AN- REF- 15W ADAPT ER 15W 5V Adapt er Ref er ence Boar d wit h I CE2Q S03G , I PU60R950 C6 BSC067N06LS3 G & BAS21-03W Appl icat ion Not e AN - REF- 15W ADAPT ER V1.0, 2014-07-02 Po wer Manag em ent & Mult im ar k et Edition 2014-07-02 Published by Infineon Technologies AG, 81726 Munich, Germany. © 2014 Infineon Technologies AG All Rights Reserved. LEGAL DISCLAIMER THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Trademarks of Infineon Technologies AG AURIX™, C6 6™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2011-11-11 Application Note AN-REF-15W ADAPTER 3 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Revision History AN_201406_PL21_005 Major changes since previous revision Date Version Changed By Change Description 2 Jul 2014 1.0 Kyaw Zin Min Release of final version We Listen to Your Comments Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of our documentation. Please send your proposal (including a reference to this document title/number) to: [email protected] Application Note AN-REF-15W ADAPTER 4 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Table of Contents Revision History .............................................................................................................................................. 4 Table of Contents ............................................................................................................................................ 5 1 Abstract ........................................................................................................................................ 7 2 Reference board ........................................................................................................................... 7 3 Technical specifications .............................................................................................................. 8 4 List of features (ICE2QS03G) ....................................................................................................... 8 5 5.1 5.2 5.3 5.4 5.5 Circuit description ....................................................................................................................... 9 Mains Input Rectification and Filtering ............................................................................................ 9 PWM Control and switching MosFET ............................................................................................. 9 Snubber Network ........................................................................................................................... 9 Output Stage.................................................................................................................................. 9 Feedback Loop .............................................................................................................................. 9 6 6.1 6.2 6.3 6.4 6.5 Circuit Operation ........................................................................................................................ 10 Startup Operation......................................................................................................................... 10 Normal Mode Operation ............................................................................................................... 10 Primary side peak current control ................................................................................................. 10 Digital Frequency Reduction......................................................................................................... 10 Burst Mode Operation .................................................................................................................. 10 7 7.1 7.2 7.3 7.4 7.5 7.6 Protection Features.................................................................................................................... 11 VCC over voltage and under voltage protection ............................................................................ 11 Over load/Open loop protection .................................................................................................... 11 Auto restart for over temperature protection.................................................................................. 11 Adjustable output overvoltage protection ...................................................................................... 11 Short winding protection ............................................................................................................... 11 Foldback point protection ............................................................................................................. 11 8 Circuit diagram........................................................................................................................... 12 9 9.1 9.2 PCB layout.................................................................................................................................. 13 Top side ....................................................................................................................................... 13 Bottom side .................................................................................................................................. 13 10 Component list ........................................................................................................................... 14 11 Transformer construction .......................................................................................................... 15 12 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 Test results................................................................................................................................. 16 Efficiency ..................................................................................................................................... 16 Input standby power ..................................................................................................................... 17 Line regulation ............................................................................................................................. 18 Load regulation ............................................................................................................................ 18 Maximum power ........................................................................................................................... 19 ESD immunity (EN61000-4-2) ...................................................................................................... 19 Surge immunity (EN61000-4-5) .................................................................................................... 19 Conducted emissions (EN55022 class B) ..................................................................................... 20 Thermal measurement ................................................................................................................. 22 Application Note AN-REF-15W ADAPTER 5 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 13 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 13.10 13.11 Waveforms and scope plots ...................................................................................................... 23 Start up at low/high AC line input voltage with maximum load ....................................................... 23 Soft start ...................................................................................................................................... 23 Drain voltage and current at maximum load .................................................................................. 24 Zero crossing point during normal operation ................................................................................. 24 Load transient response (Dynamic load from 10% to 100%) ......................................................... 25 Output ripple voltage at maximum load......................................................................................... 25 Output ripple voltage during burst mode at 1 W load..................................................................... 26 Active Burst mode operation......................................................................................................... 26 Over load protection (Auto restart mode) ...................................................................................... 27 Output overvoltage protection (Latched off mode) ........................................................................ 27 VCC under voltage/Short optocoupler protection (Auto restart mode) ............................................. 28 14 References ................................................................................................................................. 28 Application Note AN-REF-15W ADAPTER 6 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Abstract Abstract 1 This application note is an engineering report of a very small form factor reference design for universal input 15W 5V adapter. The adapter is using ICE2QS03G, a second generation current mode control quasi-resonant flyback topology controller, IPU60R950C6, a sixth generation of high voltage power CoolMOS™ and BSC067N06LS3 G, a third series of medium voltage power OptiMOS™, optimized for Synchronous Rectification. The distinguishing features of this reference design are very small form factor, best in class low standby power, very high efficiency, good EMI performance and various modes of protection for high reliable system. Reference board 2 This document contains the list of features, the power supply specification, schematic, bill of material and the transformer construction documentation. Typical operating characteristics such as performance curve and scope waveforms are showed at the rear of the report. 16mm 45mm 31mm Figure 1 – REF-ICE2QSO3G, IPU60R950C6 & BSC067N06LS3 G 15W ADAPTER [Dimensions L x W x H: 45mm x 31mm x 16mm] IPU60R950C6 BAS21-03W Figure 2A – REF-ICE2QSO3G, IPU60R950C6 & BSC067N06LS3 G 15W ADAPTER (Top Side) BSC067N06LS3 G ICE2QS03G BAS21-03W Figure 2B – REF-ICE2QSO3G, IPU60R950C6 & BSC067N06LS3 G 15W ADAPTER (Bottom Side) Application Note AN-REF-15W ADAPTER 7 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Technical specifications 3 Technical specifications Input voltage 85Vac~265Vac Input frequency 50~60Hz Output voltage 5V Output current 3A Output power 15W Minimum switching frequency at full load and minimum input voltage 45kHz Maximum input power(Peak Power) for full input range < ±6% of input power No-load power consumption < 75mW (comply with EU CoC Version 5, Tier 2 and EPS of DOE USA) Active mode four point average efficiency (25%,50%,75% & 100%load) >81.84% (comply with EU CoC Version 5, Tier 2 and EPS of DOE USA) Active mode at 10% load efficiency >72.48% (comply with EU CoC Version 5, Tier 2) Form factor case size (L x W x H) (45 x 31 x 16) mm3 4 List of features (ICE2QS03G) Quasi resonant operation till very low load Active burst mode operation at light/no load for low standby input power (< 100mW) Digital frequency reduction with decreasing load HV startup cell with constant charging current Built-in digital soft-start Foldback correction and cycle-by-cycle peak current limitation Auto restart mode for VCC Overvoltage protection Auto restart mode for VCC Undervoltage protection Auto restart mode for Overload /Openloop protection Auto restart mode for Over temperature protection Latch-off mode for adjustable output overvoltage protection Latch-off mode for Short Winding Application Note AN-REF-15W ADAPTER 8 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Circuit description 5 Circuit description 5.1 Mains Input Rectification and Filtering The AC line input side comprises the input fuse F1 as over-current protection. A rectified DC voltage (120V ~ 374V) is obtained through a bridge rectifier BR1 and a pi filter C13, FB21 and C22. The pi filer also attenuates the differential mode conducted EMI. 5.2 PWM Control and switching MosFET The PWM pulse is generated by the Quasi Resonant PWM current-mode Controller ICE2QS03G and this PWM pulse drives the high voltage power CoolMOS™, IPU60R950C6 (C6) which designed according to the revolutionary Superjunction (SJ) principle. The CoolMOS™ C6 provides all benefits of a fast switching SJ MOSFET while not sacrificing ease of use. It achieves extremely low conduction and switching losses and can make switching applications more efficient, more compact, lighter and cooler. The PWM switch-on is determined by the zero-crossing input signal and the value of the up/down counter. The PWM switch-off is determined by the feedback signal VFB and the current sensing signal VCS. ICE2QS03G also performs all necessary protection functions in flyback converters. Details about the information mentioned above are illustrated in the product datasheet. 5.3 Snubber Network A snubber network R11, R11A, C15 and D11 dissipate the energy of the leakage inductance and suppress ringing on the SMPS transformer. Due to the resonant capacitor (MOSFET’s drain source capacitance), the overshoot is relatively smaller than fixed frequency flyback converter. Thus the snubber resistor can be used with a larger one which will reduce the snubber loss. 5.4 Output Stage On the secondary side, 5V output, the PWM pulse is generated by synchronous rectification controller UCC24610. The synchronous rectification pulse drives the medium voltage power OptiMOS™, BSC067N06LS3 -G which is optimized for synchronous rectification such as the lowest RDS(on), the perfect switching behavior of fast switching, the smallest footprint and highest power density. The capacitors C22 provides energy buffering following with the LC filter FB21 and C24 to reduce the output ripple and prevent interference between SMPS switching frequency and line frequency considerably. Storage capacitor C22 is designed to have an internal resistance (ESR) as small as possible. This is to minimize the output voltage ripple caused by the triangular current. 5.5 Feedback Loop For feedback, the output is sensed by the voltage divider of R26 and R25 and compared to TL431 internal reference voltage. C25, C26 and R24 comprise the compensation network. The output voltage of TL431 is converted to the current signal via optocoupler IC12 and two resistors R22 and R23 for regulation control. Application Note AN-REF-15W ADAPTER 9 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Circuit Operation 6 Circuit Operation 6.1 Startup Operation Since there is a built-in startup cell in the ICE2QS03G, there is no need for external start up resistor, which can improve standby performance significantly. When VCC reaches the turn on voltage threshold 18V, the IC begins with a soft start. The soft-start implemented in ICE2QS03G is a digital time-based function. The preset soft-start time is 12ms with 4 steps. If not limited by other functions, the peak voltage on CS pin will increase step by step from 0.32V to 1V finally. After IC turns on, the Vcc voltage is supplied by auxiliary windings of the transformer. 6.2 Normal Mode Operation The secondary output voltage is built up after startup. The secondary regulation control is adopted with TL431 and optocoupler. The compensation network C25, C26 and R24 constitutes the external circuitry of the error amplifier of TL431. This circuitry allows the feedback to be precisely controlled with respect to dynamically varying load conditions, therefore providing stable control. 6.3 Primary side peak current control The MOSFET drain source current is sensed via external resistor R14 and R14A. Since ICE2QS03G is a current mode controller, it would have a cycle-by-cycle primary current and feedback voltage control which can make sure the maximum power of the converter is controlled in every switching cycle. 6.4 Digital Frequency Reduction During normal operation, the switching frequency for ICE2QS03G is digitally reduced with decreasing load. At light load, the CoolMOS™ IPU60R950C6 will be turned on not at the first minimum drain-source voltage time, but on the nth. The counter is in range of 1 to 7, which depends on feedback voltage in a time-base. The feedback voltage decreases when the output power requirement decreases, and vice versa. Therefore, the counter is set by monitoring voltage VFB. The counter will be increased with low VFB and decreased with high VFB. The thresholds are preset inside the IC. 6.5 Burst Mode Operation At light load condition, the SMPS enters into Active Burst Mode. At this stage, the controller is always active but the Vcc must be kept above the switch off threshold. During active burst mode, the efficiency increase significantly and at the same time it supports low ripple on Vout and fast response on load jump. For determination of entering Active Burst Mode operation, three conditions apply: 1. The feedback voltage is lower than the threshold of VFBEB(1.25V). Accordingly, the peak current sense voltage across the shunt resistor is 0.1667; 2. The up/down counter is 7; 3. And a certain blanking time (tBEB=24ms). Once all of these conditions are fulfilled, the Active Burst Mode flip-flop is set and the controller enters Active Burst Mode operation. This multi-condition determination for entering Active Burst Mode operation prevents mistriggering of entering Active Burst Mode operation, so that the controller enters Active Burst Mode operation only when the output power is really low during the preset blanking time. During active burst mode, the maximum current sense voltage is reduced from 1V to 0.34V so as to reduce the conduction loss and the audible noise. At the burst mode, the FB voltage is changing like a sawtooth between 3.0 and 3.6V. The feedback voltage immediately increases if there is a high load jump. This is observed by one comparator. As the current limit is 34% during Active Burst Mode a certain load is needed so that feedback voltage can exceed VLB (4.5V). After leaving active burst mode, maximum current can now be provided to stabilize V O. In addition, the up/down counter will be set to 1 immediately after leaving Active Burst Mode. This is helpful to decrease the output voltage undershoot. Application Note AN-REF-15W ADAPTER 10 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Protection Features 7 Protection Features 7.1 VCC over voltage and under voltage protection During normal operation, the Vcc voltage is continuously monitored. When the Vcc voltage increases up to VVCCOVP or Vcc voltage falls below the under voltage lock out level VVCCoff, the IC will enter into autorestart mode. 7.2 Over load/Open loop protection In case of open control loop, feedback voltage is pulled up with internally block. After a fixed blanking time, the IC enters into auto restart mode. In case of secondary short-circuit or overload, regulation voltage VFB will also be pulled up, same protection is applied and IC will auto restart. 7.3 Auto restart for over temperature protection The IC has a built-in over temperature protection function. When the controller’s temperature reaches 140 °C, the IC will shut down switch and enters into auto restart. This can protect power MOSFET from overheated. 7.4 Adjustable output overvoltage protection During off-time of the power switch, the voltage at the zero-crossing pin ZC is monitored for output overvoltage detection. If the voltage is higher than the preset threshold 3.7V for a preset period 100μs, the IC is latched off. 7.5 Short winding protection The source current of the MOSFET is sensed via external resistor R14 and R14A. If the voltage at the current sensing pin is higher than the preset threshold VCSSW of 1.68V during the on-time of the power switch, the IC is latched off. This constitutes a short winding protection. To avoid an accidental latch off, a spike blanking time of 190ns is integrated in the output of internal comparator. 7.6 Foldback point protection For a quasi-resonant flyback converter, the maximum possible output power is increased when a constant current limit value is used for all the mains input voltage range. This is usually not desired as this will increase additional cost on transformer and output diode in case of output over power conditions. The internal foldback protection is implemented to adjust the VCS voltage limit according to the bus voltage. Here, the input line voltage is sensed using the current flowing out of ZC pin, during the MOSFET on-time. As the result, the maximum current limit will be lower at high input voltage and the maximum output power can be well limited versus the input voltage. Application Note AN-REF-15W ADAPTER 11 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Circuit diagram 8 Circuit diagram Figure 3 – 15W 5V ICEICE2QSO3G power supply schematic Application Note AN-REF-15W ADAPTER 12 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 PCB layout 9 PCB layout 9.1 Top side Figure 4 – Top side copper and component legend 9.2 Bottom side Figure 5 – Bottom side copper and component legend Application Note AN-REF-15W ADAPTER 13 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Component list 10 Designator BR1 C12 C13, C13A C15 C16 C17 C18, C26 C19 C21 C22 C24 C25 C27 D11 D12,D13 D21 F1 FB21 IC11 IC12 IC21 IC22 L L11 N Q11 Q21 R11,R11A R12, R15 R12A, R13, R14B R12B R12C R14, R14A R18 R21 R22 R23 R24 R25, R26 R27 R28 R29 R30 R31, R33 R32 TR1 USB Port ZD11 Component list Description (800V/1A) 2.2nF/250V 15uF/400V 1nF/1000V 22uF/35V 100nF/50V 1nF/50V 47pF/50V 560pF/100V 820uF/6.3V 450uF/6.3V 220nF/25V 1uF/25V 600V/1A 200V/0.25A 45V/5A 250V/1A FAIR RITE ICE2QS03G TCMT1103 TL431 UCC24610 connector 1mH/0.5A Connector N(2.5diameter) 600V/0.95R 60V/6.7mR 200k/400V/0.5W 10R 0R Footprint Part Number SOP-4 D1UBA80 MKT2/13/10_0M8 DE1E3KL222MC4BNA1S RB10H(10x16) 400AX15M10X16 0805 C0805X102KDRACTU 1206 C3216X5R1V226M 0402 GRM155R71H104KE14D 0402 GRM155R71H102KA01D 0402 GRM1555C1H470JA01D 0603 GRM1885C2A561JA01D RB6.3 MP6RL820MC8 RB5 MP6RL450MB8 0402 GRM155C81E224KE01D 0402 GRM155R61E105KA12D Sub SMA ES1JL SOD323 BAS21-03W DO-221AC(slimSMA) VSSAF5L45 AXIAL0.4_V 3mm 0263001.HAT1L AXIAL0.4_V 3mm 2743002112 SO-8 ICE2QS03G optocoupler half pitch mini TCMT1103 flat package SOT-23 TL431BFDT SO-8 UCC24610 Connector 5000RED CH8 768772102 Connector(2.5diameter)5001BLACK TO-251(IPAK) IPU60R950C6 INF-PG-TDSON-8-1 BSC067N06LS3 G 0805 ERJP06F2003V 0402 0402 43k/1% 0402 10k/1% 0402 2R/0.33W/1% 1206 ERJ8BQF2R0V 10k 0402 47R/0.5W 0805 ERJP6WF47R0V 130R 0402 1.2k 0402 12k 0402 20k 0402 2R 0402 68k 0402 220k 0402 43.2k 0402 51.1k 0402 75k 0402 718uH(66:5:16) RM6(TP4A) TR_RM6_THT6Pin USBPORT USB2 Short(Horizontal)JL-CAF-001 22V Zener SOD323 UDZS22B Application Note AN-REF-15W ADAPTER 14 Manufacturer SHINDENGEN MURATA RUBYCON Quantity 1 1 2 1 1 MURATA 1 MURATA 2 MURATA 1 MURATA 1 1 1 MURATA 1 MURATA 1 1 INFINEON 2 1 1 1 INFINEON 1 1 1 1 1 WURTH ELECTRONICS 1 1 INFINEON 1 INFINEON 1 2 2 3 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Transformer construction 11 Transformer construction Core and material: RM6 TP4A Bobbin: RM6 with 3 pin Primary Inductance, Lp=718 μH( ±10%), measured between pin 2 and pin 6 Start 6 Stop 1 No. of turns 33 Wire size 1XAWG#34 S1(Flying wire) S2(5) Flying wire S1(Flying wire) floating F2(3) Flying wire floating 30 5 30 1XAWG#34 1XLitz TIW(7 X AWG#29) 1XAWG#34 1 S1(Flying wire) 2 F1 (Flying wire) 33 16 1XAWG#34 1XTIW(0.25mm) Layer 1 /2 Primary Shield Secondary Shield 1 /2 Primary Auxiliary Figure 6 – Transformer structure Application Note AN-REF-15W ADAPTER 15 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Test results 12 Test results 12.1 Efficiency VOut_ripple Vin(Vac) 85 115 230 265 Pin(W) Vo(Vdc) Io(A) _pk_pk 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 0.00 0.30 0.75 1.50 2.25 3.00 0.00 0.30 0.75 1.50 2.25 3.00 0.00 0.30 0.75 1.50 2.25 3.00 0.00 0.30 0.75 1.50 2.25 3.00 (mV) 59.70 57.40 22.60 32.10 35.20 49.70 64.90 59.90 20.10 29.80 35.00 40.30 70.20 81.30 22.40 33.50 35.30 37.00 76.00 77.90 22.90 33.70 36.60 38.80 0.0308 1.7300 4.2300 8.4200 12.6800 17.2000 0.0316 1.7200 4.2200 8.3700 12.5200 16.7900 0.0352 1.7600 4.3700 8.4100 12.5400 17.0600 0.0376 1.7860 4.4500 8.4800 12.6400 17.2400 Po(W) η (%) 1.50 3.74 7.49 11.23 14.97 86.53 88.48 88.90 88.54 87.03 1.50 3.74 7.49 11.23 14.97 87.03 88.68 89.43 89.68 89.16 1.50 3.74 7.49 11.23 14.97 85.06 85.64 89.00 89.53 87.75 1.50 3.74 7.49 11.23 14.97 83.82 84.10 88.27 88.83 86.83 Average η (%) OLP Pin (W) OLP Iout (A) 19.50 3.37 19.36 3.44 21.25 3.66 21.50 3.79 88.24 89.24 87.98 87.01 Active-Mode Efficiency versus AC Line Input Voltage 93.00 Efficiency [ % ] 91.00 89.24 89.00 88.24 87.98 89.16 87.00 87.01 87.75 87.03 86.83 85.00 85 115 230 265 AC Line Input Voltage [ Vac ] Full load Efficiency Average Efficiency(25%,50%,75% & 100%) Figure 7 – Efficiency vs AC line input voltage Application Note AN-REF-15W ADAPTER 16 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Test results Efficiency versus Output Power Efficiency [ % ] 92.00 89.43 90.00 88.00 89.68 88.68 87.03 89.53 89.00 87.75 86.00 84.00 89.16 85.06 85.64 82.00 80.00 10 25 50 75 100 Output Power [%] Vin=115Vac Vin=230Vac Figure 8 – Efficiency vs output power @ 115Vac and 230V line 12.2 Input standby power Standby Power @ no-load versus AC Line Input Voltage Input Power [ mW ] 100 80 60 40 30.83 31.59 85 115 35.23 37.58 230 265 20 0 AC Line Input Voltage [ Vac ] Po = 0W Figure 9 – Input standby power @ no load vs AC line input voltage (measured by Yokogawa WT210 power meter - integration mode) Application Note AN-REF-15W ADAPTER 17 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Test results 12.3 Line regulation Line Regulation: Output voltage @ max. load versus AC line input voltage Output Voltage [ V ] 5.2 5.1 4.99 4.99 4.99 4.99 85 115 230 265 5.0 4.9 4.8 AC Line Input Voltage [ Vac ] Vo @ maximum load Figure 10 – Line regulation Vo @ full load vs AC line input voltage 12.4 Load regulation Load Regulation: Vout versus output power Output Voltage [ V ] 5.20 5.10 4.99 4.99 4.99 4.99 4.99 5.00 4.99 4.99 4.99 4.99 4.99 4.90 4.80 Output Power [%] Output voltage @ 115Vac Output voltage @ 230Vac Figure 11 – Load regulation Vo vs output power Application Note AN-REF-15W ADAPTER 18 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Test results 12.5 Maximum power 30 Pin=20.43 5.24% W IO=3.58 5.87% A 3.66 3.44 3.37 4 3.79 25 21.50 21.25 20 19.50 19.36 15 2 90 115 230 Peak Output Current (A) Peak Input Power(OLP) [ W ] Peak input power(OLP)/Peak output current versus AC Line Input Voltage 264 AC Line Input Voltage [ Vac ] Peak Input Power Peak Output Current Figure 12 – Maximum input power (before over-load protection) vs AC line input voltage 12.6 ESD immunity (EN61000-4-2) Pass EN61000-4-2 level 3 (±6kV) contact discharge 12.7 Surge immunity (EN61000-4-5) Pass EN61000-4-5 Installation class 3 (2kV: common mode) Application Note AN-REF-15W ADAPTER 19 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Test results 12.8 Conducted emissions (EN55022 class B) The conducted EMI was measured by Schaffner (SMR25503) and followed the test standard of EN55022 (CISPR 22) class B. The demo board was set up at maximum load (15W) with input voltage of 115Vac and 230Vac. 80 EN_V_QP EN_V_AV 70 QP AV 60 50 dBµV 40 30 20 10 0 -10 0.1 1 10 100 10 100 -20 f / MHz Figure 13 – Max. Load (15W) with 115 Vac (Line) 80 EN_V_QP EN_V_AV 70 QP AV 60 50 dBµV 40 30 20 10 0 -10 0.1 1 -20 f / MHz Figure 14 – Max. Load (15W) with 115 Vac (Neutral) Application Note AN-REF-15W ADAPTER 20 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Test results 80 EN_V_QP EN_V_AV 70 QP AV 60 50 dBµV 40 30 20 10 0 -10 0.1 1 10 100 -20 f / MHz Figure 15 – Max. Load (15W) with 230 Vac (Line) 80 EN_V_QP EN_V_AV 70 QP AV 60 50 dBµV 40 30 20 10 0 -10 0.1 1 10 100 -20 f / MHz Figure 16 – Max. Load (15W) with 230 Vac (Neutral) Pass conducted EMI EN55022 (CISPR 22) class B with > 9dB margin for QP. Application Note AN-REF-15W ADAPTER 21 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Test results 12.9 Thermal measurement The reference adapter’s thermal test was done on key components inside a dummy adapter plastic case which is covered by the transparent box (W x L x H: 17mm x 17mm x 23mm). The measurements were taken with thermocouple data logger (GL220 & 87V) after two hours running with full load (15W). Major component 85Vac (°C) 115Vac (°C) 230Vac (°C) 265Vac (°C) 1 Q11 (IPU60R950C6) 93.8 81.5 91.8 100.8 2 Q21 (BSC067N06LS3G) 80.0 72.3 82.5 87.6 3 IC22 (SR IC) 76.1 69.2 76.7 81.2 4 TR1 (Transformer) 78.0 70.4 75.2 79.0 5 IC11 (ICE2QS03G) 68.9 62.0 62.8 65.1 6 BR1 (bridge diode) 67.9 58.4 53.1 53.8 7 Case Bottom (PCB bottom side) 50.5 46.4 48.4 50.2 8 Case Top (PCB component side) 49.5 45.8 46.8 49.0 9 Ambient (1cm above EUT) 30.0 29.9 30.3 30.1 Transparent box Adapter with dummy plastic case Data logger Figure 17 – Thermal measurement setup Application Note AN-REF-15W ADAPTER 22 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Waveforms and scope plots 13 Waveforms and scope plots All waveforms and scope plots were recorded with a LeCroy 6050 oscilloscope 13.1 Start up at low/high AC line input voltage with maximum load 195ms Channel Channel Channel Channel 1; C1 : Drain voltage (VDrain) 2; C2 : Supply voltage (VCC) 3; C3 : Feedback voltage (VFB) 4; C4 : Zero crossing voltage (VZC) 195ms Channel Channel Channel Channel 1; C1 : Drain voltage (VDrain) 2; C2 : Supply voltage (VCC) 3; C3 : Feedback voltage (VFB) 4; C4 : Zero crossing voltage (VZC) Startup time = 195ms Startup time = 195ms Figure 18 – Startup @ 85Vac & max. load Figure 19 – Startup @ 265Vac & max. load 13.2 Soft start 13ms Channel Channel Channel Channel 1; C1 : Drain voltage (VDrain) 2; C2 : Supply voltage (VCC) 3; C3 : Feedback voltage (VFB) 4; C4 : Zero crossing voltage (VZC) Soft Star time = 13ms Figure 20 – Soft Start @ 85Vac & max. load Application Note AN-REF-15W ADAPTER 23 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Waveforms and scope plots 13.3 Drain voltage and current at maximum load Channel 1; C1 : Drain-source voltage (VDS) Channel 2; C2 : Current sense voltage (VCS) VDrain_peak = 276V Figure 21 – Operation @ 85Vac and max. load 13.4 Channel 1; C1 : Drain-source voltage (VDS) Channel 2; C2 : Current sense voltage (VCS) VDrain_peak = 546V Figure 22 – Operation @ 265Vac and max. load Zero crossing point during normal operation Channel 1; C1 : Drain voltage (VDrain) Channel 2; C2 : Current sense voltage (VCS) Figure 23 – Operation @ 85Vac and 2nd zero crossing Application Note AN-REF-15W ADAPTER Channel 1; C1 : Drain voltage (VDrain) Channel 2; C2 : Current sense voltage (VCS) Figure 24 – Operation @ 85Vac and 7th zero crossing 24 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Waveforms and scope plots 13.5 Load transient response (Dynamic load from 10% to 100%) Channel 1; C1 : Output ripple voltage (Vo) Channel 2; C2 : Output current (Io) Vripple_pk_pk=241mV (Load change from10% to 100%,100Hz,0.4A/μS slew rate) Probe terminal end with decoupling capacitor of 0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter Channel 1; C1 : Output ripple voltage (Vo) Channel 2; C2 : Output current (Io) Vripple_pk_pk=245mV (Load change from10% to 100%,100Hz,0.4A/μS slew rate) Probe terminal end with decoupling capacitor of 0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter Figure 25 – Load transient response @ 85Vac Figure 26 – Load transient response @ 265Vac 13.6 Output ripple voltage at maximum load Channel 1; C1 : Output ripple voltage (Vo) Channel 2; C2 : Output current (Io) Channel 1; C1 : Output ripple voltage (Vo) Channel 2; C2 : Output current (Io) Vripple_pk_pk=49.7mV Probe terminal end with decoupling capacitor of 0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter Vripple_pk_pk = 38.8mV Probe terminal end with decoupling capacitor of 0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter Figure 27 – AC output ripple @ 85Vac and max. load Figure 28 – AC output ripple @ 265Vac and max. load Application Note AN-REF-15W ADAPTER 25 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Waveforms and scope plots 13.7 Output ripple voltage during burst mode at 1 W load Channel 1; C1 : Output ripple voltage (Vo) Channel 2; C2 : Output current (Io) Channel 1; C1 : Output ripple voltage (Vo) Channel 2; C2 : Output current (Io) Vripple_pk_pk=59.5mV Probe terminal end with decoupling capacitor of 0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter Vripple_pk_pk = 73.8mV Probe terminal end with decoupling capacitor of 0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter Figure 29 – AC output ripple @ 85Vac and 1W load Figure 30 – AC output ripple @ 265Vac and 1W load 13.8 Active Burst mode operation th 6 th 7 Channel 1; C1 : Drain voltage (VDrain) Channel 2; C2 : Supply voltage (VCC) Channel 3; C3 : Feedback voltage (VFB) Channel 4; C4 : Zero crossing voltage (VZC) Condition: VFB<1.2V, NZC=7 and tblanking =29ms (load change form full load to 1W load) Figure 31 – Entering active burst mode @ 85Vac Application Note AN-REF-15W ADAPTER Channel 1; C1 : Drain voltage (VDrain) Channel 2; C2 : Supply voltage (VCC) Channel 3; C3 : Feedback voltage (VFB) Channel 4; C4 : Zero crossing voltage (VZC) Condition: VFB>4.5V (load change from 1W to full load) Figure 32 – Leaving active burst mode @ 85Vac 26 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 Waveforms and scope plots 13.9 Over load protection (Auto restart mode) built-in 30ms blanking Channel 1; C1 : Drain voltage (VDrain) Channel 2; C2 : Supply voltage (VCC) Channel 3; C3 : Feedback voltage (VFB) Channel 4; C4 : Zero crossing voltage (VZC) Condition: VFB>4.5V & last for 30ms blanking time (output load change from full load to short load) Figure 33 – Over load protection with extended blanking time @ 85Vac) 13.10 Channel Channel Channel Channel Output overvoltage protection (Latched off mode) 1; C1 : Output voltage (Vo) 2; C2 : Supply voltage (VCC) 3; C3 : Feedback voltage (VFB) 4; C4 : Zero crossing voltage (VZC) Condition: VO >5.5V (VZC>3.7V) (short R26 during while system operation at no load) Figure 34 – Output overvoltage protection @ 85Vac Application Note AN-REF-15W ADAPTER 27 V1.0, 2014-07-02 15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6 References 13.11 VCC under voltage/Short optocoupler protection (Auto restart mode) Enter autorestart Channel Channel Channel Channel Exit autorestart 1; C1 : Drain voltage (VDrain) 2; C2 : Supply voltage (VCC) 3; C3 : Feedback voltage (VFB) 4; C4 : Zero crossing voltage (VZC) VCC under voltage/short optocoupler protection (short the transistor of optocoupler during system operating @ full load & release) Figure 35 – Vcc under voltage/short optocoupler protection @ 85Vac 14 [1] [2] [3] [4] [5] [6] [7] [8] [9] References ICE2QS03G data sheet, Infineon Technologies AG IPU60R950C6 data sheet, 600V CoolMOS™ C6 Power Transistor, Infineon Technologies AG BSC067N06LS3 G data sheet, 60V OptiMOS™ 3 Power Transistor, Infineon Technologies AG BAS21-03W data sheet, Infineon Technologies AG Converter Design Using the Quasi-Resonant PWM Controller ICE2QS01, Infineon Technologies AG, 2006. [ANPS0003] Design tips for flyback converters using the Quasi-Resonant PWM controller ICE2QS01, Infineon Technologies, 2006. [ANPS0005] Determine the switching frequency of Quasi-Resonant flyback converters designed with ICE2QS01, Infineon Technologies, 2006. [ANPS0004] ICE2QS03G design guide. [ANPS0027] 36W Evaluation Board with Quasi-Resonant PWM Controller ICE2QS03G, 2011. [AN-PS0040] Application Note AN-REF-15W ADAPTER 28 V1.0, 2014-07-02 w w w . i nf i n eo n. com Published by Infineon Technologies AG