TI TLC320AD58C

TLC320AD58C
Data Manual
Sigma-Delta Stereo Analog-to-Digital Converter
SLAS102
May 1995
Printed on Recycled Paper
IMPORTANT NOTICE
Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.
TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.
Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).
TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.
In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.
TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.
Copyright  1995, Texas Instruments Incorporated
Contents
Section
Title
Page
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–1
1–1
1–1
1–2
1–2
1–2
2
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Power-Down and Reset Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1 Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.2 Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Differential Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Sigma-Delta Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Decimation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 High-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6 Master-Clock Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7 Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8 Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–1
2–1
2–1
2–1
2–2
2–3
2–3
2–3
2–3
2–3
2–3
2–4
2–5
3
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range . . . . .
3.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.1 Digital Interface, TA = 25°C, AVDD = DVDD = 5 V . . . . . . . . . . . . . . . . . . . .
3.3.2 Analog Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.3 Channel Characteristics, TA = 25°C, AVDD = DVDD = 5 V,
fs = 48 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–1
3–1
3–1
3–2
3–2
3–2
3–3
3–3
4
Parameter Measurement Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1
5
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1
Appendix A
Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
iii
List of Illustrations
Figure
Title
Page
2–1.
2–2.
2–3.
2–4.
Power-Down Timing Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential Analog Input Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Serial Master Transfer Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Serial Slave Transfer Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–2
2–2
2–5
2–6
4–1.
4–2.
4–3.
4–4.
4–5.
4–6.
SCLK to Fsync and DOUT – Master Mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SCLK to Fsync, DOUT, and LRClk – Master Modes 4 and 6 . . . . . . . . . . . . . . . . . . . . .
SCLK to Fsync, DOUT, and LRClk – Master Mode 5 . . . . . . . . . . . . . . . . . . . . . . . . . . .
SCLK to Fsync, DOUT, and LRClk – Master Mode 7 . . . . . . . . . . . . . . . . . . . . . . . . . . .
SCLK to LRClk and DOUT – Slave Mode 0, Fsync High . . . . . . . . . . . . . . . . . . . . . . . .
SCLK to Fsync, LRClk, and DOUT – Slave Mode 2, Fsync Controlled . . . . . . . . . . . .
4–1
4–1
4–1
4–2
4–2
4–2
5–1. TLC320AD58C Configuration Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2
5–2. TLC320AD58C External Digital Timing and Control-Signal Generation Schematic . 5–3
5–3. TLC320AD58C External Analog Input Buffer Schematic . . . . . . . . . . . . . . . . . . . . . . . . 5–4
List of Tables
Table
Title
Page
2–1. Master-Clock to Sample-Rate Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3
iv
1 Introduction
The TLC320AD58C provides high-resolution signal conversion from analog to digital using oversampling
sigma-delta technology. This device consists of two synchronous conversion paths. Also included is a
decimation filter after the modulator as shown in the functional block diagram. Other functions provide
analog filtering and on-chip timing and control.
A functional block diagram of the TLC320AD58C is included in Section 1.2. Each block is described in the
detailed description section.
1.1
Features
•
•
•
•
•
•
•
•
•
•
•
1.2
Single 5-V Power Supply
Sample Rates up to 48 kHz
18-Bit Resolution
Signal-to-Noise Ratio (EIAJ) of 97 dB
Dynamic Range of 95 dB
Total Signal-to-Noise+Distortion of 95 dB
Internal Reference Voltage (Vref)
Serial-Port Interface
Differential Architecture
Power Dissipation of 200 mW. Power-Down Mode for Low-Power Applications
One-Micron Advanced LinEPIC1Z Process
Functional Block Diagram
INLP
Sigma-Delta
Modulator
INLM
REFO
Decimation
Filter
High-Pass
Filter
DOUT
Fsync
VREF
REFI
Serial
Interface
INRP
Sigma-Delta
Modulator
INRM
Decimation
Filter
High-Pass
Filter
LRClk
OSFR
OSFL
MCLK
CMODE
CONTROL
MODE(0 – 2)
SCLK
LinEPIC1Z is a trademark of Texas Instruments Incorporated.
1–1
1.3
Terminal Assignments
DW PACKAGE
(TOP VIEW)
INLP
INLM
REFI
AVDD
AVSS
AnaPD
TEST1
MODE2
OSFL
DigPD
TEST2
CMODE
MODE0
LRClk
1
28
2
27
3
26
4
25
5
24
6
23
7
22
8
21
9
20
10
19
11
18
12
17
13
16
14
15
INRP
INRM
REFO
LGND
Vlogic
NC
MODE1
OSFR
MCLK
DVSS
DVDD
Fsync
DOUT
SCLK
NC – No internal connection
1.4
Ordering Information
PACKAGE
1.5
TA
SMALL OUTLINE
(DW)
0°C to 70°C
TLC320AD58CDW
Terminal Functions
TERMINAL
NAME
NO.
I/O
DESCRIPTION
AnaPD
6
I
Analog power-down mode. The analog power-down mode disables the analog
modulators. The single-bit modulator outputs become invalid, rendering the outputs of the
digital filters invalid. When AnaPD is pulled high, normal operation of the device is
resumed.
AVDD
AVSS
4
I
Analog supply voltage
5
I
Analog ground
CMODE
12
I
Clock mode. CMODE is used to select between two methods of determining the master
clock frequency. When CMODE is high, the master clock input is 384× the conversion
frequency. When CMODE is low, the master clock input is 256× the conversion frequency.
DOUT
16
O
Data output. DOUT is used to transmit the sigma-delta audio ADC output data to a DSP
serial port or other compatible serial interface and is synchronized to SCLK. This output
is low when DigPD is high.
DVDD
18
I
Digital supply voltage
DVSS
19
I
Digital ground
DigPD
10
I
Digital power-down mode. The digital power-down mode shuts down the digital filters and
clock generators. All digital outputs are brought to unasserted states. When DigPD is
pulled high, normal operation of the device is resumed.
Fsync
17
I/O
1–2
Frame sync. Frame sync is used to designate the valid data from the ADC.
1.5
Terminal Functions (Continued)
TERMINAL
NAME
NO.
I/O
DESCRIPTION
INLM
2
I
Inverting input to left analog input amplifier
INLP
1
I
Noninverting input to left analog input amplifier
INRM
27
I
Inverting input to right analog input amplifier
INRP
28
I
Noninverting input to right analog input amplifier
LGND
25
I
Logic power supply ground for analog modulator
LRClk
14
I/O
Left/right clock. LRClk signifies whether the serial data is associated with the left channel
ADC (when LRClk is high) or the right channel ADC (when LRClk is low). LRClk is low
when DigPD is low.
MCLK
20
I
Master clock. MCLK is used to derive all the key logic signals of the sigma-delta audio
ADC. The nominal input frequency range is 18.432 MHz to 256 kHz.
13, 22,
8
I
Serial modes. MODE(0–2) configure this device for many different modes of operation.
The different configurations are:
Master versus slave
16 bit versus 18 bit
MSB first versus LSB first
Slave: Fsync controlled versus Fsync high
Each of these modes is described in the serial interface section along with timing
diagrams.
MODE MASTER/
MSB/LSB
0 1 2
SLAVE
BITS
FIRST
0 0 0
slave
up to 18
MSB
0 0 1
slave
18
LSB
0 1 0
slave
up to 18
MSB
0 1 1
master
16
MSB
1 0 0
master
18
MSB
1 0 1
master
18
LSB
1 1 0
master
16
MSB
1 1 1
master
16
LSB
OSFL,
OSFR
9, 21
O
Over scale flag left/right. If the left/right channel digital output exceeds full scale output
range for two consecutive conversions, this flag is set high for 4096 LRClk periods.
OSFL and OSFR are low when DigPD is low.
SCLK
15
I/O
Shift clock. If SCLK is configured as an input, SCLK is used to clock serial data out of
the sigma-delta audio ADC. If SCLK is configured as an output, SCLK stops clocking
when DigPD is low.
TEST1
7
I
Test mode 1. TEST1 should be low for normal operation.
TEST2
11
I
Test mode 2. TEST2 should be low for normal operation.
REFI
3
I
Input voltage for modulator reference (normally connected to REFO, terminal 26).
REFO
26
I
Internal voltage reference
Vlogic
24
I
Logic power supply voltage (5 V) for analog modulator
MODE(0–2)
1–3
1–4
2 Detailed Description
The sigma-delta converter allows for simple antialias external filtering. Typically, a first order RC filter is
sufficient.
2.1
2.1.1
Power-Down and Reset Functions
Power Down
The power-down state is comprised of a separate digital and analog power down. The power consumption
of each is detailed in the electrical characteristics section.
The digital power-down mode shuts down the digital filters and clock generators. All digital outputs are set
to an unasserted level. When the digital power-down terminal is pulled high, normal operation of the device
is initiated. In slave mode, the conversion process must synchronize to an input on the LRClk terminal as
well as the SCLK terminal. Therefore, the conversion process is not initiated until the first rising edges of
both SCLK and LRClk are detected after DigPD is pulled high. This synchronizes the conversion cycle; all
conversions are performed at a fixed LRClk rate [MCLK/256 (CMODE low) or MCLK/384 (CMODE high)]
after the initial synchronization. After the digital power-down terminal is brought high, the output of the digital
filters remains invalid for 50 LRClk cycles [see Figures 2–1(a) and 2–1(b)].
In master mode, LRClk is an output; therefore, the conversion process initiates based on internal timing.
The first valid data out occurs as shown in Figure 2–1(c).
The analog power-down mode disables the analog modulators. The single-bit modulator outputs become
invalid which renders the outputs of the digital filters invalid. When the analog power-down terminal is
brought high, the modulators are brought back online; however, the outputs of the digital filters require 50
LRClk cycles for valid results.
2.1.2
Reset Function
The conversion process is not initiated until the first rising edges of both SCLK and LRClk are detected after
DigPD is pulled high. This synchronizes the conversion cycle; all conversions are performed at a fixed LRClk
rate [MCLK/256 (CMODE low) or MCLK/384 (CMODE high)] after the initial synchronization.
2–1
tsu5
Slave-Mode Digital Power Down
DigPD
LRClk
DOUT
Data Valid
(a)
tsu6
Master-Mode Digital Power Down
DigPD
LRClk
DOUT
Data Valid
(b)
td1
Analog Power Down
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
AnaPD
DOUT
(c)
Figure 2–1. Power-Down Timing Relationships
2.2
Differential Input
The input is differential in order to provide common-mode noise rejection and increase the input dynamic
range. Figure 2–2 shows the analog input signals used in a differential configuration to achieve a
6.4 VI(PP) differential swing with a 3.2 VI(PP) swing per input line. Both a differential and a single-ended
configuration are shown in the application information section.
TLC320AD58
4.1 V
2.5 V
INLP, INRP
0.9 V
4.1 V
2.5 V
INLM, INRM
0.9 V
Figure 2–2. Differential Analog Input Configuration
2–2
2.3
Sigma-Delta Modulator
The modulator is a fourth-order sigma-delta modulator with 64 times oversampling. The ADC provides
high-resolution, low-noise performance from a one-bit converter using oversampling techniques.
2.4
Decimation Filter
The decimation filter used after the sigma-delta modulator reduces the digital data rate to the sampling rate
of LRClk. This is accomplished by decimating with a ratio of 1:64. The output of this filter is a 2s complement
data word of up to 18 bits serially clocked out.
If the input value exceeds the full range of the converter, the output of the decimator is held at the appropriate
extreme until the input returns to the dynamic range of this device.
2.5
High-Pass Filter
The high-pass filter removes dc from the input.
2.6
Master-Clock Circuit
The master-clock circuit is used to generate and distribute necessary clocks throughout the device. MCLK
is the external master clock input. CMODE is used to select the relationship of MCLK to the sample rate of
LRClk. When CMODE is low, the sample rate of the data paths is set as LRClk = MCLK/256. When CMODE
is high, the sample rate is set as LRClk = MCLK/384. With a fixed oversampling ratio of 64×, the effect of
changing MCLK is shown in Table 2–1.
When the TLC320AD58C is in master mode, SCLK is derived from MCLK in order to provide clocking of
the serial communications between the sigma-delta audio ADC and a digital signal processor (DSP) or
control logic. This is equivalent to a clock running at 64 × LRClk.
When the TLC320AD58C is in slave mode, SCLK is externally derived.
Table 2–1. Master-Clock to Sample-Rate Comparison
(Modes 1, 3, 4, 5)
2.7
MCLK
(MHz)
CMODE
12.2880
Low
18.4320
High
11.2896
Low
16.9344
High
8.1920
Low
12.2880
High
0.2560
Low
0.3840
High
SCLK
(MHz)
LRClk
(kHz)
3 0720
3.0720
48
2 8224
2.8224
44 1
44.1
2 0480
2.0480
32
0 0640
0.0640
1
Test
TEST1 and TEST2 are reserved for factory test and should be tied to digital ground (DVSS).
2.8
Serial Interface
Although the serial data is shifted out in two seperate time packets that represent the left and right channels,
the inputs are sampled and converted simultaneously.
The serial interface protocol has master and slave modes each with different read out modes. The master
mode is used to source the control signals for conversion synchronization, while the slave mode allows an
external controller to provide conversion synchronization signals.
The five master modes are shown in Figures 2–3(a) through 2–3(e), and the three slave modes are shown
in Figures 2–4(a) through 2–4(c). For a 16-bit word, D15 is the most significant bit and D0 is the least
significant bit. Unless otherwise specified, all values are in 2s complement format.
2–3
In master mode, SCLK is generated internally and is sourced as an output. The relationship of SCLK to
LRClk is 64× (modes 1, 3, 4, 5) or 32× (modes 6, 7). In slave mode, SCLK is an input. SCLK timing must
meet the timing specifications shown in the recommended operating conditions section.
2.8.1
Master Mode
As the master, the TLC320AD58C generates LRClk, Fsync, and SCLK from MCLK. These signals are
provided for synchronizing the serial port of a digital signal processor (DSP) or other control devices.
Fsync is used to designate the valid data from the ADC, and this is accomplished in the master modes by
one of two methods. The first is a single pulse on Fsync prior to valid data. This indicates the starting point
for the data. The second method of frame synchronization is to hold Fsync high during the entire valid data
cycle, which provides boundaries for the data.
LRClk is generated internally from MCLK. The frequency of this signal is fixed at the sampling frequency
fs [MCLK/256 (CMODE low) or MCLK/384 (CMODE high)]. During the high period of this signal, the left
channel data is serially shifted to the output; during the low period, the right channel data is shifted to the
output. The conversion cycle is synchronized with the rising edge of LRClk.
Five modes are available when the device is configured as a master. Two modes are for 18-bit
communications. These modes differ from each other in that the MSB is transferred first in one mode while
the LSB is transferred first in the second mode [see Figures 2–3(b) and 2–3(c)]. When the LSB is transferred
first, the data is right justified to the LRClk [see Figures 2–3(a) through 2–3(e)]. The three other master
modes are 16-bit modes. Once again, two of the modes differ as MSB first versus LSB first. These two
modes set SCLK = LRClk × 32. This is half the frequency used in the other transfer modes [see
Figures 2–3(d) and 2–3(e)]. The third 16-bit mode provides the data MSB first with one clock delay after
LRClk [see Figure 2–3(a)].
2–4
Mode 011
(a) 16-BIT MASTER MODE (Fsync bound)
SCLK
Fsync
DOUT
15
14
...
1
0
15
...
14
1
0
64 SCLKs
LRClk
Right
Left
Mode 100
(b) 18-BIT MASTER MODE
SCLK
Fsync
17 16
DOUT
LRClk
...
1
0
17
16
...
1
0
0
1
17
64 SCLKs
Right
Left
(c) 18-BIT MASTER MODE
Mode 101
SCLK
Fsync
...
0 1
DOUT
LRClk
16
17
...
16
17
64 SCLKs
Right
Left
Mode 110
(d) 16-BIT DSP CONTINUOUS MODE
SCLK
Fsync
DOUT
15
14
...
1
0
15
14
...
1
0
...
14
15
15
32 SCLKs
LRClk
Right
Left
Mode 111
(e) 16-BIT DSP CONTINUOUS MODE
SCLK
Fsync
0
DOUT
1
...
14
15
0
1
0
32 SCLKs
LRClk
Left
Right
Figure 2–3. Serial Master Transfer Modes
2.8.2
Slave Mode
As a slave, the TLC320AD58C receives LRClk, Fsync, and SCLK as inputs. The conversion cycle is
synchronized to the rising edge of LRClk, and the data is synchronized to the falling edge of SCLK. SCLK
must meet the setup requirements specified in the recommended operating conditions section.
Synchronization of the slave modes is accomplished with the digital power-down control.
In slave mode, Fsync is an input. Three modes are provided as shown in Figures 2–4(a) through 2–4(c).
SCLK and LRClk are externally generated and sourced. The first rising edges of SCLK and LRClk after a
power-down cycle initiate the conversion cycle. Refer to the master-mode section for signal functions.
2–5
Several modes are available when the TLC320AD58C is configured as a slave. Using the Mode0, Mode1,
and Mode2 terminals, the TLC320AD58C can be set to shift out the MSB first or the LSB first [see Figures
2–4(a) and 2–4(b)]. The number of bits shifted out, however, can be controlled by the number of valid SCLK
cycles provided within the left or right channel period. If only enough clocks are provided to shift out 16 data
bits before LRClk changes state, then this is equivalent to a 16-bit mode. Modes 1 and 2 both require 64
SCLK periods per LRClk period.
(a) 18-BIT SLAVE MODE (Fsync high)
Mode 000
SCLK
input
Fsync
DOUT
input
output
LRClk
input
17
16
...
1
0
17
16
32 – 128 SCLKs
Right
Left
...
1
0
(b) 18-BIT SLAVE MODE (Fsync high)
Mode 001
SCLK
Fsync
DOUT
LRClk
0
1
...
16
0
17
1
...
64 SCLKs
Right
Left
(c) 18-BIT SLAVE MODE (Fsync controlled)
Mode 010
SCLK
Fsync_1
DOUT_1
17
...
0
17
17
...
0
17
...
0
Fsync_2
DOUT_2
LRClk
Left
32 – 128 SCLKs
Right
Figure 2–4. Serial Slave Transfer Modes
2–6
...
0
16
17
3 Specifications
3.1
Absolute Maximum Ratings Over Operating Free-Air Temperature Range
(unless otherwise noted)†
Supply voltage range, AVDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 6.5 V
Supply voltage range, DVDD (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 6.5 V
Analog input voltage range, INLP, INLM, INRP, INRM . . . . . . . . . . . . . . . – 0.3 V to 6.5 V
Operating free-air temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0°C to 70°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
Case temperature for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . 260°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These
are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated
under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for
extended periods may affect device reliability.
NOTES: 1. Voltage values for maximum ratings are with respect to AVSS.
2. Voltage values for maximum ratings are with respect to DVSS.
3.2
Recommended Operating Conditions
MIN
NOM
MAX
UNIT
Analog supply voltage, AVDD (see Note 3)
4.75
5
5.25
V
Digital supply voltage, DVDD
4.75
5
5.25
V
Analog logic supply voltage, Vlogic
4.75
5
5.25
V
Reference voltage, Vref
3.2
V
Setup time, SCLK↑ to LRClk, slave mode, tsu1
30
ns
Setup time, LRClk to SCLK↑, slave mode, tsu2
30
ns
Setup time, SCLK↑ to Fsync, slave mode, tsu3
30
ns
Setup time, Fsync to SCLK↑, slave mode, tsu4
30
ns
Setup time, DigPD to LRClk↑, slave mode, tsu5
30
ns
Setup time, DigPD to LRClk↑, master mode, tsu6
30
ns
Load resistance at DOUT, RL
Input dc offset range
10
– 50
kΩ
0
50
mV
Operating free-air temperature, TA
0
NOTE 3: Voltages at analog inputs and outputs and AVDD are with respect to the AVSS terminal.
70
°C
3–1
3.3
Electrical Characteristics
3.3.1
Digital Interface, TA = 25°C, AVDD = DVDD = 5 V
PARAMETER
TEST CONDITIONS
MIN
TYP
2
4.6
MAX
UNIT
VIH
VIL
High-level input voltage
VOH
VOL
High-level output voltage at DOUT
IIH
IIL
High-level input current, any digital input
1
µA
Low-level input current, any digital input
1
µA
Ci
Input capacitance
5
pF
Co
Output capacitance
5
pF
3.3.2
Low-level input voltage
0.2
IOH = 2 mA
IOL = 2 mA
Low-level output voltage at DOUT
2.4
V
0.8
4.6
0.2
V
V
0.4
V
Analog Interface
3.3.2.1 ADC Modulator, TA = 25°C, AVDD = DVDD = 5 V, fs = 48 kHz, Bandwidth = 24 kHz,
CMODE = 0, MODE(0 – 2) = 000
PARAMETER
TEST CONDITIONS
MIN
TYP
Resolution
DYNAMIC PERFORMANCE
ANSI A-weighting filter
Signal to noise (EIAJ)
INLP = INRP = 2.5 V dc
INLM = INRM = 2.5 V dc
Dynamic range
Signal to noise + distortion (THD + N)
1 dB down
d
f
–1
from
6-V differential in
ut
input
Total harmonic distortion (THD)
MAX
UNIT
18
Bits
96
100
dB
90
95
dB
93
dB
88
0.0015%
Interchannel isolation
120
dB
± 0.6
dB
DC ACCURACY
Absolute gain error
± 0.2
dB
120 ± 5
mV
± 0.17
LSB/°C
Interchannel gain mismatch
Offset error (18-bit resolution)
Offset drift
3.3.2.2
Inputs/Supplies, TA = 25°C, AVDD = DVDD = 5 V, fs = 48 kHz, Bandwidth = 24 kHz
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
ANALOG INPUT
Input voltage range
(differential)
6.2
(0 to peak)
3.1
Input impedance
V
200
kΩ
POWER SUPPLIES
Power supply current
Power-supply
Power dissipation
3–2
IDD (analog), normal mode
IDD (digital), normal mode
24
32
mA
26
32
mA
IDD (analog), power down
IDD (digital), power down
250
µA
150
µA
250
mW
3.3
Electrical Characteristics (Continued)
3.3.3
Channel Characteristics, TA = 25°C, AVDD = DVDD = 5 V, fs = 48 kHz
PARAMETER
TEST CONDITIONS
Passband (– 3 dB)
MIN
0.001
Passband ripple
30 Hz – 21.8 kHz
Stopband attenuation
26.2 kHz – 3046 kHz
MAX
24
± 0.01
UNIT
kHz
dB
80
Group delay
3.4
TYP
dB
25/fs
s
Switching Characteristics
PARAMETER
MIN
TYP
MAX
30
UNIT
td1
td(MFSD)
Delay time, AnaPD to DOUT valid
ns
Delay time, SCLK↓ to Fsync, master mode
– 20
20
ns
td(MDD)
td(MIRD)
Delay time, SCLK↓ to DOUT, master mode
0
50
ns
Delay time, SCLK↓ to LRClk, master mode
– 20
20
ns
td(SDD1)
td(SDD2)
Delay time, LRClk to DOUT, slave mode
50
ns
Delay time, SCLK↓ to DOUT, slave mode
50
ns
3–3
3–4
4 Parameter Measurement Information
SCLK
td(MFSD)
Fsync
td(MDD)
DOUT
MSB
MSB – 1
...
LRClk
Figure 4–1. SCLK to Fsync and DOUT – Master Mode 3
SCLK
td(MFSD)
Fsync
td(MDD)
DOUT
MSB
MSB – 1
...
td(MIRD)
LRClk
Figure 4–2. SCLK to Fsync, DOUT, and LRClk – Master Modes 4 and 6
SCLK
td(MFSD)
Fsync
td(MDD)
DOUT
LSB
LSB – 1
...
LRClk
Figure 4–3. SCLK to Fsync, DOUT, and LRClk – Master Mode 5
4–1
SCLK
td(MFSD)
Fsync
td(MDD)
DOUT
LSB
...
LSB – 1
td(MIRD)
LRClk
Figure 4–4. SCLK to Fsync, DOUT, and LRClk – Master Mode 7
tsu1
tsu2
SCLK
LRClk
td(SDD2)
td(SDD1)
DOUT
17
...
16
Figure 4–5. SCLK to LRClk and DOUT – Slave Mode 0, Fsync High
tsu1
tsu3
tsu4
SCLK
Fsync
td(SDD2)
DOUT
17
...
LRClk
Figure 4–6. SCLK to Fsync, LRClk, and DOUT – Slave Mode 2, Fsync Controlled
4–2
1
5 Application Information
5–1
2
AVSS1
AVSS1
128
SN74HC14
LP
4700 pF
AVSS1
LM
4700 pF
AVSS1
RP
4700 pF
4700 pF
5–2
RM
5
EXFS
EXLR
1
EXSK
3
7
DVDD2
TLC320AD58C
1
MCK
2Ω
2
1
0.1 µF OSC
3
4
47 µF
DVSS2
DVDD2
SCLK
DOUT
20
Fsync
MCLK
CMODE
OSFL
OSFR
14
10 kΩ
DVSS1
DVDD1
2 kΩ
0.1 µF
DATA
SK
16 50 Ω
DVDD1
17
9
21
2 kΩ
2 kΩ
DVSS1
DVDD1
47 µF/25 V
0.1 µF
DVSS1
AVDD1
47 µF/25 V
0.1 µF
0.1 µF
AVSS1
50 Ω
AVDD1
47 µF/25 V
50 Ω
AVDD1
SCK
15
18
MODE0 DV
DD
22
MODE1
8
19
MODE2 DVSS
4
11
TEST2 AVDD
7
TEST1
5
10
DigPD AVSS
24
6
AnaPD Vlogic
3
REFI
25
26
REFO LGND
10 kΩ
LRCK
LR
50 Ω
13
10 kΩ
DigRET
2
INLM
28
INRP
27
INRM
12
10 kΩ
1
2
DIP
SWITCH 3
4
LRClk
50 Ω
DVSS2
10 kΩ
10 kΩ
DVDD1
INLP
128/FSNC
220 µF
AVSS1
Figure 5–1. TLC320AD58C Configuration Schematic
AVSS1
EXSK
SK
DVDDL
SN74HC163
128
3
SN74HC163
3
DVDDL
SN74HC164
DIGRET
47 µF/25 V
1
D
Q
CK QX
CL
2
9
8
A
QA
B
QB
CL
QC
CK
QD
QE
QF
QG
QH
3
4
5
6
A
4
B
DVSSL 5 C
6 D
7
DVDDL 10 ENP
ENT
9
LOAD
1
CL
2
CK
4
14
QA
13
QB
12
QC
QD 11
15
RCO
DVSSL
5
DVDDL
6
7
10
9
1
2
A
B
C
D
ENP
14
QA
13
QB
12
QC
QD 11
RCO 15
EXLR
ENT
LOAD
CL
CK
10
11
LR
12
13
DVDDL
MCK
PCLR
9
Q
P
D
CK
CL
Q
P
D
CK
CL
SN74HC74
Figure 5–2. TLC320AD58C External Digital Timing and Control-Signal Generation Schematic
SN74HC74
DVDDL
5–3
1
2
5–4
Optional
Optional
0.1 µF
0.1 µF
TL32088
1
AVSS2
100 µF/25 V
2
3
47 µF/25 V
REFL
REFR1
AVSS
INRP
INLP
INRM
INLM
OUTR
19
100 µF/50 V
AVSS2
47 µF/25 V
5 kΩ
18
AINR
BNC
10 kΩ
5 kΩ
4
AINL
BNC
10 kΩ
50 kΩ
20
100 kΩ
5 OUTL
REFR2
6
REFL
FLTR1
FLTL1
FLTR2
FLTL2
AOUTRM
100 pF
AVSS2
17
100 kΩ
50 kΩ
100 P
16
AVSS2
15
200 pF
7
14
200 pF
8
9
10
Check Pin
AOUTLM AOUTRP
AVDD
AOUTLP
13
12
AVDD2
11
Check Pin
0.1 µF
100 µF/50 V
100 µF/50 V
100 µF/50 V
LM
LP
100 µF/50 V
100 µF/50 V
RP
Figure 5–3. TLC320AD58C External Analog Input Buffer Schematic
RM
Appendix A
Mechanical Data
DW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
16 PIN SHOWN
PINS **
0.050 (1,27)
16
20
24
28
A MAX
0.410
(10,41)
0.510
(12,95)
0.610
(15,49)
0.710
(18,03)
A MIN
0.400
(10,16)
0.500
(12,70)
0.600
(15,24)
0.700
(17,78)
DIM
0.020 (0,51)
0.014 (0,35)
16
0.010 (0,25) M
9
0.419 (10,65)
0.400 (10,15)
0.299 (7,59)
0.293 (7,45)
0.010 (0,25) NOM
Gage Plane
0.010 (0,25)
1
8
0°– 8°
A
0.050 (1,27)
0.016 (0,40)
Seating Plane
0.104 (2,65) MAX
0.012 (0,30)
0.004 (0,10)
0.004 (0,10)
4040000 / B 10/94
NOTES: A.
B.
C.
D.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
Falls within JEDEC MS-013
A–1
A–2
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1998, Texas Instruments Incorporated