CoolS ET ™ F3R80 ICE3AR0680VJZ 30W 12V SMPS e va l uat ion boar d wit h I CE3AR0 680VJ Z AN-PS0079 Appl icat ion Not e AN - EVAL- 3AR06 80VJZ V1.1, 2015-05-12 Po wer Manag em ent & Mult im ar k et Edition 2015-05-12 Published by Infineon Technologies AG, 81726 Munich, Germany. © 2015 Infineon Technologies AG All Rights Reserved. LEGAL DISCLAIMER THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2011-11-11 Application Note AN-EVAL-3AR0680VJZ 3 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 Revision History Major changes since previous revision Date Version 12 May 2015 1.1 Changed By Change Description Add section 5.3 under circuit description We Listen to Your Comments Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of our documentation. Please send your proposal (including a reference to this document title/number) to: [email protected] Application Note AN-EVAL-3AR0680VJZ 4 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 Table of Contents Revision History .............................................................................................................................................. 4 Table of Contents ............................................................................................................................................ 5 1 Abstract ........................................................................................................................................ 7 2 Evaluation board .......................................................................................................................... 7 3 List of features ............................................................................................................................. 9 4 Technical specifications .............................................................................................................. 9 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 Circuit description ..................................................................................................................... 10 Introduction .................................................................................................................................. 10 Line input ..................................................................................................................................... 10 Line input over voltage protection ................................................................................................. 10 Start up ........................................................................................................................................ 10 Operation mode ........................................................................................................................... 10 Soft start ...................................................................................................................................... 10 Snubber network .......................................................................................................................... 10 Peak current control of primary current ......................................................................................... 10 Output stage ................................................................................................................................ 11 6 Circuit diagram........................................................................................................................... 11 7 7.1 7.2 PCB layout.................................................................................................................................. 12 Top side ....................................................................................................................................... 12 Bottom side .................................................................................................................................. 12 8 Component list ........................................................................................................................... 13 9 Transformer construction .......................................................................................................... 14 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 Test results................................................................................................................................. 15 Efficiency ..................................................................................................................................... 15 Input standby power ..................................................................................................................... 16 Line regulation ............................................................................................................................. 16 Load regulation ............................................................................................................................ 17 Max. output power........................................................................................................................ 17 Electrostatic discharge/ESD test (EN6100-4-2)............................................................................. 17 Surge/Lightning strike test (EN61000-4-5) .................................................................................... 17 Conducted EMI ............................................................................................................................ 18 Thermal measurement ................................................................................................................. 20 11 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 Waveforms and scope plots ...................................................................................................... 21 Start up at low and high AC line input voltage and maximum load................................................. 21 Soft start at low/high AC line input voltage and maximum load...................................................... 21 Frequency jittering........................................................................................................................ 22 Drain voltage and current at maximum load .................................................................................. 22 Load transient response (Dynamic load from 10% to 100%) ......................................................... 23 Output ripple voltage at maximum load......................................................................................... 23 Output ripple voltage during burst mode at 1 W load..................................................................... 24 Entering active burst mode ........................................................................................................... 24 Vcc over voltage protection (Odd skip auto restart mode) ............................................................. 25 Application Note AN-EVAL-3AR0680VJZ 5 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 11.10 11.11 11.12 11.13 Over load protection (Odd skip auto restart mode) ........................................................................ 25 Open loop protection (Odd skip auto restart mode) ....................................................................... 26 VCC under voltage/Short optocoupler protection (Normal auto restart mode) ................................. 26 AC Line input OVP mode ............................................................................................................. 27 12 References ................................................................................................................................. 27 Application Note AN-EVAL-3AR0680VJZ 6 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 Abstract 1 Abstract This document is an engineering report of a universal input 30W 12V off-line flyback converter power supply utilizing IFX F3R80 CoolSET™ ICE3AR0680VJZ. The application demo board is operated in Discontinuous Conduction Mode (DCM) and is running at 100 kHz switching frequency. It has a single output voltage with secondary side control regulation. It is especially suitable for small power supply such as DVD player, set-top box, game console, charger and auxiliary power of white goods, server, PC and high power system, etc. The ICE3AR0680VJZ is the latest version of the CoolSET™. Besides having the basic features of the F3R CoolSET™ such as Active Burst Mode, propagation delay compensation, soft gate drive, auto restart protection for major fault (Vcc over voltage, Vcc under voltage, over temperature, over-load, open loop and short optocoupler), it also has the BiCMOS technology design, selectable entry and exit burst mode level, adjustable AC line input over voltage protection feature, built-in soft start time, built-in and extendable blanking time and frequency jitter feature, etc. The particular features are the best-in-class low standby power and the good EMI performance. 2 Evaluation board This document contains the list of features, the power supply specification, schematic, bill of material and the transformer construction documentation. Typical operating characteristics such as performance curve and scope waveforms are showed at the rear of the report. Figure 1A – EVAL3AR0680VJZ [Dimensions L x W x H: 105mm x 52mm x 27mm (4.13" x 2.04" x 1.06")] Application Note AN-EVAL-3AR0680VJZ 7 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 Evaluation board Figure 1B – EVAL3AR0680VJZ (Top Side) Figure 1C – EVAL3AR0680VJZ (Bottom Side) Application Note AN-EVAL-3AR0680VJZ 8 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 List of features 3 List of features 800V avalanche rugged CoolSET™ with Startup Cell Active Burst Mode for lowest Standby Power Selectable entry and exit burst mode level 100kHz internally fixed switching frequency with jittering feature Auto Restart Protection for Over load, Open Loop, VCC Under voltage & Over voltage and Over temperature Over temperature protection with 50°C hysteresis Built-in 10ms Soft Start Built-in 20ms and extendable blanking time for short duration peak power Propagation delay compensation for both maximum load and burst mode Adjustable input OVP Overall tolerance of Current Limiting < ±5% BiCMOS technology for low power consumption and wide VCC voltage range Soft gate drive with 50Ω turn on resistor 4 Technical specifications Input voltage 85Vac~265Vac Input OVP trigger/reset voltage 300/280Vac Input frequency 50/60Hz Input Standby Power <100mW @ no load Output voltage 12V +/- 2% Output current 2.5A Output power 30W Active mode average efficiency >84% Output ripple voltage ≤ 50mVp-p Application Note AN-EVAL-3AR0680VJZ 9 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 Circuit description 5 Circuit description 5.1 Introduction The EVAL-3AR0680VJZ demo board is a low cost off-line flyback switch mode power supply (SMPS) using the ICE3AR0680VJZ integrated power IC from the CoolSET™-F3R80 family. The circuit shown in Figure 3, details a 12V, 30W power supply that operates from an AC line input voltage range of 85Vac to 265Vac and line input OVP detect/reset voltage is 300/282Vac, suitable for applications in enclosed adapter or open frame auxiliary power supply for different system such as white goods, PC, server, DVD, LED TV, Set-top box, etc. 5.2 Line input The AC line input side comprises the input fuse F1 as over-current protection. The choke L11, X-capacitors C11, C14 and Y-capacitor C12 act as EMI suppressors. Optional spark gap device SG1, SG2 and varistor VAR can absorb high voltage stress during lightning surge test. After the bridge rectifier BR1 and the input bulk capacitor C13, a voltage of 90 to 424 VDC is present which depends on input line voltage. 5.3 Line input over voltage protection The AC line input OVP mode is detected by sensing the voltage level at BV pin through the resistors divider from the bulk capacitor. Once the voltage level at BV pin hits above 1.98V, the controller stops switching and enters into input OVP mode. When the BV voltage drops to 1.91V and the Vcc hits 17V, the input OVP mode is released. 5.4 Start up Since there is a built-in startup cell in the ICE3AR0680VJZ, no external start up resistor is required. The startup cell is connecting the drain pin of the IC. Once the voltage is built up at the Drain pin of the ICE3AR0680VJZ, the startup cell will charge up the Vcc capacitor C16 and C17. When the Vcc voltage exceeds the UVLO at 17V, the IC starts up. Then the Vcc voltage is bootstrapped by the auxiliary winding to sustain the operation. 5.5 Operation mode During operation, the Vcc pin is supplied via a separate transformer winding with associated rectification D12 and buffering C16, C17. In order not to exceed the maximum voltage at Vcc pin due to poor coupling of transformer winding, an external zener diode ZD11 and resistor R13 can be added. 5.6 Soft start The Soft-Start is a built-in function and is set at 10ms. 5.7 Snubber network A snubber network DZD11 dissipates the energy of the leakage inductance and suppress ringing on the SMPS transformer. 5.8 Peak current control of primary current The CoolMOS™ drain source current is sensed via external shunt resistors R14 and R14A which determine the tolerance of the current limit control. Since ICE3AR0680VJZ is a current mode controller, it would have a cycleby-cycle primary current and feedback voltage control which can make sure the maximum power of the converter is controlled in every switching cycle. Besides, the patented propagation delay compensation is implemented to ensure the maximum input power can be controlled in an even tighter manner. The demo board shows approximately +/-3.82% (refer to Figure 13). Application Note AN-EVAL-3AR0680VJZ 10 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 Circuit diagram 5.9 Output stage On the secondary side the power is coupled out by a schottky diode D21. The capacitor C22 & C23 provides energy buffering following with the LC filter L21 and C24 to reduce the output voltage ripple considerably. Storage capacitors C22 & C23 are selected to have a very small internal resistance (ESR) to minimize the output voltage ripple. 6 Circuit diagram Figure 3 – 30W 12V ICE3AR0680VJZ power supply schematic Application Note AN-EVAL-3AR0680VJZ 11 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 PCB layout N.B. : In order to get the optimized performance of the CoolSET™, the grounding of the PCB layout must be connected very carefully. From the circuit diagram above, it indicates that the grounding for the CoolSET™ can be split into several groups; signal ground, Vcc ground, Current sense resistor ground and EMI return ground. All the split grounds should be connected to the bulk capacitor ground separately. Signal ground includes all small signal grounds connecting to the CoolSET™ GND pin such as filter capacitor ground, C17, C18, C19 and opto-coupler ground. Vcc ground includes the Vcc capacitor ground, C16 and the auxiliary winding ground, pin 2 of the power transformer. Current Sense resistor ground includes current sense resistor R14 and R14A. EMI return ground includes Y capacitor, C12. 7 PCB layout 7.1 Top side Figure 4 – Top side component legend 7.2 Bottom side Figure 5 – Bottom side copper & component legend Application Note AN-EVAL-3AR0680VJZ 12 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 Component list Component list 8 No. Designator Component Description 1 +12V Connector 2 BR1 600V/2A 3 4 5 C11 C110 C12 220nF/305V 47pF/1kV 2.2nF/250V,Y1 6 C13 120uF/450V 7 8 9 10 11 12 13 14 C14 C16 C17 C18 C19,C25 C22, C23 C24 C26 100nF/305V 22uF/50V 100nF/50V 470pF/50V 220nF/50V 1000uF/16V 330uF/25V 1nF/50V 15 Com Connector 16 17 18 19 20 D12 D21 DZD 11 F1 HS1 21 IC11 22 IC12 23 25 26 IC21 J1,J2,J3, J4,J5 LN L11 200V/0.2A 100V/30A 145V/200W 250V/1A HS TO220 ICE3AR0680V JZ SFH617 A3(Optocouple r) TL431 27 L21 24 32 33 34 R12, R12A R14, R14A R15 R15A,R1 5B R16 R16A R22 35 36 R23 R24 28 29 30 31 Footprint Connector(3. 2diameter) Bridge(2S) Part Number Manufacturer 5005 Quantity 1 D2SB60A SHINDENGEN 1 MKT8/18/15 MKT2/7/5 MKT2/13/10 RB18X31.5H orizontal MKT5/18/15 RB5.5 0603 0603 0603 RB10.5 RB8 0603 Connector(3. 2diameter) DIODE0.3 ITO-220AB DIODE0.4 MKT4.3/8.4/5 HS TO220 B32922C3224 EPCOS DE1E3KX222MA4BL01 MURATA 1 1 1 450QXW120MEFC18X31.5 RUBYCON 1 B329221C3104 50PX22MEFC5X11 EPCOS RUBYCON GCM1885C1H471FA16 MURATA 25ZL330MEFC8X16 RUBYCON 1 1 1 1 2 2 1 1 5006 1 1N485B VF30100SG ST02D-140 VISHAY SHINDENGEN 574502B03300G AAVID 1 1 1 1 1 DIP7 ICE3AR0680VJZ INFINEON 1 DIP4 SFH617 A3 1 TO92-TL431- 1 Jumper AXIAL0.3 5 Connector 39mH/0.7A Connector EMI_C_U21 Axial 0.4_V_FB B82732W2701B030 EPCOS 1 1 2743002111 Fair-Rite 1 3R3 0603 1R1/0.5W 1206R 3M AXIAL0.4_15 1 3M/0.25W 1206R 2 43.2k 0R 820R 0603 0603 0603 1 1 1 1.2k 330k 0603 0603 1 1 Application Note AN-EVAL-3AR0680VJZ 2 ERJB2BF1R1V 13 2 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 Transformer construction No. Designator Component Description Footprint 37 38 39 R25 R25A R26 75k 1k 20k AXIAL0.3 0603 0603 40 TR1 229µH(30:5:8) ef25/10h 9 Part Number Manufacturer Quantity 2 1 2 750341900 Wurth Electronics Midcom 1 Transformer construction Core and material: EF25/10/6(EF25), TP4A (TDG) Bobbin: 070-2607(10-Pins, TH-H, Horizontal version) Primary Inductance, Lp=229μH (±10%), measured between pin 4 and pin 5 Manufacturer and part number: Wurth Electronics Midcom (750341900) Figure 6 – Transformer structure Application Note AN-EVAL-3AR0680VJZ 14 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 Test results 10 Test results 10.1 Efficiency Figure 7 – Efficiency vs AC line input voltage Figure 8 – Efficiency vs output power @ low and high line Application Note AN-EVAL-3AR0680VJZ 15 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 Test results 10.2 Input standby power Figure 9 – Input standby power @ no load vs AC line input voltage (measured by Yokogawa WT210 power meter - integration mode) Figure 10 – Input standby power @ 0.5W, 1W, 2W and 3W vs AC line input voltage ( measured by Yokogawa WT210 power meter - integration mode ) 10.3 Line regulation Figure 11 – Line regulation Vo @ full load vs AC line input voltage Application Note AN-EVAL-3AR0680VJZ 16 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 Test results 10.4 Load regulation Figure 12 – Load regulation Vo vs output power 10.5 Max. output power Figure 13 – Maximum output power (before over-load protection) vs AC line input voltage 10.6 Electrostatic discharge/ESD test (EN6100-4-2) Pass (Special test voltage ±12kV for contact discharge) 10.7 Surge/Lightning strike test (EN61000-4-5) Pass (Installation class 3, 2kV for line to earth) Pass (Installation class 4, 4kV for line to earth by adding 5 ferrite beads EPCOS B64290P0035X038 at Pin 5 of IC11, 2 leads of C12, pin 4 and pin 5 of TR1) Application Note AN-EVAL-3AR0680VJZ 17 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 Test results 10.8 Conducted EMI The conducted EMI was measured by Schaffner (SMR4503) and followed the test standard of EN55022 (CISPR 22) class B. The demo board was set up at maximum load (30W) with input voltage of 115Vac and 230Vac. Figure 14 – Max. Load (30W) with 115 Vac (Line) Figure 15 – Max. Load (30W) with 115 Vac (Neutral) Application Note AN-EVAL-3AR0680VJZ 18 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 Test results Figure 16 – Max. Load (30W) with 230 Vac (Line) Figure 17 – Max. Load (30W) with 230 Vac (Neutral) Pass conducted EMI EN55022 (CISPR 22) class B with > 6dB margin. Application Note AN-EVAL-3AR0680VJZ 19 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 Test results 10.9 Thermal measurement The thermal test of open frame demonstrator board was done using an infrared thermography camera (TVS500EX) at ambient temperature 25 ⁰ C. The measurements were taken after two hours running at full load (34 W). Table 1 Hottest temperature of demonstrator board No. Designator Temperature @ 85 VAC and FL(°C) Temperature @ 265 VAC and FL(°C) 1 IC1 (ICE3AR1080VJZ) 88.3 77.5 2 BR1 56.2 30.6 3 L1 73.6 32.7 4 TR1 55.4 58.6 5 D3 59.1 63.3 6 R16 47.3 42.5 7 Ambient 25 25 85 VAC full load and 25 ⁰C ambient 265 VAC full load and 25 ⁰C ambient PCB top side PCB top side PCB bottom side PCB bottom side Figure 1 Infrared thermal image of DEMO-ICE3AR1080VJZ Application Note AN-EVAL-3AR0680VJZ 20 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 Waveforms and scope plots 11 Waveforms and scope plots All waveforms and scope plots were recorded with a LeCroy 6050 oscilloscope 11.1 Start up at low and high AC line input voltage and maximum load 400ms 400ms Entry/exit burst selection Entry/exit burst selection Channel Channel Channel Channel 1; C1 : Drain voltage (VDrain) 2; C2 : Supply voltage (VCC) 3; C3 : Feedback voltage (VFBB) 4; C4 : BV voltage (VBV) Channel Channel Channel Channel 1; C1 : Drain voltage (VDrain) 2; C2 : Supply voltage (VCC) 3; C3 : Feedback voltage (VFBB) 4; C4 : BV voltage (VBV) Startup time = 400ms Startup time = 400ms Figure 18 – Startup @ 85Vac & max. load Figure 19 – Startup @ 265Vac & max. load 11.2 Soft start at low/high AC line input voltage and maximum load 9.7ms Channel Channel Channel Channel 1; C1 : Current sense voltage (VCS) 2; C2 : Supply voltage (VCC) 3; C3 : Feedback voltage (VFBB) 4; C4 : BV voltage (VBV) 9.7ms Channel Channel Channel Channel 1; C1 : Current sense voltage (VCS) 2; C2 : Supply voltage (VCC) 3; C3 : Feedback voltage (VFBB) 4; C4 : BV voltage (VBV) Soft Star time = 9.7ms Soft Star time = 9.7ms Figure 20 – Soft Start @ 85Vac & max. load Figure 21– Soft Start @ 265Vac & max. load Application Note AN-EVAL-3AR0680VJZ 21 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 Waveforms and scope plots 11.3 Frequency jittering Channel 1; C1 : Drain voltage (VDrain) Channel F1 : Frequency track of C1 Channel 1; C1 : Drain voltage (VDrain) Channel F1 : Frequency track of C1 Frequency jittering from 92 kHz ~ 100 kHz, Jitter period is set at 4ms internally Frequency jittering from 92kHz ~ 100 kHz, Jitter period is set at 4ms internally Figure 22 – Frequency jittering @ 85Vac and max. load Figure 23 – Frequency jittering @ 265Vac and max. load 11.4 Drain voltage and current at maximum load Channel 1; C1 : Drain voltage (VDrain) Channel 2; C2 : Drain current (IDrain) VDrain_peak = 311V Figure 24 – Operation @ 85Vac and max. load Application Note AN-EVAL-3AR0680VJZ Channel 1; C1 : Drain voltage (VDrain) Channel 2; C2 : Drain current (IDrain) VDrain_peak = 581V Figure 25 – Operation @ 265Vac and max. load 22 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 Waveforms and scope plots 11.5 Load transient response (Dynamic load from 10% to 100%) Channel 1; C1 : Output ripple voltage (Vo) Channel 2; C2 : Output current (Io) Vripple_pk_pk=194mV (Load change from10% to 100%,100Hz,0.4A/μS slew rate) Probe terminal end with decoupling capacitor of 0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter Channel 1; C1 : Output ripple voltage (Vo) Channel 2; C2 : Output current (Io) Vripple_pk_pk=193mV (Load change from10% to 100%,100Hz,0.4A/μS slew rate) Probe terminal end with decoupling capacitor of 0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter Figure 26 – Load transient response @ 85Vac Figure 27 – Load transient response @ 265Vac 11.6 Output ripple voltage at maximum load Channel 1; C1 : Output ripple voltage (Vo) Channel 1; C1 : Output ripple voltage (Vo) Vripple_pk_pk=25mV Probe terminal end with decoupling capacitor of 0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter Vripple_pk_pk = 25mV Probe terminal end with decoupling capacitor of 0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter Figure 28 – AC output ripple @ 85Vac and max. load Figure 29 – AC output ripple @ 282Vac and max. load Application Note AN-EVAL-3AR0680VJZ 23 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 Waveforms and scope plots 11.7 Output ripple voltage during burst mode at 1 W load Channel 1; C1 : Output ripple voltage (Vo) Channel 1; C1 : Output ripple voltage (Vo) Vripple_pk_pk=44mV Probe terminal end with decoupling capacitor of 0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter Vripple_pk_pk = 51mV Probe terminal end with decoupling capacitor of 0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter Figure 30 – AC output ripple @ 85Vac and 1W load Figure 31 – AC output ripple @ 265Vac and 1W load 11.8 Entering active burst mode 20ms 20ms Channel 1; C1 : Current sense voltage (VCS) Channel 2; C2 : Supply voltage (VCC) Channel 3; C3 : Feedback voltage (VFBB) Channel 4; C4 : BV voltage (VBV) Blanking time to enter burst mode : 20ms (load step down from 2.5A to 0.083A) Figure 32 – Entering active burst mode @ 85Vac Application Note AN-EVAL-3AR0680VJZ Channel 1; C1 : Current sense voltage (VCS) Channel 2; C2 : Supply voltage (VCC) Channel 3; C3 : Feedback voltage (VFBB) Channel 4; C4 : BV voltage (VBV) Blanking time to enter burst mode : 20ms (load step down from 2.5A to 0.083A) Figure 33 – Entering active burst mode @ 265Vac 24 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 Waveforms and scope plots 11.9 Vcc over voltage protection (Odd skip auto restart mode) VCC OVP2 Channel 1; C1 : Current sense voltage (VCS) Channel 2; C2 : Supply voltage (VCC) Channel 3; C3 : Feedback voltage (VFBB) Channel 4; C4 : BV voltage (VBV) VCC OVP2 first & follows VCC OVP1 (Jumper 5 disconnected during system operating at no load) Figure 34 – Vcc overvoltage protection @ 85Vac 11.10 VCC OVP2 VCC OVP1 VCC OVP1 Channel 1; C1 : Current sense voltage (VCS) Channel 2; C2 : Supply voltage (VCC) Channel 3; C3 : Feedback voltage (VFBB) Channel 4; C4 : BV voltage (VBV) VCC OVP2 first & follows VCC OVP1 (Jumper 5 disconnected during system operating at no load) Figure 35 – Vcc overvoltage protection @ 265Vac Over load protection (Odd skip auto restart mode) built-in 20ms blanking built-in 20ms blanking extended blanking Channel 1; C1 : Current sense voltage (VCS) Channel 2; C2 : Supply voltage (VCC) Channel 3; C3 : Feedback voltage (VFBB) Channel 4; C4 : BV voltage (VBV) Over load protection with (built-in+extended) blanking time =457ms (output load change from 2.5A to 4A) Figure 36 – Over load protection with extended blanking time @ 85Vac) Application Note AN-EVAL-3AR0680VJZ extended blanking Channel 1; C1 : Current sense voltage (VCS) Channel 2; C2 : Supply voltage (VCC) Channel 3; C3 : Feedback voltage (VFBB) Channel 4; C4 : BV voltage (VBV) Over load protection with (built-in+extended) blanking time =449ms (output load change from 2.5A to 4A) Figure 37 – Over load protection with extended blanking time @ 265Vac) 25 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 Waveforms and scope plots 11.11 Channel Channel Channel Channel Open loop protection (Odd skip auto restart mode) 1; C1 : Current sense voltage (VCS) 2; C2 : Supply voltage (VCC) 3; C3 : Feedback voltage (VFBB) 4; C4 : BV voltage (VBV) Channel Channel Channel Channel 1; C1 : Current sense voltage (VCS) 2; C2 : Supply voltage (VCC) 3; C3 : Feedback voltage (VFBB) 4; C4 : BV voltage (VBV) Open loop protection (Jumper 5 disconnected during system operation at max. load) – VCC OVP2 protection Open loop protection (Jumper 5 disconnected during system operation at max. load) – VCC OVP2 protection Figure 38 – Open loop protection @ 85Vac Figure 39 – Open loop protection @ 265Vac 11.12 VCC under voltage/Short optocoupler protection (Normal auto restart mode) Exit autorestart Exit autorestart Enter autorestart Channel Channel Channel Channel 1; C1 : Current sense voltage (VCS) 2; C2 : Supply voltage (VCC) 3; C3 : Feedback voltage (VFBB) 4; C4 : BV voltage (VBV) Enter autorestart Channel Channel Channel Channel 1; C1 : Current sense voltage (VCS) 2; C2 : Supply voltage (VCC) 3; C3 : Feedback voltage (VFBB) 4; C4 : BV voltage (VBV VCC under voltage/short optocoupler protection (short the transistor of optocoupler during system operating @ full load & release) VCC under voltage/short optocoupler protection (short the transistor of optocoupler during system operating @ full load & release) Figure 40 – Vcc under voltage/short optocoupler protection @ 85Vac Figure 41 – Vcc under voltage/short optocoupler protection @ 265Vac Application Note AN-EVAL-3AR0680VJZ 26 V1.1, 2015-05-12 30W 12V SMPS evaluation board with ICE3AR0680VJZ AN-PS0079 References 11.13 AC Line input OVP mode 402Vdc(284Vac) Exit input OVP 421.7Vdc(298Vac) Enter input OVP 398.7Vdc(282Vac) Exit input OVP 422Vdc(298Vac) Enter input OVP Channel Channel Channel Channel 1; C1 : Current sense voltage (VCS) 2; C2 : Supply voltage (VCC) 3; C3 : Bulk voltage(Vbulk) 4; C4 : BV voltage (VBV) Channel Channel Channel Channel 1; C1 : Current sense voltage (VCS) 2; C2 : Supply voltage (VCC) 3; C3 : Bulk voltage(Vbulk) 4; C4 : BV voltage (VBV) Input OVP detect: Vbulk= 421.7Vdc(298Vac) Input OVP reset: Vbulk= 398.7Vdc(282Vac) Input OVP detect: Vbulk= 422Vdc(298Vac) Input OVP reset: Vbulk= 402Vdc(284Vac) Figure 42 – Input OVP mode at max. load condition Figure 43 – Input OVP mode at no load condition 12 References [1] Infineon Technologies, Datasheet “CoolSET™-F3R80 ICE3AR0680VJZ Off-Line SMPS Current Mode Controller with integrated 800V CoolMOS™and Startup cell( input OVP & Frequency Jitter) in DIP-7” [2] Infineon Technologies, AN-PS0044-CoolSET F3R80 DIP-7 brownout/input OVP & frequency jitter version design guide-V1.5 Application Note AN-EVAL-3AR0680VJZ 27 V1.1, 2015-05-12 w w w . i nf i n eo n. com Published by Infineon Technologies AG