Reference Design 15W Adapter ThinPAK

AN - REF- 15W_C 61K5 - THIN PAK AD APTER
1 5 W 5 V Adapte r Re fe re nce Board wi th
IC E2QS03G, IPL65R1 K5 C 6 S, BSC 0 6 7 N 06 L S3 G
& BAS21 - 0 3 W
Application Note
About this document
Scope and purpose
This document is an engineering report that describes 15 W 5 V USB adapter reference design board using
Infineon Quasi-Resonant PWM IC ICE2QS03G with CoolMOS™ IPL65R1K5C6S (ThinPAK 5x6) and secondary
side synchronous rectification IC with OptiMOS™ BSC067N06LS3 G (ThinPAK 5x6). The reference USB
adapter board is specially designed in a very small form factor, high efficiency, low standby power, various
modes of protections for a high reliable system and it pass conductive EMI, ESD and Lightning surge test.
This board can be used for production by customers after final verification with minor changes.
Intended audience
This document is intended for users who wish to design 15 W 5 V AC-DC adapter in short period of time, high
efficiency, high reliability and very small form factor with Infineon CoolMOS™ C6 series, OptiMOS™, QuasiResonant PWM IC ICE2QS03G and synchronous rectification.
Table of Contents
About this document ................................................................................................................... 1
Table of Contents ........................................................................................................................ 1
1
Abstract ..................................................................................................................... 3
2
Reference board ......................................................................................................... 3
3
Specification .............................................................................................................. 4
4
4.1
4.2
4.3
4.4
4.5
Circuit description....................................................................................................... 5
Mains input rectification and filtering ..................................................................................................... 5
PWM control and switching MOSFET ...................................................................................................... 5
Snubber network....................................................................................................................................... 5
Output stage .............................................................................................................................................. 5
Feedback loop ........................................................................................................................................... 5
5
Circuit operation ......................................................................................................... 6
1
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Abstract
5.1
5.2
5.3
5.4
5.5
Startup operation...................................................................................................................................... 6
Normal mode operation ........................................................................................................................... 6
Primary side peak current control........................................................................................................... 6
Digital frequency reduction ..................................................................................................................... 6
Burst mode operation............................................................................................................................... 6
6
6.1
6.2
6.3
6.4
6.5
6.6
Protection features ..................................................................................................... 7
VCC over voltage and under voltage protection ...................................................................................... 7
Over load/Open loop protection ............................................................................................................. 7
Auto restart for over temperature protection ........................................................................................ 7
Adjustable output overvoltage protection ............................................................................................. 7
Short winding protection ......................................................................................................................... 7
Foldback point protection ....................................................................................................................... 8
7
Circuit diagram ........................................................................................................... 9
8
8.1
8.2
PCB layout ............................................................................................................... 10
Top side ....................................................................................................................................................10
Bottom side..............................................................................................................................................10
9
Component list ......................................................................................................... 11
10
Transformer construction .......................................................................................... 12
11
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
Test results .............................................................................................................. 13
Efficiency, regulations and output ripple .............................................................................................13
Standby power ........................................................................................................................................14
Line regulation.........................................................................................................................................15
Load regulation .......................................................................................................................................15
Maximum power......................................................................................................................................16
ESD immunity (EN61000-4-2) .................................................................................................................16
Surge immunity (EN61000-4-5)..............................................................................................................16
Conducted emissions (EN55022 class B) ..............................................................................................17
Thermal measurement ...........................................................................................................................19
12
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13
Waveforms and scope plots ........................................................................................ 20
Start up at low/high AC line input voltage with maximum load ........................................................20
Soft start ...................................................................................................................................................20
Start up delay time & output voltage rise time ....................................................................................21
Hold up time ............................................................................................................................................21
Drain & current sense voltage at maximum load.................................................................................22
Zero crossing point during normal operation ......................................................................................22
Load transient response (Dynamic load from 1.67% to 100%) ..........................................................23
Output ripple voltage at maximum load ..............................................................................................23
Output ripple voltage during burst mode at 1 W load ........................................................................24
Active Burst mode operation .................................................................................................................24
Over load protection (Auto restart mode) ............................................................................................25
Output overvoltage protection (Latched off mode) ............................................................................25
VCC under voltage/Short optocoupler protection (Auto restart mode) .............................................26
13
References ............................................................................................................... 26
Revision History........................................................................................................................ 26
Application Note
2
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Abstract
1
Abstract
This application note is an engineering report of a very small form factor reference design for universal input
15 W 5 V adapter. The adapter is using ICE2QS03G, a second generation current mode control QuasiResonant flyback topology controller, IPL65R1K5C6S, a C6 series of high voltage power CoolMOS™ and
BSC067N06LS3 G, a third series of medium voltage power logic level OptiMOS™ , optimized for logic level
driver of Synchronous Rectification. The distinguishing features of this reference design are very small form
factor, best-in-class low standby power, very high efficiency, good EMI performance and various modes of
protection for high reliable system.
2
Reference board
This document contains the list of features, the power supply specification, schematic, bill of material and
the transformer construction documentation. Typical operating characteristics such as performance curve
and scope waveforms are showed at the rear of the report.
Figure 1
REF-15W_C61K5-THINPAK ADAPTER [Dimensions L x W x H: 47mm x 31mm x 16mm]
ICE2QS03G
BSC067N06LS3 G
BAS21-03W
IPL65R1K5C6S
(Top view)
Figure 2
(Bottom view)
REF-15W_C61K5-THINPAK ADAPTER [Top & Bottom View]
Application Note
3
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Specification
3
Table 1
Specification
Specification of REF-15W_C61K5-THINPAK ADAPTER
Input voltage
85 VAC ~265 VAC
Input frequency
47~63 Hz
Output voltage, current & power
5 V/3 A/15 W
Output voltage rise time
<30 ms
Start up delay time (VAC 115 V, 60 Hz, Full Load)
<250 ms
Hold up time (VAC 115 V, 60 Hz, Full Load)
>5 ms
Mains ON/OFF Overshoot (85 VAC ~ 265 VAC)
+/-3% of nominal output voltage
(Vripple_p_p <300 mV)
Dynamic load response
+/-3% of nominal output voltage
(50mA to full load, slew rate at 1.5 A/µs, 100 Hz)
(Vripple_p_p <300 mV)
Output ripple voltage
+/-1% of nominal output voltage
(full load, 85 VAC ~265 VAC)
(Vripple_p_p<100 mV)
Active mode four point average efficiency
(25%,50%,75%,100%load) (EU CoC Version 5, Tier 2 and
EPS of DOE USA)
>88% at 115 VAC & >87% at 230 VAC
10% load efficiency
>87% at 115 VAC & >85% at 230 VAC
(EU CoC Version 5, Tier 2)
Conducted emissions (EN55022 class B)
Pass with 8 dB margin
Safety
<50 µA @ VAC = 265 V
Leakage Current (50 µA @ VAC = 265 V,L to FG & N to FG)
ESD immunity (EN61000-4-2)
Level 4 (±8 kV) contact discharge
Surge immunity (EN61000-4-5)
Installation class 3 (2 kV: common mode)
Form factor case size (L x W x H)
(47 x 31 x 16) mm3
Application Note
4
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Circuit description
4
Circuit description
4.1
Mains input rectification and filtering
The AC line input side comprises the input fuse F1 as over-current protection. A rectified DC voltage (120 V ~
374 V) is obtained through a bridge rectifier BR1 and a pi filter C13, FB21 and C22. The pi filer also attenuates
the differential mode conducted EMI.
4.2
PWM control and switching MOSFET
The PWM pulse is generated by the Quasi Resonant PWM current-mode Controller ICE2QS03G and this PWM
pulse drives the high voltage power CoolMOS™, IPL65R1K5C6S (C6) which designed according to the
revolutionary Superjunction (SJ) principle. The CoolMOS™ C6 provides all benefits of a fast switching SJ
MOSFET while not sacrificing ease of use. It achieves extremely low conduction and switching losses and can
make switching applications more efficient, more compact, lighter and cooler. The PWM switch-on is
determined by the zero-crossing input signal and the value of the up/down counter. The PWM switch-off is
determined by the feedback signal VFB and the current sensing signal VCS. ICE2QS03G also performs all
necessary protection functions in flyback converters. Details about the information mentioned above are
illustrated in the product datasheet.
4.3
Snubber network
A snubber network DZD11 dissipates the energy of the leakage inductance and suppress ringing on the
SMPS transformer.
4.4
Output stage
On the secondary side, 5 V output, the PWM pulse is generated by synchronous rectification controller
UCC24610. The synchronous rectification pulse drives the logic level medium voltage power OptiMOS™,
BSC067N06LS3 G which is optimized for synchronous rectification such as the lowest RDS(on), the perfect
switching behavior of fast switching, the smallest footprint and highest power density. The capacitors C22
provides energy buffering following with the LC filter FB21 and C24 to reduce the output ripple and prevent
interference between SMPS switching frequency and line frequency considerably. Storage capacitor C22 is
designed to have an internal resistance (ESR) as small as possible. This is to minimize the output voltage
ripple caused by the triangular current.
4.5
Feedback loop
For feedback, the output is sensed by the voltage divider of R26 and R25 and compared to TL431 internal
reference voltage. C25, C26 and R24 comprise the compensation network. The output voltage of TL431 is
converted to the current signal via optocoupler IC12 and two resistors R22 and R23 for regulation control.
Application Note
5
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Circuit operation
5
Circuit operation
5.1
Startup operation
Since there is a built-in startup cell in the ICE2QS03G, there is no need for external start up resistor, which
can improve standby performance significantly. When VCC reaches the turn on voltage threshold 18V, the IC
begins with a soft start. The soft-start implemented in ICE2QS03G is a digital time-based function. The
preset soft-start time is 12 ms with 4 steps. If not limited by other functions, the peak voltage on CS pin will
increase step by step from 0.32 V to 1 V finally. After IC turns on, the VCC voltage is supplied by auxiliary
windings of the transformer.
5.2
Normal mode operation
The secondary output voltage is built up after startup. The secondary regulation control is adopted with
TL431 and optocoupler. The compensation network C25, C26 and R24 constitutes the external circuitry of
the error amplifier of TL431. This circuitry allows the feedback to be precisely controlled with respect to
dynamically varying load conditions, therefore providing stable control.
5.3
Primary side peak current control
The MOSFET drain source current is sensed via external resistor R14 and R14A. Since ICE2QS03G is a current
mode controller, it would have a cycle-by-cycle primary current and feedback voltage control which can
make sure the maximum power of the converter is controlled in every switching cycle.
5.4
Digital frequency reduction
During normal operation, the switching frequency for ICE2QS03G is digitally reduced with decreasing load.
At light load, the CoolMOS™ IPL65R1K5C6S will be turned on not at the first minimum drain-source voltage
time, but on the nth. The counter is in range of 1 to 7, which depends on feedback voltage in a time-base. The
feedback voltage decreases when the output power requirement decreases, and vice versa. Therefore, the
counter is set by monitoring voltage VFB. The counter will be increased with low VFB and decreased with high
VFB. The thresholds are preset inside the IC.
5.5
Burst mode operation
At light load condition, the SMPS enters into Active Burst Mode. At this stage, the controller is always active
but the VCC must be kept above the switch off threshold. During active burst mode, the efficiency increase
significantly and at the same time it supports low ripple on Vout and fast response on load jump.
For determination of entering Active Burst Mode operation, three conditions apply:
1. The feedback voltage is lower than the threshold of V FBEB(1.25 V). ACCordingly, the peak current sense
voltage across the shunt resistor is 0.1667;
2. The up/down counter is 7;
3. And a certain blanking time (tBEB=24 ms).
Once all of these conditions are fulfilled, the Active Burst Mode flip-flop is set and the controller enters
Active Burst Mode operation. This multi-condition determination for entering Active Burst Mode operation
prevents mis-triggering of entering Active Burst Mode operation, so that the controller enters Active Burst
Mode operation only when the output power is really low during the preset blanking time.
Application Note
6
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Protection features
During active burst mode, the maximum current sense voltage is reduced from 1 V to 0.34 V so as to reduce
the conduction loss and the audible noise. At the burst mode, the FB voltage is changing like a sawtooth
between 3.0 and 3.6 V.
The feedback voltage immediately increases if there is a high load jump. This is observed by one
comparator. As the current limit is 34% during Active Burst Mode a certain load is needed so that feedback
voltage can exceed VFBLB (4.5 V). After leaving active burst mode, maximum current can now be provided to
stabilize Vout. In addition, the up/down counter will be set to 1 immediately after leaving Active Burst Mode.
This is helpful to decrease the output voltage undershoot.
6
Protection features
6.1
VCC over voltage and under voltage protection
During normal operation, the VCC voltage is continuously monitored. When the VCC voltage increases up to
VCC,OVP or VCC voltage falls below the under voltage lock out level V CC,off, the IC will enter into autorestart mode.
6.2
Over load/Open loop protection
In case of open control loop, feedback voltage is pulled up with internally block. After a fixed blanking time,
the IC enters into auto restart mode. In case of secondary short-circuit or overload, regulation voltage VFB
will also be pulled up, same protection is applied and IC will auto restart.
6.3
Auto restart for over temperature protection
The IC has a built-in over temperature protection function. When the controller’s temperature reaches
140°C, the IC will shut down switch and enters into auto restart. This can protect power MOSFET from
overheated.
6.4
Adjustable output overvoltage protection
During off-time of the power switch, the voltage at the zero-crossing pin ZC is monitored for output
overvoltage detection. If the voltage is higher than the preset threshold 3.7 V for a preset period 100 μs, the
IC is latched off.
6.5
Short winding protection
The source current of the MOSFET is sensed via external resistor R14 and R14A. If the voltage at the current
sensing pin is higher than the preset threshold V CSSW of 1.68 V during the on-time of the power switch, the IC
is latched off. This constitutes a short winding protection. To avoid an accidental latch off, a spike blanking
time of 190 ns is integrated in the output of internal comparator.
Application Note
7
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Protection features
6.6
Foldback point protection
For a quasi-resonant flyback converter, the maximum possible output power is increased when a constant
current limit value is used for all the mains input voltage range. This is usually not desired as this will
increase additional cost on transformer and output diode in case of output over power conditions.
The internal foldback protection is implemented to adjust the V CS voltage limit according to the bus voltage.
Here, the input line voltage is sensed using the current flowing out of ZC pin, during the MOSFET on-time. As
the result, the maximum current limit will be lower at high input voltage and the maximum output power
can be well limited versus the input voltage.
Application Note
8
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Circuit diagram
7
Circuit diagram
Figure 3
Schematic of REF-15W_C61K5-THINPAK ADAPTER
Application Note
9
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
PCB layout
8
PCB layout
8.1
Top side
Figure 4
Top side copper and component legend
8.2
Bottom side
Figure 5
Bottom side copper and component legend
Application Note
10
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Component list
9
Component list
Table 2
Bill of materials(V0.7)
No.
Designator
Description
Footprint
Part Number
Manufacturer
Quantity
1
BR1
(800V/1A)
SOP-4
D1UBA80
SHINDENGEN
1
2
C12
470pF/250V
MKT3/13/10_0M8
DE1B3KL471KC4BNA1S
MURATA
1
3
C13, C13A
15uF/400V
RB10H(10x16)
400AX15M10X16
RUBYCON
2
4
C16
22uF/35V
1206
C3216X5R1V226M
TDK
1
5
C17
100nF/50V
0402
GRM155R71H104KE14D
MURATA
1
6
C18, C26
1nF/50V
0402
GRM155R71H102KA01D
MURATA
2
7
C19
47pF/50V
0402
GRM1555C1H470JA01D
MURATA
1
8
C21
560pF/100V
0603
GRM1885C2A561JA01D
MURATA
1
9
C22
820uF/6.3V
RB6.3
MP6RL820MC8
MATSUKI POLYMER
1
10
C24
450uF/6.3V
RB5
MP6RL450MB8
MATSUKI POLYMER
1
11
C25
220nF/25V
0402
GRM155C81E224KE01D
MURATA
1
12
C27
1uF/25V
0402
GRM155R61E105KA12D
MURATA
1
13
D12,D13
200V/0.25A
SOD323
BAS21-03W
INFINEON
2
14
D21
50V/8A
DO-221BC(SMPA)
V8PAN50-M3/I
15
DZD11
140V
2F
ST02D-140F2
16
F1
250V/1A
AXIAL0.4_V 3mm
0263001.HAT1L
1
17
FB21
FAIR RITE
AXIAL0.4_V 3mm
2743002112
1
18
FB22,FB23
@ C12 lead
B64290P0035X038
EPCOS
2
19
IC11
ICE2QS03G
SO-8
ICE2QS03G
INFINEON
1
20
IC12
TCMT1103
half pitch mini flat
TCMT1103
1
21
IC21
TL431
SOT-23
TL431BFDT
1
22
IC22
UCC24610
SO-8
UCC24610
1
23
L11
100µH/0.8A
CH6
7447462101
WURTH ELECTRONICS
1
24
Q11
650V/1.5Ω
ThinPAK(5x6)
IPL65R1K5C6S
INFINEON
1
25
Q21
60V/6.7mΩ
PG-TDSON-8
BSC067N06LS3 G
INFINEON
1
26
R12, R15
10R
0402
2
0R
0402
4
27
R12A, R13,
R14B, R15A
28
R12B
43k/1%
0402
1
29
R12C
12k/1%
0402
30
R14, R14A
2R/0.33W/1%
1206
31
R18
10k
0402
32
R21
47R/0.5W
0805
33
R22
130R
0402
1
34
R23
1.2k
0402
1
35
R24
12k
0402
1
36
R25, R26
20k
0402
2
37
R27
2R
0402
1
38
R28
68k
0402
1
39
R29
220k
0402
1
40
R30
43.2k
0402
1
41
R31, R33
51.1k
0402
1
42
R32
75k
0402
1
43
TR1
718µH(66:5:15)
TR_RM6_THT8Pin
1
44
USB Port
USBPORT
USB2 Short
JL-CAF-001
1
45
ZD11
22V Zener
SOD323
UDZS22B
1
Application Note
1
SHINDENGEN
1
1
ERJ8BQF2R0V
2
1
ERJP6WF47R0V
11
1
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Transformer construction
10
Transformer construction
Core and material: RM6 TP4A
Bobbin: RM6 with 4 pin
Primary Inductance, Lp=718 μH ( ±10%), measured between pin 2 and pin 1
Figure 6
Start
2
Stop
X
No. of turns
33
Wire size
1XAWG#34
7
S2 Flying wire 15mm
7
floating
F2 Flying wire 15mm
floating
30
5
30
1XAWG#34
1XLitz TIW(7 X AWG#29)
1XAWG#34
X
8
1
7
33
15
1XAWG#34
1XAWG#34
Layer
/2 Primary
Shield
Secondary
Shield
1
1
/2 Primary
Auxiliary
Transformer structure
Application Note
12
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Test results
11
Test results
11.1
Efficiency, regulations and output ripple
Table 3
Efficiency, regulation & output ripple
Vin
Pin
Vout
Iout
(VAC)
(W)
(VDC)
(A)
Vout_ripple_pk_pk
(mV)
0.0307
5.01
0.00
58.90
1.7000
5.01
0.30
68.20
1.50
88.41
4.2000
5.01
0.75
24.12
3.76
89.46
8.4300
5.01
1.50
31.50
7.52
89.15
12.6800
5.01
2.25
35.80
11.27
88.90
17.2600
5.01
3.00
49.50
15.03
87.08
0.0310
5.01
0.00
62.50
1.7100
5.01
0.30
72.00
1.50
87.89
4.2000
5.01
0.75
23.60
3.76
89.46
8.3700
5.01
1.50
32.00
7.52
89.78
12.5500
5.01
2.25
31.90
11.27
89.82
16.8400
5.01
3.00
40.80
15.03
89.25
0.0334
5.01
0.00
67.90
1.7500
5.01
0.30
70.80
1.50
85.89
4.3700
5.01
0.75
22.00
3.76
85.98
8.4900
5.01
1.50
32.00
7.52
88.52
12.6500
5.01
2.25
31.80
11.27
89.11
17.0700
5.01
3.00
37.70
15.03
88.05
0.0353
5.01
0.00
72.00
1.7700
5.01
0.30
79.30
1.50
84.92
4.4600
5.01
0.75
22.90
3.76
84.25
8.5600
5.01
1.50
31.70
7.52
87.79
12.7400
5.01
2.25
34.50
11.27
88.48
17.2500
5.01
3.00
42.10
15.03
87.13
85
115
230
265
Figure 7
Pout
Efficiency(η)
(%)
(W)
Average η
(%)
OLP Pin
(W)
OLP Iout
(A)
20.60
3.52
20.37
3.60
21.01
3.73
21.39
3.76
88.65
89.58
87.91
86.91
Efficiency vs AC line input voltage
Application Note
13
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Test results
Figure 8
Efficiency vs output power @ 115 VAC and 230 VAC line
11.2
Standby power
Figure 9
Standby power @ no load vs AC line input voltage (measured by Yokogawa WT210 power
meter - integration mode)
Application Note
14
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Test results
11.3
Line regulation
Figure 10
Line regulation Vout @ full load vs AC line input voltage
11.4
Load regulation
Figure 11
Load regulation Vout vs output power
Application Note
15
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Test results
11.5
Maximum power
Figure 12
Maximum input power (before over-load protection) vs AC line input voltage
11.6
ESD immunity (EN61000-4-2)
Pass EN61000-4-2 level 3 (±8 kV) contact discharge.
11.7
Surge immunity (EN61000-4-5)
Pass EN61000-4-5 Installation class 3 (2 kV: common mode).
Application Note
16
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Test results
11.8
Conducted emissions (EN55022 class B)
The conducted EMI was measured by Schaffner (SMR25503) and followed the test standard of EN55022
(CISPR 22) class B. The demo board was set up at maximum load (15 W) with input voltage of 115 VAC and 230
VAC.
Figure 13
Conducted emissions(Line) at 115 VAC and maximum Load
Figure 14
Conducted emissions(Neutral) at 115 VAC and maximum Load
Application Note
17
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Test results
Figure 15
Conducted emissions(line) at 230 VAC and maximum Load
Figure 16
Conducted emissions(Neutral) at 230 VAC and maximum Load
Pass conducted EMI EN55022 (CISPR 22) class B with > 8 dB margin for QP.
Application Note
18
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Test results
11.9
Thermal measurement
The reference adapter’s open frame thermal test was done by thermal infrared camera (TVS-500EX) at the
ambient temperature 25 ⁰C. The thermal measures were taken after two hours running with full load and the
highest temperature of Q11 (CoolMOS™ C6 ThinPAK 5x6) is 75.6 ⁰C for low line and 90.3 ⁰C for high line.
Table 4
Hottest temperature of reference board
No.
Major component
85 VAC (°C)
1
Q11 (IPL65R1K5C6S)
75.6
90.3
2
Q21 (BSC067N06LS3 G)
55.3
68.8
3
IC22 (SR IC)
49.1
57.7
4
TR1 (Transformer)
59.2
63.7
5
IC11 (ICE2QS03G)
63.8
63.8
6
BR1 (bridge diode)
62.5
48.2
7
DZD11(Snubber zenor diode)
78.8
86.1
8
C13A (Bulk Cap)
52.5
48.6
9
L11 (Differnetial Choke)
54.3
46.7
10
Ambient
25
(PCB bottom side, 85 VAC & full load)
265 VAC (°C)
25
(PCB bottom side, 265 VAC & full load)
(PCB top side, 85 VAC & full load)
(PCB top side, 265 VAC & full load)
Figure 17 Infrared thermal image of REF-15W_C61K5-THINPAK ADAPTER
Application Note
19
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Waveforms and scope plots
12
Waveforms and scope plots
All waveforms and scope plots were recorded with a LeCroy 6050 oscilloscope
12.1
Start up at low/high AC line input voltage with maximum load
192 ms
192 ms
Channel 1; C1 : Drain voltage (VDrain)
Channel 1; C1 : Drain voltage (VDrain)
Channel 2; C2 : Supply voltage (VCC)
Channel 2; C2 : Supply voltage (VCC)
Channel 3; C3 : Feedback voltage (VFB)
Channel 3; C3 : Feedback voltage (VFB)
Channel 4; C4 : Zero crossing voltage (VZC)
Channel 4; C4 : Zero crossing voltage (VZC)
Start up time @ 85 VAC & full load= 192 ms
Start up time @ 265 VAC & full load = 192 ms
Figure 18
Start up
12.2
Soft start
12ms
Channel 1; C1 : Current sense voltage (VCS)
Channel 2; C2 : Supply voltage (VCC)
Channel 3; C3 : Feedback voltage (VFB)
Channel 4; C4 : Zero crossing voltage (VZC)
Soft start time @ 85 VAC & full load = 12 ms
Figure 19
Soft start
Application Note
20
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Waveforms and scope plots
12.3
Start up delay time & output voltage rise time
196 ms
196 ms
20 ms
20 ms
Channel 1; C1 : Mains AC voltage (VAC)
Channel 1; C1 : Mains AC voltage (VAC)
Channel 4; C4 : Output voltage (Vout)
Channel 4; C4 : Output voltage (Vout)
85 VA
265 VAC
~Startup delay time = 196 ms
~Output voltage rise time=20 ms
Figure 20
Start up delay time
12.4
Hold up time
~Startup delay time = 196 ms
~Output voltage rise time=20 ms
8 ms
112 ms
Channel 1; C1 : Mains AC voltage (VAC)
Channel 1; C1 : Mains AC voltage (VAC)
Channel 4; C4 : Output voltage (Vout)
Channel 4; C4 : Output voltage (Vout)
Hold up time @ 85 VAC = 8 ms
Hold up time @ 265 VAC = 112 ms
Figure 21
Hold up time
Application Note
21
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Waveforms and scope plots
12.5
Drain & current sense voltage at maximum load
Channel 1; C1 : Drain-source voltage (VDS)
Channel 2; C2 : Current sense voltage (VCS)
VDrain_peak @ 85 VAC = 339 V
Figure 22 Drain & current sense voltage
12.6
Channel 1; C1 : Drain-source voltage (VDS)
Channel 2; C2 : Current sense voltage (VCS)
VDrain_peak @ 265 VAC = 591 V
Zero crossing point during normal operation
Channel 1; C1 : Drain voltage (VDrain)
Channel 2; C2 : Current sense voltage (VCS)
@ 85 VAC , 2nd zero crossing
Figure 23 Zero crossing
Application Note
Channel 1; C1 : Drain voltage (VDrain)
Channel 2; C2 : Current sense voltage (VCS)
@ 85 VAC , 7th zero crossing
22
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Waveforms and scope plots
12.7
Load transient response (Dynamic load from 1.67% to 100%)
Channel 1; C1 : Output ripple voltage (Vout)
Channel 1; C1 : Output ripple voltage (Vout)
Channel 2; C2 : Output current (Iout)
Channel 2; C2 : Output current (Iout)
Vripple_pk_pk @ 85 VAC =248 mV
Vripple_pk_pk @ 265 VAC =261 mV
(Load change from 50 mA to 3 A,100 Hz,1.5 A/μS slew rate)
(Load change from 50mA to 3 A,100 Hz,1.5 A/μS slew rate)
Probe terminal end with decoupling capacitor of 0.1
μF(ceramic) & 1 μF(Electrolytic), 20 MHz filter
Probe terminal end with decoupling capacitor of 0.1
μF(ceramic) & 1 μF(Electrolytic), 20 MHz filter
Figure 24
Load transient response
12.8
Output ripple voltage at maximum load
Channel 1; C1 : Output ripple voltage (Vout)
Channel 1; C1 : Output ripple voltage (Vout)
Channel 2; C2 : Output current (Iout)
Channel 2; C2 : Output current (Iout)
Vripple_pk_pk @ 85 VAC = 49.5 mV
Vripple_pk_pk @ 265 VAC = 42.1 mV
Probe terminal end with decoupling capacitor of
0.1 μF(ceramic) & 1 μF(Electrolytic), 20 MHz filter
Probe terminal end with decoupling capacitor of
0.1 μF(ceramic) & 1 μF(Electrolytic), 20 MHz filter
Figure 25
AC output ripple voltage at maximum load
Application Note
23
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Waveforms and scope plots
12.9
Output ripple voltage during burst mode at 1 W load
Channel 1; C1 : Output ripple voltage (Vout)
Channel 1; C1 : Output ripple voltage (Vout)
Channel 2; C2 : Output current (Iout)
Channel 2; C2 : Output current (Iout)
Vripple_pk_pk @ 85 VAC = 64.6 mV
Vripple_pk_pk @ 265 VAC = 74.8 mV
Probe terminal end with decoupling capacitor of
0.1 μF(ceramic) & 1 μF(Electrolytic), 20 MHz filter
Probe terminal end with decoupling capacitor of
0.1 μF(ceramic) & 1 μF(Electrolytic), 20 MHz filter
Figure 26
AC output ripple voltage at 1 W load(Burst Mode)
12.10
Active Burst mode operation
6th
7th
Channel 1; C1 : Drain voltage (VDrain)
Channel 1; C1 : Drain voltage (VDrain)
Channel 2; C2 : Supply voltage (VCC)
Channel 2; C2 : Supply voltage (VCC)
Channel 3; C3 : Feedback voltage (VFB)
Channel 3; C3 : Feedback voltage (VFB)
Channel 4; C4 : Zero crossing voltage (VZC)
Condition: VFB<1.2 V, NZC=7 and tblanking =24 ms
Channel 4; C4 : Zero crossing voltage (VZC)
Condition: VFB>4.5 V
(load change form full load to 1 W load)
Figure 27 Active burst mode at 85 VAC
Application Note
(load change from 1 W to full load)
24
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
Waveforms and scope plots
12.11
Over load protection (Auto restart mode)
built-in 30ms blanking
Channel 1; C1 : Drain voltage (VDrain)
Channel 2; C2 : Supply voltage (VCC)
Channel 3; C3 : Feedback voltage (VFB)
Channel 4; C4 : Zero crossing voltage (VZC)
Condition: VFB>4.5 V & last for 30 ms blanking time
(@ 85 VAC, output load change from full load to short load)
Figure 28 Over load protection
12.12
Output overvoltage protection (Latched off mode)
Channel 1; C1 : Output voltage (Vout)
Channel 2; C2 : Supply voltage (VCC)
Channel 3; C3 : Feedback voltage (VFB)
Channel 4; C4 : Zero crossing voltage (VZC)
Condition: VO >5.5 V (VZC>3.7 V)
(@ 85 VAC, short R26 during while system operation at no load)
Figure 29
Output overvoltage protection
Application Note
25
Revision 1.0, 2015-03-12
15 W 5 V Adapter Reference Board with ICE2QS03G,
IPL65R1K5C6S, BSC067N06LS3 G & BAS21-03W
References
12.13
VCC under voltage/Short optocoupler protection (Auto restart mode)
Exit autorestart
Enter autorestart
Channel 1; C1 : Drain voltage (VDrain)
Channel 2; C2 : Supply voltage (VCC)
Channel 3; C3 : Feedback voltage (VFB)
Channel 4; C4 : Zero crossing voltage (VZC)
Condition: VCC <10.5 V
(@ 85 VAC , short the transistor of optocoupler during system operating @ full load & release)
Figure 30
VCC under voltage/short optocoupler protection
13
References
[1]
ICE2QS03G data sheet, Infineon Technologies AG
[2]
IPL65R1K5C6S data sheet, 650V CoolMOS™ CE Power Transistor, Infineon Technologies AG
[3]
BSC067N06LS3 G data sheet, 60V OptiMOS™ 3 Power Transistor, Infineon Technologies AG
[4]
BAS21-03W data sheet, Infineon Technologies AG
[5]
ICE2QS03G design guide. [ANPS0027]
[6]
ThinPAK Product Brief
Revision History
Major changes since the last revisiono
Page or Reference
--
Application Note
Description of change
First Release
26
Revision 1.0, 2015-03-12
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™,
EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™,
my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™,
SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM
Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is
licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared
Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Ma xim
Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, I nc., USA.
muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc.
Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun
Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc.
TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cade nce Design
Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.
Last Trademarks Update 2011-11-11
www.infineon.com
Edition 2015-03-12
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2015 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: [email protected]
Document reference
AN_201409_PL21_014
Legal Disclaimer
THE INFORMATION GIVEN IN THIS APPLICATION
NOTE (INCLUDING BUT NOT LIMITED TO
CONTENTS OF REFERENCED WEBSITES) IS GIVEN
AS A HINT FOR THE IMPLEMENTATION OF THE
INFINEON TECHNOLOGIES COMPONENT ONLY
AND SHALL NOT BE REGARDED AS ANY
DESCRIPTION OR WARRANTY OF A CERTAIN
FUNCTIONALITY, CONDITION OR QUALITY OF THE
INFINEON TECHNOLOGIES COMPONENT. THE
RECIPIENT OF THIS APPLICATION NOTE MUST
VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE
REAL APPLICATION. INFINEON TECHNOLOGIES
HEREBY DISCLAIMS ANY AND ALL WARRANTIES
AND LIABILITIES OF ANY KIND (INCLUDING
WITHOUT LIMITATION WARRANTIES OF NONINFRINGEMENT OF INTELLECTUAL PROPERTY
RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO
ANY AND ALL INFORMATION GIVEN IN THIS
APPLICATION NOTE.
Information
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may
contain dangerous substances. For information on
the types in question, please contact the nearest
Infineon Technologies Office. Infineon Technologies
components may be used in life-support devices or
systems only with the express written approval of
Infineon Technologies, if a failure of such components
can reasonably be expected to cause the failure of
that life-support device or system or to affect the
safety or effectiveness of that device or system. Life
support devices or systems are intended to be
implanted in the human body or to support and/or
maintain and sustain and/or protect human life. If
they fail, it is reasonable to assume that the health of
the user or other persons may be endangered.