15W 5V Adapter Reference Design

AN- REF- 15W ADAPT ER
15W 5V Adapt er Ref er ence Boar d
wit h I CE2Q S03G , I PU60R950 C6
BSC067N06LS3 G & BAS21-03W
Appl icat ion Not e AN - REF- 15W ADAPT ER
V1.0, 2014-07-02
Po wer Manag em ent & Mult im ar k et
Edition 2014-07-02
Published by Infineon Technologies AG,
81726 Munich, Germany.
© 2014 Infineon Technologies AG
All Rights Reserved.
LEGAL DISCLAIMER
THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE
IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE
REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR
QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION
NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON
TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND
(INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN
THIS APPLICATION NOTE.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the
failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life
support devices or systems are intended to be implanted in the human body or to support and/or maintain and
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other
persons may be endangered.
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Trademarks of Infineon Technologies AG
AURIX™, C6 6™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,
CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,
EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™,
ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™,
POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™,
ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™,
TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by
AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum.
COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™
of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium.
HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™
of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR
STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc.
MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS
Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of
Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems
Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc.
SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software
Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc.
TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™
of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™
of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.
Last Trademarks Update 2011-11-11
Application Note AN-REF-15W ADAPTER
3
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Revision History
AN_201406_PL21_005
Major changes since previous revision
Date
Version
Changed By
Change Description
2 Jul 2014
1.0
Kyaw Zin Min
Release of final version
We Listen to Your Comments
Is there any information in this document that you feel is wrong, unclear or missing?
Your feedback will help us to continuously improve the quality of our documentation.
Please send your proposal (including a reference to this document title/number) to:
[email protected]
Application Note AN-REF-15W ADAPTER
4
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Table of Contents
Revision History .............................................................................................................................................. 4
Table of Contents ............................................................................................................................................ 5
1
Abstract ........................................................................................................................................ 7
2
Reference board ........................................................................................................................... 7
3
Technical specifications .............................................................................................................. 8
4
List of features (ICE2QS03G) ....................................................................................................... 8
5
5.1
5.2
5.3
5.4
5.5
Circuit description ....................................................................................................................... 9
Mains Input Rectification and Filtering ............................................................................................ 9
PWM Control and switching MosFET ............................................................................................. 9
Snubber Network ........................................................................................................................... 9
Output Stage.................................................................................................................................. 9
Feedback Loop .............................................................................................................................. 9
6
6.1
6.2
6.3
6.4
6.5
Circuit Operation ........................................................................................................................ 10
Startup Operation......................................................................................................................... 10
Normal Mode Operation ............................................................................................................... 10
Primary side peak current control ................................................................................................. 10
Digital Frequency Reduction......................................................................................................... 10
Burst Mode Operation .................................................................................................................. 10
7
7.1
7.2
7.3
7.4
7.5
7.6
Protection Features.................................................................................................................... 11
VCC over voltage and under voltage protection ............................................................................ 11
Over load/Open loop protection .................................................................................................... 11
Auto restart for over temperature protection.................................................................................. 11
Adjustable output overvoltage protection ...................................................................................... 11
Short winding protection ............................................................................................................... 11
Foldback point protection ............................................................................................................. 11
8
Circuit diagram........................................................................................................................... 12
9
9.1
9.2
PCB layout.................................................................................................................................. 13
Top side ....................................................................................................................................... 13
Bottom side .................................................................................................................................. 13
10
Component list ........................................................................................................................... 14
11
Transformer construction .......................................................................................................... 15
12
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
Test results................................................................................................................................. 16
Efficiency ..................................................................................................................................... 16
Input standby power ..................................................................................................................... 17
Line regulation ............................................................................................................................. 18
Load regulation ............................................................................................................................ 18
Maximum power ........................................................................................................................... 19
ESD immunity (EN61000-4-2) ...................................................................................................... 19
Surge immunity (EN61000-4-5) .................................................................................................... 19
Conducted emissions (EN55022 class B) ..................................................................................... 20
Thermal measurement ................................................................................................................. 22
Application Note AN-REF-15W ADAPTER
5
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
13
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11
Waveforms and scope plots ...................................................................................................... 23
Start up at low/high AC line input voltage with maximum load ....................................................... 23
Soft start ...................................................................................................................................... 23
Drain voltage and current at maximum load .................................................................................. 24
Zero crossing point during normal operation ................................................................................. 24
Load transient response (Dynamic load from 10% to 100%) ......................................................... 25
Output ripple voltage at maximum load......................................................................................... 25
Output ripple voltage during burst mode at 1 W load..................................................................... 26
Active Burst mode operation......................................................................................................... 26
Over load protection (Auto restart mode) ...................................................................................... 27
Output overvoltage protection (Latched off mode) ........................................................................ 27
VCC under voltage/Short optocoupler protection (Auto restart mode) ............................................. 28
14
References ................................................................................................................................. 28
Application Note AN-REF-15W ADAPTER
6
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Abstract
Abstract
1
This application note is an engineering report of a very small form factor reference design for universal input
15W 5V adapter. The adapter is using ICE2QS03G, a second generation current mode control quasi-resonant
flyback topology controller, IPU60R950C6, a sixth generation of high voltage power CoolMOS™ and
BSC067N06LS3 G, a third series of medium voltage power OptiMOS™, optimized for Synchronous
Rectification. The distinguishing features of this reference design are very small form factor, best in class low
standby power, very high efficiency, good EMI performance and various modes of protection for high reliable
system.
Reference board
2
This document contains the list of features, the power supply specification, schematic, bill of material and the
transformer construction documentation. Typical operating characteristics such as performance curve and
scope waveforms are showed at the rear of the report.
16mm
45mm
31mm
Figure 1 – REF-ICE2QSO3G, IPU60R950C6 & BSC067N06LS3 G 15W ADAPTER [Dimensions L x W x H: 45mm
x 31mm x 16mm]
IPU60R950C6
BAS21-03W
Figure 2A – REF-ICE2QSO3G, IPU60R950C6 & BSC067N06LS3 G 15W ADAPTER (Top Side)
BSC067N06LS3 G
ICE2QS03G
BAS21-03W
Figure 2B – REF-ICE2QSO3G, IPU60R950C6 & BSC067N06LS3 G 15W ADAPTER (Bottom Side)
Application Note AN-REF-15W ADAPTER
7
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Technical specifications
3
Technical specifications
Input voltage
85Vac~265Vac
Input frequency
50~60Hz
Output voltage
5V
Output current
3A
Output power
15W
Minimum switching frequency at full
load and minimum input voltage
45kHz
Maximum input power(Peak Power) for
full input range
< ±6% of input power
No-load power consumption
< 75mW (comply with EU CoC Version 5, Tier 2 and EPS of DOE
USA)
Active mode four point average
efficiency (25%,50%,75% & 100%load)
>81.84% (comply with EU CoC Version 5, Tier 2 and EPS of
DOE USA)
Active mode at 10% load efficiency
>72.48% (comply with EU CoC Version 5, Tier 2)
Form factor case size (L x W x H)
(45 x 31 x 16) mm3
4
List of features (ICE2QS03G)
Quasi resonant operation till very low load
Active burst mode operation at light/no load for low standby input power (< 100mW)
Digital frequency reduction with decreasing load
HV startup cell with constant charging current
Built-in digital soft-start
Foldback correction and cycle-by-cycle peak current limitation
Auto restart mode for VCC Overvoltage protection
Auto restart mode for VCC Undervoltage protection
Auto restart mode for Overload /Openloop protection
Auto restart mode for Over temperature protection
Latch-off mode for adjustable output overvoltage protection
Latch-off mode for Short Winding
Application Note AN-REF-15W ADAPTER
8
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Circuit description
5
Circuit description
5.1
Mains Input Rectification and Filtering
The AC line input side comprises the input fuse F1 as over-current protection. A rectified DC voltage (120V ~
374V) is obtained through a bridge rectifier BR1 and a pi filter C13, FB21 and C22. The pi filer also attenuates
the differential mode conducted EMI.
5.2
PWM Control and switching MosFET
The PWM pulse is generated by the Quasi Resonant PWM current-mode Controller ICE2QS03G and this PWM
pulse drives the high voltage power CoolMOS™, IPU60R950C6 (C6) which designed according to the
revolutionary Superjunction (SJ) principle. The CoolMOS™ C6 provides all benefits of a fast switching SJ
MOSFET while not sacrificing ease of use. It achieves extremely low conduction and switching losses and can
make switching applications more efficient, more compact, lighter and cooler. The PWM switch-on is determined
by the zero-crossing input signal and the value of the up/down counter. The PWM switch-off is determined by
the feedback signal VFB and the current sensing signal VCS. ICE2QS03G also performs all necessary protection
functions in flyback converters. Details about the information mentioned above are illustrated in the product
datasheet.
5.3
Snubber Network
A snubber network R11, R11A, C15 and D11 dissipate the energy of the leakage inductance and suppress
ringing on the SMPS transformer. Due to the resonant capacitor (MOSFET’s drain source capacitance), the
overshoot is relatively smaller than fixed frequency flyback converter. Thus the snubber resistor can be used
with a larger one which will reduce the snubber loss.
5.4
Output Stage
On the secondary side, 5V output, the PWM pulse is generated by synchronous rectification controller
UCC24610. The synchronous rectification pulse drives the medium voltage power OptiMOS™, BSC067N06LS3
-G which is optimized for synchronous rectification such as the lowest RDS(on), the perfect switching behavior of
fast switching, the smallest footprint and highest power density. The capacitors C22 provides energy buffering
following with the LC filter FB21 and C24 to reduce the output ripple and prevent interference between SMPS
switching frequency and line frequency considerably. Storage capacitor C22 is designed to have an internal
resistance (ESR) as small as possible. This is to minimize the output voltage ripple caused by the triangular
current.
5.5
Feedback Loop
For feedback, the output is sensed by the voltage divider of R26 and R25 and compared to TL431 internal
reference voltage. C25, C26 and R24 comprise the compensation network. The output voltage of TL431 is
converted to the current signal via optocoupler IC12 and two resistors R22 and R23 for regulation control.
Application Note AN-REF-15W ADAPTER
9
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Circuit Operation
6
Circuit Operation
6.1
Startup Operation
Since there is a built-in startup cell in the ICE2QS03G, there is no need for external start up resistor, which can
improve standby performance significantly. When VCC reaches the turn on voltage threshold 18V, the IC begins
with a soft start. The soft-start implemented in ICE2QS03G is a digital time-based function. The preset soft-start
time is 12ms with 4 steps. If not limited by other functions, the peak voltage on CS pin will increase step by step
from 0.32V to 1V finally. After IC turns on, the Vcc voltage is supplied by auxiliary windings of the transformer.
6.2
Normal Mode Operation
The secondary output voltage is built up after startup. The secondary regulation control is adopted with TL431
and optocoupler. The compensation network C25, C26 and R24 constitutes the external circuitry of the error
amplifier of TL431. This circuitry allows the feedback to be precisely controlled with respect to dynamically
varying load conditions, therefore providing stable control.
6.3
Primary side peak current control
The MOSFET drain source current is sensed via external resistor R14 and R14A. Since ICE2QS03G is a
current mode controller, it would have a cycle-by-cycle primary current and feedback voltage control which can
make sure the maximum power of the converter is controlled in every switching cycle.
6.4
Digital Frequency Reduction
During normal operation, the switching frequency for ICE2QS03G is digitally reduced with decreasing load. At
light load, the CoolMOS™ IPU60R950C6 will be turned on not at the first minimum drain-source voltage time,
but on the nth. The counter is in range of 1 to 7, which depends on feedback voltage in a time-base. The
feedback voltage decreases when the output power requirement decreases, and vice versa. Therefore, the
counter is set by monitoring voltage VFB. The counter will be increased with low VFB and decreased with high
VFB. The thresholds are preset inside the IC.
6.5
Burst Mode Operation
At light load condition, the SMPS enters into Active Burst Mode. At this stage, the controller is always active
but the Vcc must be kept above the switch off threshold. During active burst mode, the efficiency increase
significantly and at the same time it supports low ripple on Vout and fast response on load jump.
For determination of entering Active Burst Mode operation, three conditions apply:
1. The feedback voltage is lower than the threshold of VFBEB(1.25V). Accordingly, the peak current sense
voltage across the shunt resistor is 0.1667;
2. The up/down counter is 7;
3. And a certain blanking time (tBEB=24ms).
Once all of these conditions are fulfilled, the Active Burst Mode flip-flop is set and the controller enters Active
Burst Mode operation. This multi-condition determination for entering Active Burst Mode operation prevents mistriggering of entering Active Burst Mode operation, so that the controller enters Active Burst Mode operation
only when the output power is really low during the preset blanking time.
During active burst mode, the maximum current sense voltage is reduced from 1V to 0.34V so as to reduce the
conduction loss and the audible noise. At the burst mode, the FB voltage is changing like a sawtooth between
3.0 and 3.6V.
The feedback voltage immediately increases if there is a high load jump. This is observed by one comparator.
As the current limit is 34% during Active Burst Mode a certain load is needed so that feedback voltage can
exceed VLB (4.5V). After leaving active burst mode, maximum current can now be provided to stabilize V O. In
addition, the up/down counter will be set to 1 immediately after leaving Active Burst Mode. This is helpful to
decrease the output voltage undershoot.
Application Note AN-REF-15W ADAPTER
10
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Protection Features
7
Protection Features
7.1
VCC over voltage and under voltage protection
During normal operation, the Vcc voltage is continuously monitored. When the Vcc voltage increases up to
VVCCOVP or Vcc voltage falls below the under voltage lock out level VVCCoff, the IC will enter into autorestart mode.
7.2
Over load/Open loop protection
In case of open control loop, feedback voltage is pulled up with internally block. After a fixed blanking time, the
IC enters into auto restart mode. In case of secondary short-circuit or overload, regulation voltage VFB will also
be pulled up, same protection is applied and IC will auto restart.
7.3
Auto restart for over temperature protection
The IC has a built-in over temperature protection function. When the controller’s temperature reaches 140 °C,
the IC will shut down switch and enters into auto restart. This can protect power MOSFET from overheated.
7.4
Adjustable output overvoltage protection
During off-time of the power switch, the voltage at the zero-crossing pin ZC is monitored for output overvoltage
detection. If the voltage is higher than the preset threshold 3.7V for a preset period 100μs, the IC is latched off.
7.5
Short winding protection
The source current of the MOSFET is sensed via external resistor R14 and R14A. If the voltage at the current
sensing pin is higher than the preset threshold VCSSW of 1.68V during the on-time of the power switch, the IC is
latched off. This constitutes a short winding protection. To avoid an accidental latch off, a spike blanking time of
190ns is integrated in the output of internal comparator.
7.6
Foldback point protection
For a quasi-resonant flyback converter, the maximum possible output power is increased when a constant
current limit value is used for all the mains input voltage range. This is usually not desired as this will increase
additional cost on transformer and output diode in case of output over power conditions.
The internal foldback protection is implemented to adjust the VCS voltage limit according to the bus voltage.
Here, the input line voltage is sensed using the current flowing out of ZC pin, during the MOSFET on-time. As
the result, the maximum current limit will be lower at high input voltage and the maximum output power can be
well limited versus the input voltage.
Application Note AN-REF-15W ADAPTER
11
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Circuit diagram
8
Circuit diagram
Figure 3 – 15W 5V ICEICE2QSO3G power supply schematic
Application Note AN-REF-15W ADAPTER
12
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
PCB layout
9
PCB layout
9.1
Top side
Figure 4 – Top side copper and component legend
9.2
Bottom side
Figure 5 – Bottom side copper and component legend
Application Note AN-REF-15W ADAPTER
13
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Component list
10
Designator
BR1
C12
C13, C13A
C15
C16
C17
C18, C26
C19
C21
C22
C24
C25
C27
D11
D12,D13
D21
F1
FB21
IC11
IC12
IC21
IC22
L
L11
N
Q11
Q21
R11,R11A
R12, R15
R12A, R13,
R14B
R12B
R12C
R14, R14A
R18
R21
R22
R23
R24
R25, R26
R27
R28
R29
R30
R31, R33
R32
TR1
USB Port
ZD11
Component list
Description
(800V/1A)
2.2nF/250V
15uF/400V
1nF/1000V
22uF/35V
100nF/50V
1nF/50V
47pF/50V
560pF/100V
820uF/6.3V
450uF/6.3V
220nF/25V
1uF/25V
600V/1A
200V/0.25A
45V/5A
250V/1A
FAIR RITE
ICE2QS03G
TCMT1103
TL431
UCC24610
connector
1mH/0.5A
Connector N(2.5diameter)
600V/0.95R
60V/6.7mR
200k/400V/0.5W
10R
0R
Footprint
Part Number
SOP-4
D1UBA80
MKT2/13/10_0M8
DE1E3KL222MC4BNA1S
RB10H(10x16)
400AX15M10X16
0805
C0805X102KDRACTU
1206
C3216X5R1V226M
0402
GRM155R71H104KE14D
0402
GRM155R71H102KA01D
0402
GRM1555C1H470JA01D
0603
GRM1885C2A561JA01D
RB6.3
MP6RL820MC8
RB5
MP6RL450MB8
0402
GRM155C81E224KE01D
0402
GRM155R61E105KA12D
Sub SMA
ES1JL
SOD323
BAS21-03W
DO-221AC(slimSMA) VSSAF5L45
AXIAL0.4_V 3mm
0263001.HAT1L
AXIAL0.4_V 3mm
2743002112
SO-8
ICE2QS03G
optocoupler half pitch mini
TCMT1103
flat package
SOT-23
TL431BFDT
SO-8
UCC24610
Connector
5000RED
CH8
768772102
Connector(2.5diameter)5001BLACK
TO-251(IPAK)
IPU60R950C6
INF-PG-TDSON-8-1 BSC067N06LS3 G
0805
ERJP06F2003V
0402
0402
43k/1%
0402
10k/1%
0402
2R/0.33W/1%
1206
ERJ8BQF2R0V
10k
0402
47R/0.5W
0805
ERJP6WF47R0V
130R
0402
1.2k
0402
12k
0402
20k
0402
2R
0402
68k
0402
220k
0402
43.2k
0402
51.1k
0402
75k
0402
718uH(66:5:16) RM6(TP4A) TR_RM6_THT6Pin
USBPORT
USB2 Short(Horizontal)JL-CAF-001
22V Zener
SOD323
UDZS22B
Application Note AN-REF-15W ADAPTER
14
Manufacturer
SHINDENGEN
MURATA
RUBYCON
Quantity
1
1
2
1
1
MURATA
1
MURATA
2
MURATA
1
MURATA
1
1
1
MURATA
1
MURATA
1
1
INFINEON
2
1
1
1
INFINEON
1
1
1
1
1
WURTH ELECTRONICS
1
1
INFINEON
1
INFINEON
1
2
2
3
1
1
2
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Transformer construction
11
Transformer construction
Core and material: RM6 TP4A
Bobbin: RM6 with 3 pin
Primary Inductance, Lp=718 μH( ±10%), measured between pin 2 and pin 6
Start
6
Stop
1
No. of turns
33
Wire size
1XAWG#34
S1(Flying wire)
S2(5) Flying wire
S1(Flying wire)
floating
F2(3) Flying wire
floating
30
5
30
1XAWG#34
1XLitz TIW(7 X AWG#29)
1XAWG#34
1
S1(Flying wire)
2
F1 (Flying wire)
33
16
1XAWG#34
1XTIW(0.25mm)
Layer
1
/2 Primary
Shield
Secondary
Shield
1
/2 Primary
Auxiliary
Figure 6 – Transformer structure
Application Note AN-REF-15W ADAPTER
15
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Test results
12
Test results
12.1
Efficiency
VOut_ripple
Vin(Vac)
85
115
230
265
Pin(W)
Vo(Vdc)
Io(A)
_pk_pk
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
0.00
0.30
0.75
1.50
2.25
3.00
0.00
0.30
0.75
1.50
2.25
3.00
0.00
0.30
0.75
1.50
2.25
3.00
0.00
0.30
0.75
1.50
2.25
3.00
(mV)
59.70
57.40
22.60
32.10
35.20
49.70
64.90
59.90
20.10
29.80
35.00
40.30
70.20
81.30
22.40
33.50
35.30
37.00
76.00
77.90
22.90
33.70
36.60
38.80
0.0308
1.7300
4.2300
8.4200
12.6800
17.2000
0.0316
1.7200
4.2200
8.3700
12.5200
16.7900
0.0352
1.7600
4.3700
8.4100
12.5400
17.0600
0.0376
1.7860
4.4500
8.4800
12.6400
17.2400
Po(W)
η
(%)
1.50
3.74
7.49
11.23
14.97
86.53
88.48
88.90
88.54
87.03
1.50
3.74
7.49
11.23
14.97
87.03
88.68
89.43
89.68
89.16
1.50
3.74
7.49
11.23
14.97
85.06
85.64
89.00
89.53
87.75
1.50
3.74
7.49
11.23
14.97
83.82
84.10
88.27
88.83
86.83
Average η
(%)
OLP Pin
(W)
OLP Iout
(A)
19.50
3.37
19.36
3.44
21.25
3.66
21.50
3.79
88.24
89.24
87.98
87.01
Active-Mode Efficiency versus AC Line Input Voltage
93.00
Efficiency [ % ]
91.00
89.24
89.00
88.24
87.98
89.16
87.00
87.01
87.75
87.03
86.83
85.00
85
115
230
265
AC Line Input Voltage [ Vac ]
Full load Efficiency
Average Efficiency(25%,50%,75% & 100%)
Figure 7 – Efficiency vs AC line input voltage
Application Note AN-REF-15W ADAPTER
16
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Test results
Efficiency versus Output Power
Efficiency [ % ]
92.00
89.43
90.00
88.00
89.68
88.68
87.03
89.53
89.00
87.75
86.00
84.00
89.16
85.06
85.64
82.00
80.00
10
25
50
75
100
Output Power [%]
Vin=115Vac
Vin=230Vac
Figure 8 – Efficiency vs output power @ 115Vac and 230V line
12.2
Input standby power
Standby Power @ no-load versus AC Line Input Voltage
Input Power [ mW ]
100
80
60
40
30.83
31.59
85
115
35.23
37.58
230
265
20
0
AC Line Input Voltage [ Vac ]
Po = 0W
Figure 9 – Input standby power @ no load vs AC line input voltage (measured by Yokogawa WT210 power
meter - integration mode)
Application Note AN-REF-15W ADAPTER
17
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Test results
12.3
Line regulation
Line Regulation: Output voltage @ max. load versus AC line input voltage
Output Voltage [ V ]
5.2
5.1
4.99
4.99
4.99
4.99
85
115
230
265
5.0
4.9
4.8
AC Line Input Voltage [ Vac ]
Vo @ maximum load
Figure 10 – Line regulation Vo @ full load vs AC line input voltage
12.4
Load regulation
Load Regulation: Vout versus output power
Output Voltage [ V ]
5.20
5.10
4.99
4.99
4.99
4.99
4.99
5.00
4.99
4.99
4.99
4.99
4.99
4.90
4.80
Output Power [%]
Output voltage @ 115Vac
Output voltage @ 230Vac
Figure 11 – Load regulation Vo vs output power
Application Note AN-REF-15W ADAPTER
18
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Test results
12.5
Maximum power
30
Pin=20.43 5.24% W
IO=3.58 5.87% A
3.66
3.44
3.37
4
3.79
25
21.50
21.25
20
19.50
19.36
15
2
90
115
230
Peak Output Current (A)
Peak Input Power(OLP) [ W ]
Peak input power(OLP)/Peak output current versus AC Line Input Voltage
264
AC Line Input Voltage [ Vac ]
Peak Input Power
Peak Output Current
Figure 12 – Maximum input power (before over-load protection) vs AC line input voltage
12.6
ESD immunity (EN61000-4-2)
Pass EN61000-4-2 level 3 (±6kV) contact discharge
12.7
Surge immunity (EN61000-4-5)
Pass EN61000-4-5 Installation class 3 (2kV: common mode)
Application Note AN-REF-15W ADAPTER
19
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Test results
12.8
Conducted emissions (EN55022 class B)
The conducted EMI was measured by Schaffner (SMR25503) and followed the test standard of EN55022
(CISPR 22) class B. The demo board was set up at maximum load (15W) with input voltage of 115Vac and
230Vac.
80
EN_V_QP
EN_V_AV
70
QP
AV
60
50
dBµV
40
30
20
10
0
-10
0.1
1
10
100
10
100
-20
f / MHz
Figure 13 – Max. Load (15W) with 115 Vac (Line)
80
EN_V_QP
EN_V_AV
70
QP
AV
60
50
dBµV
40
30
20
10
0
-10
0.1
1
-20
f / MHz
Figure 14 – Max. Load (15W) with 115 Vac (Neutral)
Application Note AN-REF-15W ADAPTER
20
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Test results
80
EN_V_QP
EN_V_AV
70
QP
AV
60
50
dBµV
40
30
20
10
0
-10
0.1
1
10
100
-20
f / MHz
Figure 15 – Max. Load (15W) with 230 Vac (Line)
80
EN_V_QP
EN_V_AV
70
QP
AV
60
50
dBµV
40
30
20
10
0
-10
0.1
1
10
100
-20
f / MHz
Figure 16 – Max. Load (15W) with 230 Vac (Neutral)
Pass conducted EMI EN55022 (CISPR 22) class B with > 9dB margin for QP.
Application Note AN-REF-15W ADAPTER
21
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Test results
12.9
Thermal measurement
The reference adapter’s thermal test was done on key components inside a dummy adapter plastic case which
is covered by the transparent box (W x L x H: 17mm x 17mm x 23mm). The measurements were taken with
thermocouple data logger (GL220 & 87V) after two hours running with full load (15W).
Major component
85Vac (°C) 115Vac (°C) 230Vac (°C) 265Vac (°C)
1
Q11 (IPU60R950C6)
93.8
81.5
91.8
100.8
2
Q21 (BSC067N06LS3G)
80.0
72.3
82.5
87.6
3
IC22 (SR IC)
76.1
69.2
76.7
81.2
4
TR1 (Transformer)
78.0
70.4
75.2
79.0
5
IC11 (ICE2QS03G)
68.9
62.0
62.8
65.1
6
BR1 (bridge diode)
67.9
58.4
53.1
53.8
7
Case Bottom (PCB bottom side)
50.5
46.4
48.4
50.2
8
Case Top (PCB component side) 49.5
45.8
46.8
49.0
9
Ambient (1cm above EUT)
30.0
29.9
30.3
30.1
Transparent
box
Adapter with
dummy
plastic case
Data logger
Figure 17 – Thermal measurement setup
Application Note AN-REF-15W ADAPTER
22
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Waveforms and scope plots
13
Waveforms and scope plots
All waveforms and scope plots were recorded with a LeCroy 6050 oscilloscope
13.1
Start up at low/high AC line input voltage with maximum load
195ms
Channel
Channel
Channel
Channel
1; C1 : Drain voltage (VDrain)
2; C2 : Supply voltage (VCC)
3; C3 : Feedback voltage (VFB)
4; C4 : Zero crossing voltage (VZC)
195ms
Channel
Channel
Channel
Channel
1; C1 : Drain voltage (VDrain)
2; C2 : Supply voltage (VCC)
3; C3 : Feedback voltage (VFB)
4; C4 : Zero crossing voltage (VZC)
Startup time = 195ms
Startup time = 195ms
Figure 18 – Startup @ 85Vac & max. load
Figure 19 – Startup @ 265Vac & max. load
13.2
Soft start
13ms
Channel
Channel
Channel
Channel
1; C1 : Drain voltage (VDrain)
2; C2 : Supply voltage (VCC)
3; C3 : Feedback voltage (VFB)
4; C4 : Zero crossing voltage (VZC)
Soft Star time = 13ms
Figure 20 – Soft Start @ 85Vac & max. load
Application Note AN-REF-15W ADAPTER
23
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Waveforms and scope plots
13.3
Drain voltage and current at maximum load
Channel 1; C1 : Drain-source voltage (VDS)
Channel 2; C2 : Current sense voltage (VCS)
VDrain_peak = 276V
Figure 21 – Operation @ 85Vac and max. load
13.4
Channel 1; C1 : Drain-source voltage (VDS)
Channel 2; C2 : Current sense voltage (VCS)
VDrain_peak = 546V
Figure 22 – Operation @ 265Vac and max. load
Zero crossing point during normal operation
Channel 1; C1 : Drain voltage (VDrain)
Channel 2; C2 : Current sense voltage (VCS)
Figure 23 – Operation @ 85Vac and 2nd zero
crossing
Application Note AN-REF-15W ADAPTER
Channel 1; C1 : Drain voltage (VDrain)
Channel 2; C2 : Current sense voltage (VCS)
Figure 24 – Operation @ 85Vac and 7th zero
crossing
24
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Waveforms and scope plots
13.5
Load transient response (Dynamic load from 10% to 100%)
Channel 1; C1 : Output ripple voltage (Vo)
Channel 2; C2 : Output current (Io)
Vripple_pk_pk=241mV (Load change from10% to
100%,100Hz,0.4A/μS slew rate)
Probe terminal end with decoupling capacitor of
0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter
Channel 1; C1 : Output ripple voltage (Vo)
Channel 2; C2 : Output current (Io)
Vripple_pk_pk=245mV (Load change from10% to
100%,100Hz,0.4A/μS slew rate)
Probe terminal end with decoupling capacitor of
0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter
Figure 25 – Load transient response @ 85Vac
Figure 26 – Load transient response @ 265Vac
13.6
Output ripple voltage at maximum load
Channel 1; C1 : Output ripple voltage (Vo)
Channel 2; C2 : Output current (Io)
Channel 1; C1 : Output ripple voltage (Vo)
Channel 2; C2 : Output current (Io)
Vripple_pk_pk=49.7mV
Probe terminal end with decoupling capacitor of
0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter
Vripple_pk_pk = 38.8mV
Probe terminal end with decoupling capacitor of
0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter
Figure 27 – AC output ripple @ 85Vac and max.
load
Figure 28 – AC output ripple @ 265Vac and max.
load
Application Note AN-REF-15W ADAPTER
25
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Waveforms and scope plots
13.7
Output ripple voltage during burst mode at 1 W load
Channel 1; C1 : Output ripple voltage (Vo)
Channel 2; C2 : Output current (Io)
Channel 1; C1 : Output ripple voltage (Vo)
Channel 2; C2 : Output current (Io)
Vripple_pk_pk=59.5mV
Probe terminal end with decoupling capacitor of
0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter
Vripple_pk_pk = 73.8mV
Probe terminal end with decoupling capacitor of
0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter
Figure 29 – AC output ripple @ 85Vac and 1W
load
Figure 30 – AC output ripple @ 265Vac and 1W
load
13.8
Active Burst mode operation
th
6
th
7
Channel 1; C1 : Drain voltage (VDrain)
Channel 2; C2 : Supply voltage (VCC)
Channel 3; C3 : Feedback voltage (VFB)
Channel 4; C4 : Zero crossing voltage (VZC)
Condition: VFB<1.2V, NZC=7 and tblanking =29ms
(load change form full load to 1W load)
Figure 31 – Entering active burst mode @ 85Vac
Application Note AN-REF-15W ADAPTER
Channel 1; C1 : Drain voltage (VDrain)
Channel 2; C2 : Supply voltage (VCC)
Channel 3; C3 : Feedback voltage (VFB)
Channel 4; C4 : Zero crossing voltage (VZC)
Condition: VFB>4.5V
(load change from 1W to full load)
Figure 32 – Leaving active burst mode @ 85Vac
26
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
Waveforms and scope plots
13.9
Over load protection (Auto restart mode)
built-in 30ms blanking
Channel 1; C1 : Drain voltage (VDrain)
Channel 2; C2 : Supply voltage (VCC)
Channel 3; C3 : Feedback voltage (VFB)
Channel 4; C4 : Zero crossing voltage (VZC)
Condition: VFB>4.5V & last for 30ms blanking time
(output load change from full load to short load)
Figure 33 – Over load protection with extended
blanking time @ 85Vac)
13.10
Channel
Channel
Channel
Channel
Output overvoltage protection (Latched off mode)
1; C1 : Output voltage (Vo)
2; C2 : Supply voltage (VCC)
3; C3 : Feedback voltage (VFB)
4; C4 : Zero crossing voltage (VZC)
Condition: VO >5.5V (VZC>3.7V)
(short R26 during while system operation at no
load)
Figure 34 – Output overvoltage protection @ 85Vac
Application Note AN-REF-15W ADAPTER
27
V1.0, 2014-07-02
15W 5V Adapter Reference Board with ICE2QS03G, IPU60R950C6
References
13.11
VCC under voltage/Short optocoupler protection (Auto restart mode)
Enter autorestart
Channel
Channel
Channel
Channel
Exit autorestart
1; C1 : Drain voltage (VDrain)
2; C2 : Supply voltage (VCC)
3; C3 : Feedback voltage (VFB)
4; C4 : Zero crossing voltage (VZC)
VCC under voltage/short optocoupler protection
(short the transistor of optocoupler during system
operating @ full load & release)
Figure 35 – Vcc under voltage/short optocoupler
protection @ 85Vac
14
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
References
ICE2QS03G data sheet, Infineon Technologies AG
IPU60R950C6 data sheet, 600V CoolMOS™ C6 Power Transistor, Infineon Technologies AG
BSC067N06LS3 G data sheet, 60V OptiMOS™ 3 Power Transistor, Infineon Technologies AG
BAS21-03W data sheet, Infineon Technologies AG
Converter Design Using the Quasi-Resonant PWM Controller ICE2QS01, Infineon Technologies AG,
2006. [ANPS0003]
Design tips for flyback converters using the Quasi-Resonant PWM controller ICE2QS01, Infineon
Technologies, 2006. [ANPS0005]
Determine the switching frequency of Quasi-Resonant flyback converters designed with ICE2QS01,
Infineon Technologies, 2006. [ANPS0004]
ICE2QS03G design guide. [ANPS0027]
36W Evaluation Board with Quasi-Resonant PWM Controller ICE2QS03G, 2011. [AN-PS0040]
Application Note AN-REF-15W ADAPTER
28
V1.0, 2014-07-02
w w w . i nf i n eo n. com
Published by Infineon Technologies AG