Demoboard for Adapter Single Output 80W

Version 3.0, Oct. 2003
Application Note
AN-EVALSF2-ICE2B765P2-3
CoolSET
80W 24V Evaluation Board using ICE2B765P2
Author:
Rainer Kling
Published by Infineon Technologies AG
http://www.infineon.com/CoolSET
Power Management & Supply
N e v e r
s t o p
t h i n k i n g
80W 24V Demoboard with ICE2B765P2 on Board
Table of Contents
1
INTRODUCTION ..................................................................................................................................... 2
Application........................................................................................................................................ 2
CoolSET ........................................................................................................................................ 2
LIST OF FEATURES .............................................................................................................................. 3
POWER SUPPLY SPECIFICATION....................................................................................................... 3
SCHEMATIC ........................................................................................................................................... 4
PCB LAYOUT ......................................................................................................................................... 5
DESCRIPTION ........................................................................................................................................ 6
Introduction....................................................................................................................................... 6
Line Input.......................................................................................................................................... 6
Startup .............................................................................................................................................. 6
Operation Mode................................................................................................................................ 6
Softstart ............................................................................................................................................ 6
Snubber Network.............................................................................................................................. 6
Limitation of primary current............................................................................................................. 6
Output Voltage ................................................................................................................................. 7
Regulation ........................................................................................................................................ 7
EMI Behavior .................................................................................................................................... 7
BILL OF MATERIAL ............................................................................................................................... 8
TRANSFORMER CONSTRUCTION DOCUMENTATION ..................................................................... 9
PERFORMANCE DATA ....................................................................................................................... 10
Efficiency ........................................................................................................................................ 10
No-Load Input Power (Standby)..................................................................................................... 11
Regulation and Power Limiting ...................................................................................................... 11
W AVEFORMS AND SCOPE PLOTS .......................................................................................................... 13
Startup @ Low and High AC Line Input Voltage and Nominal Load ............................................. 13
Drain Source Voltage and Current During Normal Operation........................................................ 13
Load Transient Response (Loadjump from 10% Load until 100% Load) ...................................... 14
AC Output Ripple during Nominal Load and Normal Operation .................................................... 14
INPUT CAPACITOR IMPROVEMENT – SLOPE COMPENSATION ................................................................... 15
Input Capacitor Improvement......................................................................................................... 15
Slope Compensation ...................................................................................................................... 15
REFERENCES ...................................................................................................................................... 17
www.Infineon.com/CoolSET
Page 1 from 17
EVALSF2-ICE2B765P2
V3.0
80W 24V Demoboard with ICE2B765P2 on Board
Introduction
Application
This document is an engineering report that describes a universal input power supply designed in a
typical off line flyback converter topology that utilizes the ICE2B765P2 CoolSET. The application
1
operates in discontinuous current mode using the frequency reduction during standby condition . The
board has one output voltage with secondary regulation.
This board demonstrates the basic performance features and the power capability of the F2
CoolSET device ICE2B765P2 of the second generation of CoolSET in a TO220 ISODRAIN
package with extended creepage distance for higher electrical strength and isolated tab.
CoolSET
CoolSET is a current mode control IC and the power MOSFET CoolMOS within one standard
package designed for low cost power supplies. CoolSET combines the superior technology of
CoolMOS and the optimized technology of the control IC with enhanced protection features and
improved standby power concept. The integrated propagation delay compensation (patented by
Infineon Technologies) prevents a current overshoot, in combination with the adjustable soft start
function, a reduced electrical stress on the MOSFET, the transformer and the output diode will be the
2
3
effect. The 650V / 800V high avalanche rugged CoolMOS eliminates or reduces the need for a
heatsink and permits a SMPS design with a simple RCD snubber and a low cost standard transformer
design. The lowest area specific Rdson leads to a high efficiency and permits an operation at high
ambient temperature. CoolSET permits always a safety operation during any error cases due to the
integrated protection features.
Figure 1– EVALSF2-ICE2B765P2
This document contains the power supply specification, schematic, bill of material and the transformer
construction documentation. Typical operating characteristics are presented at the rear of the report
and consist of performance curves and scope waveforms.
Note:
Design calculations for the components and the transformer are performed in accordance with the
application note “AN–SMPS–ICE2AXXX for OFF – Line Switch Mode Power Supplies” and
FlyCal, an EXCEL based design software according to the application note AN-SMPS-ICE2AXXX.
The application note and FlyCal are available on the Internet: www.Infineon.com/CoolSET
1
POUT = 0W
At Tj = 110°C
3
At Tj = 25°C
2
www.Infineon.com/CoolSET
Page 2 from 17
EVALSF2-ICE2B765P2
V3.0
80W 24V Demoboard with ICE2B765P2 on Board
List of Features
Feature
CoolSET Device ICE2B765P2
External Sense
Adjustable Soft Start
Modulated Gate Drive
Over Load Protection with auto restart
Over Current Protection with auto restart
Over Temperature Shut Down with auto restart
Open Loop Protection with auto restart
Under Voltage Lock Out with auto restart
4
Drain Source Voltage 650V
Standby Mode: Frequency Reduction (fOSZ = 21 kHz)
Internal Leading Edge Blanking
67 kHz operating frequency
TO220 ISODRAIN Package with isolated Tab
Standby Power according to international Standards
Table 1 – List of Features
Power Supply Specification
Description
Input Voltage
Line Regulation (85...270V)
Input Frequency
No Load Input Power (230VAC)
Output Voltage
AC Output Voltage Ripple
Output Current
Output Power
Peak Power
Total Regulation
Load Regulation (10...100%)
Efficiency (85VAC) @ nominal Load
Efficiency (270VAC) @ nominal Load
Symbol
Min
Input Section
VACIN
85
f
47
Output Section
VOUT
23.75
VRipple
IOUT
3.25
POUT
0
POUTmax
η
η
Typ
Max
Units
115/230
<1
50/60
0.58
270
VAC
%
Hz
W
24
< 0.05
3.3
80
90
±2
<1
83
89
24.25
64
3.35
85
VDC
VP-P
ADC
W
W
%
%
%
%
Environmental
Conducted EMI
EN55022B
Ambient Temperature
TA
0
25
40
°C
Thermal Consideration @ VACIN = 85V and Dmax = 50% (∆T @ Ta = 25°C)
Transformer
65
°C
CoolSET
55
°C
Output Diode
65
°C
Output Capacitors
40
°C
Table 2 – Power Supply Specification
4
VDSBR at Tj = 110°C
www.Infineon.com/CoolSET
Page 3 from 17
EVALSF2-ICE2B765P2
V3.0
80W 24V Demoboard with ICE2B765P2 on Board
Schematic
Figure 2 Power Supply Schematic
www.Infineon.com/CoolSET
Page 4 from 17
EVALSF2-ICE2B765P2
V3.0
80W 24V Demoboard with ICE2B765P2 on Board
PCB Layout
Figure 3 Board Layout - Component Side
www.Infineon.com/CoolSET
Page 5 from 17
EVALSF2-ICE2B765P2
V3.0
80W 24V Demoboard with ICE2B765P2 on Board
Description
Introduction
The EVALSF2-ICE2B765P2 demoboard is a low cost flyback switching power supply using the
ICE2B765P2 integrated circuit from the CoolSET-F2 family. The circuit shown in Figure 2 details a
24V, 80W supply that operates from a line input voltage range of 85 up to 265VAC, suitable for
applications requiring either an open frame supply or an enclosed adapter.
Line Input
The AC line input side comprises of an input fuse F1 as line input over current protection as well as
choke L5 and the X2 capacitors C8 and C24 as radio interference suppressors. R19 prevents the
application against line shut on spikes. After the bridge rectifier BR1 and input capacitor C3, a voltage
from 120 to 380 VDC is present. Only a 220µF input capacitor is required due to the wider duty cycle
DCMAX of the ICE-F2-family.
Startup
From the line input voltage, the current supply which is used to charge up the chip supply capacitor C4
is derived by using resistors R7 and rectifier diode D10. Because of the very low start up current of
typically 27µA, a high-value resistor can be used to realize the startup.
Note:
Improve your standby power via increasing R7.
Operation Mode
During operation, the VCC pin is supplied via a separate transformer winding with associated
rectification D2 and buffering C4 and filter capacitor C20. Resistor R8 is used for current limiting
during the charging of C4. In order not to exceed the maximum voltage at the VCC pin an external
zener diode D7 limits this voltage. During light or no load condition the switching frequency is reduced
down to 21kHz in order to reduce the switching losses without audible noise.
Note:
In order to improve the standby power, set the board in the burst mode during no load condition via
increasing the chip supply resistor R8.
Softstart
In order to minimize the electrical stress, a Soft-Start function is realized by an internal resistor and the
adjustable external capacitor C18.
Snubber Network
Due to the high avalanche rugged CoolMOS inside, a simple RCD snubber protection can be used.
The network R10, C12 and D3 clamp the DRAIN voltage spike caused by transformer leakage
inductance to a safe value below the drain source break down voltage VDSBR = 650V maximum.
Limitation of primary current
The CoolMOS drain source current is sensed via external shunt resistors R20 and R21. An accurate
value of the shunt improves the peak power limitation shown in the curve peak power limitation in the
rear of this report and minimize the electrical stress on the MOSFET, the Transformer and the output
rectifier.
www.Infineon.com/CoolSET
Page 6 from 17
EVALSF2-ICE2B765P2
V3.0
80W 24V Demoboard with ICE2B765P2 on Board
Output Voltage
Power is coupled out on the secondary side via a fast-acting diodes D1 and D9 with low forward
voltage. Capacitors C5 and C29 performs energy buffering, a following LC - filter C32 and inductor L9
considerably reduces the output voltage ripple. Storage output capacitors C5 and C29 is designed to
exhibit a very low ESR in order to minimize the output voltage ripple caused by the triangular current
characteristic. The output voltage is set with resistors R1 and R2. The capacitor C33 lower the AC
output ripple on the output voltage.
Regulation
The output voltage is controlled using a type TL431 (IC2) reference diode. This device incorporates
the voltage reference as well as the error amplifier and a driver stage. Compensation network C1, C2,
R1, R5 constitutes the external circuitry of the error amplifier of IC2. This circuitry allows the feedback
to be precisely matched to dynamically varying load conditions, thereby providing stable control. The
maximum current through the optocoupler diode and the voltage reference is set by using resistors
R3, R4. Optocoupler IC1 is used for floating transmission of the control signal to the “Feedback” input
via resistor R9 and capacitor C6 of the ICE2B765P2 control device. The optocoupler used meets DIN
VDE 884 requirements for a wider creepage distance.
EMI Behavior
In order to reduce the conducted EMI behavior, Y – capacitor C7 is set in parallel to the transformer
TR1.
Note:
The value should not exceeds 2.2nF in order to guarantee a safety off line switch mode power supply
design.
www.Infineon.com/CoolSET
Page 7 from 17
EVALSF2-ICE2B765P2
V3.0
80W 24V Demoboard with ICE2B765P2 on Board
Bill of Material
Pos. Part
Type
Number Values
Note
Ordering Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
BR1
C1 [nF]
C2 [nF]
C3 [µF]
C4 [µF]
C5 [µF]
C6 [nF]
C7 [nF]
C8 [µF]
C12 [nF]
C18 [nF]
C20 [nF]
C24 [µF]
C29 [µF]
C32 [µF]
B380 C5000-3300
470
0.15
220
47
1000
2.2
2.2
0.22
2.2
330
100
0.22
1000
220
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
50V
50V
400V
35V
35V
50V
250V
275V
400V
50V
50V
275V
35V
35V
DIOTEC B380C5000-3300
EPCOS B37984M5474K
EPCOS B37979G1151J
EPCOS B43304B9227M
EPCOS B41821A6476M
EPCOS B41886S7108M
X7R
EPCOS B37979G5222J
Y1 Cap Röderste WKP2222MCPER
X2 Cap EPCOS B81130C1224M
MKT
EPCOS B32520C6222K
X7R
EPCOS B37984M5334K
X7R
EPCOS B37987F5104K
X2 Cap EPCOS B81130C1224M
Low ESR EPCOS B41886S7108M
Low ESR EPCOS B41859A7227M
16
C33 [nF] 470
1
50V
EPCOS B37984M5474K
17
D1
MUR1520
1
200V
ONS MUR1520
18
19
20
D2
D3
D7
1N4148
1N4937
ZPD18
1
1
1
200V
18V
TELEFUNKEN 1N4148 TAP
SETRON 1N4937
PHILIPS ZPD18
21
D9
MUR1520
1
200V
ONS MUR1520
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
D10
F1
HS1
HS2
HS3
IC1
IC2
IC3
L9 [µH]
L5 [µH]
1N4007
Microfuse
Heatsink
Heatsink TO220
Heatsink TO220
SFH617A-3X006
TL431CLP TO92
ICE2B765P2
1.0
2*27mH
R1 [kΩ] 40.0
R2 [kΩ] 4.7
R3 [kΩ] 1.1
R4 [kΩ] 1.6
R5 [kΩ] 180.0
R7 [kΩ] 680
4.3
R8 [Ω]
22.0
R9 [Ω]
R10 [kΩ] 33.0
R19
NTC10
R20 [Ω] 0.43
R21 [Ω] 0.39
TR1
SMT19
Haltefed. For Heatsink
W1
Wire
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
47
X1, X2
2
Connector 2pol.
www.Infineon.com/CoolSET
DIOTEC 1N4007
SIBA SICH331
ASSMANN V-7477-X
FISCHER FK224 MI P SIP
FISCHER FK224 MI P SIP
VISHAY SFH617A-3X006
ONS TL431CLP TO92
INFINEON
WÜRTHEL 744772010
EPCOS B82734R2172A30
3.15A
6A
1.7A
1%
1%
1%
1%
0.7mm Gap
Page 8 from 17
OREGA
FISCHER THF104
EVALSF2-ICE2B765P2
V3.0
80W 24V Demoboard with ICE2B765P2 on Board
Transformer Construction Documentation
www.Infineon.com/CoolSET
Page 9 from 17
EVALSF2-ICE2B765P2
V3.0
80W 24V Demoboard with ICE2B765P2 on Board
Performance Data
Efficiency
Efficiency versus AC Line Input Voltage
100
Efficiency [%]
90
80
70
60
50
50
100
150
200
250
300
AC Line Input Voltage [V]
Efficiency @ 10W Output Power
Figure 4 Efficiency vs. Line Input Voltage
Efficiency versus Output power
100
90
80
Efficiency [%]
70
60
50
40
30
20
10
0
0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
Output Power[W]
Vacin = 85V
Vacin = 270V
Figure 5 Efficiency vs. Output Power @ Low and High Line 50Hz
www.Infineon.com/CoolSET
Page 10 from 17
EVALSF2-ICE2B765P2
V3.0
80
80W 24V Demoboard with ICE2B765P2 on Board
No-Load Input Power (Standby)
Standby versus AC Line Input Voltage
1
0,9
0,8
Input Power [W]
0,7
0,6
0,5
0,4
0,3
0,2
0,1
0
50
100
150
200
250
300
AC Line Input Voltage [V]
Standby Power
Figure 6 Standby Power vs. Line Input Voltage and No Load Condition (Pout = 0W)
Regulation and Power Limiting
Line Regulation: Vout versus AC Line Input Voltage @ nominal Load
25
24,75
Output Voltage [V]
24,5
24,25
24
23,75
23,5
23,25
23
50
100
150
200
250
300
AC Line Input Voltage [V]
Output Voltage
Figure 7 Output Voltage Regulation vs. Line Input Voltage
www.Infineon.com/CoolSET
Page 11 from 17
EVALSF2-ICE2B765P2
V3.0
80W 24V Demoboard with ICE2B765P2 on Board
Load Regulation: Vout versus Load @ Vacin = 230V
25
24,75
Output Voltage [V]
24,5
24,25
24
23,75
23,5
23,25
23
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
Output Power [W]
Output Voltage
Figure 8 Output Voltage Regulation vs. Load
Max. Overload Output Power (Peak Power) versus AC Line Input Voltage
100
98
Max. Overload Output Power [W]
96
94
92
90
88
86
84
82
80
50
100
150
200
250
300
AC Line Input Voltage [V]
Peak Power
Figure 9 Peak Power (Over Current Shut Off Threshold) vs. Line Input Voltage
www.Infineon.com/CoolSET
Page 12 from 17
EVALSF2-ICE2B765P2
V3.0
80W 24V Demoboard with ICE2B765P2 on Board
Waveforms and Scope Plots
All waveforms and scope plots where recorded with a Tectronix TDS 745D
Startup @ Low and High AC Line Input Voltage and Nominal Load
Channel 1: Chip Supply Voltage (VCC)
Channel 2: Feedback Voltage (VFB)
Channel 3: Soft Start Voltage (VSS)
Channel 4: Output Voltage (VOUT)
Channel 1: Chip Supply Voltage (VCC)
Channel 2: Feedback Voltage (VFB)
Channel 3: Soft Start Voltage (VSS)
Channel 4: Output Voltage (VOUT)
Figure 10 Startup @ Vacin = 85V and nom. Load
Figure 11 Startup @ Vacin = 270V and nom.Load
Drain Source Voltage and Current During Normal Operation
Channel 1: Drain Current (ID)
Channel 4: Drain Source Voltage (VDS)
Dmax = 50% / VRsense = 890mV
Channel 1: Drain Current (ID)
Channel 4: Drain Source Voltage (VDS)
Dmax = 11% / VRsense = 880mV
Figure 12 Operation @ Vacin = 85V and nom. Load
Figure 13 Operation @ Vacin = 270V and nom.Load
www.Infineon.com/CoolSET
Page 13 from 17
EVALSF2-ICE2B765P2
V3.0
80W 24V Demoboard with ICE2B765P2 on Board
Load Transient Response (Loadjump from 10% Load until 100% Load)
Channel 2: Feedback Voltage (VFB)
Channel 2: Feedback Voltage (VFB)
Figure 14 Loadjump @ Vacin = 85V and nom. Load
Figure 15 Loadjump @ Vacin = 270V and nom.Load
AC Output Ripple during Nominal Load and Normal Operation
AC Output
Voltage Ripple
High Frequency
Probe Coupling
Channel 1: AC Output Ripple (VACOUT)
VACOUTmax = ± 10mV
Details of AC output voltage ripple measurements. The probe
GND should be as short as possible to minimize the high
frequency probe coupling.
Figure 16 AC Output Voltage Ripple at nom. Load
Figure 17 AC Ripple Measurement Technique
www.Infineon.com/CoolSET
Page 14 from 17
EVALSF2-ICE2B765P2
V3.0
80W 24V Demoboard with ICE2B765P2 on Board
Input Capacitor Improvement – Slope Compensation
Input Capacitor Improvement
In case you are using a smaller input capacitor (100µF instead of 220µF), the maximum duty cycle
increases. To make sure, that the board is not working in the continuous conduction mode, a different
transformer is necessary; otherwise, you have to assemble slope compensation on board.
Slope Compensation
Any kind of current mode controller needs to have slope compensation in case the application is
designed for the continuous conduction mode (CCM) and the maximum duty cycle exceeds the 50%
threshold. Below you see the impact on the system in case of an input capacitor reduction; with the
220µF bulk works the board in the discontinuous conduction mode (DCM) and a Dmax < 50% (Figure
18); with the smaller 100µF bulk (1.25µF/W), the board is running in the continuous conduction mode
(CCM) and Dmax > 50% (Figure 19).
Channel 1: Drain Current (ID)
Channel 4: Drain Source Voltage (VDS)
CIN = 220µF / Dmax = 50% / Pout = 80W / VACIN = 85V
Channel 1: Drain Current (ID)
Channel 4: Drain Source Voltage (VDS)
CIN = 100µF / Dmax = 71% / Pout = 80W / VACIN = 85V
Figure 18 DCM – Operation with Dmax < 50%
Figure 19 CCM – Operation with Dmax > 50%
To prevents an instability of the regulation loop, in case of CCM and Dmax > 50%, assemble just three
more components (2 ceramic capacitors C17 / C18 and one resistor R19) as shown in the circuit
diagram below.
Figure 20 Circuit Diagram Switch Mode Power Supply with Slope Compensation
www.Infineon.com/CoolSET
Page 15 from 17
EVALSF2-ICE2B765P2
V3.0
80W 24V Demoboard with ICE2B765P2 on Board
More information regarding how to calculate the components of the Slope Compensation see the
application note AN_SMPS_16822CCM_V10. For the calculation of the additional components of a
SMPS, see in the application note AN_SMPS_ICE2xXXX – available on the internet:
www.infineon.com/CoolSET CoolSET F2.
Note:
The built-in transformer does not comply with EN60950 safety requirements
in respect of electrical isolation.
Change service
Issue status
1.0
2.1
2.2
2.3
3.0
Changes
First issue
BOM Update
Performance Data
BOM Update
Update:
! Update Boardlayout
! Update BOM
! Different Transformer construction
Additional:
! Slope Compensation
www.Infineon.com/CoolSET
Page 16 from 17
Date
02.05.2002
02.08.2002
27.08.2002
08.11.2002
Oct. 2003
EVALSF2-ICE2B765P2
V3.0
80W 24V Demoboard with ICE2B765P2 on Board
References
[1]
ICE2AXXX for OFF-Line Switch Mode Power Supplies
Application Note, Infineon Technologies
[2]
CoolSET -II
Off-line SMPS Current Mode Controller with High Voltage CoolMOS on Board
Datasheet, Infineon Technologies
Revision History
Application Note AN-EVALSF2-ICE2B765P2-3
Actual Release: 3.0 Date: 2003-10-22
Previous Release: V2.3
Page of
actual
Rel.
--
Page of
Subjects changed since last release
prev. Rel.
--
See change service
www.Infineon.com/CoolSET
Page 17 from 17
EVALSF2-ICE2B765P2
V3.0