapins) • Trigger 0/1 and STM Trace (1-4 datapins) and ARM Trace (27-24 datapins) • STM Trace (1-4 datapins) and ARM Trace (29-26 data pins) • Trigger 0/1 and ARM Trace (upto 29 data pins) • ARM Trace (upto 32 datapins) 338 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 ARM and DSP simultaneous trace is not supported. 10.27.2 Master ID for HW and SW Messages Table 10-59 describes the master ID for the various hardware and software masters of the STM. Table 10-59 MSTID mapping for Hardware Instrumentation (CPTRACERS) CPTracer Name MSTID [7:0] Clock domain SID[4:0] Description CPT_MSMCx_MST, where x = 0..3 0x94-0x97 SYSCLK1/1 0x0..3 MSMC SRAM Bank 0 to MSMC SRAM Bank 3 monitors CPT_MSMC4_MST 0xB1 SYSCLK1/1 0x4 MSMC SRAM Bank 4 CPT_MSMCx_MST, where x = 5..7 0xAE - 0xB0 SYSCLK1/1 0x5..7 MSMC SRAM Bank 5to MSMC SRAM Bank 7 monitors CPT_DDR3A_MST 0x98 SYSCLK1/1 0x8 MSMC DDR3A port monitor CPT_L2_x_MST, where x = 0..7 0x8C - 0x93 SYSCLK1/3 0x9..0x10 DSP 0 to 7 SDMA port monitors CPT_TPCC0_4_MST 0xA4 SYSCLK1/3 0x11 EDMA 0 and EDMA 4 CFG port monitor CPT_TPCC1_2_3_MST 0xA5 SYSCLK1/3 0x12 EDMA 1, EDMA2 and EDMA3 CFG port monitor CPT_INTC_MST 0xA6 SYSCLK1/3 0x13 INTC port monitor (for INTC 0/1/2 and GIC400) CPT_SM_MST 0x99 SYSCLK1/3 0x14 Semaphore CFG port monitors CPT_QM_CFG1_MST 0x9A SYSCLK1/3 0x15 QMSS CFG1 port monitor CPT_QM_CFG2_MST 0xA0 SYSCLK1/3 0x16 QMSS CFG2 port monitor CPT_QM_M_MST 0x9B SYSCLK1/3 0x17 QM_M CFG/DMA port monitor CPT_SPI_ROM_EMIF16 _MST 0xA7 SYSCLK1/3 0x18 SPI ROM EMIF16 CFG port monitor CPT_CFG_MST 0x9C SYSCLK1/3 0x19 SCR_3P_B and SCR_6P_B CFG peripheral port monitors Reserved 0x1A Reserved Reserved 0x1B Reserved Reserved 0x1C Reserved Reserved 0x1D Reserved Reserved CPT_DDR3B_MST 0xA1 SYSCLK1/3 0x1E Reserved 0x1F DDR 3B port monitor (on SCR 3C) End of Table 10-59 Table 10-60 MSTID Mapping for Software Messages (Part 1 of 2) Core Name MSTID [7:0] Description C66x CorePac0 0x0 C66x CorePac MDMA Master ID C66x CorePac1 0x1 C66x CorePac MDMA Master ID C66x CorePac2 0x2 C66x CorePac MDMA Master ID C66x CorePac3 0x3 C66x CorePac MDMA Master ID C66x CorePac4 0x4 (66AK2H14/12 only) C66x CorePac5 0x5 (66AK2H14/12 only) C66x CorePac6 0x6 (66AK2H14/12 only) C66x CorePac7 0x7 (66AK2H14/12 only) A15 Core0 0x8 ARM Master IDs A15 Core1 0x9 ARM Master ID A15 Core2 0xA ARM Master ID Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 339 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Table 10-60 MSTID Mapping for Software Messages (Part 2 of 2) Core Name MSTID [7:0] Description A15 Core3 0xB ARM Master ID QMSS PDSPs 0x46 All QMSS PDSPs share the same master ID. Differentiating between the 8 PDSPs is done through the channel number used End of Table 10-60 10.27.3 SoC Cross-Triggering Connection The cross-trigger lines are shared by all the subsystems implementing cross-triggering. An MPU subsystem trigger event can therefore be propagated to any application subsystem or system trace component. The remote subsystem or system trace component can be programmed to be sensitive to the global SOC trigger lines to either: • Generate a processor debug request • Generate an interrupt request • Start/Stop processor trace • Start/Stop CBA transaction tracing through CPTracers • Start external logic analyzer trace • Stop external logic analyzer trace Table 10-61 Cross-Triggering Connection Name Source Triggers Sink Triggers Device-to-device trigger via EMU0/1 pins YES YES This is fixed (not affected by configuration) MIPI-STM NO YES Trigger input only for MIPI-STM in DebugSS CT-TBR YES YES DEBUGSS CT-TBR CS-TPIU NO YES DEBUGSS CS-TPIU Comments Inside DEBUGSS Outside DEBUGSS DSPSS YES YES CP_Tracers YES YES ARM YES YES ARM Cores, ARM CS-STM and ARM CT-TBR End of Table 10-61 The following table describes the crosstrigger connection between various cross trigger sources and TI XTRIG module. Table 10-62 TI XTRIG Assignment Name Assigned XTRIG Channel Number C66x CorePac0-3 (66AK2H06 only) XTRIG 0-3 (66AK2H06 only) C66x CorePac0-7 (66AK2H12/14 only) XTRIG 0-7 (66AK2H12/14 only) CPTracer 0..31 (The CPTracer number refers to the SID[4:0] as shown in Table 10-59 XTRIG 8 .. 39 10.27.4 Peripherals-Related Debug Requirement Table 10-63 lists all the peripherals on this device, and the status of whether or not it supports emulation suspend or emulation request events. 340 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 The DEBUGSS supports upto 32 debug suspend sources (processor cores) and 64 debug suspend sinks (peripherals). The assignment of processor cores is shown in and the assignment of peripherals is shown in Table 10-63. By default the logical AND of all the processor cores is routed to the peripherals. It is possible to select an individual core to be routed to the peripheral (For example: used in tightly coupled peripherals like timers), a logical AND of all cores (Global peripherals) or a logical OR of all cores by programming the DEBUGSS.DRM module. The SOFT bit should be programmed based on whether or not an immediate pause of the peripheral function is required or if the peripheral suspend should occur only after a particular completion point is reached in the normal peripheral operation. The FREE bit should be programmed to enable or disable the emulation suspend functionality. Table 10-63 Peripherals Emulation Support Peripheral Stop-Mode Real-Time Mode FREE Bit Debug Peripheral Assignment STOP Bit Emulation Request Support (cemudbg/emudbg) N Y NA Y 20 Emulation Suspend Support Infrastructure Peripherals EDMA_x, where X=0/1/2/3/4 N N Y (CPDMA only) Y (CPDMA only) CP_Tracers_X, where X = 0..32 N N N N N NA MPU_X, where X = 0..11 N N N N Y NA QM_SS N Y (CPDMA only) Y (CPDMA only) CP_INTC N N N N Y NA BOOT_CFG N N N N Y NA SEC_MGR N N N N Y NA PSC N N N N N NA PLL N N N N N NA TIMERx, x=0, 1..7, 8..19 Y N Y Y N 0, 1..7, 8..19 Semaphore N N N N Y NA GPIO N N N N N NA DDR3A/B N N N N Y NA MSMC N N N N Y NA EMIF16 N N N N Y NA I C_X, where X = 0/1/2 Y N Y Y Y 21/22/23 SPI_X, where X = 0/1/2 N N N N Y NA UART_X, where X = 0/1 Y N Y Y Y 24/25 Hyperlink_0/1 N N N N Y PCIeSS 0 N N N N N SRIO / NetCP_1 Y Y Y Y (Soft Only) Y Memory Controller Peripherals Serial Interfaces 2 High Speed Serial Interfaces NetCP (ethernet switch) 10GbE (ethernet switch) USBSS (1) 26 Y Y Y Y N 27 Y N Y Y N 29 N N N N N NA End of Table 10-63 1 66AK2H14 only Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 341 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Based on the above table the number of suspend interfaces in Keystone II devices is listed below. Table 10-64 EMUSUSP Peripheral Summary (for EMUSUSP handshake from DEBUGSS) Interfaces NUM_SUSPEND_PERIPHERALS EMUSUSP Interfaces 54 EMUSUSP Realtime Interfaces 15 Table 10-65 summarizes the DEBUG core assignment. Emulation suspend output of all the cores are synchronized to SYSCLK1/6 which is frequency of the slowest peripheral that uses these signals. Table 10-65 EMUSUSP Core Summary (for EMUSUSP handshake to DEBUGSS) Core # Assignment 0..7 C66x CorePac0..7 8..11 ARM CorePac 8..11 0..7 C66x CorePac0..3 12..29 Reserved 30 Logical OR of Core# 0..11 31 Logical AND of Core #0..11 C66x CorePac4.,7 (66AK2H12/14 only) End of Table 10-65 10.27.5 Advance Event Triggering (AET) The device supports advanced event triggering (AET). This capability can be used to debug complex problems as well as understand performance characteristics of user applications. AET provides the following capabilities: • Hardware program breakpoints: specify addresses or address ranges that can generate events such as halting the processor or triggering the trace capture. • Data watchpoints: specify data variable addresses, address ranges, or data values that can generate events such as halting the processor or triggering the trace capture. • Counters: count the occurrence of an event or cycles for performance monitoring. • State sequencing: allows combinations of hardware program breakpoints and data watchpoints to precisely generate events for complex sequences. For more information on the AET, see the following documents in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. • Using Advanced Event Triggering to Find and Fix Intermittent Real-Time Bugs application report • Using Advanced Event Triggering to Debug Real-Time Problems in High Speed Embedded Microprocessor Systems application report 10.27.6 Trace The device supports trace. Trace is a debug technology that provides a detailed, historical account of application code execution, timing, and data accesses. Trace collects, compresses, and exports debug information for analysis. Trace works in real-time and does not impact the execution of the system. For more information on board design guidelines for trace advanced emulation, see the Emulation and Trace Headers Technical Reference in 2.6 ‘‘Related Documentation from Texas Instruments’’ on page 19. 342 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.27.6.1 Trace Electrical Data/Timing Table 10-66 Trace Switching Characteristics (see Figure 10-57) No. Parameter 1 tw(DPnH) 1 tw(DPnH)90% Pulse duration, DPn/EMUn high detected at 90% Voh Min Pulse duration, DPn/EMUn high Max Unit 2.4 ns 1.5 ns 2 tw(DPnL) Pulse duration, DPn/EMUn low 2.4 ns 2 tw(DPnL)10% Pulse duration, DPn/EMUn low detected at 10% Voh 1.5 ns 3 tsko(DPn) Output skew time, time delay difference between DPn/EMUn pins configured as trace tskp(DPn) Pulse skew, magnitude of difference between high-to-low (tphl) and low-to-high (tplh) propagation delays. tsldp_o(DPn) Output slew rate DPn/EMUn -1 1 ns 600 ps 3.3 V/ns End of Table 10-66 Figure 10-57 Trace Timing A TPLH Buffer Inputs Buffers DP[n] / EMU[n] Pins B TPHL 1 2 B A 3 C C 10.27.7 IEEE 1149.1 JTAG The Joint Test Action Group (JTAG) interface is used to support boundary scan and emulation of the device. The boundary scan supported allows for an asynchronous test reset (TRST) and only the five baseline JTAG signals (e.g., no EMU[1:0]) required for boundary scan. Most interfaces on the device follow the Boundary Scan Test Specification (IEEE1149.1), while all of the SerDes (SRIO and SGMII) support the AC-coupled net test defined in AC-Coupled Net Test Specification (IEEE1149.6). It is expected that all compliant devices are connected through the same JTAG interface, in daisy-chain fashion, in accordance with the specification. The JTAG interface uses 1.8-V LVCMOS buffers, compliant with the Power Supply Voltage and Interface Standard for Nonterminated Digital Integrated Circuit Specification (EAI/JESD8-5). 10.27.7.1 IEEE 1149.1 JTAG Compatibility Statement For maximum reliability, the 66AK2H14/12/06 device includes an internal pulldown (IPD) on the TRST pin to ensure that TRST will always be asserted upon power up and the device’s internal emulation logic will always be properly initialized when this pin is not routed out. JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG controllers may not drive TRST high, but expect the use of an external pullup resistor on TRST. When using this type of JTAG controller, assert TRST to initialize the device after powerup and externally drive TRST high before attempting any emulation or boundary scan operations. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Peripheral Information and Electrical Specifications 343 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 10.27.7.2 JTAG Electrical Data/Timing Table 10-67 JTAG Test Port Timing Requirements (see Figure 10-58) No. Min Max Unit 1 tc(TCK) Cycle time, TCK 23 ns 1a tw(TCKH) Pulse duration, TCK high (40% of tc) 9.2 ns 1b tw(TCKL) Pulse duration, TCK low(40% of tc) 9.2 ns 3 tsu(TDI-TCK) Input setup time, TDI valid to TCK high 2 ns 3 tsu(TMS-TCK) Input setup time, TMS valid to TCK high 2 ns 4 th(TCK-TDI) Input hold time, TDI valid from TCK high 10 ns 4 th(TCK-TMS) Input hold time, TMS valid from TCK high 10 ns End of Table 10-67 Table 10-68 JTAG Test Port Switching Characteristics (see Figure 10-58) No. 2 Parameter Min Delay time, TCK low to TDO valid td(TCKL-TDOV) Max Unit 8.24 ns End of Table 10-68 Figure 10-58 JTAG Test-Port Timing 1 1b 1a TCK 2 TDO 3 4 TDI / TMS 344 66AK2H14/12/06 Peripheral Information and Electrical Specifications Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 A Revision History Revision E Added the 66AK2H14 to the manual Revision D Updated the security terminology in the Device Nomenclature definition (Page 18) Updated pin maps. (Page 34) Changed RSV074 through RSV081 to "Reserved - leave unconnected" (Page 55) Corrected Master ID 52, 83, 174-177 (Page 95) Corrected EDMA3CC3 DBS from 128 bytes to 64 bytes (Page 180) Clarified that the Packet DMA secondary port priority is set by the QM_PRIORITY bit field in the CHIP_MISC_CTL0 register. (Page 202) Added the USB PHY registers (Page 254) Updated values in the Absolute Maximum Ratings table (Page 262) Updated the footnote on SRVnom and its value (Page 263) Clocking data in the Main PLL Controller/ARM/SRIO/HyperLink/PCIe/USB Clock Input Timing Requirements table updated (Page 301) Changed the PLL Control Register BYPASS bit reset value to 1 (Page 304) Corrected the I2C Switching Characteristics units. (Page 314) Corrected formula for P in the UART Timing Requirements (Page 320) Corrected formula for C in the Timers Electrical Timing section (Page 325) Corrected formula for C in the GPIO Electrical Data/Timing section (Page 327) Changed the Tc to 23ns (Page 343) Changed CVDDT pin designations to CVDD, as the two have been tied together internally from PG1.1. Document refromatting. First Production Data release. Revision C Unreleased Revision B Added SRIOSGMIICLK clocking info to the table. (Page 298) Corrected USBVBUS terminal designation. It is not reserved. (Page 56) Added the bridge numbers to the Interconnect tables in the System Interconnect chapter (Page 195) Added the TeraNet drawings to the System Interconnect chapter (Page 191) Updated the Power-Up Sequence information in the Peripheral Information and Electrical Specifications chapter (Page 264) Corrected Event Names (48-80) (Page 116) Changed SerDes field to Reserved as it is not implemented (Page 218) Corrected Buffer Type (Page 261) Added DEVSPEED address (Page 235) Removed PLLLOCK LOCK, STAT and EVAL registers (Page 235) Removed PLLLOCK STAT and EVAL registers (Page 235) Corrected inconsistencies in RSVD pin designations between the Pin Map figures and the Terminal Functions tables. (Page 34) Changed the power up order of power rails (Page 264) Changed CPTS_RFTCLK_SEL from three bits to four bits (Page 319) Updated L3 memory data (Page 26) Updated L2 memory (Page 25) Updated memory data for L2 and MSM (Page 23) Updated MSM SRAM data (Page 26) Updated the C66x CorePac Block Diagram (Page 22) Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Revision History 345 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 Revision A Added a footnote to the System Event Mapping table (Page 115) Added CHIP_MISC_CTL1 register (Page 233) Added Initial Voltage for SR core supply (Page 260) Added the Boot Parameter Table section (Page 219) Updated the PWRSTATECTL register (Page 240) Updated the register bit fields (Page 240) Updated the L1 and L2 specs. Changed 4-way to 2-way, and changed 8-way to 16-way. (Page 32) Added ARM PLL Configuration info for 1400 MHz device (Page 228) Added bit 13 as PAPLL in the PASSPLLCTL1 register (Page 303) Added Note "Each supply must ramp monotonically and must reach a stable valid level in 20ms or less" (Page 269) Added Note "Each supply must ramp monotonically and must reach a stable valid level in 20ms or less" (Page 267) Changed PLLD at 156.25 from 24 to 2 for 1200 MHz device (Page 227) Updated PLLD at 156.25 from 0 to 3 for 800 MHz devices (Page 227) Updated the DDR3A Configuration space (Page 85) Updated the CVDD and its associated peripheral (Page 261) Added tying CVDD and CVDDT together (Page 61) Updated with CVDDS (Page 269) Updated with CVDDS (Page 267) Corrected rise and fall time of all differential clock pairs (Page 297) Corrected rise and fall time of differential clock pairs (Page 298) Added additional information to Emulation Features and Capability section (Page 328) Changed 5000 to 6000 (Page 89) Corrected the ARM_LENDIAN configuration pin description (Page 229) Added ARMCLK specification (Page 297) Changed EMIF16 CS(x) to EMIF16 CE(x-2) (Page 85) Changed 1200.80 to 1228.80 (Page 227) Updated the ALNCTL Register in the Peripheral Information and Electrical Specifications chapter. (Page 291) Updated the DCHANGE Register in the Peripheral Information and Electrical Specifications chapter. (Page 291) Changed to not support external charge pump for 5V (Page 324) Changed ’bit’ to ’pin’ (Page 229) Updated BOOTMODE pins and MIN information (Page 204) Updated the Clocking info (Page 35) Added Device Boot and Configuration chapter. (Page 204) Added Device Operating Conditions chapter. (Page 259) Added Peripheral Information and Electrical Specifications chapter. (Page 263) In the SPI Switching Characteristics table: Changed the incorrect SPIx_Clk signal name to SPICLK. (Page 311) In the SPI Switching Characteristics table: Changed the incorrect SPIx_SCS signal name to SPISCSx. (Page 312) In the SPI Switching Characteristics table: Corrected signal name from SPIx_SIMO to SPIDOUT. (Page 311) In the SPI Timing Requirements table: Changed the incorrect SPIx_Clk signal name to SPICLK. (Page 311) In the SPI Timing Requirements table: Corrected signal name SPIx_SOMI to SPIDIN. (Page 311) Updated DDRCLKN and DDRCLKP from 0.025 to 0.02. (Page 301) Added Security section (Page 227) Added thermal values into the Thermal Resistance Characteristics table. (Page 341) 346 Revision History Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback 66AK2H14/12/06 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) SPRS866E—November 2013 B Mechanical Data B.1 Thermal Data Table B-1 shows the thermal resistance characteristics for the PBGA - AAW mechanical package. Table B-1 Thermal Resistance Characteristics (PBGA Package) AAW No. °C/W 1 RθJC Junction-to-case 0.11 2 RθJB Junction-to-board 1.65 End of Table B-1 B.2 Packaging Information The following packaging information reflects the most current released data available for the designated device(s). This data is subject to change without notice and without revision of this document. Copyright 2013 Texas Instruments Incorporated Submit Documentation Feedback Mechanical Data 347 PACKAGE OPTION ADDENDUM www.ti.com 29-Apr-2016 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) 66AK2H06BAAW2 ACTIVE FCBGA AAW 1517 21 Green (RoHS & no Sb/Br) Call TI | SNAGCU Level-4-245C-72HR 66AK2H06AAW @2012 TI 66AK2H06BAAW24 ACTIVE FCBGA AAW 1517 21 Green (RoHS & no Sb/Br) Call TI | SNAGCU Level-4-245C-72HR 66AK2H06AAW @2012 TI 1.2GHZ/1.4GHZ 66AK2H06BAAWA2 ACTIVE FCBGA AAW 1517 21 Green (RoHS & no Sb/Br) Call TI | SNAGCU Level-4-245C-72HR 66AK2H06AAW @2012 TI A1.2GHZ 66AK2H06BAAWA24 ACTIVE FCBGA AAW 1517 21 Green (RoHS & no Sb/Br) Call TI | SNAGCU Level-4-245C-72HR 66AK2H06AAW @2012 TI A1.2GHZ/1.4GHZ 66AK2H06BXAAW2 ACTIVE FCBGA AAW 1517 21 Green (RoHS & no Sb/Br) Call TI | SNAGCU Level-4-245C-72HR 66AK2H06XAAW @2012 TI 66AK2H12BAAW2 ACTIVE FCBGA AAW 1517 21 Green (RoHS & no Sb/Br) Call TI | SNAGCU Level-4-245C-72HR 66AK2H12AAW @2012 TI 66AK2H12BAAW24 ACTIVE FCBGA AAW 1517 21 Green (RoHS & no Sb/Br) Call TI | SNAGCU Level-4-245C-72HR 66AK2H12AAW @2012 TI 1.2GHZ/1.4GHZ 66AK2H12BAAWA2 ACTIVE FCBGA AAW 1517 21 Green (RoHS & no Sb/Br) Call TI | SNAGCU Level-4-245C-72HR 66AK2H12AAW @2012 TI A1.2GHZ 66AK2H12BAAWA24 ACTIVE FCBGA AAW 1517 21 Green (RoHS & no Sb/Br) Call TI | SNAGCU Level-4-245C-72HR 66AK2H12AAW @2012 TI A1.2GHZ/1.4GHZ 66AK2H12BXAAW2 ACTIVE FCBGA AAW 1517 21 TBD Call TI Call TI 66AK2H12XAAW @2012 TI 66AK2H14BAAW24 ACTIVE FCBGA AAW 1517 21 Green (RoHS & no Sb/Br) Call TI | SNAGCU Level-4-245C-72HR 66AK2H14AAW @2012 TI 1.2GHZ/1.4GHZ 66AK2H14BAAWA24 ACTIVE FCBGA AAW 1517 21 Green (RoHS & no Sb/Br) Call TI | SNAGCU Level-4-245C-72HR 66AK2H14AAW @2012 TI A1.2GHZ/1.4GHZ 66AK2H14BXAAW24 ACTIVE FCBGA AAW 1517 21 Green (RoHS & no Sb/Br) Call TI | SNAGCU Level-4-245C-72HR 66AK2H14XAAW @2012 TI 1.2GHZ/1.4GHZ Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 29-Apr-2016 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE OUTLINE AAW1517B FCBGA - 3.62 mm max height SCALE 0.370 PLASTIC BALL GRID ARRAY 40.2 39.8 A BALL A1 CORNER B 40.2 39.8 ( 32) ( 30) 3.62 MAX C SEATING PLANE BALL TYP (1.08) 0.6 TYP 0.4 0.2 C 38 TYP SYMM (1) TYP AW AV AT AP AM AK AH AF 38 TYP AD AB Y V T P M K H F D B AU AN AL AJ AG AE AC BALL A1 CORNER SYMM AA W U R 1517X N L 0.7 0.5 0.25 0.1 J G E C A C B C A 1 TYP (1) TYP AR 1 2 3 4 5 6 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 1 TYP 4222495/A 01/2016 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. www.ti.com EXAMPLE BOARD LAYOUT AAW1517B FCBGA - 3.62 mm max height PLASTIC BALL GRID ARRAY SYMM 1517X ( 0.45) (1) TYP A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 (1) TYP B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE AF AG AH AJ AK AL AM AN AP AR AT AU AV AW SYMM LAND PATTERN EXAMPLE SCALE:3X 0.05 MAX ( 0.45) METAL 0.05 MIN METAL UNDER SOLDER MASK SOLDER MASK OPENING NON-SOLDER MASK DEFINED (PREFERRED) SOLDER MASK DEFINED ( 0.45) SOLDER MASK OPENING SOLDER MASK DETAILS NOT TO SCALE NOTES: (continued) 3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For information, see Texas Instruments literature number SPRU811 (www.ti.com/lit/spru811). www.ti.com 4222495/A 01/2016 EXAMPLE STENCIL DESIGN AAW1517B FCBGA - 3.62 mm max height PLASTIC BALL GRID ARRAY 1517X ( 0.45) (1) TYP SYMM A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 B (1) TYP C D E F G H J K L M N P R T U V W Y AA AB AC AD AE AF AG AH AJ AK AL AM AN AP AR AT AU AV AW SYMM SOLDER PASTE EXAMPLE BASED ON 0.15 mm THICK STENCIL SCALE:3X 4222495/A 01/2016 NOTES: (continued) 4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. www.ti.com IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated